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Abstract. Reliable tracking of road users is one of the important tasks
in smart traffic applications. In these applications, a network of cameras
is often used to extend the coverage. However, efficient usage of informa-
tion from cameras which observe the same road user from different view
points is seldom explored. In this paper, we present a distributed multi-
camera tracker which efficiently uses information from all cameras with
overlapping views to accurately track various classes of road users. Our
method is designed for deployment on smart camera networks so that
most computer vision tasks are executed locally on smart cameras and
only concise high-level information is sent to a fusion node for global joint
tracking. We evaluate the performance of our tracker on a challenging
real-world traffic dataset in an aspect of Turn Movement Count (TMC)
application and achieves high accuracy of 93% and 83% on vehicles and
cyclist respectively. Moreover, performance testing in anomaly detection
shows that the proposed method provides reliable detection of abnormal
vehicle and pedestrian trajectories.

Keywords: road user tracking · smart camera network · distributed
computing · trajectory analysis · road traffic statistics · smart traffic.

1 Introduction

Automatic detection and tracking of road users, i.e., vehicles, cyclists and pedes-
trians is an active research topic in computer vision since it is one of the essential
building blocks in smart traffic and intelligent surveillance applications. Traffic
features extracted from trajectories of road users are vital for understanding the
behavior of road users, modeling of traffic, evaluation of traffic scenes and even-
tually automatic traffic flow control to obtain optimal efficiency. Many existing
trackers use information from a single camera to track one or more classes of road
users. To tackle coverage limitation of a single camera view tracking, a network
of multiple cameras is used. A considerable number of methods have been pro-
posed on tracking of road users across multiple cameras with overlapping/non-
overlapping views. However, all these methods boil down to a single tracking



with camera handover or target re-identification to associate local trajectories
of each camera view to produce global trajectories.

A relatively small amount of work, for instance [4, 15, 8, 7], has exploited the
advantages of using information from cameras observing the same traffic scene
with high overlapping view from different angles. By observing the same road
user from different view angles, the occlusion problem may be significantly miti-
gated. Centralized multi-camera tracking methods [4, 15, 7] require images from
all views in order to localize and track road users. In these methods, the number
of cameras is limited by computational and communication bottlenecks. Fortu-
nately, the introduction of smart cameras [12] allows the execution computer
vision algorithms locally on cameras and only compact high-level information is
sent to a decision node for joint trajectory estimation.

In this paper, we propose a distributed multi-camera road user tracking sys-
tem which is capable of simultaneously tracking pedestrians, cyclists and vehicles
with high accuracy. Each smart camera locally tracks road users on its image
plane using recursive Bayesian estimation. Local 2D estimates are then sent to
a fusion node on which ground plane positions are jointly estimated. For the
performance evaluation of our proposed method, we captured a 90 minutes long
multi-camera dataset of a real traffic scene at the intersection of five streets
using four cameras. Instead of directly measuring the accuracy of the trajecto-
ries, which involves exhaustive manual annotation, we perform an experimental
analysis on the performance of high-level tasks such as turning movement count-
ing and anomaly detection. The experimental analysis shows that our method
provides trajectories for turning movement count with high accuracy of 93% on
vehicles and 83% on cyclists, and reliable anomaly detection.

The rest of this paper is organized as follows: Section 2 briefly discusses
the related work on tracking of road users. Section 3 describes our proposed
tracking method in details. Section 4 explains how do we experimentally measure
the performance of the proposed tracker and presents our findings. Section 5
summarizes this paper.

2 Related Work

Numerous road user tracking methods have been proposed over the past two
decades. Early methods use feature points [14], foreground blobs [16, 4] and his-
tograms [5] in combination with various data association/filtering frameworks
to track road users. With an increase in available computation power and the
introduction of more efficient classifier algorithms, many methods [6, 17] utilize
object detector responses as observations in trajectory estimation. This approach
is called tracking-by-detection in visual tracking literature since an object of inter-
est is first detected and then its trajectory is estimated by associating subsequent
detector responses through time.

The popularity of the tracking-by-detection approach was boosted by the in-
troduction of more accurate object detectors based on Convolutional Neural Net-
works (CNN). A vehicle tracker proposed by Qui et al.[10] deploys the You Only
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Look Once YOLO object detector [11] and objects detected at two different time
instances are associated by finding the optimal matches of Kanade-Lucas-Tomasi
(KLT) feature points. Their work does not address partial/occlusion of vehicles
which is very common in practical traffic surveillance. Ooi et al.[9] first detects
road users with a Region-based Fully Convolutional Network (RFCN) [1]. Then
data associating is performed by minimizing a cost function which incorporates
object type (car, bicycle, pedestrian, etc.), position, size and color between ob-
jects detected at different time instances using the Hungarian algorithm. Missing
detection due to occlusion, noise, etc. are handled by the prediction of a Kalman
filter. However, if the detector fails to localize an object being tracked for an
extended period of time, the prediction of the Kalman filter without measured
evidences may drift from an actual trajectory.

Road users can be observed from different viewpoints using a network of
cameras to tackle the occlusion problem since it is quite unlikely that a particular
road user is occluded in all views. Tang [15] performs an inverse projection of
foreground pixels onto the common plane and then deploys an overlap reasoning
of the inverse projected blobs for joint position estimation. Instead of an inverse
projection, the Probabilistic Occupancy Mapping (POM) approach computes the
probability of positions on the ground plane being occupied by one or more
road users. This is done by projecting a hypothesized volume of road users on
the image plane and measuring how well it matches to observations from one
or more cameras. The original work of Fluret et al.[2] uses foreground blobs
as observations in POM computation. A recent work of Nishikawa [7] utilizes
responses from the YOLO object detector as observations and K-Shortest Path
(KSP) optimization to fit trajectories to the computed POM through time. This
approach achieves its optimal performance when the KSP trajectory fitting is
done on all frames in video, making it an offline tracker,i.e., tracks after the
whole video is captured. It is possible to deploy it as an online tracker with
small delay by performing trajectory fitting in a batch of a few frames but the
performance is then often suboptimal.

3 Proposed Method

Our distributed tracking system consists of K smart cameras observing a traffic
scene from different angles and a fusion node as depicted in Figure 1. Internal
parameters such as camera matrix and distortion coefficients as well as external
parameters such as rotation matrix and translation vectors are obtained during
the camera network installation. In visual tracking literature, an object being
tracked is usually denoted as a target. Therefore, the word road user and target
will be used interchangeably throughout this paper. Each smart camera locally
tracks all targets in its view by using recursive Bayesian state estimation on
its image plane and sends local position estimates to the fusion node. Local
position estimates of the same target from different viewpoints are fused as a
single joint position on the global ground plane. These joint position estimates
are associated through time using recursive Bayesian state estimation on the
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ground plane to produce optimal global trajectories. The following subsections
describes both local tracking on smart cameras and global tracking on the fusion
node in detail.

Fig. 1. Building blocks of our proposed tracker.

3.1 Tracking on Smart Camera

At a give time t, a smart camera captures an image observed in its view and
feeds it to the YOLO object detector. Output of the object detector is a set of N
detections di = (ui, vi, wi, hi, αi, λi) : i ∈ {1, 2, . . . , N} on its image plane where
(ui, vi), wi, hi, αi and λi are the detection center, width, height, object class
(pedestrian, cyclist and vehicle) and reliability score respectively. Our tracker
keeps the state of M targets, each of which is represented with a vector. Given
a set of current detections Dt = {d1,t,d2,t, . . . ,dN,t} and a set of previously
known states of all targets Kt−1 = {k1,t−1,k2,t−1, . . . ,kM,t−1}, the task of a lo-
cal tracker is to estimate a new state of each target as Kt = {k1,t,k2,t, . . . ,kM,t}.
The state of each target is predicted and updated using recursive Bayesian esti-
mation as:

predict : P (kt|d1:t−1) =

∫
P (kt|kt−1)P (kt−1|dt−1)dkt−1 (1)

and

update : P (kt|d1:t) =
P (dt|kt)P (kt|d1:t−1)

P (dt|d1:t−1)
. (2)

Using Equation (1) together with a constant acceleration motion model, state

of targets K̂t = {k̂1,t, k̂2,t, . . . , k̂M,t} at time t can be predicted. These predicted
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states have to be associated with corresponding detections in Dt so that Equa-
tion (2) can be used to update the predicted state using detections as observa-
tions. When observing a traffic scene, due to physical constraints, the variation
in displacement and size of a target in terms of pixels in two consecutive frames
are relatively small. Therefore, a detection dt corresponding to a target j will
be very close to the predicted k̂j,t. Moreover, the object class α of the corre-
sponding detection and target’s state should be the same. Therefore, we define a
function which calculates the association cost between a detection and a target
as follows:

δ(di,kj) =
√

(ui − uj)2 + (vi − vj)2 + |wi −wj |+ |hi − hj |+ δtype(αi, αj). (3)

The first term in Equation (3) is simply the Euclidean distance while the second
and third term compute the absolute differences in height and width respectively.
The last term makes sure that δ(di,kj) is very large when the detected class is
different from target’s class, formally expressed as:

δtype(αi, αj) =

{
0 αi and αi are the same road user class

ξ otherwise
(4)

where ξ is a very large constant: ξ � 1.
The Hungarian method is one of the most popular methods to obtain the

assignment of detections to targets with total minimal cost. However, it often
occurs that the YOLO detector fails to detect one or more targets while new
road users entering the scene are detected. This sometimes causes mismatch er-
rors in the Hungarian method although total matching cost is at its minimum.
Therefore, we propose to use a greedy matching algorithm as described in Algo-
rithm 1. Only matched pairs with cost lower than a threshold Λ are added to the

Algorithm 1 Greedy matching.

1: Input: Dt: detections, K̂t: predictions
2: Output: pairs: matched detection and target pairs
3:
4: Initialize pairs as a list
5: for k ← 1 to minimum(N,M) do
6: d,k← arg min

d∈Dt,k∈K̂t

δ(d,k)

7: Dt ← Dt \ d, K̂t ← K̂t \ k
8: if δ(d,k) < Λ then
9: Append tuple (d,k) to the list pairs

10: end if
11: end for

list pairs. Detections without matching target are initialized as new targets. For
targets without any matching detection, a correlation-based template matching
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method similar to Guan et al.[3] is used to generate a corresponding detection.
Finally, the predicted states of all targets are updated using their correspond-
ing detections. Under an assumption of the Gaussian distribution of noise in
motion and observation models, aforementioned recursive Bayesian state esti-
mation simply becomes a Kalman filtering. Center points on upper and lower
edges of bounding boxes rupper = (uupper, vupper) and rlower = (ulower, vlower)
of all targets are then sent to the fusion node.

3.2 Joint Position Estimation and Tracking

Consider a road user in the scene observed by a set of N smart cameras C =
{c1, c2, . . . , cN} from different angles. Only a subset of cameras Cvis ⊆ C may be
able to track the target. A target may be outside of the view of some cameras,
occluded, or the detector may simply fails to detect it. In this case, only cameras
in the subset Cvis are able to estimate the position of the targets in their own
image coordinates. Suppose that a smart camera c accurately estimates the
position of a target. A line connecting the two center points rupperc and rlower

c

must be the best approximation of the projection of a hypothetical vertical line,
which length is the height h of the target, placed at a true physical position
(x, y, 0) of the target. In the ideal situation,

L(x, y, h) = |rlower
c − ρc(x, y, 0)|2 + |rupperc − ρc(x, y, h)|2 ≈ 0, (5)

where a projection function ρc(x, y, z) projects a point in 3D world coordinates
on to the image coordinates of the camera c.

However, due to the presence of uncertainty in the detection and camera
calibration, L(x, y, h) will be usually not zero, but will only attain a minimum
value greater than zero. When local estimates from a set of cameras Cvis are
available, the error function L(x, y, h) can be extended to the multi-camera case:

L(x, y, h) =
∑
c∈C

(|rlower
c − ρc(x, y, 0)|2 + |rupperc − ρc(x, y, h)|2). (6)

The joint estimate of the target’s position and height is then found by minimizing
the error function L(x, y, h) over all positions (x, y) and possible heights:

x̂, ŷ, ĥ = arg max
x,y,h

L(x, y, h). (7)

Subsequently, using x and y as state variables, a discrete Bayes filter with con-
stant velocity motion model is applied to suppress the noise in the join joint
estimation.

4 Experimental Analysis

4.1 Traffic Dataset

For the performance evaluation of our method, we capture a multi-camera video
using four GoPro HERO 4 cameras aiming at an intersection of five streets in
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the city of Ghent, Belgium. Camera positions and streets layout are depicted in
Figure 2 where top view of the intersection is obtained from Google Maps. All
streets allow two-way traffic except Street 4 which does not allow incoming traffic
from the junction. Videos are captured at 30 FPS with the HD Ready resolution
of 1280×720 pixels. All four video streams are loosely time synchronized and the
duration is approximately one and a half hour. All types of usual road users such
as cars, trucks, bus, cyclists and pedestrians go trough the intersection causing
partial/full occlusion in one or more camera views making it a very challenging
dataset.

Fig. 2. Camera layout plotted on Google Maps.

4.2 Automatic Turning Movement Count of Vehicles and Cyclists

In smart traffic application, turning movement count (TCM) at intersection is
essential information to understand the traffic flow for optimal traffic manage-
ment. For example, more efficient signal timing plan can be derived from TMC
information. Therefore, we measure the performance of our tracker in a TMC
application for vehicles and cyclists. First, trajectories of road users denoted as
S = {s1, s2, . . . , sN} are generated using the proposed tracker. Then we define
regions at the beginning of each streets: Ω1, Ω2, Ω3, Ω4 and Ω5 for Street 1, 2,
3, 4 and 5 respectively. If a trajectory passes through a region Ωf first and a
region Ωl last, it is classified as a trajectory coming from Street f and going into
Street l. This simple rule-based method produces the TMC as listed in Table 1.

Both tables in Table 1 clearly show that Street 2 and 5 are the main streets
as TMC between two streets for both vehicles and cyclists are much higher
than others. Approximately 60% of traffic (both vehicles and cyclists) at the
intersection goes trough Street 2 and 5. The second most used path is between
Street 1 and 2 constituting approximately 10% of the total traffic flow. The street
with the lowest incoming vehicle traffic is Street 3 since only three incoming
vehicles are detected). However, there should be no incoming vehicle in Street
4 since it is just a one-way street allowing only outgoing traffic. From visual
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inspection of those trajectories, we learn that all three trajectories are wrong.
In fact, two trajectories are false positive trajectories and one is the first part
of segmented trajectories of a vehicle. The vehicle turns into the Street 4 from
Street 5 but the driver realizes that Street 4 is a one-way street and incoming
traffic is not allowed. Therefore, the vehicle turns back and goes into the Street
3. This results in two isolated trajectories of the same target causing error in
automatic TMC application.

Destination

S
t.

1

S
t.

2

S
t.

3

S
t.

4

S
t.

5

O
ri
g
in

St. 1 0 7 6 0 12
St. 2 28 5 15 0 142
St. 3 8 10 0 0 6
St. 4 9 8 12 0 8
St. 5 14 122 8 3 4

Destination

S
t.

1

S
t.

2

S
t.

3

S
t.

4

S
t.

5

O
ri
g
in

St. 1 1 25 6 5 7
St. 2 33 2 2 6 137
St. 3 9 2 0 2 9
St. 4 4 24 2 1 5
St. 5 4 117 10 7 6

(a) Vehicle trajectories (b) Cyclist trajectories

Table 1. Results of automatic turning movement count at five arms intersection.

To obtain numerical results of TMC’s accuracy, we randomly selected 100
trajectories and visually inspected in the videos if they are correct. We achieve
an accuracy as high as 93% on vehicles and 83% on cyclists. The key of achieving
high accuracy in turning movement count is to be able to track targets while
avoiding tacking loss (resulting segmented trajectories instead of a complete
trajectory for a target) and identity switches. Figure 3 illustrates the example
of typical trajectories produced by our tracker. Two cyclists are fully occluded
by a white van in the view of Camera 1 and 2. However, they are visible in the
view of Camera 3 and 4 (partially occluding each other). Although there is no
local estimate available from Camera 1 and 2, our tracker fuses local estimates
from Camera 3 and 4 to produce accurate joint estimates and tracks two cyclists
without any tracking lost.

4.3 Anomaly Detection of Road Users

Road users usually follow similar paths as they move about in traffic. For ex-
ample, the majority of pedestrians walk on the road side pavement and cross
the road along a pedestrian crossing. A trajectory which is very different from
the common trajectories is regarded as an abnormal trajectory. For instance, a
pedestrian may cross the road without using a pedestrian crossing. If trajectories
are clustered based on their similarity, common trajectories form clusters which
contain the majority of the trajectories while abnormal trajectories form clus-
ters containing only a few trajectories. In this subsection, we assess the reliability
of our tracker in trajectory anomaly detection application. For this purpose, we
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Top view

Camera 1 Camera 2

Camera 3 Camera 4

Fig. 3. Example tracking results of a pedestrian (red trajectory), two cyclists (blue
and cyan trajectories) and a van (green trajectory).

propose a greed clustering algorithm as described in Algorithm 2. The algorithm
uses the Euclidean distance between point pairs from rj and rk defined by Dy-
namic Time Warping algorithm [13] as a dissimilarity measure, which is denoted
as δDWT (rj , rk) in Algorithm 2. The operator |.| computes the cardinality of a
set.

Algorithm 2 Greedy clustering.

1: Input: S = {s1, s2, . . . , sN}: a set of trajectories
2: Output: S1, S2, . . . , SM : sets of trajectories
3: i← 1, Si ← ∅
4: while S 6= ∅ do
5: S′

i ← Si
6: for each rj ∈ S do

7: if
∑

rk∈Si
δDWT (rj ,rk)

|Si|
< Υ then

8: Si ← Si ∪ {rj}, S ← S \ {rj}
9: end if

10: end for
11: if S′

i = Si then
12: i← i+ 1, Si ← ∅
13: end if
14: end while

All trajectories from Street 5 to 2 are grouped into a single cluster and no
possible anomaly is detected as shown in Figure 4a. For trajectories coming from
Street 5 and going into Street 1, two usual clusters are formed and one anomaly is
detected. When there is no vehicle/cyclist waiting at the mouth of Street 1 to go
into other streets, vehicles coming from Street 5 tend to make smaller turns to go
into Street 1. These trajectories form a cluster of common trajectories which are
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shown as green trajectories in Figure 4b. Vehicles make bigger turns when there
are vehicles/cyclists waiting at the mouth of Street 1 resulting in another cluster
of common trajectories shown as red trajectories in 4b. The abnormal trajectory
shown as blue trajectory in 4b is the trajectories of a car which drives onto a
pavement as it turns into Street 1 and parks for a while before continue driving
down the same street. Figure 4c depicts the detected abnormal trajectory which
is a results of a car coming out of Street 3, which turns into Street 4 and parks
at the mouth of the street for about five minutes. Then the car drives out of
Street 4 and goes into Street 2. The other trajectories shown in red are usual
trajectories from Street 3 to 2.

(a) (b) (c)

Fig. 4. Examples of anomaly detection in vehicle trajectories.

Pedestrian trajectories are also clustered using Algorithm 2 and examples of
the resulting clusters are shown in Figure 5. As expected, common trajectories
are clustered as big clusters which usually are along pedestrian crossings (as
shown in Figure 5a and 5b) and pavements. Three similar abnormal trajectories
are formed when pedestrians cross the road from the corner of Street 1 and 5
to the corner of Street 2 and 3, as shown in Figure 5c. A pedestrian walks to
the middle of the junction and comes back while crossing Street 1 using the
pedestrian crossing. This results in a trajectory which is quite different from
the other common trajectories as shown in Figure 5d. A trajectory shown in
Figure 5e is formed by a person getting out of a parked car (the same car which
causes the abnormal vehicle trajectory shown in Figure 4b) and walked straight
to a shop at the corner of Street 4 and 5. A trajectory of the same person
returning from the shop to the car is also detected as abnormal trajectory in
another cluster as depicted in Figure 5f.

5 Conclusion

This paper presented the multi-camera tracking method which simultaneously
tracks multiple classes of road users such as pedestrians, cyclists and vehicles.
It provides reliable trajectories for subsequent smart traffic applications such
as turning movement count and anomaly detection. The distributed design of
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of anomaly detection in pedestrian trajectories.

the proposed tracker allows the deployment on smart camera networks, keeping
all local computer vision tasks on smart cameras. Only concise high-level infor-
mation is exchanged for joint position estimation. Each smart camera locally
estimates the image plane position of targets by recursive Bayesian estimation
using YOLO detector responses and template matching as observations. Locally
estimated image positions of targets are then transmitted to the fusion node
where corresponding ground plane positions are jointly estimated by minimizing
proposed cost function. Performance of the proposed method was assessed in
context of the turning movement count application and achieved an accuracy as
high as 93% on vehicles and 83% on cyclists. Abnormal itineraries of vehicles
and pedestrians were also detected with high reliability by clustering trajectories
produced by the proposed tracker.
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