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Abstract

Over the last years, individualization of repetitive Transcranial Magnetic Stimulation (rTMS)

parameters has been a focus of attention in the field of non-invasive stimulation. It has been

proposed that in stress-related disorders personality characteristics may influence the clini-

cal outcome of rTMS. However, the underlying physiological mechanisms as to how person-

ality may affect the rTMS response to stress remains to be clarified. In this sham-controlled

crossover study, after being stressed by the Trier Social Stress Test, 38 healthy females

received two sessions of intermittent theta burst stimulation (iTBS) applied to the left dorso-

lateral prefrontal cortex. To take possible personality influences into account, they also com-

pleted the Temperament and Character Inventory. Mood and salivary cortisol were

assessed throughout the experimental protocol. Overall, two iTBS sessions did not signifi-

cantly alter mood or influenced cortisol secretion. When taking into account personality fea-

tures, higher scores on the character dimension Cooperativeness was related to decreased

cortisol output, only when active iTBS was administered after the social stressor. In line with

other studies, personality features such as the character dimension Cooperativeness may

be of particular interest to explain individual neurobiological responses to neurostimulation.

Introduction

Repetitive transcranial magnetic stimulation (rTMS) is an approved clinical treatment for

major depression [1]. Despite current efforts to increase clinical improvement, the underlying

mechanisms of how and in whom rTMS can elevate depressed mood in a relatively short time

span are still poorly understood. However, this could be crucial in the development of better

treatment parameters [2,3]. Given that the clinical outcome of non-invasive stimulation para-

digms still remains rather modest [4,5], a more personalized approach is of growing interest in

the field of neurostimulation [6]. Amongst other approaches to individualize treatment
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parameters such as biotyping (e.g. [7]), personality features may be of interest to predict the

efficacy to rTMS, in particular in stress-related disorders. Within this context, recent observa-

tions indicate that the Temperament and Character Inventory (TCI; [8,9] may be important to

understand the differences in the rTMS response. According to the authors of the TCI, charac-
ter refers to self-concepts and individual differences in goals and values, which are moderately

influenced by socio-cultural learning. Temperament dimensions are thought to relate to the

automatic emotional responses to experiences and are moderately heritable, remaining rela-

tively stable throughout life [9]. In a refractory melancholic MDD sample we have recently

demonstrated that higher scores on Self-Directedness—one of the three character dimensions

of the TCI [8,9]—was related to the high frequency (HF)-rTMS treatment response [10].

Although methodological differences such as patient selection and stimulation parameters

make studies difficult to compare, in two studies it has been demonstrated that some dimen-

sions of the NEO-V model of personality [11] may also predict the outcomes of rTMS on

MDD patients: Berlim et al. [12] reported that Extraversion predicted the clinical outcome of

left (dorsolateral) prefrontal cortex (DLPFC) HF-rTMS treatment and McGirr et al. [13]

found that Agreeableness and Conscientiousness were predictive for remission for deep HF-

rTMS. Interestingly, De Fruyt et al. [14] demonstrated that Conscientiousness and Extraver-

sion (NEO-V) are positively associated with Self-Directedness (TCI), and that Agreeableness

and Extraversion (NEO-V) are positively correlated to Cooperativeness (TCI), also one of the

three character dimensions of the TCI (the third character dimension of the TCI is Self-tran-

scendence). Regarding temperament dimensions, Siddiqi et al. [15] have recently shown that

higher Persistence scores predicted antidepressant response to rTMS in a broad range of

patients with major depression. With respect to other TCI scales, Singh et al. [16] observed in

healthy participants after a single HF-rTMS session that Harm Avoidance was related to a

decrease in connectivity between the default network model and the subgenual Anterior Cin-

gulate Cortex, a brain area that is assumed to be behind HF-rTMS treatment effects [17]. How-

ever, no previous studies have shown a relationship between this Harm Avoidance and clinical

outcome after rTMS treatment [10,15].

These findings suggest that personality dimensions, and specially Cooperativeness, Self-

Directedness, and Persistence may be used to predict the response to rTMS at the individual

level. However, the use of subjective questionnaires to assess traits provides little insight into

the underlying neurobiological mechanisms involved. Endocrinological responses (e.g., corti-

sol) operate rather independently of consciously experienced mood and could provide insight

into the neurobiology of emotion processing in healthy as well in mentally affected states [18].

Importantly, Hori and colleagues [19] suggested the possibility of differentiating personality-

related subtypes of depression based on different patterns of hypothalamic-pituitary-adrenal

(HPA) axis regulation. Moreover, an important factor in the response of rTMS could be

related to the endocrinological response of the HPA system [20]. Indeed, Keck [21] proposed

that the influence of rTMS may occur at the hypothalamic level, suggesting that the DLPFC,

the most common stimulated area in major depression, participates in the rTMS-induced

blunted response of HPA-activity by inhibiting cortisol releasing hormone synthesis and

release. In agreement with these assumptions, in a sample of severely depressed patients, sali-

vary cortisol concentrations decreased immediately after one active left DLPFC HF-rTMS ses-

sion and not after sham rTMS [22]. Pridmore et al. [23] also observed normalization of the

dexamethasone suppression test in depressed subjects after multiple sessions of HF-rTMS.

These observations suggest that the clinical effects of rTMS could be associated with a normali-

zation of HPA-axis functioning, acting in a similar way as e.g. pharmacological interventions

[24,25].

The influence of TCI on iTBS effects
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Also in non-depressed samples, the application of rTMS (single sessions) on the DLPFC

has been shown to affect the HPA-system, however, only when the participants were being

stressed [26,27], or when taking the individual characteristics related to stress (e.g., state anxi-

ety) into account [28]. Therefore, to examine the effects of rTMS on the HPA-system in a

healthy state, participants may need to be stressed in order to get as close as possible to the

depressed state [27,29]. Furthermore, individual differences in stress sensitivity may influence

cortisol secretion during non-invasive neurostimulation. Indeed, individual characteristics

such as age, gender, or personality features are related to different aspects of HPA axis activity

[30–35]. Along this line, Cooperativeness and Self-directedness have been associated with gray

and white matter volume in the medial frontal cortices (Cooperativeness and Self-Directed-

ness) and the anterior cingulate cortex (Self-directedness) [36], and Persistence has been

related to activity of the lateral orbital and medial prefrontal cortex [37,38], areas that are

closely connected to the DLPFC and that participate in the HPA-axis response to stress [39].

In this sham-controlled proof-of-concept study, we examined whether personality features

would influence the effect of excitatory rTMS on HPA-system regulation in healthy volunteers

in a stressed state. Previous research has shown that cortico-thalamic-limbic pathways related

to depression and characterized by deactivation of dorsal areas, and increased activity of the

amygdala can be observed in ‘a stressed’ brain (e.g., [40]). Thus, in this study, stressed healthy

individuals are used as a model to investigate the influence of TCI on the effect of rTMS on the

HPA axis. This investigation may provide important information to understand previous

results in depressed patients and to guide future investigations. Because successive sessions of

rTMS—more than one session daily—may have similar to better clinical outcomes in stress-

related disorders [41,42], here we applied two successive rTMS sessions. Given that compared

to excitatory HF-rTMS, excitatory intermittent theta burst stimulation (iTBS) matches clinical

effects [43] or may even exceed brain activity processing [44], here we applied two iTBS ses-

sions. In order to confidently induce acute stress, our participants performed the Trier Social

Stress Test (TSST, [45]—which is the gold standard for examining the cognitive neurobiology

of acute stress in humans [46]—before the two iTBS sessions. As gender and age could be a

possible confounder in HPA-system regulation protocols [47], also with the TSST [33,48], and

across psychiatric disorders [49], we chose to use a more ‘uniform’ group of female subjects in

their young adulthood. Moreover, given that both the overall cortisol secretion during stressful

situations and the stress-induced changes in cortisol levels are markers of HPA axis regulation

[50,51], we investigated the effect of iTBS on the area under the curve with respect to the

ground (AUCg, indexing overall cortisol secretion and reflecting the intensity of the cortisol

response), and the area under the curve with respect to the increase (AUCi, indexing the

stress-induced changes in cortisol levels and reflecting the sensitivity of the HPA axis to stress-

ful events). Finally, to evaluate the effects of personality features on HPA-system regulation to

the iTBS, in line with our former research on the influences of personality features on emo-

tional processing in females [10,22,26,36,52–54], all participants were assessed with the TCI.

We hypothesized that after being stressed, we would find significant decreases in cortisol

secretion after active iTBS as compared to sham. Considering previous results in patients with

major depression showing that the HF-rTMS treatment response is associated with higher

Self-Directedness [10], Persistence [15] and with personality dimensions that are highly corre-

lated with both Self-Directedness and Cooperativeness [12, 13], we expected that especially

these dimensions would influence the attenuation of cortisol secretion. Thus, we expected that

individuals reporting higher scores on Self-Directedness, Cooperativeness, and Persistence

will show lower HPA response after active iTBS, but not after sham stimulation. Previous stud-

ies did not observe an influence of the other TCI subscales on the effect of TMS on treatment

The influence of TCI on iTBS effects
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response or HPA-axis activity. Therefore, we did not expect that these dimensions would have

an influence on the effect of iTBS on cortisol secretion.

Experimental procedures

Participants

Forty healthy females in their young adulthood were recruited through student fora of Ghent

University as well as social media complying to the following inclusion criteria: (a) no current/

history of psychiatric disorders according the Mini-international Neuropsychiatric Interview

(MINI; [55] based on DSM-IV and ICD-10 criteria, (b) Beck Depression Inventory

(BDI-II-NL; [56], Dutch translation by Van der Does [57]) score below 14, (c) no current/his-

tory of neurological or cardiological problems, (d) no metal implanted objects in the body, (e)

no current psychotropic medications, (f) right-handed and (g) female (not pregnant).

Two participants were excluded from the original sample after the screening on the first

day, one because of a current psychiatric disorder and another because of neurological prob-

lems. All females used hormonal contraceptives. The final sample included in the analyses was

composed of 35 participants (M age = 23.60 years, SD = 2.87, age range = 18–28 years) (see the

Results section for a description of the exclusion of participants from the analyses). The study

was approved by the ethics committee of the Ghent University hospital (UZGent) and is part

of a larger project examining the effects of iTBS on stress. The influence of stress-related indi-

vidual differences and functional connectivity on the effect of iTBS on stress induction will be

published elsewhere. All gave written informed consent and were financially compensated for

their participation.

Assessment

Temperament and Character Inventory. Before the start of the study, all participants

were assessed with the TCI [9], using a Dutch version of the TCI [58]. The TCI is 240-item

questionnaire consisting of 4 temperament scales: Novelty Seeking (minimum score = 0, maxi-

mum score is 40), Harm Avoidance (minimum score = 0, maximum score is 36), Reward

Dependence (minimum score = 0, maximum score is 24), Persistence (minimum score = 0,

maximum score is 8), and three character scales: Self-Directedness (minimum score = 0, maxi-

mum score is 44), Cooperativeness (minimum score = 0, maximum score is 42) and Self-Tran-

scendence (minimum score = 0, maximum score is 33)[9].

Visual analogue scales. Six horizontal 100 mm visual analogue scales (VAS; [59]) were

used to detect subtle changes in mood. Feelings of ‘tiredness’, ‘vigor’, ‘anger’ ‘tension’, ‘depres-

sion’ and ‘cheerfulness’ were rated “at this moment”. The minimum score on each VAS sub-

scale is 0, and the maximum score is 100. Subjects were asked to rate their mood at the end of

the habituation phase (T1), immediately after the TSST (T2), after the first iTBS session (T3),

before (T4) and after (T5) the second iTBS session, and five minutes after the second iTBS ses-

sions (T6).

Cortisol. As in Baeken et al. [22,26–28], saliva samples were collected using a salivette

(Sarstedt, Germany), with an insert containing a sterile polyester swab for collecting saliva,

yielding a clear and particle-free sample. The salivettes were used according to the instructions

provided by the manufacturer. Saliva cortisol levels (μg/L) were determined by Cortisol Saliva

Luminescence immunoassay (IBL International GmbH, Germany). Limit of Quantification

was 0.12 μg/L and the within-run and between-run variation coefficients were less than 5%.

Furthermore, the intra-individual stability of baseline salivary cortisol levels is reported to be

more stable in women [60]. To limit the influence of the circadian rhythm [61], all the sessions

started in the afternoon. Salivary cortisol levels were measured at the end of the habituation

The influence of TCI on iTBS effects
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phase (T1), after the preparation phase of the TSST (T2), immediately after the TSST (T3), after

the first iTBS session (T4), before and after the second iTBS session (T5 and T6), and five min-

utes after the second iTBS session (T7).

Stress induction: Trier Social Stress Test (TSST). To induce acute stress, a variant of the

TSST [45] was used. In this variant, participants were positioned in front of a one-way mirror,

so they could only see themselves. They were notified of a jury being present at the other side

of the mirror, as they watched people going into this room before the TSST experiment. Using

a connected sound system between the two rooms, the jury was able to talk to the participants.

A camera was positioned in the room and participants were told their performances would be

recorded for non-verbal communication and voice frequency analyses. Similar to the classical

TSST, participants were first asked to perform a 5 min public speech, and they were informed

that they had 3 minutes to prepare the speech. After the preparation phase, the participants

performed the 5 min speech, and hereafter they were asked to perform a 5 min mental arith-

metic discounting task.

Neurostimulation: iTBS. iTBS stimulation was applied using a Magstim Rapid2 Plus1

magnetic stimulator (Magstim Company Limited, Wales, UK) connected to a 70 mm figure-of-

eight shaped coil. For the sham procedure, we used the Magstim 70mm Double Air Film sham

coil. This coil is identical in all aspects to its active variant, but without stimulation output. By

stimulating the peripheral nerves of the face and scalp, the Air Film sham coil looks, sounds and

feels like an active coil, but it does not deliver active stimulation of cortical neurons. The sham

coil was placed exactly on the same DLPFC location. Before the active and sham stimulation,

the individual resting motor threshold (110%) was determined by inducing a motor evoked

potential on the right abductor pollicis brevis muscle. For one iTBS session, the following

parameters were used: frequency 50Hz, burst frequency 5Hz, 1620 pulses in total spread over 54

cycles in which each cycle includes 10 burst each 3 pulses with a train duration of 2 seconds and

an inter-train interval of 6 seconds. These excitatory parameters are an exact copy as we used to

treat depressed patients [41]. Following previous research investigating the effect of rTMS over

the DLPFC on cortisol secretion [e.g., 22,26,27], we stimulated the mid-center of the left pre-

frontal gyrus (Brodmann 9/46). Using individual neuroanatomical MRI data, the left DLPFC

was visually identified based on the subject own gyral morphology. The Brainsight neuronaviga-

tion system (BrainsightTM, Rogue Research, Inc) was used during the experiment to accurately

place the active and sham coil in a perpendicular position to the DLPFC.

Experimental protocol

After inclusion, all participants were invited to the Ghent University Hospital on three separate

days. First, to accurately locate the left DLPFC, we gathered the individual neuroanatomical

data using a T1-weighted MRI scan in a Siemens 3T TrioTim MRI scanner (Siemens,

Erlangen, Germany). Hereafter, participants were randomly assigned (computer) to a real-first

or sham-first stimulation session. On each of both stimulation days, after 10 min of habitua-

tion, the participants performed the TSST. After the stress task, two iTBS sessions (both either

active or sham) were applied to the left DLPFC with a five minute resting period in between

(See Fig 1). Between stimulation days, to avoid carry-over effects, a time delay of at least one

week was respected.

Statistical analysis

All collected data were analyzed with SPSS 24 (Statistical Package for the Social Sciences).

Where necessary, we applied the Greenhouse-Geisser correction to ensure the assumption of

sphericity. The significance level was set at p<0.05, two-tailed, for all analyses.

The influence of TCI on iTBS effects
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To examine whether possible mood changes by the iTBS applications could influence our

results, mood changes were analyzed with a mixed 2X6 repeated measures MANOVA.

Within-subject factors were Stimulation (active vs. sham stimulation) and Time (T1, T2, T3,

T4, T5, and T6). Order (1st active-iTBS vs 1st sham-iTBS) was the between-subjects factor. The

six VAS mood scales (‘fatigued’, ‘vigorous’, ‘angry’, ‘tensed’, ‘depressed’ and ‘cheerful’) were

the multiple dependent variables. Positive mood scales were reversed, indicating that higher

scores referred to more negative affect.

For cortisol data, we computed the AUCg and AUCi, using the formulas proposed by

Pruessner et al. [50]. The AUCg is an index of the total cortisol release by the HPA-axis, and it

reflects the intensity of the stress response. The AUCi reflects the hormonal change over time

and is considered an index of the sensitivity of the HPA-axis to the stressful event [51]. Impor-

tantly, paired t-tests showed that during both the sham and active-iTBS sessions cortisol levels

increased from baseline to after the stress task (i.e., maximum cortisol levels after stress)

(p<0.01), and that cortisol levels at baseline and the stress-induced increase in cortisol levels

were similar in both sessions (p>0.72).

To investigate the effects of iTBS on AUCg and AUCi, we performed two mixed ANCOVAs

using the active and sham AUCg and AUCi values as dependent variables, Stimulation (active-

iTBS vs. sham-iTBS) as a within-subjects factor, and Order (1st active-iTBS vs 1st sham-iTBS)

as a between-subjects factor. Given that cortisol secretion follows a circadian rhythm and the

activity of the HPA-axis under stressful situations is affected by the time of the day [61], we

controlled for the time when the participant started the two experimental sessions. Participants

started the two sessions at a similar time (paired t-test: t(34) = 0.98, p = 0.332), and the mean

of the starting time of the two stimulation sessions was used as a covariate in the ANCOVAs.

In a second step, to investigate the influence of the TCI dimensions (i.e., Temperaments: Nov-

elty Seeking, Harm Avoidance, Reward Dependence, Persistence; Characters: Self-Directed-

ness, Cooperativeness, Self-Transcendence) to this experimental procedure, we performed a

series of mixed ANCOVAs using the active and sham AUCg and AUCi values as dependent

variables, Stimulation (active-iTBS vs. sham-iTBS) as the within-subject factor, Order (1st

active-iTBS vs 1st sham-iTBS) as a the between-subjects factor, and we included the time when

the participant started the sessions and each temperament or character dimension as covariate.

Fig 1. Overview of the protocol. MRI = Magnetic Resonance Imaging; MT = Motor Threshold; VAS = Visual Analogue Scale; TSST = Trier Social Stress Test;

iTBS = intermittent Theta Burst Stimulation.

https://doi.org/10.1371/journal.pone.0223927.g001
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Analyses were performed for each temperament and character scale separately. Importantly,

the residuals of all the analyses showed a normal distribution (Kolmogorov-Smirnov: all

p>0.13; Shapiro-Wilk: all p>0.11), and therefore, the analyses meet the assumption of normal-

ity. When analyses showed a statistically significant interaction between stimulation (active-

iTBS vs. sham-iTBS) and a TCI dimension, partial correlations (including the time when the

participants started the session as a covariate) were used to investigate the relationship between

AUCg and AUCi for the sham and active iTBS sessions and the TCI dimension.

Results

Nineteen participants first received active iTBS before sham, and the 19 other volunteers

received sham iTBS followed by the active condition. Three participants were excluded from

the analyses because 1) they did not complete all the questions of the TCI questionnaire (one

participant), or 2) because the AUCg and AUCi could not be calculated due to missing data

(two participants). One participant was considered as an outlier for AUCi data (-3SD) and was

consequently excluded from the analyses with this variable. TCI scales and salivary cortisol

data are summarized in Table 1.

Mood effects

The repeated measures MANOVA revealed a significant main effect of Time (F(30,845) =

3.79, p<0.01, partial eta squared = 0.12) and a significant interaction between Stimulation and

Order (F(6,29) = 4.48, p = 0.01, partial eta squared = 0.48). There were no other significant

main or interaction effects. To follow up on the main effect of Time and the interaction

between Stimulation and Order, we performed separate univariate ANOVAs. We observed a

significant main effect of Time on the subscales ‘vigorous’ (F(3.61,116.67) = 3.09, p<0.05,

Table 1. Cortisol values during the active and sham iTBS sessions, and TCI scales values.

Cortisol (μg/L) Mean (SD) TCI Mean (SD)

T1 Active 1.02 (0.55) Temperaments
Sham 1.05 (0.65) Novelty Seeking 21.03 (6.13)

T2 Active 0.95 (0.52) Harm Avoidance 12.63 (6.79)

Sham 0.96 (0.51) Reward Dependence 18.14 (3.13)

T3 Active 1.10 (0.70) Persistence 4.63 (1.93)

Sham 1.12 (0.70) Characters
T4 Active 1.28 (0.86) Self-Directedness 34.60 (5.00)

Sham 1.29 (0.85) Cooperativeness 36.89 (4.14)

T5 Active 1.23 (0.96) Self-Transcendence 7.80 (4.81)

Sham 1.15 (0.77)

T6 Active 1.13 (0.78)

Sham 1.02 (0.65)

T7 Active 1.07 (0.71)

Sham 1.07 (0.65)

AUCg Active 4554.99 (459.41)

Sham 3864.30 (344.71)

AUCi Active 357.35 (352.54)

Sham 192.92 (242.43)

Note: AUCg = Area under the curve with respect to the ground, AUCi = Area under the curve with respect to the

increase, TCI = Temperament and Character Inventory.

https://doi.org/10.1371/journal.pone.0223927.t001
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partial eta squared = 0.08), ‘angry’ (F(2.90,98.53) = 2.96, p<0.05, partial eta squared = 0.08),

‘tensed’ (F(3.51,119.28) = 10.47, p<0.01, partial eta squared = 0.24), and ‘cheerful’ (F
(3.22,109.41) = 4.13, p<0.01, partial eta squared = 0.11). Overall, participants got less cheerful

during the protocol compared to when they arrived. Participants were more tensed after the

TSST (at T2) compared to all other time points (all p<0.05). And participants were angrier

immediately after the TSST (at T2) compared to after two sessions of stimulation (T5) (all

p<0.05). Also, there was a significant interaction effect of Stimulation and Order on the sub-

scales ‘angry’ (F(1,34) = 7.74, p<0.01, partial eta squared = 0.19) and ‘tensed’ (F(1,34) = 6.86,

p<0.05, partial eta squared = 0.17). Showing that participants were overall (i.e., before and

after the stimulation) angrier and more tense when they got active stimulation during the first

session, whereas this was not the case when the active stimulation was during the second ses-

sion. VAS mood ratings are summarized in Table 2.

Salivary cortisol and TCI

Regarding the effect of iTBS on cortisol, the results of the mixed ANCOVA for AUCg and sep-

arately for the AUCi values as dependent variables, Stimulation (active-iTBS vs. sham-iTBS) as

a within-subjects factor, stimulation Order (1st active-iTBS vs 1st sham-iTBS) as a between-

subjects factor, and the time when the session started as covariate showed no significant main

effect of Stimulation for AUCg (F(1,32) = 0.11, p = 0.74, partial eta squared = 0.08) and AUCi
(F(1,31) = 0.04, p = 0.84, partial eta squared<0.01), and a no significant main effect of order

for AUCg (F(1,32) = 1.20, p = 0.28, partial eta squared = 0.04) and AUCi (F(1,31) = 0.01,

p = 0.91, partial eta squared<0.01). The interaction between Stimulation and Order was not

significant for AUCg (F(1,32) = 0.23, p = 0.63, partial eta squared = 0.01), but it was statistically

significant for AUCi (F(1,31) = 8.48, p<0.01, partial eta squared = 0.22). Post hoc analyses

revealed that during the first and second experimental sessions, there were no significant dif-

ferences in AUCi scores between active-iTBS and sham-iTBS (1st experimental session, active-

iTBS vs sham-iTBS: p = 0.14; 2nd experimental session, active-iTBS vs sham-iTBS: p = 0.14).

Participants in the 1st active-iTBS group showed a significant higher AUCi during the first ses-

sion (i.e., active-iTBS) than during the second session (i.e., sham-iTBS) (p = 0.03). Participants

in the 1st sham-iTBS group showed a marginally significant higher AUCi during the first ses-

sion (i.e., sham-iTBS) than during the second session (active-iTBS) (p = 0.08). The time when

the participants started the session was a significant factor for AUCg (F(1,32) = 11.02, p<0.01,

Table 2. Mean and standard deviations for the Visual Analogue Scale (VAS) though the protocol (also see Fig 1). Scores are expressed on scales from 0 cm to 10 cm

with a range of absence of the emotion to the max of the emotion.

Fatigued Vigorous Angry Tensed Depressed Cheerful

T1 Active 3.59 (2.13) 4.20 (2.12) 0.56 (0.89) 1.53 (1.62) 0.38 (0.59) 3.52 (1.92)

Sham 3.41 (2.08) 4.20 (2.39) 0.46 (0.71) 1.50 (1.24) 0.26 (0.31) 3.27 (1.92)

T2 Active 3.62 (2.16) 4.37 (2.25) 0.80 (1.11) 2.44 (2.05) 0.29 (0.44) 4.02 (2.10)

Sham 3.48 (2.43) 4.08 (2.12) 0.80 (1.20) 2.30 (2.12) 0.23 (0.25) 3.79 (2.19)

T3 Active 3.87 (2.03) 4.58 (2.34) 0.62 (1.16) 1.87 (1.89) 0.29 (0.33) 4.16 (2.22)

Sham 3.70 (2.12) 4.55 (2.32) 0.36 (0.40) 1.60 (1.91) 0.24 (0.26) 3.73 (2.09)

T4 Active 3.79 (2.08) 4.43 (2.14) 0.66 (1.56) 1.44 (1.49) 0.20 (0.20) 4.08 (2.12)

Sham 3.30 (2.22) 4.35 (2.13) 0.57 (0.94) 1.38 (1.91) 0.45 (1.26) 3.93 (2.30)

T5 Active 3.74 (2.21) 4.57 (2.40) 0.32 (0.46) 1.55 (1.91) 0.25 (0.25) 3.94 (2.22)

Sham 4.16 (2.57) 4.59 (2.56) 0.41 (0.59) 1.32 (1.98) 0.37 (1.24) 3.86 (2.44)

T6 Active 3.83 (2.13) 4.11 (2.23) 0.32 (0.39) 1.05 (1.38) 0.22 (0.28) 4.06 (2.50)

Sham 3.82 (2.61) 4.12 (2.49) 0.54 (1.11) 0.94 (1.77) 0.38 (1.22) 3.92 (2.50)

https://doi.org/10.1371/journal.pone.0223927.t002
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partial eta squared = 0.26), but not for AUCi (F(1,31) = 2.20, p = 0.15, partial eta

squared = 0.07).

To investigate the effect of TCI dimensions, we performed AUCg and AUCi mixed ANO-

VAs with stimulation (active-iTBS vs. sham-iTBS) as the within-subjects factor, and Order (1st

active-iTBS vs 1st sham-iTBS) as the between-subjects factor, and the TCI dimensions and the

time when the session started as covariates. For all analyses, the main factors Stimulation and

Order were not statistically significant (F(1,31)<3.13, p>0.09, partial eta squared<0.09). For

all the analyses with AUCg, but not for the analysis with AUCi, the time when the participant

started the session was a significant factor (AUCg: F(1,31)>8.11, p<0.01, partial eta

squared>0.21; AUCi: F(1,30)<3.02, p>0.09, partial eta squared<0.09).

For the temperaments dimensions of the TCI, none of the analyses with AUCg and AUCi
showed a significant main or interaction effect (AUCg: F(1,312)<1.38, all p>0.25, partial eta

squared<0.04; AUCi: F(1,30)<1.26, all p>0.27, partial eta squared<0.04). For the analyses

with the TCI characters dimensions and AUCi, none of the analyses showed a significant main

or interaction effect (AUCi: F(1,30)<1.24, all p>0.28, partial eta squared<0.04). For the analy-

ses with characters dimensions of the TCI and AUCg, the main factor Stimulation showed a

significant interaction with Cooperativeness (F(1,31) = 4.67, p<0.05, partial eta squared = 0.12),

and Self-Transcendence (F(1,31) = 6.87, p = 0.01, partial eta squared = 0.18), but not with Self-

directedness (F(1,31) = 0.64, p = 0.43, partial eta squared = 0.02). We observed no significant

main effects of Cooperativeness (F(1,31) = 3.48, p = 0.07, partial eta squared = 0.10), Self-

Directedness (F(1,31) = 0.65, p = 0.43, partial eta squared = 0.02), and Self-transcendence (F
(1,31) = 0.61, p = 0.44, partial eta squared = 0.02).

To further clarify the meaning of the significant interaction effects with Cooperativeness

and Self-Transcendence, we performed partial correlation analyses (controlling for the time

when the participants started the session) to investigate the relationship between AUCg during

the two iTBS sessions and the scores in both character dimensions. These analyses revealed

that lower AUCg during the active iTBS was significantly related to higher Cooperativeness (r
= -0.38, p = 0.03), but not during the sham iTBS session (r = -0.07, p = 0.72) (Fig 2). For self-

transcendence, the correlations between this dimension and AUCg during the active and sham

iTBS did not reach our statistical threshold (Active-iTBS: r = -0.32, p = 0.07; Sham-iTBS:

r = 0.05, p = 0.77). These results indicate that women with higher scores in Cooperativeness

display lower cortisol secretion during the active-iTBS sessions, but not during sham-iTBS.

Given that the participants reported being overall angrier and tenser during the first session

when they received active iTBS, we repeated our analyses controlling for differences between

stimulation sessions (active vs. sham iTBS) in anger and tension. Moreover, mood changes

may have driven cortisol changes in some subjects. Therefore, we also repeated our analyses

controlling for differences between stimulation sessions in changes in mood. As an index of

changes in mood, we calculated the AUCi using a composite of the six VASs scales. The statis-

tical conclusions of our study are the same if the analyses are performed controlling for differ-

ences in mood.

Discussion

In this study, we investigated the influence of the TCI character dimensions on the effect of

iTBS applied after a stressful situation on the cortisol secretion. Although we found overall no

differences in total cortisol secretion (i.e., AUCg) or cortisol response to stress (i.e., AUCi) and

stress-induced changes in mood between the active and sham iTBS sessions, we observed that

higher scores in Cooperativeness were associated with lower cortisol secretion (i.e., AUCg)
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during the active, but not the sham iTBS sessions. None of the other temperament and charac-

ter dimensions showed a significant effect.

First of all, we did not observe differences in HPA axis activity between the active and sham

iTBS sessions. Although these results are not in line with our hypothesis, they agree with our

former findings that in healthy females the application of rTMS to the left DLPFC does not sig-

nificantly alter HPA-system functioning, by means of cortisol changes [26,36]. Furthermore,

our results also indicate that in healthy volunteers not only one but also two successive iTBS

sessions do not affect mood, as no significant differences in stress-induced changes in mood

between the active and sham stimulation were observed (for a review see [62]). Moreover, the

statistical conclusions are the same if the analyses are controlled for differences between ses-

sions in mood (results not shown). Therefore, possible mood influences on the physiological

response to stress could be excluded. These observations suggest that—at least in the healthy

state—rTMS interventions do not affect the stress-response following a stressful event without

taking into account interindividual differences. Indeed, our current findings indicate that cer-

tain personality dimensions may moderate the effect of TMS on the cortisol secretion after a

stressful situation. When introducing individual personality information into the cortisol anal-

yses, we found that the higher the scores on the character dimension Cooperativeness, the

lower the cortisol secretion (i.e., AUCg) during the active, but not the sham iTBS sessions.

Importantly, given that the time when the participants started the session was controlled for in

the analyses, our results cannot be attributed to the circadian variation in cortisol. These obser-

vations support our former statements that individual differences modulate the stress response

after the application of rTMS in healthy female subjects [28]. Importantly, in our previous

study, we observed an effect of HF-rTMS before the stress task on AUCi [27]. In the current

study, however, the effect of iTBS after the stress task was specific for AUCg. These observa-

tions indicate that rTMS over the left DLPFC may reduce the sensitivity of the HPA axis to

Fig 2. Scatterplots for the unadjusted relationship between cooperativeness and AUCg during the active-iTBS and sham-iTBS

sessions. AUCg = Area under the curve with respect to the ground; iTBS = intermittent Theta Burst Stimulation.

https://doi.org/10.1371/journal.pone.0223927.g002
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stressful events when applied before the stressor, reflected in lower AUCi, and the intensity of

the stress response in individuals scoring higher in Cooperativeness when rTMS is applied to a

stressed brain, reflected in lower AUCg [50,51].

This study provides additional important evidence to understanding the inter-individual

differences in the clinical effects of rTMS in major depression. Previous rTMS treatment stud-

ies have shown that Agreeableness and Extraversion, two dimensions of the NEO-V model of

personality [11], predicted the clinical outcome of HF-rTMS and deep HF-rTMS on MDD

patients [12,13]. Albeit the NEO-V and TCI may not measure the same construct, it is impor-

tant to note that the Agreeableness and Extraversion dimensions of the NEO-V overlap with

Cooperativeness [14]. Furthermore, Cooperativeness and Self-Directedness are often corre-

lated (e.g., [14]); in the current study we observed a significant r = 0.4 association) and low

scores in these two dimensions are considered a basic characteristic of major depression [63–

65]. These results may explain why higher scores in Self-Directedness in treatment resistant

depressed patients predicts clinical outcome after left DLPFC HF-rTMS treatment in our pre-

vious study [10]. Importantly, it has been proposed that the effect of rTMS in MDD may occur

at the hypothalamic level, by inhibiting cortisol releasing hormone synthesis and release [21].

Along this line, results of our fundamental study in healthy volunteers suggest that the reason

Cooperativeness and Self-Directedness predict the response of rTMS treatment in MDD [10]

is because rTMS reduces cortisol secretion in individuals high on these dimensions. Further

research is needed to understand the underlying neurobiological mechanisms explaining the

influence of this character dimension to the effects of excitatory rTMS on cortisol secretion.

In a recent study, Siddiqi et al. [15] observed that persistence predicted antidepressant

response to rTMS treatment. In the current study including only healthy female volunteers,

however, persistence did not influence the effects of iTBS on the activity of the HPA axis. One

possible explanation for these results could be that the influence of persistence on rTMS treat-

ment observed in Siddiqi et al. [15] would not be driven by the effect of rTMS on the HPA

axis, and as proposed by the authors persistence may affect rTMS outcomes due to its relation-

ship with baseline left-hemispheric cortical reactivity. However, it is important to note that we

investigated the effect of rTMS on the HPA axis in healthy female participants only, whereas

Siddiqi et al. [15] focused on treatment response in depressed patients. More research is

needed to investigate whether TCI subscales may also be related to the effect of rTMS on HPA

axis activity in a clinical population.

Despite the novel findings, some limitations should be considered. In this study, only

healthy young women using hormonal contraceptives were included. The use of a homoge-

neous sample allows us controlling for the possible effect of age, sex and the menstrual cycle

on the activity of the HPA axis and cortisol secretion under stressful situations [33], and on

the effect of rTMS [66]. However, this may reduce the generalizability of our results, and more

research is needed in different populations. Besides that the order of the stress tasks differed

(before or after stimulation), and that two instead of one stimulation sessions were applied,

HF-rTMS and iTBS may result in different neurophysiological effects [67], and therefore, our

results could not be directly comparable with previous studies using HF-rTMS. Another limi-

tation of the study is the number of statistical analyses performed. Although we had specific

hypotheses regarding the influence of temperaments and characters, we cannot exclude the

possibility of type I error in our findings. Therefore, more research is needed to replicate the

results of this study. Finally, although we used a sham coil that mimics the auditory and physi-

cal sensations of the active stimulation, we did not measure scalp pain and physical discomfort

during the stimulation, and we cannot directly control for their effect on our results. However,

it is important to note that, if the active iTBS provoked more pain or discomfort the partici-

pants, we could expect influences on negative affect. Our results showed that changes in mood
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were similar during both sessions and, most importantly, the statistical conclusions remain the

same if we perform the analyses controlling for mood (results not shown). Furthermore, when

asked at the end of the experiment, most of the participants (73.5%) could not discriminate

between the sham and active iTBS sessions. Together, these results indicate that our findings

would not be due to differences between the two sessions and to possible learning effects due

to the use of a within-subject design.

In conclusion, our results show that when two sessions of iTBS over the left DLPFC are

applied in stressed healthy females, a reduction in cortisol secretion is observed in individuals

scoring higher in Cooperativeness, a character dimension of the TCI inventory. Our observa-

tions provide relevant evidence to the idea that inter-individual differences in personality fac-

tors may have an influence on the effects of rTMS. Finally, our findings shed further light on

the understanding of the influence of personality characteristics in the clinical outcome of

rTMS in stress-related disorders.
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