
Handling fairness issues in time-relaxed tournaments with availability constraints

David Van Bulck, Dries Goossens

Faculty of Economics and Business Administration
Ghent University, Ghent, Belgium

Abstract

Sports timetables determine who will play against whom, where, and on which time slot. In contrast to time-constrained sports
timetables, time-relaxed timetables utilize (many) more time slots than there are games per team. This offers time-relaxed timetables
additional flexibility to take into account venue availability constraints, stating that a team can only play at home when its venue is
available, and player availability constraints stating that a team can only play when its players are available. Despite their flexibility,
time-relaxed timetables have the drawback that the rest period between teams’ consecutive games can vary considerably, and the
difference in the number of games played at any point in the season can become large. Besides, it can be important to timetable
home and away games alternately. In this paper, we first establish the computational complexity of time-relaxed timetabling with
availability constraints. Naturally, when one also incorporates fairness objectives on top of availability, the problem becomes
even more challenging. We present two heuristics that can handle these fairness objectives. First, we propose an adaptive large
neighborhood method that repeatedly destroys and repairs a timetable. Second, we propose a memetic algorithm that makes use of
local search to schedule or reschedule all home games of a team. For numerous artificial and real-life instances, these heuristics
generate high-quality timetables using considerably less computational resources compared to integer programming models solved
using a state-of-the-art solver.

Keywords: Time-relaxed sports scheduling, Fix-and-optimize, Evolutionary algorithm, Round-robin tournament, Bipartite
tournament, Complexity theory

1. Introduction

The success of a sports competition heavily depends on
its timetable, which defines who will play whom, when, and
where. Sports timetables, also (imprecisely [47, 48, 58]) called
schedules, need to be fair and organizationally practical. Many
of the organizational requirements concern the scarce availabil-
ity of venues and teams [47]. This is reflected in the litera-
ture by two types of availability constraints (e.g. [31, 45, 47]).
First, venue availability constraints restrict a team from play-
ing at home on a given time slot, typically because the team’s
venue is already in use for another activity (e.g. a concert). Sec-
ond, player availability constraints state that a team cannot play
at all (i.e. neither home, nor away) on a given time slot. In
non-professional competitions, this type of constraint occurs
when players should be able to combine their sport with work
and family. In professional competitions, this constraint occurs
when a team has a game in an international competition, and so
it cannot be scheduled for its national tournament.

Most of the sports timetabling literature can be categorized
either as time-constrained or as time-relaxed. Time-constrained
timetables utilize the minimum number of time slots required to
play all games. Time-relaxed timetables, on the other hand, uti-
lize (many) more time slots than games per team and are there-

Email addresses: david.vanbulck@ugent.be (David Van Bulck),
dries.goossens@ugent.be (Dries Goossens)

fore particularly well suited in settings where availability con-
straints are prominent. The most extreme case example is asyn-
chronous round-robin timetabling where no two games take
place at the same time (see [53]). This tournament structure oc-
curs when there is only one venue, as is the case in the top-tier
national football league of Gibraltar, or when fans need to be
able to watch all games live. Despite the large amount of con-
tributions for sports timetabling (see [29, 58] for an overview)
only a small minority of these studies deal with time-relaxed
timetabling (e.g. [5, 18, 31, 34, 47, 59]). This is somewhat
surprising since several well known competitions such as the
National Basketball Association league (NBA, e.g. [6]) and the
North American National Hockey League (NHL, e.g. [12]) are
in fact time-relaxed. Moreover, most non-professional competi-
tions use a time-relaxed format since this offers more flexibility
to incorporate player and venue availability.

Due to their temporal structure, time-relaxed timetables
may face fairness issues that do not occur in time-constrained
timetabling. Suksompong [53] identifies three issues. First, the
rest time between consecutive games of a team can vary sub-
stantially, which can result in congested periods or long periods
without any game. Second, the difference in the rest time allo-
cated to opponents in a game can disadvantage the less rested
team (see also [2, 3]). Third, the difference in the number of
games played per team after each time slot can vary consid-
erably, which causes tournament rankings to become inaccu-
rate. In addition, time-relaxed timetables face fairness issues

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/275703326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

which also occur in time-constrained timetabling. As an ex-
ample, Bao and Trick [5] study how to minimize the total dis-
tance traveled in time-relaxed timetabling. Knust [31] mini-
mizes the total number of breaks in a time-relaxed timetable;
a team has a break when it plays two consecutive games with
the same home-away status, irrespective of the number of time
slots between these two games. Kyngäs et al. [34] simultane-
ously minimize the distance traveled and the number of breaks
in the timetable.

The contributions and remainder of this paper are as follows.
First, Section 2 formalizes the time-relaxed availability con-
strained tournament problem and gives an overview of the re-
lated literature. Subsequently, Section 3 presents sufficient con-
ditions for the existence of a feasible timetable and proves that it
isNP-complete to decide whether a feasible timetable exists as
soon as player or venue availability is considered. This settles
the complexity status for several problems studied in the litera-
ture that involve availability constraints (e.g. [31, 46, 47, 59]).
In the second part of this paper, we additionally take into ac-
count fairness issues. Section 4 describes how to measure fair-
ness and provides several integer programming (IP) formula-
tions to construct fair timetables. Since these IP formulations
consume a considerable amount of computational resources,
Section 5 introduces two heuristic algorithms. First, we propose
an adaptive large neighborhood search method that repeatedly
destroys and repairs a timetable. Second, we propose a memetic
algorithm that makes use of local search to schedule or resched-
ule all home games of a team. Section 6 compares the perfor-
mance of the two heuristic algorithms with the IP formulations
solved using a state-of-the-art IP solver for a set of real-life and
artificial instances. Finally, Section 7 concludes the paper.

2. Problem description and related work

In the time-relaxed availability constrained k-tournament
problem (RAC-kTP), the input consists of a set of time slots
S , a set of teams T , and a multiset of games M. Each game
in M consists of an ordered pair (i, j) in which i ∈ T is the
home team providing the venue where the game is played, and
j ∈ T \ {i} is the away team. If we denote with mi, j the
multiplicity of game (i, j) ∈ M, a tournament is called a k-
tournament if maxi, j∈T :i, j{mi, j + m j,i} = k. For simplicity, we
denote with mi the total number of games team i ∈ T plays,
i.e. mi =

∑
j∈T\{i}(mi, j + m j,i). Each team i ∈ T also provides

a venue availability set Hi ⊆ S containing all time slots dur-
ing which i’s venue is available, and a player availability set Ai

containing all time slots during which i’s players are available.
Since a team can only play (at home or away) when its players
are available, we assume without loss of generality that Hi ⊆ Ai

for each i ∈ T . This makes that a team can play at home on all
time slots in Hi, and that it can play away on all time slots in
Ai. RAC-kTP consists of finding a feasible timetable, i.e. an
assignment of games to time slots such that:

(C1) each game in M is mapped to exactly one time slot s ∈ S ,

(C2) the venue availability Hi with i ∈ T is respected (i.e. no
game (i, j) is planned on a time slot s < Hi),

(C3) the player availability Ai with i ∈ T is respected (i.e. no
game (i, j) or (j, i) is planned on a time slot s < Ai), and

(C4) each team plays at most one game per time slot s ∈ S .

Van Bulck et al. [59] propose a three-field notation to de-
scribe a sports timetabling problem by means of the tournament
format, the constraints in use, and the objective. In terms of
this classification framework, RAC-kTP corresponds with the
notation NRR, R, ∅ | CA1 | ∅. The first field denotes that mi, j

may take any arbitrary value for each pair i, j ∈ T, i , j, the
tournament is time-relaxed (‘R’), and there are no symmetry
requirements (‘∅’). The second field denotes that all constraints
are special cases of capacity constraint CA1. The third field
denotes that RAC-kTP is a constraint satisfaction problem, i.e.
there is no objective function (‘∅’).

A popular format of sports timetables is the so-called k
round-robin tournament in which teams play each other ex-
actly k times. Numerous real-life examples of round-robin
tournaments can be found in sports such as basketball [38],
table-tennis [31, 47], and indoor football [59]. In the time-
relaxed availability constrained k round-robin tournament prob-
lem (RAC-kRRT), mi, j + m j,i equals k for each i, j ∈ T with
i , j.

Alternatively in a k bipartite round-robin tournament, the
teams can be partitioned into two equally sized groups T =

T1 ∪ T2 with |T1| = |T2| such that each team meets each other
team from the competing group exactly k times. Bipartite tour-
naments for example occur in multi-conference competitions,
also called divisions or leagues, in which teams play inter-
conference games against teams outside their conference. Ex-
amples include the Nippon Professional Baseball league that
organizes inter-conference play near the middle of the sea-
son [27], and pre-2013 Major League Baseball inter-conference
play that was held before the start of the regular season [55]. In
the time-relaxed availability constrained k bipartite tournament
problem (RAC-kBT), mi, j + m j,i equals k if i ∈ T1 and j ∈ T2,
and 0 otherwise. In the time-relaxed availability constrained k
partial bipartite tournament problem (RAC-kPBT), mi, j + m j,i

is at most k if i ∈ T1 and j ∈ T2, and 0 otherwise. Although it
is easy to construct round-robin (e.g. [14]) and bipartite round-
robin tournaments (e.g. [1]), Section 3 proves that timetabling
becomesNP-complete once player or venue availability is con-
sidered.

Availability constraints in the context of time-relaxed timeta-
bles have been studied by few researchers. Bean and Birge [6]
reduce the total travel distance in the time-relaxed NBA league
in which venue availability needs to be considered. Costa [12]
studies the NHL in which teams provide a list of time slots
in which they can play a home game and a list of time slots
in which they cannot play at all. Additionally, teams request
an even distribution of games throughout the season, travel
distance must be minimized, and long sequences of consecu-
tive away games are to be avoided. To tackle this problem,
Costa [12] proposes a genetic algorithm in which the mutation
phase is replaced by tabu search; an adaptive large neighbor-
hood search method was recently proposed by Bueno [9]. Kos-
tuk and Willoughby [33] discuss the Canadian football league

2

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

in which participants submit specific time slots, known as sta-
dium blocks, during which teams cannot play at home because
a competing event may stifle ticket sales or the multiple-tenant
facilities are used for other activities. Moreover, the timetable
must provide the team with an appropriate number of days-
off between consecutive games to avoid competitive imbalance.
Schönberger et al. [47] propose a memetic algorithm backed by
a constraint propagation method to timetable a non-professional
time-relaxed double round-robin tournament with availability
constraints. Games should be evenly distributed over the sea-
son, and teams request a minimal rest time between two con-
secutive games. Moreover, Schönberger et al. [47] provide ev-
idence of the limited suitability of constraint programming to
construct time-relaxed timetables. Knust [31] additionally re-
stricts the assignments of some games to a subset of time slots,
and teams should play home and away games alternately (i.e.
breaks should be avoided). Knust [31] models the problem as
a multi-mode resource-constrained project scheduling problem,
for which an IP formulation and a two-stage heuristic solution
algorithm are proposed, involving local search and a genetic al-
gorithm. Van Bulck et al. [59] consider a similar problem faced
by a non-professional indoor football competition. They pro-
pose a tabu search based algorithm employing a novel move
operator that solves a transportation problem to schedule or
reschedule all home games of a team. Finally, Schauz [45] ex-
amines the minimum number of time slots needed to construct
a timetable for the availability constrained tournament problem
without venue availability constraints (i.e. Hi = Ai,∀i ∈ T). Be-
sides, Schauz [45] investigates how this number changes when
player availability is not known in advance.

This work extends the existing literature in two ways. First,
we show for the first time the computational complexity of
time-relaxed tournament timetabling problems with availability
constraints. Second, we generalize fairness measures used in
asynchronous timetabling (see [53]) and propose exact models
and two heuristic algorithms to incorporate these measures in
the timetabling process. Practitioners may use these algorithms
to construct fair timetables. An extensive set of computational
experiments not only shows the performance of our algorithms,
but also reveals how the presence of availability constraints im-
pacts the fairness of timetables.

3. Theoretical results

This section provides theoretical results with regard to RAC-
kTP and its variants. First, we show that RAC-kTP is a special
case of list-edge coloring. This allows us to derive sufficient
conditions for the existence of a feasible timetable (Sec. 3.1).
Next, we settle the computational complexity of RAC-kTP
(Sec. 3.2).

3.1. Feasibility results

Consider the problem of list-edge coloring (LECOL).
LECOL Instance. A multigraph G with a set of vertices V , a
set of edges E, a set of colors C, and for each edge e ∈ E a
list of colors L(e) ⊆ C. Output. A proper list-edge coloring

f : E → C in G, that is a mapping from each edge e ∈ E to a
color in L(e) such that no two adjacent edges get the same color.

The list-edge chromatic index χ′l(G) denotes the minimum
list size that guarantees a list-edge coloring in G. In the special
case that L(e) = C for all e ∈ E, the problem is known as the
edge coloring problem. The smallest number of colors needed
to construct a proper edge coloring in G is the edge chromatic
index χ′(G). Denote with δ(v) the degree of vertex v, with ∆(G)
the maximal vertex degree, and with µ(G) the maximum num-
ber of edges joining any two vertices. Then, Vizing’s theorem
for multigraphs [60] states that χ′(G) ≤ ∆(G) + µ(G). The list-
edge coloring conjecture states that χ′l(G) = χ′(G), and was in-
dependently proposed by several researchers (see e.g. [26] for
an overview).

It is well known that a sports timetable without availabil-
ity constraints can be constructed via edge coloring techniques
(e.g. [11, 28, 29, 45]). Lemma 1 shows the relationship between
RAC-kTP and list-edge coloring.

Lemma 1. RAC-kTP is a special case of list-edge coloring.

Proof. We prove the lemma by restricting LECOL to RAC-kTP.
For any instance of RAC-kTP, we create an instance of LECOL
as follows. First, we construct a set of vertices V containing
vertex vi for each team i ∈ T , and a set of colors C containing
color cs for each time slot s ∈ S . Then, we construct a set of
edges E containing an edge {vi, v j} for each game (i, j) ∈ M
and we set L({vi, v j}) = {cs : s ∈ Hi ∩ A j}. This results in the
multigraph G(V, E) in which there are exactly mi, j + m j,i edges
between two vertices vi, v j ∈ V , and the vertex degree δ(vi)
corresponds to mi. Observe that µ(G) = k, and that G is a
complete graph in case of RAC-kRRT and a bipartite graph in
case of RAC-kBT or RAC-kPBT.

Now, we show that the RAC-kTP instance is feasible if and
only if the corresponding LECOL instance is feasible. Suppose
first that we have a feasible timetable for the RAC-kTP instance.
For each game (i, j) ∈ M scheduled on s ∈ S , we select an un-
colored edge {vi, v j} for which L({vi, v j}) = {cp : p ∈ Hi ∩ A j}

and we color {vi, v j} with cs. This results in a proper list-edge
coloring since it follows from (C1) that all edges are colored,
from (C2), (C3) and the edge-selection strategy that only fea-
sible colors are used, and from (C4) that adjacent edges get
different colors.

Conversely, assume that we are given a proper list-edge col-
oring of G. For each edge {vi, v j} ∈ E colored with cs ∈ C,
we then select an unscheduled game (i, j) ∈ M if L({vi, v j}) =

{cp : p ∈ Hi ∩ A j} or (j, i) ∈ M if L({vi, v j}) = {cp : p ∈ H j∩Ai},
and we schedule this game on time slot s. This makes that all
games are timetabled (C1). Moreover it follows from the game-
selection strategy and the construction of the edge-color lists
that availability constraints (C2) and (C3) are respected. Fi-
nally, each team plays at most once per time slot (C4) since all
edges incident to the same vertex get different colors.

Corollary 1. An instance of RAC-kTP has a feasible solu-
tion that can be constructed in polynomial time if for each
game (i, j) ∈ M it holds that |Hi ∩ A j| ≥ max{mi,m j} +

b1/2 min{mi,m j}c.

3

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

Proof. Recall from Lemma 1 that RAC-kTP is a special case
of list-edge coloring in a multigraph G(V, E). In this graph
team i ∈ T is associated with vertex vi ∈ V , time slot s ∈ S
is associated with color cs ∈ C, and game (i, j) ∈ M is asso-
ciated with an edge {vi, v j} ∈ E carrying colors L({vi, v j}) =

{cp : p ∈ Hi ∩ A j}. Also recall that δ(vi) = mi for all
i ∈ T . Borodin et al. [8] show that G can be list-edge col-
ored in polynomial time if |L({vi, v j})| ≥ max{δ(vi), δ(v j)} +

b1/2 min{δ(vi), δ(v j)}c,∀{vi, v j} ∈ E.

If the list-edge coloring conjecture holds, that is if χ′l(G) =

χ′(G), the right-hand side in Corollary 1 can be changed to
maxi∈T mi + k. Indeed, by definition it suffices that L(e) ≥
χ′l(G),∀e ∈ E. Moreover, Vizing’s theorem for multi-
graphs [60] guarantees that χ′(G) ≤ ∆(G) + µ(G). Galvin [24]
proves that the list-edge coloring conjecture holds for bipartite
multigraphs for which we derive an even stronger result.

Corollary 2. An instance of RAC-kPBT or RAC-kBT has a
feasible solution if for each game (i, j) ∈ M it holds that
|Hi ∩ A j| ≥ max{mi,m j}.

Proof. From Lemma 1, it follows that RAC-kPBT or RAC-kBT
is a special case of list-edge coloring in a bipartite multigraph
G(V1,V2; E). In this graph team i ∈ T1 (j ∈ T2) is associated
with vertex vi ∈ V1 (v j ∈ V2), time slot s ∈ S is associated
with color cs ∈ C, and game (i, j) ∈ M is associated with an
edge {vi, v j} ∈ E carrying colors L({vi, v j}) = {cp : p ∈ Hi ∩ A j}.
Also recall that δ(vi) = mi for all i ∈ T . Borodin et al. [8] show
that bipartite graphs can be list-edge colored if |L({vi, v j})| ≥
max{δ(vi), δ(v j)},∀{vi, v j} ∈ E.

Corollary 3. RAC-1RRT has a feasible solution if for each
game (i, j) ∈ M it holds that |Hi ∩ A j| ≥ |T |.

Proof. From Lemma 1, it follows that RAC-1RRT is a special
case of list-edge coloring in a complete simple graph K|T |(V, E).
In this graph team i ∈ T is associated with vertex vi ∈ V , time
slot s ∈ S is associated with color cs ∈ C, and game (i, j) ∈ M is
associated with an edge {vi, v j} ∈ E carrying colors L({vi, v j}) =

{cp : p ∈ Hi ∩ A j}. By definition, the corresponding LECOL
instance is feasible if L(e) ≥ χ′l(G),∀e ∈ E. Häggkvist and
Janssen [26] show that χ′l(K|T |) ≤ |T |.

Without player availability, this means that a feasible solution
for RAC-1RRT exists if the venue availability set of each team
contains at least |T | time slots. Similarly, if venues are always
available, i.e. Hi = Ai,∀i ∈ T , this means that a feasible solu-
tion exists if the player availability set of each team contains at
least (|S |+ |T |)/2 time slots. If the list-edge coloring conjecture
holds and |T | is even, the lower bound improves to |T | − 1. This
is for example the case for |T | = p + 1, with p any odd prime
number [44]. Moreover, we can then generalize the corollary
to RAC-kRRT by requiring that |Hi ∩ A j| ≥ k|T |, ∀i ∈ T . This
follows from Vizing’s theorem for multigraphs [60] stating that
χ′(K|T |) ≤ ∆(K|T |) + µ(K|T |) = k(|T | − 1) + k.

3.2. Complexity results

In the remainder of this section, we refer with RAC-kTP
and its variants to the decision version of the original prob-
lem, i.e. does a feasible timetable exist? First, in the special
case of RAC-kPBT, we show that answering this question is
NP-complete by showing a reduction from the classic class-
lecturer timetabling problem. To the best of our knowledge,
this is the first proven relation between course timetabling and
sports timetabling. Subsequently, we show that RAC-kBT is
NP-complete by showing a reduction from completing a Latin
square (that is an m × m array filled with symbols {1, . . . ,m}
in such a way that that each row and each column contains ev-
ery symbol exactly once). Finally, we show a reduction from
bipartite tournaments to round-robin tournaments to prove that
RAC-kRRT is also NP-complete. In the remainder of this sec-
tion, we say that venues are always available if for each team
i ∈ T it holds that Hi = Ai. In addition, a team i ∈ T is called
tight if |Ai| = mi, i.e. i must play a game whenever its players
are available.

Theorem 1. RAC-kPBT isNP-complete, even if k = 1, venues
are always available, teams in T2 are always available, teams
in T1 are tight, and there are only three time slots or three teams
in the second group (|S | = 3 or |T2| = 3).

Proof. We prove the theorem by presenting a reduction from
restricted class-lecturer timetabling (RTT) [21].
RTT. Instance: A set of time slots P, a set of lecturers L where
each lecturer l ∈ L has lecturer availability set Al ⊆ P, a set
of classes C where each class c ∈ C has class availability set
Ac ⊆ P, and for each pair (l, c) ∈ L × C there is an integer
Rl,c that indicates the number of time slots lecturer l needs to
teach class c. Question: Is there a timetable, i.e. a mapping f :
L×C × P→ {0, 1} with f (l, c, p) = 1 whenever lecturer l meets
class c on time slot p and 0 otherwise, such that: (i) lecturer
l teaches class c exactly Rl,c times, (ii) the lecturer availability
Al with l ∈ L is respected, (iii) the class availability Ac with
c ∈ C is respected, (iv) each lecturer teaches at most one class
per time slot, and (v) each class follows at most one lecture per
time slot.

For any instance of RTT, we let S = P and add a lecturer
team tl ∈ T1 for each lecturer l ∈ L and a class team tc ∈ T2
for each class c ∈ C. The availability of lecturer team tl (class
team tc) corresponds to the availability of lecturer l (class c)
in the input of RTT. For all teams, venues are always available
(Hi = Ai,∀i ∈ T). Furthermore, we add Rl,c games between
home team tl and away team tc, i.e. mtl,tc = Rl,c, ∀l ∈ L, c ∈ C.
Finally, to make sure that |T1| = |T2|, we can always add dummy
teams in T1 or in T2 that do not have to play any game.

Now, we show that the RTT instance is feasible if and only if
the RAC-kPBT instance is feasible. Suppose first that we have
a feasible timetable for the RTT instance. We can then construct
a feasible timetable for the RAC-kPBT instance by timetabling
a game between home team tl against away team tc on time slot
p whenever f (l, c, p) = 1. It follows from the feasibility of the
RTT timetable that all games are planned (C1). Since a lecturer
meets with at most one class per time slot, and vice versa, it also

4

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

follows that a team plays at most once per time slot in S (C4).
Finally, the availability constraints are respected since venues
are always available (C2), and the availability of lecturers and
classes directly correspond with the availability of teams in the
RAC-kBT instance (C3).

Conversely, assume that we have a feasible timetable for the
RAC-kPBT instance. Then, it suffices to set f (l, c, s) = 1 when-
ever team tl ∈ T1 plays a game against team tc ∈ T2 on time slot
s ∈ S , which will timetable all lectures. This function also re-
spects the availability constraints since the player availability
of teams in T1 and T2 directly correspond to the availability of
lecturers and classes. Finally, from the feasibility of the RAC-
kPBT timetable, it follows that this function will never match a
lecturer with more than one class, or vice versa, per time slot.

Even et al. [21] prove that RTT is NP-complete, even if
Rl,c ∈ {0, 1} ∀l ∈ L, c ∈ C, |P| = 3, and Ac = S ,∀ c ∈ C.
Costa et al. [13] prove that RTT remains NP-complete when
Rl,c ∈ {0, 1} ∀l ∈ L, c ∈ C, |C| = 3 and Ac = S ,∀ c ∈ C. In both
proofs, lecturers are tight, i.e. |Al| =

∑
c∈C Rl,c ∀l ∈ L, implying

that teams in T1 are also tight.

RAC-kPBT remains difficult when teams are always avail-
able but the availability of venues is limited. Indeed, in the
proof of Theorem 1 class teams are always available and lec-
turer teams only play home games. Hence, venue availability
of teams in T1 can be modeled as player availability, and Corol-
lary 4 follows.

Corollary 4. RAC-kPBT is NP-complete, even if k = 1, teams
are always available, venues of teams in T2 are always avail-
able, and there are only three time slots or three teams in the
second group.

Theorem 2. RAC-1BT is NP-complete, even if venues are al-
ways available and all teams are tight.

Proof. We prove the theorem by presenting a reduction from
completing a partial Latin square (CLS) to RAC-1BT.
CLS. Instance: A partial Latin square P, that is an m × m ar-
ray filled with 3m symbols from ψ = {1, . . . ,m} in such a way
that each symbol occurs at most once in every row and column.
Question: Is it possible to fill the empty cells in P so that every
symbol occurs exactly once in every row and column?

Easton and Parker [19] prove that CLS isNP-complete, even
if only 3m cells are filled in any m × m partial Latin square.

For any instance of CLS, we create a set of m row teams T1
and m column teams T2 representing each row and column in
P. Furthermore, we add exactly one game between home team
i ∈ T1 and away team j ∈ T2, i.e. mi, j = 1. In addition, we
partition the set of time slots into two subsets S = S 1 ∪ S 2. The
first set contains a time slot for each symbol in CLS (S 1 = ψ),
the second set contains a time slot si, j for each filled cell Pi, j.
The player availability set Ai of a row team i ∈ T1 (or column
team j ∈ T2) is such that this team is unavailable during time
slots in S 1 corresponding to symbols that are already present
in row i (or column j) of P, unavailable in all time slots in S 2
not corresponding to filled cells of row i (or column j) of P, and
available in all other time slots. For all teams, venues are always

available (Hi = Ai,∀i ∈ T). Remark that this transformation
can be realized in polynomial time since the number of fixed
cells is 3m, resulting in |S 1| + |S 2| = 4m. Moreover, it follows
from the transformation that all teams are tight.

Now, we show that the CLS instance is feasible if and only
if the corresponding RAC-1BT instance is feasible. Suppose
first we have a feasible solution for the CLS instance, that is
a Latin square L that fills every empty cell of P. Then, we
can construct a feasible timetable for the RAC-1BT instance by
timetabling game (i, j), i ∈ T1, j ∈ T2 on time slot Li, j whenever
Pi, j is empty, or on time slot si, j ∈ S 2 if Pi, j is filled (C1). Since
each symbol in a Latin square occurs at most once in every
row and column, and since teams in the RAC-1BT instance are
only unavailable during time slots in S 1 that correspond to a
filled symbol in the corresponding row or column of P, this
transformation respects constraints (C3) and (C4) for time slots
of S 1. Clearly, (C3) and (C4) are also respected in S 2 since only
teams i and j are available on a time slot si, j belonging to S 2.
Finally, since venues are always available, constraints (C2) are
also respected.

Conversely, assume that we have a feasible timetable for the
RAC-1BT instance. Then, exactly one game between teams
i ∈ T1 and j ∈ T2 must be planned in S 1 whenever cell Pi, j

is unfilled since, by construction, i and j are in this case never
simultaneously available in S 2. Therefore, we can always set
the value of an unfilled cell Pi, j to the time slot in which i plays
against j. This results in a feasible Latin square since teams
are unavailable during time slots that already occur in the cor-
responding row or column of P and teams in the RAC-1BT in-
stance can play at most once per time slot.

In contrast to RAC-kPBT, RAC-kBT can be answered in
polynomial time if there are no venue availability constraints
and teams in T2 are always available.

Proposition 1. RAC-kBT can be answered in polynomial time if
venues are always available, and teams in T2 are always avail-
able.

Proof. Corollary 2 guarantees feasibility of an instance if for
each game (i, j) ∈ M it holds that |Hi ∩ A j| ≥ max{mi,m j}.
Because in RAC-kBT we have mi = k|T2| for all i ∈ T and
since venues and teams in T2 are always available, the condition
simplifies to |Ai| ≥ k |T2| for all i ∈ T1. Clearly, this is also a
necessary condition since each team must be available during
no fewer time slots than the total number of games it has to play.
Hence, return ‘yes’ if the condition holds, and ‘no’ otherwise.

We now show that RAC-1RRT, and by extension RAC-kRRT,
is also NP-complete.

Theorem 3. RAC-1RRT is NP-complete, even if venues are
always available and all teams are tight.

Proof. We prove the theorem by presenting a reduction from
RAC-1BT to RAC-1RRT. Recall, in RAC-1BT we are given a
set of time slots S ′, and a set of teams T ′ that are partitioned
into two disjoint groups T1 and T2 each containing m teams.

5

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

Moreover, each team i ∈ T ′ provides a venue availability set
H′i ⊆ S ′, and a player availability set A′i ⊆ S ′. Finally, we are
given a set of games M′, with m′i, j + m′j,i = 1, ∀i ∈ T1,∀ j ∈ T2.

We construct an instance of RAC-1RRT from any instance of
RAC-1BT in which venues are always available, and all teams
are tight. This setting is proven to be NP-complete in Theo-
rem 2. To begin, we set T = T1 ∪ T2. Next, we partition the set
of time slots S into three sets of time slots S = S 1∪S 2∪S 3, with
S 1 = S ′. The player availability of a team in S 1 corresponds to
the player availability of the corresponding team in the RAC-
1BT instance. The second set S 2 contains |T1| − 1 time slots if
|T1| is even, and |T1| time slots otherwise. If |T1| is even, players
of T1-teams are always available in S 2, otherwise the players
of team i ∈ T1 are unavailable in the i-th time slot of S 2 and
available in all other time slots of S 2. Players of T2-teams are
never available in S 2. We apply a similar construction for S 3
with the role of the T1-teams and T2-teams inverted. The game
set M consists of all games in M′, appended with exactly one
game (i, j) for each i, j ∈ T1, i < j, and for each i, j ∈ T2, i < j.
It follows from the input of RAC-1BT instance and the con-
struction of the RAC-1RR instance that all teams are tight and
that venues are always available. In summary, if the number of
teams is even, the instance of RAC-1RRT is completely speci-
fied by:

S = S ′ ∪ S 2 ∪ S 3

T = T1 ∪ T2

Ai = A′i ∪ S 2 ∀ i ∈ T1

A j = A′j ∪ S 3 ∀ j ∈ T2

Hi = Ai ∀ i ∈ T

M = M′ ∪ {(i, j), ∀i, j ∈ T1, i < j} ∪ {(i, j), ∀i, j ∈ T2, i < j}

Remark that this transformation can be realized in poly-
nomial time since the total number of time slots is at most
|S ′| + |T1| + |T2|. Now, we show that the RAC-1BT instance is
feasible if and only if the RAC-1RRT instance is feasible. Sup-
pose first that we have a feasible timetable for the RAC-1BT
instance. We can then construct a feasible timetable for the
RAC-1RRT instance in which T1-teams play against T2-teams
in S 1, T1-teams play against T1-teams in S 2, and T2-teams play
against T2-teams in S 3. To realize this, we first copy all game to
time slot assignments from the corresponding RAC-1BT solu-
tion. This makes that all games between T1-teams and T2-teams
are planned in S 1 with the correct home-away status. Since
teams in the RAC-1BT instance play at most once per time slot,
it follows that teams in the RAC-1RRT instance also play at
most once per time slot in S 1 (C4). Moreover, this construc-
tion respects (C3) because availability of teams during S 1 in
the RAC-1RRT instance fully correspond to the availability of
the teams in the RAC-1BT instance. Second, we use the circle
method [14] to construct, in O(|T1|

2) time, a (time-constrained)
single round-robin tournament between the T1-teams in S 2. We
thereby assign the home-away status to the team with the small-
est index. It follows from the circle method that teams play
at most once per time slot (C4); constraints (C3) are also re-
spected since T1-teams are always available in S 2 if |T1| is even.
If |T1| is odd, relabeling of the teams in the circle method always
result in the necessary bye for the unavailable team of each time

slot. Finally, we use the same technique to plan all games be-
tween the T2-teams in S 3. This makes that all games of the
single round-robin tournament are planned (C1). Finally, since
venues are always available, constraints (C2) are also respected.

Conversely, assume that we have a feasible timetable for the
RAC-1RRT instance. Then, we can always timetable game (i, j)
or (j, i) with i ∈ T1 and j ∈ T2 on a time slot s ∈ S 1 (C1). This
follows from the fact that j is unavailable during S 2, i is un-
available during S 3, and M contains all games with the correct
home-away status since it includes M′. The resulting timetable
also respects constraints (C3) since the availability of the teams
during S 1 in the RAC-1RRT instance fully corresponds to the
availability of the teams in the RAC-1BT instance. From the
feasibility of the RAC-1RRT solution, it also follows that each
team is involved in at most one game per time slot (C4). Fi-
nally, constraints (C2) are also respected since venues are al-
ways available.

Corollary 5. RAC-kRRT is NP-complete for any fixed k, even
if venues are always available and all teams are tight.

Proof. We prove the corollary by presenting a reduction from
RAC-1RRT to RAC-kRRT. Recall, in RAC-1RRT we are given
a set of time slots S ′, and a set of teams T ′ with for each team
i ∈ T ′ a venue availability set H′i ⊆ S ′ and a player availability
set A′i ⊆ S ′. Finally, we are given a set of games M′, with
m′i, j+m′j,i = 1,∀i, j ∈ T ′, i , j. RAC-1RRT is proven to beNP-
complete in Theorem 3, even if venues are always available and
all teams are tight.

We construct an instance of RAC-kRRT from any instance
of RAC-1RRT. To begin, we set T = T ′. Next, we partition
the set of time slots into k sets S = S 1 ∪ S 2 ∪ · · · ∪ S k, with
S 1 = S ′. The player availability of a team in S 1 corresponds
to the player availability of the corresponding team in the RAC-
1RRT instance. All other intervals contain exactly one time slot
for each unordered team pair {i, j}, i , j; only team i and j are
available in this time slot. Venues are always available. Finally,
the game set M consists of all games in M′, appended with
exactly k − 1 games (i, j) for each i, j ∈ T, i < j. This makes
that all teams are tight.

Now, we show that the RAC-kRRT instance is feasible if
and only if the RAC-1RRT instance is feasible. Suppose first
that we have a feasible timetable for the RAC-1RRT instance.
We can then construct a feasible solution for the RAC-kRRT
instance in which each team plays exactly once against each
other team in each of the intervals. For S 1, we copy all game
to time slot assignments and the corresponding home-away sta-
tus from the RAC-1RRT solution. For each of the other inter-
vals it suffices to schedule a game between the two available
teams of each time slot. We assign the home-away status to the
team with the smallest index. This makes that all games are
timetabled (C1), that player availability is respected (C3), and
that each team plays at most once per time slot (C4). Finally,
since venues are always available, constraints (C2) are also re-
spected.

Conversely, assume that we have a feasible timetable for the
RAC-kRRT instance. Since any pair of teams meets k times,

6

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

each interval from S 2 to S k contains only one feasible time slot
for a pair to meet, and all teams are tight, it follows that every
pair of teams meets exactly once in S 1. Since venues are always
available, both teams can play either at home or away in this
time slot. Therefore, a feasible timetable for the RAC-1RRT
instance can be constructed by copying the game assignments
in S 1, and swapping the home-away status of game (i, j), i, j ∈
T, i , j, if (i, j) < M′.

4. Fairness measures

Section 3 proves that it is NP-complete to decide whether
an availability constrained sports timetable exists. Clearly, the
problem remains difficult when we additionally optimize fair-
ness measures. This section proposes several of these measures
and provides mathematical models to optimize them.

Consider first Equations (1)-(4) that provide a base model to
solve RAC-kRRT. In this model, the variable xi, j,s is 1 if team
i ∈ T and team j ∈ T \i meet at the venue of i on time slot s ∈ S .
The first set of constraints ensures that each team plays the re-
quired number of home games against each other team (C1).
The next set of constraints enforces that a team plays at most
once per time slot (C4). Constraints (3) reduce the number of
variables in the system by explicitly stating that two teams can
only meet when the venue of the home team and the players of
the away team are simultaneously available (C2), (C3); when
implementing this formulation, these variables need not be cre-
ated. Finally, constraints (4) are the binary constraints on the
x-variables.

Base model∑
s∈Hi∩A j

xi, j,s = mi, j ∀i, j ∈ T : i , j (1)

∑
j∈T\{i}

(xi, j,s + x j,i,s) 6 1 ∀i ∈ T, s ∈ Ai (2)

xi, j,s = 0 ∀i, j ∈ T : i , j, s ∈ S \ {Hi ∩ A j} (3)

xi, j,s ∈ {0, 1} ∀i, j ∈ T : i , j, s ∈ Hi ∩ A j (4)

The remainder of this section enhances this base model to
handle several fairness issues.

4.1. Aggregated rest time penalty

In time-relaxed timetables, the rest time between consecutive
games of a team can vary substantially. This is problematic for
two reasons. First, if the difference in rest time between two
opposing teams is large, teams might blame the timetable for
losing the game. This is the topic of research in [2, 3] where the
authors show how to minimize the total number of rest time dif-
ferences in a time-relaxed timetable in which the total number
of games per time slot is limited. Second, the absolute rest time
needs to be monitored since several researchers (e.g. [7, 16])
found a relation between fixture congestion and higher injury
rates. Interestingly, none of the authors in [7, 16] found a de-
crease in technical or physical performance during congested
periods. Nevertheless, Scoppa [50] finds that differences in rest

time in professional football have a positive and significant im-
pact on performance when at least one of the two teams enjoys
a very short period of rest, whereas no impact is found when the
rest time of both teams is sufficiently long. This hints that the
impact of days of rest on performance is non-linear: ‘it turns out
to be important if rest time is equal or below three days between
consecutive matches, whereas it becomes irrelevant when teams
are allowed with at least four days of rest [50]’.

Related to the rest time of teams, Suksompong [53] defines
the guaranteed rest time of a timetable as the maximum integer
g such that any team in the tournament has at least g time slots
of rest between two consecutive games.

In Proposition 2, we derive an upper bound of the guaranteed
rest time in a k round-robin tournament; we refer to this bound
as GRT.

Proposition 2. The guaranteed rest time of any k round-robin
tournament is at most GRT = b

|S |−1
k(|T |−1+|T | mod 2)−1 c − 1 time slots.

Proof. If |T | is even, each team needs at least k(|T |−1) time slots
to play all its games, and

(
k(|T | − 1)− 1

)
GRT time slots to have

at least GRT time slots recovery between any two consecutive
games. Rewriting the inequality k(|T |−1)+

(
k(|T |−1)−1

)
GRT 6

|S | results in the bound. If |T | is odd, there will always be a team
that has no game during the first 1+GRT slots. Indeed, the total
number of teams that play a game in the same time slot must be
even, and each team needs at least GRT days of rest before it
can play its next game. If we apply this reasoning k times, we
get: k(|T |−1)+(k(|T |−1)−1)GRT+k(1+GRT) 6 |S |. Rewriting
this inequality results in the bound.

As an example, in a double round-robin tournament with 15
teams and 150 time slots, the guaranteed rest time is at most
four time slots. If the organizers prefer a guaranteed rest time of
five time slots, the season should contain at least 175 time slots.
Without considering availability constraints, this bound is eas-
ily achievable by first constructing a time-constrained timetable
and then inserting GRT empty time slots between any two con-
secutive games. Nonetheless, this bound is not necessarily
achievable if we include availability constraints.

To avoid injuries, time-relaxed timetables usually limit the
number of games per team in a given period of time. As an
example, Knust [31] limits the total number of games per week
to at most two, and Van Bulck et al. [59] limit the total number
of games in a given number of consecutive time slots to at most
two. Hence, this section additionally requires that a team plays
at most twice per GRT + 1 time slots; we refer to this constraint
with the symbol (A1).

A potential drawback of the guaranteed rest time is that it
only considers the worst-case rest time. For this reason, we pro-
pose a new fairness measure, the aggregated rest time penalty
(ARTP), that penalizes the timetable with a positive value of
pr ≥ pr+1 each time a team has only r time slots between two
consecutive games. With pr = 0 for r ≥ GRT, which we
assume in the remainder of this paper, a timetable with a guar-
anteed rest time of GRT has an ARTP of 0. What is more,
Proposition 3 shows that penalties can always be chosen such
that a k round-robin timetable which is optimal for the ARTP is

7

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

also optimal for the guaranteed rest time. This is an interesting
result when lexicographic minimax fairness is pursued.

Proposition 3. In a k round-robin timetable ARTP optimality
implies guaranteed rest time optimality when pr−1

pr
> |T |(k(|T | −

1) − 1) for all r with 0 < r < GRT and pr = 0 for all r ≥ GRT.

Proof. Assume that no timetable exists which achieves the
GRT-bound from Proposition 2 (otherwise, the proof is trivial),
and assume, without loss of generality, pgrt−1 = 1. To prove the
proposition, we need to show that the ARTP of a timetable F1
with a guaranteed rest time of 0 < r < GRT is always smaller
than the ARTP of a timetable F2 with a guaranteed rest time
of r − 1. For this, note that the ARTP of timetable F1 is at
most |T |pr(k(|T | −1)−1), i.e. all teams have exactly r time slots
between any two consecutive games. Similarly, the ARTP of
timetable F2 is at least pr−1, i.e. there is one team that plays
two consecutive games in r − 1 time slots. Therefore, it suffices
that pr−1 > |T |pr(k(|T | − 1) − 1).

To minimize the ARTP of a timetable, the mathematical
model below uses an auxiliary variable yi,s,t which is 1 if team
i plays a game on time slot s followed by its next game on time
slot t, and 0 otherwise. Constraints (5) regulate the value of
the yi,s,t variables by considering the number of time slots be-
tween two consecutive games of the same team. Additionally,
constraints (6) model (A1). We note that it follows from (A1)
that the games are consecutive if team i plays on time slot s
and t and |t − s| ≤ GRT. Hence, if constraints (A1) are present
and pr = 0 for r ≥ GRT, we can strengthen the formulation by
dropping the negative summation term of Equation 5. Finally,
constraints (7) state that the y-variables are non-negative; inte-
grality follows from the objective function and the integrality
of the x-variables.

ARTP model

minimize
∑
i∈T

∑
s∈Ai

s+GRT∑
t=s+1

p(t−s−1)yist

subject to
(1) − (4)∑
j∈T\{i}

(
xi, j,s + x j,i,s + xi, j,t + x j,i,t

−

t−1∑
k=s+1

(xi, j,k + x j,i,k)
)
− 1 6 yi,s,t ∀i ∈ T, s, t ∈ Ai : s < t, t − s 6 GRT (5)

∑
j∈T\{i}

s+GRT∑
k=s

(xi, j,k + x j,i,k) ≤ 2 ∀i ∈ T, s ∈ Ai (6)

yi,s,t ≥ 0 ∀i ∈ T, s, t ∈ Ai : s < t, t − s 6 GRT (7)

4.2. Games played difference index
To ensure that all teams have roughly played the same num-

ber of games at any point in time, Suksompong [53] defines
the games played difference index (GPDI) as ‘the minimum in-
teger p such that at any point in the timetable, the difference
between the number of games played by any two teams is at
most p’. A timetable with a low GPDI is desirable since this re-
sults in more accurate tournament rankings and since this may

reduce the opportunities for match fixing. In contrast to time-
constrained round-robin timetables in which at least n−1 teams
have always played the same number of games, the GPDI of a
time-relaxed k round-robin can be as high as k(n− 2): one team
has played k times against all other teams except for a single
team that has not played any game yet. The GPDI model listed
below makes use of a variable gi,s that represents the number of
games played by team i up to and including time slot s. Equa-
tions (8), (9) and (10) recursively model the number of games
a team played up to any time slot. Next, equations (11) calcu-
late the GPDI value that is minimized by the objective function.
Note that the integrality of gi,s follows from (4), (8), (9), and
(10).

GPDI model
minimize GPDI

subject to
(1) − (4)

gi,1 =
∑

j∈T\{i}

(xi, j,1 + x j,i,1) ∀i ∈ T (8)

gi,s = gi,s−1 +
∑

j∈T\{i}

(xi, j,s + x j,i,s) ∀i ∈ T, s ∈ Ai : s > 1 (9)

gi,s = gi,s−1 ∀i ∈ T, s ∈ S \ Ai : s > 1 (10)

gi,s − g j,s 6 GPDI ∀i, j ∈ T : i , j, s ∈ S (11)

4.3. Break minimization
In time-relaxed timetabling, a team has a home (away) break

whenever it plays two consecutive home (away) games, irre-
spective of the number of time slots between these two games.
There are several reasons why it matters for a team to be either
the home team or the away team. First, for a large variety of
sports it is believed that the team playing at home has a home-
field advantage due, among others, to crowd effects, travel ef-
fects, psychological effects, and referee bias (see [41, 42]). Sec-
ond, many sports require one of the two teams to start the game,
for example, by serving some object which the opponent tries
to return. The starting team usually has a first-mover advantage
or disadvantage. As an example, in a round-robin chess tour-
nament each player plays an equal number of times with the
white (home) and black (away) pieces since the player with the
white pieces may open the game thereby having greater flex-
ibility to control the game. In softball ‘a team prefers to be
the home team, not because there is a home-field advantage
in recreational softball, but because the home team bats last;
therefore, it knows what it needs to do to win the game in the
last inning [25]’. In terms of fairness, breaks are undesirable as
they mean (not) having the advantage related to the home-away
status for two consecutive games (see e.g. [17, 34]). Moreover,
in professional leagues home breaks may have an adverse im-
pact on game attendance (see [22]) whereas away breaks may
result in long periods without any home game (and correspond-
ing revenues) when there are many days-off between consecu-
tive games (e.g. [17]).

Professional teams may prefer a timetable with less travel
distance but slightly more breaks (see e.g. [5, 34]). Indeed, if
the distance between every pair of teams is constant and teams

8

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

do not return home when playing consecutively away, Urrutia
and Ribeiro [56] show that travel minimization is equivalent
with break maximization. Nevertheless, if teams do not return
home after playing away (e.g. because there are too many days-
off in between, hotels are too expensive, or teams are located
close to one another as is typical the case in non-professional
regional leagues (see also [54])) travel minimization may not
be a major concern and breaks may be minimized.

It is well known that a timetable for a time-constrained sin-
gle round-robin tournament with n teams contains at least n− 2
breaks when n is even [14]. However, a single round-robin
timetable without any break can be constructed in time O(n2)
when n is odd, or when there is one additional time slot avail-
able [23]. Nevertheless, as soon as player availability is con-
sidered, Corollary 5 proves that no polynomial-time algorithm
exists to schedule the tournament, unless P = NP.

To minimize breaks, we present a mathematical model that
uses a binary variable bi,s (as proposed in [31]) that is one
if team i has a break on time slot s, and 0 otherwise. Con-
straints (12) model the home breaks of a team, whereas con-
straints (13) model the away breaks of a team. Finally, con-
straints (14) reduce the number of break variables by stating
that a team cannot have a break when its players are unavail-
able; in practice these variables are not created.

Break model

minimize
∑
i∈T

∑
s∈Ai

bi,s

subject to
(1) − (4)∑
j∈T\{i}

(
xi, j,s + xi, j,t −

∑
u∈S :s<u<t

(xi, j,u + x j,i,u)
)
− bi,t 6 1∀i ∈ T, s, t ∈ Hi : s < t (12)

∑
j∈T\{i}

(
x j,i,s + x j,i,t −

∑
u∈S :s<u<t

(xi, j,u + x j,i,u)
)
− bi,t 6 1 ∀i ∈ T, s, t ∈ Ai : s < t (13)

bi,s = 0 ∀i ∈ T, s ∈ S \ Ai (14)

Notice that (12) and (13) potentially include respectively
O(|T ||Hi|

2) and O(|T ||Ai|
2) constraints. Since the venue avail-

ability set of a team is usually small, especially the large num-
ber of type (13) constraints is problematic. We significantly
reduce this number by noticing that team i must play at least
one home game in any subset of |Hi| −

∑
j∈T mi, j + 1 home slots

(i.e. time slots belonging to Hi). Therefore, it suffices in con-
straints (12) and (13) to consider time slots s and t only if s < t
and team i has less than |Hi| −

∑
j∈T mi, j home slots between s

and t.

5. Heuristic algorithms

The IP formulations from Section 4 require a considerable
amount of computational resources using a state-of-the-art IP
solver (see Sec. 6). This section therefore proposes an adaptive
large neighborhood search (Sec. 5.1) and a memetic algorithm
(Sec. 5.2). Unless otherwise stated, the remainder of this paper
focuses on double round-robin tournaments in which each team
plays one home game against every other team, i.e. mi, j = 1

for all i, j ∈ T with i , j. This assumption enables us to ex-
ploit problem specific properties in the memetic algorithm of
Section 5.2.

5.1. Adaptive large neighborhood search

Instead of optimizing a difficult problem at once, large neigh-
borhood search (LNS [51]) gradually improves an incumbent
solution by alternately destroying and repairing this solution.
This method differs from traditional local search methods by
destructing (exponentially) large parts of the solution in the
hope that the local optima are of higher quality. This implies
that the repair stage is also much more complex.

The approach in this paper was based on a variant of LNS
which is called adaptive large neighborhood search (ALNS).
The general structure of the ALNS algorithm is given in Fig-
ure 1. ALNS extends LNS in two ways. First, as in variable
neighborhood search (VNS [36]), ALNS makes use of mul-
tiple destruction and repair operators in order to profit from
a simultaneous search in multiple neighborhoods. However,
when compared with VNS, ALNS has the advantage that it
self-adaptively determines which of these operators to select by
maintaining an operator-specific weight that is updated during
the execution of the algorithm. Second, unlike LNS, ALNS
also accepts a worse solution in a way that is very similar to
simulated annealing. For an introduction to ALNS and related
methods, we refer to Pisinger and Ropke [40].

5.1.1. Initial solution
ALNS is an improvement heuristic that needs an initial so-

lution for its first iteration. Similar to Dorneles et al. [15], we
generate this solution by disregarding the optimization crite-
ria and solving the corresponding feasibility problem. Using a
state-of-the-art IP solver, this results in an initial solution within
a few seconds.

5.1.2. Destroy and repair
When used in combination with IP solvers, ALNS can be

seen as performing a sequence of fix-optimize operations: first
the solver selects a subset of free variables and fixes all other
variables at their value in the current solution, then it re-
optimizes all free variables. The main variable in the models
of Section 4 are the x variables: once the x variables are fixed,
the value of the other variables can easily be inferred. We con-
sider two operators to select the free x variables: a team-based
and time-based destructor. The team-based destructor initially
selects d1 teams with a probability of selection for each team
that is proportionate to the contribution of this team to the to-
tal cost. All x variables regulating the home and away games
of the selected teams are then free to be optimized. The time-
based destructor initially selects d2 consecutive time slots with
a probability of selection that is proportionate to the total cost
induced by all games scheduled within this period.

In order to repair the destroyed solution, we fix the value
of all but the free x variables to their value in the incumbent
solution and optimize the resulting model using an IP solver.
Note that the use of a IP solver implies that the output of the

9

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

Construct
initial solution
with IP solver

Destroy solution
with team- or time-

based destructor

Repair destroyed
solution with

IP solver

Accept or
reject repaired

solution

Update selection
probability of

team- and time-
based destructor

Figure 1: General structure of the adaptive large neighborhood search algorithm.

Table 1: Overview of the parameters for the ALNS heuristic.

Parameter Explanation Range ARTP GPDI Break

w Initial acceptance rate (%) 0-100 71 24 45
c Temperature cooling rate (%) 0-100 26 78 28
β Minimum timetable difference 0-18 4 7 0

ω Weight factor 1-100 22 11 91
σ Decay in exponential moving 0-100 44 52 90

average (%)

d1 Initial team destroy size 1-10 2 4 2
d2 Initial time slot destroy 1-10 1 1 8

size (×10)

iter Number of iterations before 0-100 87 55 61
neighborhood size is increased

Time limit Max. time to solve subproblem 5-30 5 28 24
with IP solver

repair phase is never worse since the solver can always return
the solution before it was destroyed. In order to diversify the
search, we therefore add constraint (15).∑

{i, j,s}∈C

xi, j,s 6 |C| − β (15)

This constraint enforces that the candidate solution differs in
at least β values from the incumbent solution, from which the
free variables C were selected by the destructor.

If β is strictly positive, we need to verify whether we accept
the newly generated solution. As advised in [43], we always
accept solutions that are better than the incumbent and accept
a worse solution with a probability of exp(−∆/T). In this for-
mula, ∆ refers to the difference in solution quality between the
incumbent and the candidate solution. Each iteration, the tem-
perature T decreases with c% such that the probability of ac-
cepting a worse solution is reduced accordingly. We set the
initial temperature so that a solution that is w% worse than the
initial solution is accepted with a probability of 50% [43].

In order to select an appropriate neighborhood, ALNS re-
wards the selected destruction operator at the end of each iter-
ation. It thereby selects the highest applicable reward from the
following list: a reward of (i) 1 if the candidate solution is not
accepted, (ii) ω if we accept a solution worse than the incum-
bent, (iii) ω2 if the candidate solution is better than the incum-
bent, or (iv)ω3 if the candidate solution is better than the best so
far solution. The selection probability of each destructor is ini-
tialized with a weight of 1 and is then updated according to an
exponential moving average with smoothing factor σ. In other
words, the selection probability of a destructor in iteration i + 1
is equal to σ times the selection probability in iteration i plus
(1−σ) times the reward earned by the destructor in iteration i.

For each of the two operators, we additionally keep track of
the number of destructions that did not result in an improve-
ment over the incumbent solution and increase the size of the
neighborhood each time this number is higher than a threshold
(iter). The idea is to gradually increase the search space, since
this likely results in better solutions, while keeping computation
time manageable. Table 1 gives an overview of all parameters
in the model.

5.2. Memetic algorithm

Genetic algorithms and variants thereof have previously been
used to successfully generate time-relaxed sports timetables
(e.g. [31, 47]). This motivated us to develop a genetic algorithm
backed by a local improvement heuristic, resulting in a memetic
algorithm (also known as hybrid genetic algorithm, see [37]). A
general overview of the algorithmic flow is depicted in Figure 2.
The remainder of this section explains the different components
of the algorithm. An overview of all parameters in the model
and the range of values that were considered can be found in
Table 2.

5.2.1. Solution representation and evaluation
Schönberger et al. [47] propose to encode a timetable via a

string composed of different segments each carrying the time
slot assignments for all home games of a team. This repre-
sentation enables to define crossover operators segment wise,
ensuring that a team plays at most one home game per time
slot in the timetable resulting from crossover. Alternatively,
Knust [31] encodes a solution as a permutation of games that
can be decoded by planning each game at its first allowable
time slot. A fictive overflow interval ensures that such a time
slot is always found but assigning games in this interval results
in a large penalty value.

In our approach, a double round-robin timetable corresponds
to a matrix in which each cell (i, j) carries time slot ri, j on which
home team i ∈ T plays against away team j ∈ T \ {i}. Similar
to Knust [31], we allow the algorithm not to plan a game by
leaving the corresponding cell blank, but this results in a high
penalty cost P. In other words, constraints (C1) are transformed
into a soft constraint for which violations are penalized in the
objective function. This makes that the fitness of an individual
equals P times the total number of unplanned games, plus the
value of the fairness measure being optimized.

5.2.2. Recombination and mutation
To improve solutions and to avoid getting trapped in local op-

tima, genetic algorithms vary candidate solutions via crossover

10

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

12 15 4
20 5 1
3 14 9

13 7 17

1
1

2

2

3

3

4

4

2 15 4
20 1 5
3 14 9

13 7 17

1
1

2

2

3

3

4

4

2 15 4
5 20 1
9 14 3

13 7 17

1
1

2

2

3

3

4

4

Population

Initialization
(Sec. 5.2.5)

P1 P′1

P2 P′2

Binary
tournament
selection
(Sec. 5.2.5)

Crossover
(Sec. 5.2.2)

∆
%

di
ff

er
en

ce C1

C2

C′1

C′2
1. Mutation (Sec. 5.2.2)
2. Repair (Sec. 5.2.3)
3. Local search (Sec. 5.2.4)

Replace worst
if population
diversity ≥ ∆

(Sec. 5.2.5)

Figure 2: Illustration of the memetic algorithm with population management (MA|PM). Grey ellipses represent the parents selected by the binary tournament
operator.

5 4 8 2 6
1 9 10 6 12
7 11 6 8 10
12 4 3 9 2
10 3 5 11 4
3 8 1 5 7

1
1

2

2

3

3

4

4

5

5

6

6

8 7 6 9 10
5 12 10 7 6
4 2 11 10 8
2 4 9 1 7
3 11 6 12 4
1 9 5 3

1
1

2

2

3

3

4

4

5

5

6

6

8 7 6 9 10
5 12 10 7 6
4 2 11 10 8
2 4 9 1 7

10 3 5 11 4
3 8 1 5 7

1
1

2

2

3

3

4

4

5

5

6

6

5 4 8 2 6
1 9 10 6 12
7 11 6 8 10

12 4 3 9 2
3 11 6 12 4
1 9 5 3

1
1

2

2

3

3

4

4

5

5

6

6

Figure 3: The row-wise crossover picks a crossover point and swaps the par-
ents’ rows (left) to form two new offspring (right).

and mutation. Crossover operators combine the genetic infor-
mation of two parent solutions to create two new offspring so-
lutions. Schönberger et al. [47] mention the importance for
crossover operators for timetabling problems to induce as few
constraint violations as possible. Therefore, we generalize the
segment-wise concept of [47] to row-wise and column-wise
crossover operators. The row-wise (column-wise) single-point
crossover uniformly draws a number 1 ≤ t ≤ |T | − 1, and swaps
the upper (leftmost) t rows (columns) between the two parent
solutions (see Fig. 3, with t = 4).

In addition, we propose a third crossover operator that, in
contrast to the row- and column-wise operators, allows for al-
tering the values of cells within the same row of the parent so-
lutions. We adapt the cycle crossover operator (see e.g. [20]) as
originally developed to recombine permutations in which the
absolute position of cell values must be preserved. Indeed, if
the venue availability set of a team is only slightly larger than
the number of its home games, the rows in the matrix will re-
semble permutations. Given two parent solutions, we generate
two offspring solutions by applying the operator row by row.
More specifically, for each row, we use the traditional cycling
procedure to generate different cycles (see Figure 4). If the two
rows do not contain the same set of elements, the cycling pro-

cess potentially bumps into a time slots which does not occur
in the other parent. If this happens, we extend the cycle in the
other direction, which will ultimately result in another time slot
which can be used to close the cycle. After splitting the par-
ents’ row into cycles, the cycle crossover operator generates the
offspring’s row by alternately selecting cycles from each parent
solution.

Note that all three operators fully respect the availability con-
straints (C2) and (C3) when given two feasible parent solutions.
Moreover, the row-wise and the adapted cycle crossover opera-
tor fully respect (C4) with regard to the home games, whereas
the column-wise crossover operator fully respects (C4) with re-
gard to the away games.

After crossover, each offspring solution undergoes mutation.
The algorithm decides with a probability of pm for each cell
(i, j) independently whether cell value ri, j is mutated. If a cell
is mutated, the algorithm uniformly draws a time slot from
{Hi ∩ A j} \ ri, j. This is similar to the mutation operator pro-
posed in [47].

5.2.3. Repair
Despite our effort so far, newly created offspring solutions

may (partially) violate constraints (C4) and constraints (A1) in
case of ARTP optimization. One possibility would be to convert
(C4) and (A1) into soft constraints by penalizing the violations
in the objective function. However, under these circumstances,
Schönberger et al. [46] provide computational evidence that ge-
netic algorithms without any repair mechanism are inefficient to
construct feasible timetables. For this reason, we propose the
following heuristic based on [59] that completely repairs off-
spring solutions resulting from recombination and mutation.

In case there are no constraints of type (A1), we gradually
repair a solution in polynomial time for all teams in a randomly
chosen order by reassigning all home games of each team.
In order to minimize the impact of this repair on the genetic
search, we additionally minimize the total number of changes
with regard to the original game assignment. More specifically,
we repair the home game assignments of team i ∈ T by con-
structing and solving the following transportation problem (see
Fig. 5). First, we add a unit-supply vertex us for each time slot

11

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

Table 2: Overview of the parameters for the memetic algorithm. If a parameter is not applicable, we write n/a.

Parameter Explanation Range ARTP GPDI Break

µ Size population 1-250 16 183 11
Available crossover operators {col, cycle, row, all} col row col

pc Crossover probability (%) 0-100 40 72 17
pm Mutation probability (%) 0-100 1 51 1

niter No. local search improvements 0-750 117 724 648
∆ Diversity parameter (%) 0-100 2 13 2
β Beam width 1-500 n/a 19 n/a
P Penalty for not scheduling a game 1, 000, 000 1, 000, 000

5 4 8 2 6
1 9 10 6 12
7 11 6 8 10
12 4 3 9 2
10 3 5 11 4
3 8 1 5 7

1
1

2

2

3

3

4

4

5

5

6

6

Steps to generate a cycle in row R1 and R2:

1. Go to the first unused position in R1.
Label its cell value as v1. Go to 2.

2. Go to the same position in R2 and
label its cell value as v2. Go to 3.

3. Is v2 present in R1? Yes: go to 4.
No: go to 5.

4. Go to a position in R1 with cell value
v2. Add v2 to the cycle. Go to 2.

5. Is v1 present in R2? Yes: go to 6.
No: return the cycle.

6. Go to a position in R2 with cell value
v1. Add v1 to the cycle. Go to 7.

7. Go to the same position in R1 and
store its cell value in v1. Go to 5.

8 7 6 9 10
5 12 10 7 6
4 2 11 10 8
2 4 9 1 7
3 11 6 12 4
1 9 5 3

1
1

2

2

3

3

4

4

5

5

6

6

7 11 6 8 103

4 2 11 10 83

7 2 11 8 103

4 11 6 10 83

5 7 8 2 6
1 12 10 7 6
7 2 11 8 10

1
1

2

2

3

3

4

4

5

5

6

6

8 4 6 9 10
5 9 10 6 12
4 11 6 10 8

1
1

2

2

3

3

4

4

5

5

6

6

Figure 4: The adapted cycle crossover recombines each row of the two parents (left) separately. First the operator identifies cycles, next it distributes the cycles over
the new offspring (right).

s ∈ Hi, and add a vertex q with supply equal to |T |−1. Similarly,
we add a unit-demand vertex v j for each opponent j ∈ T \ {i},
and a vertex d with demand equal to |Hi|. For each time slot
s ∈ Hi, we then check whether assigning game (i, j) to time
slot s would result in a conflict with the already planned games
in the partial timetable after removing all home games of i. If
this is not the case, we draw an edge between vertex us and ver-
tex v j and set its weight equal to 0 if game (i, j) was originally
unassigned or assigned to time slot s, and to 1 otherwise. In
the other case, the two vertices remain unconnected. Further-
more, we draw an edge between vertex q and every vertex v j

with j ∈ T \ {i} and set its cost equal to P since sending flow
over this edge results in not timetabling game (i, j). Finally, we
draw an edge between every supply vertex and vertex d and set
its cost to zero since these edges are merely used for balancing
purposes. For P sufficiently high, this transportation problem
assigns a maximal number of i’s home games, thereby chang-
ing as few assignments as possible.

Nevertheless, in the case of ARTP optimization, solving the
transportation problem does not necessarily respect constraints
(A1). Indeed, when Hi contains two or more time slots with less
than GRT time slots in between, one of the following two events
can happen: (i) i plays two or more home games combined with
one away game within a period of GRT+1 time slots, or (ii) i
plays three or more home games within a period of GRT + 1
time slots. We solve this problem by constructing a branch-
ing tree such that in every vertex the transportation problem
outlined above needs to be solved (see Fig. 6). If the result-
ing home game assignment violates constraints (A1), we apply

4 15 4
20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4

12 15 4
20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4 q3

u151

u121

u71

u41

u21

Venue availability set
v2 -1

v3 -1

v4 -1

Opponents

d -5

1
0

1 1
0

1
0

Figure 5: Illustration of the repair operator, assuming S = {1, 2, . . . , 21}, H1 =

{2, 4, 7, 12, 15}, S \ A2 = {15}, S \ A3 = {2, 4, 7}, and S \ A4 = {12, 15}. The
timetable in the top-left is infeasible since team 1 plays two home games on
time slot 4. Dashed lines have a cost of P, dotted lines have a cost of zero.
Solving the transportation problem on the right results in a feasible assignment
for all home games of team 1.

branching. More specifically, there is a branch for each of the
first two (or three) time slots in case the first found conflict is
of type (i) (or (ii)). In the resulting vertex from each branch,
we resolve the transportation problem but with the time slot
excluded from Hi. In the root vertex, all time slots in Hi are
available. Using the cost resulting from solving the transporta-
tion problem as a lower bound, we traverse the tree with a best-
bound vertex-selection strategy where we fathom a vertex when
its lower bound is dominated by the current best found feasible
solution. In real-life instances, the need for this branching is
rather rare since the venue availability set of teams is usually
well spread over the season (see [59]).

12

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

12 15 4

2 15 4

15 4

H1 = {4, 7, 15}

2 15

H1 = {2, 7, 15}

H1 = {2, 4, 7, 15}

2 12 4

12 4

H1 = {4, 7, 12}

2 12

H1 = {2, 7, 12}

H1 = {2, 4, 7, 12}

H A H
Violation: 12 13 15

H A H
Violation: 2 3 4

H A H
Violation: 2 3 4

Cost=1000 Cost=1001 Cost=1001 Cost=1002

Figure 6: Illustration of the full branching tree for the example in Figure 5, additionally assuming P = 1000. Each vertex represents the outcome of the home game
assignment resulting from solving the transportation problem from Figure 5. If this assignment violates constraints (A1), we apply branching to solve the conflict.

5.2.4. Local search
Although genetic algorithms are quite effective in locating

attractive regions of the search space, they are less efficient
in finding the final refinements needed for high quality so-
lutions. This is especially relevant for timetabling problems
where crossover operators, mainly responsible for exploitation,
act rather disruptively (see [47]). In order to accelerate con-
vergence, memetic algorithms therefore hybridize genetic algo-
rithms with local search operators that are able to quickly im-
prove solutions. This section proposes a dedicated local search
procedure for each fairness measure, additionally being able to
improve the penalty cost associated with not scheduling games.

ARTP. First, assume that there are at least GRT time slots be-
tween any two elements of team i’s venue availability set Hi. In
this case, given a partial timetable, Van Bulck et al. [59] show
how to adapt the transportation problem from Section 5.2.3 to
optimally reassign all home games of i with regard to the ARTP
measure. They set the weight associated with the edge connect-
ing vertex us and vertex v j equal to the cost of playing game
(i, j) on time slot s ∈ Hi, j ∈ T \ {i}. This cost will depend
on the previous and next game of team i and j in the partial
timetable after removing all home games of i, with respect to
time slot s. For instance, consider the cost of playing game
(1, 2) on time slot 12 in the partial timetable of Figure 7. Ob-
serving that GRT = 3, the cost induced by team one is equal to
p0 as its next away game is on time slot 13. The cost induced by
team two is equal to p1 as its next game is on time slot 14. As
neither of the two teams has a previous game within GRT + 1
time slots, the cost of the edge is set to p0 + p1.

Nevertheless, if team i’s venue is available during two or
more time slots within a period of GRT+1 time slots, the trans-
portation problem does not take into account costs related to
timetabling two successive home games of i within less than
GRT time slots (only away games of team i are considered for
this). Moreover, as already noted in Section 5.2.3, solving the
transportation problem can then result in an infeasible home
game assignment.

To cope with these issues, the supply vertices in the trans-
portation network only contain a subset of the time slots in Hi.
We choose this subset in two phases. First, we uniformly select
an unconsidered time slot on which i plays a home game in the
partial timetable. Next, we examine all other time slots in Hi.

Consider for example an arbitrary time slot s ∈ Hi \ H′i , and
assume that we already inserted time slots H′i ⊂ Hi. Then, if H′i
does not contain any time slot s′ with |s′ − s| ≤ GRT, we add
vertex us to the transportation network (see Fig. 7 for s = 4 and
H′1 = ∅). Otherwise, if H′i contains one such time slot, we check
whether i already plays an away game during an interval of
GRT+1 consecutive time slots containing s and s′, in the partial
timetable. If we do not find such an interval, i can play on both
time slots for an additional cost of p|s′−s|−1. Therefore, we add
vertex vs, a dummy unit-supply vertex c1, and a dummy unit-
demand vertex c2 to the network (see Fig. 7 for s = 7, s′ = 4,
H′1 = {4}). Next, we connect c1 to demand vertex d for a cost of
zero and to c2 for a cost equal to p|s′−s|−1. Similarly, we connect
c2 to vertices us and us′ for a cost of zero. In the other case that
we did find such an interval, we know that i can play at most one
game during s and s′. Therefore, we add a dummy unit-demand
vertex c3 that is solely connected to vertices us and us′ for a cost
of 0 (see Fig. 7 for s = 15, s′ = 12,H′1 = {4, 7, 12}). In the case
that there is another time slot s′ ∈ H′i with |s′ − s| ≤ GRT that is
already connected to a dummy vertex, or in the case that there
is a third time slot s′′ with |s′′ − s| ≤ GRT and |s′′ − s′ > GRT|,
we try to insert us with its worst case cost. If this is not pos-
sible, or if H′i already contains more than one time slot s′ with
|s′ − s| ≤ GRT, we simply refrain from adding time slot s to
the network (e.g. time slot 2 in Fig. 7 with H′1 = {4, 7}). This
way, the resulting assignment is always feasible and never un-
dervalues the ARTP. However, since we do not make use of all
time slots in the venue availability set and since some slots are
added at worst case cost, the reassignment of games may be
worse than the original solution. Therefore, we only accept the
new solution if it is better, and repeat this procedure niter times,
each time with a randomly chosen team from T .

Breaks. Given a partial timetable, we employ a transportation
problem to reassign all home games of team i ∈ T , thereby
minimizing the total number of breaks in the timetable. We
first partition the time slots in Hi into subsets Hk

i , 1 ≤ k ≤ g,
as follows. The first group H1

i consists of all time slots in Hi

up to and including the time slot on which i plays its first away
game. The last group Hg

i consists of all time slots in Hi after i
plays its last away game. For all other groups, Hk

i consists of all
time slots in Hi after i plays its (k − 1)-th away game up to and
including the time slot in which i plays its (k)-th away game (see

13

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4

12 4
20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4 q3

u151

u121

u71

c11

u41

Venue availability set
v2 -1

v3 -1

v4 -1

Opponents

d -3

p2

0

0

0
0

p0 + p2 + p1

p0
+ p1

c3 -1

c2 -1 p0 + p2 + p2

Figure 7: Illustration of the ARTP operator, assuming S = {1, 2, . . . , 21}, H1 =

{2, 4, 7, 12, 15}, S \ A2 = {15}, S \ A3 = {2, 4, 7}, and S \ A4 = {12, 15}. Note
that GRT = 3; dashed lines have a cost of P, dotted lines have a cost of zero.
Furthermore, assume that we try to add the time slots from Hi in the order
(4, 7, 2, 12, 15).

Fig. 8). Next, we add a unit-supply vertex us for each time slot
s ∈ Hi, a unit-demand vertex v j for each opponent j ∈ T \ {i},
and a vertex q with supply equal to |T | − 1. Finally, we add
for each group Hk

i a first unit-demand vertex dk and a second
demand vertex d′k with demand equal to |Hk

i | − 1.
As in Section 5.2.3, we draw an edge between vertex q and

every vertex v j with j ∈ T \ {i} and set its cost equal to P since
sending flow over this edge results in not timetabling game
(i, j). Similarly, we draw an edge between vertex us and ver-
tex v j if assigning game (i, j) to time slot s ∈ Hi does not result
in any conflict with the already planned games in the partial
timetable after removing all home games of i. However, this
time we set the cost of the edge between vertices us and v j equal
to 1 if j has one additional break when playing away on time
slot s, to -1 if j has one break less when playing away on time
slot s, and to 0 otherwise. To model the costs associated with
the home breaks of i, note that the total number of home breaks
in Hk

i equals the total number of time slots used in Hk
i minus

one. Therefore, we draw an edge between q and dk with cost
zero, and an edge between q and d′k with cost 1 for each group
Hk

i . To model the costs associated with the away breaks of i,
note that i can never have an away break before its first away
game, or after its last away game. Therefore, we draw edges
{us, d1}, {us, d′1}, {us, dg} and {us, d′g} for all s ∈ H1

i ∪ Hg
i and

set all costs to 0. In all the other groups, i has an away break
when it does not play any home game. Therefore, we draw an
edge {us, dk} with cost 1, and an edge {us, d′k} with cost 0 for
each time slot s ∈ Hk

i , 1 < k < g. As advised by Burkard et al.
[10], we increment all costs with a value of 1 to get rid of the
negative costs.

Solving this transportation problem reassigns all home
games of team i, thereby minimizing the total number of breaks.
We repeat this procedure niter times, each time with a randomly
chosen team from T .

GPDI. Unlike the the ARTP and break settings, we do not use
a transportation problem to reassign all home games of a team,
since the impact on GPDI of assigning a game to a time slot
heavily depends on the other assignments. Instead, we use
a simple local search operator based on the ruin-and-recreate
paradigm (see [49]). First, this operator destructs a timetable

20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4

2 12 4
20 5 1
3 14 9
13 7 17

1
1

2

2

3

3

4

4 q3

u151

u121

u71

u21 d1 -1

d2 -1

d′2 -2

d3 -1

v2-1

v3-1

v4-1

Opponents

Venue avail-
ability set

Dummy
time slots

0

0
1

0
1

0

1

1

0

0
1

0

1
1

-1

-1

1

1

-1

u41

Figure 8: Illustration of the break operator, assuming S = {1, 2, . . . , 21}, H1 =

{2, 4, 7, 12, 15}, S \ A2 = {15}, S \ A3 = {2, 4, 7}, and S \ A4 = {12, 15}. Dashed
lines have a cost of P.

by removing all home game assignments of team i ∈ T . Next, it
repairs the timetable by constructing a branching tree that enu-
merates over all possible home game assignments. Each level
of this tree corresponds to a home game of i such that a ver-
tex at level l corresponds to a partial timetable in which l home
games of i are either assigned to a time slot or are definitively
left unassigned. Branching on a vertex corresponds to exploring
the options for the game of the next level, taking into account
the assignments in the partial timetable. In the root vertex, no
home game of i is timetabled.

Since the size of the neighborhood is exponentially large in
the number of opponents, resulting in O(|Hi|

|T |−1) vertices in the
branching tree, we employ beam search (see e.g. [4]) to par-
tially explore the tree with a breadth-first vertex-selection strat-
egy. The main idea is to keep the size of the tree at each level
manageable. We label at each level at most β, the beam width,
vertices as parents thereby considering all child vertices of the
parents of the previous level. We always select the vertex cor-
responding with the original assignment as the first parent and
select the remaining β − 1 parents by applying the following
sorting criteria in decreasing order. The first criterion orders
the child vertices according to the total number of unassigned
games; if this number is higher than the total number of unas-
signed games in the original timetable, the vertex is pruned.
Similarly, the second criterion orders the child vertices in de-
creasing GPDI value. If ties still remain, the third criterion as-
signs a score to each child vertex by summing for each s ∈ S
over the largest difference in the number of games played by
any two teams up to and including time slot s. Next, it sorts the
vertices in decreasing order of this score. Initial experimenta-
tion revealed that this scoring was crucial since otherwise the
potential value of moving a team’s game to a less congested
period, and thus freeing up the timetable for other moves, is
not propagated if the GPDI value remains the same. Any re-
maining tie is broken at random. Our implementation of beam
search will never result in a worse solution since, in worst case,
it returns the original assignment. We repeat this procedure niter
times, each time with a uniformly chosen team from T . Since
the order in which beam search fixes the home game assign-
ments influences the expansion of the tree, we uniformly choose

14

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

2 15 4
20 5 1
3 14 9

13 7 17

2

2 15

2 15 4

2 12

4 12

12 15

12 15 4 12 15 2

GPDI=2, score=38 GPDI=2, score=36 GPDI=2, score=33

GPDI=2, score=34 GPDI=2, score=31 GPDI=2, score=29

GPDI=2, score=22 GPDI=2, score=18 GPDI=2, score=20

1
1

2

2

3

3

4

4

Figure 9: Illustration of beam search for GPDI optimization, assuming S =

{1, 2, . . . , 21}, H1 = {2, 4, 12, 15}, S \ A2 = {15}, S \ A3 = {2, 4, 7}, S \ A4 =

{12, 15}, and β = 2.

an unassigned home game at each level of the tree.

5.2.5. Population management
Maintaining the right level of population diversity in genetic

algorithms so to avoid premature convergence is challenging.
This becomes even more complicated in genetic algorithms hy-
bridized with local search, since there is a risk that the local
search maps all the solutions to the same local optima. For this
reason, we enhance the memetic algorithm with a population
management strategy (MA|PM, see [52]) that explicitly pre-
serves the diversity of the population by employing a distance
measure expressing the similarity between newly created off-
spring and the current population (for an overview, see Fig. 2).

We first create the initial population by repeatedly solving the
corresponding IP model without the objective function. To en-
sure a high level of diversity, we enhance the model by adding
for each new initial solution constraints of type (15) enforcing
that the game assignments must differ in at least ∆% of the as-
signments with regard to each solution already in the population
pool. In case that ∆ is high and teams are often unavailable, the
process might become computationally expensive or it could
be that no additional solutions exist satisfying constraints (15).
Though rare, to avoid this, we run the IP solver with a global
time limit of 10 seconds, after which we create the remaining
solutions by mutating an empty timetable 100 times.

Genetic algorithms need a parent and survivor selection
scheme to guide the evolution of the population. As proposed
by Sörensen and Sevaux [52], our algorithm uses a binary tour-
nament operator (see [20]) with uniform probabilities to select
two parent solutions. With a probability of pc the two parents
mate in which case two offspring are generated by a uniformly
chosen operator from the available set of crossover operators.
In the other case, the two offspring are identical to the two
parents. In each of the two offspring solutions, each cell in-
dependently undergoes mutation with a probability of pm. Af-
ter recombination and mutation, the local improvement heuris-
tic is applied, and the improved offspring replaces the origi-
nal offspring (i.e. this algorithm is a Lamarckian memetic algo-

rithm). Subsequently, the algorithm calculates for each of the
two offspring and each member of the population the distance
expressed in terms of the percentage of different game to time
slot assignments. If the distance between the offspring and each
member of the population is greater than the diversity param-
eter ∆, the offspring replaces the worst solution in the current
population. Otherwise, the offspring is simply discarded. Al-
though more complex diversification strategies exist (see [52]),
we choose to keep ∆ constant over the entire run of the algo-
rithm.

6. Computational experiments

This section experimentally evaluates the IP models and
heuristics proposed respectively in Section 4 and 5. First, Sec-
tion 6.1 describes a benchmark of real-life and artificial prob-
lem instances. Section 6.2 then explains how we tuned the dif-
ferent parameters of the heuristics, and derives some insights
from the parameter space. Section 6.3 employs the algorithms
to construct timetables for the benchmark instances and com-
pares the performance of the different solution methods. Fi-
nally, Section 6.4 analyzes the contribution of the local search
procedures and the population management strategy.

6.1. Experimental setup

A first problem instance set consists of 53 real-life dou-
ble round-robin problem instances originating from a non-
professional indoor football competition in Belgium (see [59]).
These instances have between 13 and 15 teams and contain 273
or 274 time slots. This makes that the maximum achievable
guaranteed rest time, GRT, is either 8 or 9. On average teams
can play at home during 4.5 time slots more than the number of
opponents in the tournament and cannot play any game during
14.8 time slots.

Corollary 5 states that it is NP-complete to decide whether
a feasible solution respecting all availability constraints exists.
Nevertheless, for all real-life instances, a state-of-the-art IP
solver was able to solve the base model from Equations (1)-
(4) within less than a second. In total there were 9 infeasible
instances. These instances were discarded, leaving us with 44
feasible real-life double round-robin problem instances.

In order to control for specific problem characteristics, a sec-
ond benchmark consists of artificial double round-robin prob-
lem instances. A problem instance in this set is of type
(|T |, |S |, h, a) if it contains |T | teams and |S | time slots, and
for each team i ∈ T it holds that |Hi| =

∑
j∈T mi, j + h and

|S | − |Ai| = a. To construct these instances, we build an in-
stance generator, conforming to the one in [47], which war-
rants feasibility by constructing each instance around an ini-
tial timetable such that Ai = S and Hi contains all time slots
on which i plays its home games. Next, we respectively add
h time slots from a uniform distribution to Hi and remove a
time slots from Ai, thereby ensuring that Hi ⊆ Ai∀i ∈ T . We
consider |T | in the set {10, 14, 18, 22}, |S | in {100, 175, 250}, h
in {0, 5, 10, 15}, and a in {0, 10, 20, 30, 40, 50}. Note that con-
figurations (22, 100, 10, 50) and (22, 100, 15, 50) do not admit

15

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

a feasible instance since more time slots would be needed.
Moreover, since we analyze the computational results with re-
gard to instance parameter a in triples (see Sec. 6.3), we do
not consider configurations (22, 100, 10, 30), (22, 100, 10, 40),
(22, 100, 15, 30), and (22, 100, 15, 40). For all other problem
types, we generate 10 random instances resulting in a total of
2,840 artificial double round-robin problem test instances.

To train the parameters of the heuristics, we use the in-
stance generator described above to construct a separate train-
ing set consisting of two random double round-robin problem
instances for each of the configurations with |T | = 22. This
results in 136 artificial problem training instances. A similar
training set is constructed with |T | = 14 to train the parameters
of the ALNS heuristic for break minimization.

We generate a final instance set to evaluate the effect of the
tournament structure on the computational performance of the
algorithms. To this end, we generate 10 artificial single round-
robin problem instances of type (14, 250, 5, 20). This configu-
ration closely resembles the real-life double round-robin prob-
lem instances, and has a maximum achievable guaranteed rest
time, GRT, of 19. For fairness reasons, it is usually required that
each team plays approximately half of its games at home. To
this end, we choose the game set M such that for each team the
number of home and away games differ by at most one (see [32]
for more information).

For all real-life and artificial instances, the penalty values for
playing two consecutive games within r < GRT time slots were
set to pr = 2grt−r−1 whereas pr was set to 0 for r ≥ GRT.

Van Bulck et al. [59] propose xml-based file templates to
store sports timetabling problem instances and their solutions.
The instances used in the computational experiments of Sec-
tion 6 are available in this format (see [57]).

The ALNS and memetic algorithm were implemented in
C++, compiled with g++ 4.8.5 using optimization flag -O3. To
solve the transportation problems, we use an O(n3) implemen-
tation of Kuhn-Munkres algorithm (see [30]). The ALNS and
memetic algorithm were granted 2 minutes of computation time
and one thread with 2GB of RAM on a CentOS 7.4 GNU/Linux
based system with an Intel E5-2680 processor, running at 2.5
GHz. The full IP formulations were solved with the state-of-
the-art IP solver Gurobi Optimizer 7.5.2 (for more information
about Gurobi, see [39]) using one thread on the same machine
but with 8GB of RAM and three hours of computation time.
The choice for Gurobi was motivated by Van Bulck et al. [59],
who found no performance difference with ilog cplex on simi-
lar IP models.

6.2. Parameter tuning

The ALNS and memetic algorithm feature different parame-
ters that need to be set to define a search strategy. To calibrate
the heuristics for best performance, we use a dedicated R pack-
age called irace (see López-Ibáñez et al. [35]) which performs
an iterated racing procedure in three steps. First, a number of
parameter configurations are sampled from a particular distribu-
tion. Second, the best configurations are determined by means
of racing: at each step of the race the candidate parameter con-

figurations are tested on a single instance, after which the can-
didates that perform statistically worse are discarded. Third,
the surviving parameter configurations are used to update the
sampling distributions.

We independently tuned the parameters of both heuristics
and each objective function on the artificial double round-robin
problem training instances with |T | = 22 using 10,000 evalua-
tions (referred as training budget in irace). Since the perfor-
mance of the ALNS method for break minimization is affected
by the size of the IP formulation when the number of teams
is large (see Sec. 6.3), the ALNS method for break minimiza-
tion was tuned using the artificial double round-robin problem
training instances with |T | = 14. An overview of the best found
parameters and the range of parameter values that were consid-
ered can be found in Tables 1 and 2. To get a better understand-
ing of the parameter space of the different heuristics, Figures 10
and 11 plot the frequency of the algorithmic parameter values
as sampled by irace during tuning for the ARTP objective.

When considering the ALNS algorithm for ARTP optimiza-
tion, Figure 10 advises to destroy only small parts of the solu-
tion (d1, d2), and to gradually increase the destruction size over
the course of the run (iter). With regard to the temperature man-
agement, the initial temperature should be chosen as such that
a solution that is around 70% (w) worse than the initial solu-
tion is accepted with a probability of 50%. The rate at which
the temperature is cooled (c) seems to be less important. With
regard to the selection probability of the destroy operators, the
difference in rewards should be rather high (by choosing a rel-
atively large ω) and more importance should be placed on past
iterations (large smoothing factor σ). It seems to be advisable
to keep the minimum timetable difference (β), rather low, or
even equal to zero in which case the IP solver will never return
a worse solution. This may explain why the time limit to repair
the destroyed timetable is rather low.

The parameter distributions of the memetic algorithm (Fig-
ure 11) propose to work with small population sizes (µ), in-
dividuals that display a rather low diversity (∆), and to apply
crossover (pc) much more frequently than mutation (pm). With
regard to the crossover mode, the column-wise crossover is
sampled most often. This may be explained by the local search
operator which reschedules all home games of a team. Hence,
by using a crossover operator which recombines columns, par-
ent solutions can focus on transferring promising away game
assignments. Finally, the high parameter value for the number
of times that the local search operator is applied (niter), indicates
that the local search operator enhances the performance of the
algorithm.

6.3. Performance analysis
For each heuristic, the best configuration found by irace

was run 10 times on the real-life double round-robin test set,
each time using a different random seed and granted 2 minutes
of computation time. Besides, we solved the IP formulations
(strongest versions) of Section 4 using Gurobi with a time limit
of 60 and 180 minutes. Figures 12 to 14 display the absolute
gaps for the various algorithms defined as the best upper bound
found by the algorithm minus the best lower bound found by

16

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

w

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

2.
0

c

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

β

values

Pr
ob

ab
ilit

y
de

ns
ity

0 5 10 15

0.
00

0.
15

ω

values

Pr
ob

ab
ilit

y
de

ns
ity

0 20 40 60 80 100

0.
00

0

σ

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
1.

0

d1

values

Pr
ob

ab
ilit

y
de

ns
ity

2 4 6 8 10

0.
0

0.
4

d2

values

Pr
ob

ab
ilit

y
de

ns
ity

2 4 6 8 10

0.
0

0.
4

iter

values

Pr
ob

ab
ilit

y
de

ns
ity

0 20 40 60 80 100

0.
00

0
0.

02
5

Time limit

values
Pr

ob
ab

ilit
y

de
ns

ity

5 10 15 20 25 30

0.
00

0.
10

Figure 10: Frequency of the parameters as sampled by irace to tune the ALNS algorithm for the ARTP objective.

Gurobi run with a time limit of 180 minutes. When compar-
ing the performance of the algorithms on the ARTP objective,
Figure 12 hints that the ALNS and memetic algorithm are the
best algorithms in terms of the absolute gap and the variance
thereof, despite being given considerably less computational re-
sources. The absolute ARTP gap remains strictly positive, im-
plying that better solutions exist or that the best lower bound
found by Gurobi can be improved. When comparing the ab-
solute GPDI gap, Figure 13 hints that the memetic algorithm
performs slightly worse than the other algorithms. Neverthe-
less, if expensive licenses are not an option (see e.g. [59]), the
memetic algorithm may be an interesting alternative: the abso-
lute gap of the memetic algorithm always remains below 2. The
figure also reveals that Gurobi cannot improve the bounds when
run with a time limit of three hours instead of one hour. Finally,
Figure 14 shows that Gurobi and the memetic algorithm regu-
larly find the optimal solution value when minimizing the total
number of breaks in the timetable. The ALNS algorithm, how-
ever, seems less suitable to minimize breaks as the absolute gap
values and the variance thereof are higher.

Table 3 provides a more detailed overview of the absolute
gap values for the different solution methods on the real-life
test instances. The first column in this table displays the mean
of the best lower bounds found by Gurobi run with three hours
of computation time. The low values for the GPDI and break
measures explain why the table shows the absolute gap instead
of the more popular relative gap. The second column repre-
sents the mean absolute gap when solving the IP model with-
out considering any objective. Since the heuristics make use

LB No obj. Gur. 1h Gur. 3h ALNS Memetic

ARTP 761 9,856 1,180 958 324 286
GPDI 1.15 7.84 0.86 0.86 0.87 1.11

Breaks 0.11 144.59 1.13 0.14 32.3 0.14

Table 3: Mean absolute gaps for the different solution methods on the real-life
double round-robin test instances. Gaps are based on the best lower bound
found by Gurobi run with 3 hours of computation time (see column ‘LB’). The
‘No obj.’ column represents the mean gap when solving the IP model without
considering any objective.

of the model without objective to generate an initial solution,
this column hints that the quality of the initial solution in both
heuristics is rather poor when compared to the best found so-
lution. The four last columns display the average gap for each
solution approach. To verify the null hypothesis stating that
the population mean of the absolute gap differs between two
solution methods, Table 4 reports the p-values resulting from a
pairwise Wilcoxon rank sum test with Bonferonni’s correction
for multiple testing. The p-value gives the smallest level of
significance at which the null hypothesis would be rejected. A
small p-value therefore indicates strong evidence that one solu-
tion method systematically performs better in terms of the mean
absolute gap; a large p-value, on the contrary, hints that the two
solutions methods perform equally well. For the ARTP ob-
jective, the table shows that the memetic algorithm statistically
outperforms the other solution methods. Contrarily, when con-
sidering the GPDI objective, the IP formulation performs better
than the memetic algorithm; there is no statistical difference

17

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

µ

values

Pr
ob

ab
ilit

y
de

ns
ity

0 50 100 150 200 250

0.
00

0
0.

02
0

Crossover operators

values

Fr
eq

ue
nc

y

0
40

0

pc

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
5

pm

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4

niter

values

Pr
ob

ab
ilit

y
de

ns
ity

0 200 400 600

0.
00

00

Δ

values

Pr
ob

ab
ilit

y
de

ns
ity

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

cyclecol row all

Figure 11: Frequency of the parameters as sampled by irace to tune the memetic algorithm for the ARTP objective.

ARTP GPDI Breaks

Gur. 1h Gur. 3h ALNS Gur. 1h Gur. 3h ALNS Gur. 1h Gur. 3h ALNS

Gurobi 3h < 2e-16 n/a < 2e-16 n/a n/a 1 < 2e-16 n/a < 2e-16
ALNS < 2e-16 < 2e-16 n/a 1 1 n/a < 2e-16 < 2e-16 n/a

Memetic < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 < 2e-16 1.000 < 2e-16

Table 4: Pairwise Wilcoxon signed rank values for the mean objective values of Table 3. For the GPDI objective, no p-value is available (n/a) comparing Gurobi 1h
with Gurobi 3h as the objective value for each instance was exactly the same.

between the IP formulation and the ALNS model. With regard
to the break objective, the memetic algorithm outperforms the
ALNS algorithm and Gurobi run with one hour but it does not
statistically differ from Gurobi run with three hours.

Tables 5 to 7 illustrate how venue and player availability con-
straints impact algorithmic performance by analyzing the artifi-
cial double round-robin instances. For the ARTP objective, the
IP solver performs fairly well when the number of time slots is
low but performance decreases when |S | increases. Intuitively,
this can be explained by the ARTP measure which only penal-
izes a timetable if two consecutive games are scheduled within
GRT time slots. When the number of time slots increases, the
value of GRT increases, and hence more variables play a role
in the objective function (pr > 0 for r < GRT). A similar ob-
servation with regard to the performance of the IP solver can be
made when h, which controls the size of the venue availability
set, increases. Indeed, in the most extreme case, h = 0, and
hence a team has to play a home game whenever its home venue
is available. In this case, the transportation network used in the
local search operator of the memetic algorithm can only decide
against whom a team plays its home game, which curtails its
strength. Nonetheless, when h is small, Table 5 shows that the
memetic algorithm is competitive with the other methods, es-
pecially when the total number of teams or time slots is large.
When h is large, for most of the configurations, the absolute
gap of the memetic algorithm is considerably lower when com-
pared with the IP formulations and slightly lower when com-
pared with the ALNS algorithm.

Table 6 shows that the IP formulation for the GPDI objective
performs particularly well. The gap only becomes somewhat
larger when the number of teams and time slots are simulta-
neously high. When comparing the two heuristics, the ALNS
method seems to achieve better mean absolute gaps for most
of the configurations; only when the number of teams and time
slots are large, the memetic algorithm regularly achieves bet-
ter performance. Nonetheless, the mean absolute gap of the
memetic algorithm is never larger than 3.5.

Section 4.3 explained how to reduce the total number of con-
straints of type (12) and (13). For the real-life test instances, this
resulted in an average reduction of 41% of type (12) constraints
and 56% of type (13) constraints. Nevertheless, when the num-
ber of teams and time slots are large, the size of the IP formula-
tion becomes problematic for Gurobi and the ALNS algorithm
and out-of-memory errors frequently occur (see Table 7). In
contrast to the ARTP and GPDI gap, the absolute break gap of
the ALNS algorithm is large. A similar observation was made
during parameter tuning where we observed that the choice
of parameters of the ALNS algorithm heavily depends on the
problem configuration that is being solved. The memetic algo-
rithm, in contrast, performs more consistently, even when the
number of teams and time slots are large.

Finally, Table 8 analyzes the mean gap performance of the
solution methods when considering single round-robin prob-
lem instances. As in a single round-robin tournament the total
number of games halves, we double the team (d1) and time de-
struction (d2) sizes in the ALNS algorithm. All other parameter

18

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●●●●●●●●

0

1000

2000

3000

Gurobi 1h. Gurobi 3h. ALNS Memetic

A
R

T
P

 G
ap

Figure 12: Boxplots of the absolute ARTP gap for 10 independent runs on all real-life instances. Boxes represent the three quartiles, whiskers are drawn at 1.5 times
the interquartile range, gray dots represent the solution quality for each solution, and black circles represent outliers. To enhance the comparability of the figure, the
bounds found by Gurobi are displayed 10 times for each instance.

●● ●● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0.0

0.5

1.0

1.5

2.0

Gurobi 1h. Gurobi 3h. ALNS Memetic

G
P

D
I G

ap

Figure 13: Boxplots of the GPDI gap for 10 independent runs on all real-life instances.

●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●
●

●
●●

●

●●
●
●●●0

20

40

60

80

100

Gurobi 1h. Gurobi 3h. ALNS Memetic

N
o.

 B
re

ak
s

G
ap

Figure 14: Boxplots of the number of breaks gap for 10 independent runs on all real-life instances.

values, including those of the memetic algorithm, remain un-
changed. When comparing the mean absolute ARTP gap, the
ALNS and memetic algorithm turn out to perform much bet-
ter than Gurobi run with 1 hour. Despite the reduced number
of variables (compared to a double round-robin tournament),
Gurobi is still not able to fully close the ARTP gap. We note
that this is partly explained by an increasing GRT which causes
many more variables to play a role in the objective function
(pr > 0 for r < GRT). With regard to the GPDI, Gurobi
achieves a slightly lower mean absolute gap; the ALNS and
memetic algorithm perform equally well. Finally, when op-
timizing the total number of breaks, we observe that Gurobi
and the memetic algorithm find an optimal solution for all con-
sidered single round-robin instances. In contrast, the use of
the ALNS method results in considerably higher mean absolute
break gaps.

Based on the computational results of this section, we ad-
vise practitioners to minimize the ARTP using the memetic al-
gorithm, unless h and the number of teams are small in which
case we advise the use of IP models. If enough time is available,
the GPDI objective may be minimized using Gurobi. Alterna-
tively, the ALNS method can be used to generate timetables
more quickly and the memetic algorithm can be used as a good
alternative when expensive IP solver licenses are not an option.
Finally, when minimizing the total number of breaks, we advise
practitioners to use the memetic algorithm.

6.4. Memetic algorithm: component analysis
In order to analyze the contribution of the local search oper-

ators, we disabled the local search component by fixing niter to

zero and retrained the memetic algorithm using 5,000 evalua-
tions. The results of the retrained configuration without local
search are summarized in the ‘No local’ column of Table 9.
When comparing the results with the default MA|PM strategy,
we observe that the local search operators drastically improve
the performance of the memetic algorithm: the mean absolute
ARTP gap decreases with more than a factor 5, the GPDI gap al-
most halves, and the mean break gap decreases with more than
9 breaks. Not surprisingly, the p-values show that the mean gap
reduction is significant for all three objectives. In Section 5.2.2
we proposed a cycle crossover that, in contrast to the row- and
column-wise operators, allows for altering the cells within the
same row of the parent solutions. With the local search com-
ponents enabled, the value of the cycle crossover is question-
able as irace sampled the column-wise operators more often
(see Figure 11). Contrarily, when the local search components
are disabled, irace sampled the cycle crossover operator much
more frequently than the other crossover operators for all three
objectives (due to space limitations, the new sampling distribu-
tions are not shown in this paper). This may be explained by
the fact that the local search operators focus on reassigning all
home games of a team, hence recombining information within
rows may become less valuable.

Table 9 also analyzes the contribution of the population man-
agement strategy. We compare the performance with two more
traditional strategies that generate at each iteration λ offspring.
In the (µ, λ) population model, λ ≥ µ, we retain the e% fittest
candidate solutions from the old population and replace the re-
mainder by the fittest offspring. Alternatively, the (µ+λ) model
merges the old generation with the newly generated offspring

19

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

|T | = 10 |T | = 14 |T | = 18 |T | = 22
h a / |S | 100 175 250 100 175 250 100 175 250 100 175 250

Gurobi 3h
0 0-20 0 0 1 0 10 38 4 62 205 0 52 406

30-50 0 0 1 0 7 22 3 39 111 2 62 313
5 0-20 15 234 688 11 131 467 65 323 554 18 420 1,737

30-50 3 176 547 7 88 297 28 277 520 15 326 1,613
10 0-20 43 414 1,210 7 281 764 82 563 972 23 465 1,900

30-50 15 346 1,170 15 223 761 32 349 740 - 404 1,850
15 0-20 42 467 1,049 3 209 554 91 453 724 12 566 2,100

30-50 25 490 1,196 12 242 612 23 439 781 - 522 2,050

ALNS
0 0-20 2 34 238 1 29 117 20 63 135 1 69 238

30-50 2 46 338 3 33 124 21 68 146 11 78 206
5 0-20 20 154 422 11 79 225 50 141 275 20 179 543

30-50 11 154 465 13 79 217 35 126 276 23 152 493
10 0-20 25 175 347 5 92 247 63 214 356 15 220 660

30-50 20 175 371 14 91 247 35 155 326 - 190 589
15 0-20 21 180 312 1 85 228 67 221 354 19 266 662

30-50 22 181 328 9 92 240 31 207 366 - 233 680

Memetic
0 0-20 4 29 128 2 23 65 15 45 93 2 45 178

30-50 2 27 180 6 23 63 19 49 90 11 50 145
5 0-20 17 136 342 10 61 172 41 115 224 19 142 436

30-50 10 120 362 15 59 163 33 93 213 23 119 420
10 0-20 25 166 322 3 74 210 52 180 285 14 175 487

30-50 20 161 322 17 74 209 39 128 271 - 157 482
15 0-20 21 167 275 0 64 181 61 175 280 23 205 512

30-50 23 180 327 13 77 200 39 175 297 - 200 526

Table 5: Mean ARTP absolute gap of the randomly generated test instances for the different solution methods.

and retains the fittest overall candidate solutions. Note that the
(µ + λ) strategy is used in [47]. For each of the two popu-
lation management strategies, we included the two additional
parameters λ with range 1 − 250 and e with range 0 − 100
and retrained the memetic algorithm using 5,000 evaluations.
Table 9 shows that the added value of the specialized popula-
tion management strategy when optimizing the ARTP measure
is statistically significant. With regard to the GPDI measure,
the MA|PM and (µ, λ) strategy perform equally well, whereas
MA|PM performs statistically better than (µ+λ). Finally, when
considering breaks, the (µ, λ) strategy performs better than the
MA|PM model. However, the p-value is weaker and both mod-
els produce near-optimal solutions. Interestingly, the (µ, λ)
strategy generally performs better than the (µ + λ) strategy.

A final question of interest is how the performance of the
MA|PM heuristic improves when given more computational re-
sources. To answer this question, we can either rerun the al-
gorithm with more computation time or we can parallelize the
algorithm such that more iterations can be performed within the
same amount of time. The last column of Table 9 shows the re-
sults for a multithreaded implementation of the MA|PM heuris-
tic using OpenMP and 8 threads (without retraining). The re-
sults hint that the solution quality converged fairly well within
two minutes. Hence, it may be more useful to exploit the addi-
tional threads to reduce computation times.

7. Conclusion

In this study we have investigated how the presence of
availability constraints impacts the computational complexity
of time-relaxed timetabling. In particular, we showed that
timetabling becomes difficult as soon as player or venue avail-
ability is considered. Moreover, we employed list-edge color-
ing techniques to derive sufficient conditions on the availability
of teams and venues for a feasible timetable to exist. Besides,
we proposed several mathematical models and an ALNS and
a memetic algorithm to solve fairness issues inherently related
to time-relaxed timetables. The memetic algorithm can be seen
as a collection of algorithmic modules that can be adapted to
solve a wide range of different time-relaxed sports timetabling
problems. As an example, the structure of the transportation
network can be enhanced to deal with forbidden game assign-
ments or to optimize the costs related to the assignments. Sim-
ilarly, the idea of beam search can be used to optimize rest dif-
ferences. It is remarkable that our heuristics outperform Gurobi
for several real-life instances, despite being given 90 times less
computational resources. These computational savings are im-
portant since organizers often need to timetable dozens of tour-
naments, e.g. different skill or age divisions, at the same time.
Moreover, the ease with which timetables can be constructed
enables organizers to perform a what-if analysis or to revise
timetables based on participants’ feedback.

20

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

|T | = 10 |T | = 14 |T | = 18 |T | = 22
h a / |S | 100 175 250 100 175 250 100 175 250 100 175 250

Gurobi 3h
0 0-20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.4

30-50 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.5
5 0-20 0.2 0.6 0.8 1.0 1.0 1.0 0.9 1.3 1.6 1.1 1.4 2.5

30-50 0.7 0.9 0.8 0.6 1.0 1.0 0.4 1.0 1.8 0.0 1.5 2.0
10 0-20 0.2 0.3 0.7 0.9 1.0 1.0 1.0 1.1 1.3 1.1 1.6 2.3

30-50 0.4 0.7 0.9 0.7 1.0 1.0 0.4 1.0 1.3 - 1.6 1.8
15 0-20 0.0 0.2 0.4 0.6 1.0 1.0 0.9 1.0 1.2 1.1 1.7 2.5

30-50 0.2 0.6 0.7 0.7 1.0 1.0 0.3 1.1 1.4 - 1.7 1.9
ALNS

0 0-20 0.0 0.0 0.0 0.0 0.0 0.1 0.7 0.9 0.8 0.8 0.9 1.5
30-50 0.0 0.0 0.0 0.2 0.1 0.2 0.6 0.9 0.8 0.6 0.9 1.3

5 0-20 0.3 0.8 0.9 1.0 1.0 1.0 1.0 1.0 1.2 1.4 2.0 2.1
30-50 0.4 0.6 1.0 0.6 1.0 1.0 0.7 1.1 1.1 0.6 1.9 2.0

10 0-20 0.2 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.2 1.2 2.0 2.5
30-50 0.1 0.7 1.0 0.8 1.0 1.0 0.6 1.0 1.1 - 2.0 2.2

15 0-20 0.2 0.8 0.9 0.8 1.0 1.0 1.0 1.1 1.4 1.3 2.2 2.9
30-50 0.0 0.8 0.9 0.8 1.0 1.0 0.5 1.0 1.1 - 2.1 2.3

Memetic
0 0-20 0.0 0.0 0.0 0.6 0.6 0.6 0.9 0.9 0.8 2.1 1.4 1.7

30-50 0.2 0.0 0.0 0.7 0.8 0.7 1.0 1.0 0.8 3.5 1.5 1.9
5 0-20 1.0 1.0 1.0 1.0 1.0 1.0 1.8 2.0 2.0 2.0 2.0 2.0

30-50 1.0 1.0 1.0 1.1 1.1 1.0 1.4 2.0 2.0 1.1 2.0 2.0
10 0-20 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.4 1.8 2.0 2.0 2.0

30-50 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.8 1.9 - 2.0 2.0
15 0-20 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.6 2.0 2.0 2.0

30-50 1.0 1.0 1.0 0.9 1.0 1.0 1.2 1.5 1.8 - 2.0 2.0

Table 6: Mean GPDI absolute gap of the randomly generated test instances for the different solution methods.

Acknowledgements

The computational resources (Stevin Supercomputer Infras-
tructure) and services used in this work were provided by the
VSC (Flemish Supercomputer Center), funded by Ghent Uni-
versity, FWO and the Flemish Government – department EWI.

References

[1] I. Anderson. Combinatorial designs and tournaments, volume 6. Oxford
University Press, 1997.

[2] T. Atan and B. Çavdaroǧlu. Minimization of rest mismatches in round
robin tournaments. Comput. Oper. Res., 99:78 – 89, 2018.

[3] T. Atan and B. Çavdaroǧlu. Rest differences among teams in European
football leagues. In D. Karlis, I. Ntzoufras, and S. Drikos, editors, Pro-
ceedings of MathSport International 2019 Conference, volume 4, pages
10–15. Athens University of Economics and Business, 2019.

[4] M. O. Ball. Heuristics based on mathematical programming. Surveys in
Operations Research and Management Science, 16:21 – 38, 2011.

[5] R. Bao and M. Trick. The relaxed traveling tournament problem. In
B. McCollum, E. Burke, and G. White, editors, Proceedings of the
8th International Conference on the Practice and Theory of Automated
Timetabling, pages 472–476, Belfast, 2010. PATAT.

[6] J. C. Bean and J. R. Birge. Reducing travelling costs and player fatigue
in the National Basketball Association. Interfaces, 10:98–102, 1980.

[7] H. Bengtsson, J. Ekstrand, and M. Hägglund. Muscle injury rates in pro-
fessional football increase with fixture congestion: an 11-year follow-up
of the UEFA Champions League injury study. Br. J. Sports. Med., 47:
743–747, 2013.

[8] O.V. Borodin, Kostochka A.V., and D.R. Woodall. List edge and list total
colourings of multigraphs. Journal of Combinatorial Theory, Series B,
71:184 – 204, 1997.

[9] F. Bueno. Mathematical modeling and optimization approaches for
scheduling the regular-season games of the National Hockey League. PhD
thesis, École Polytechnique de Montréal, 2014.

[10] R. Burkard, M. Dell’Amico, and S. Martello. Assignment problems.
Springer, 2009.

[11] E. Burke, D. de Werra, and J. Kingston. Applications to timetabling. In
L. Gross, J. Yellen, and P. Zhang, editors, Handbook of graph theory,
pages 530–562. CRC Press, 2 edition, 2014.

[12] D. Costa. An evolutionary tabu search algorithm and the NHL scheduling
problem. Infor, 33:161–178, 1994.

[13] M. C. Costa, D. de Werra, and C. Picouleau. Using graphs for some
discrete tomography problems. Discrete Appl. Math., 154:35 – 46, 2006.

[14] D. de Werra. Scheduling in sports. In P. Hansen, editor, Studies on graphs
and discrete programming, pages 381–395, Amsterdam, 1981. North-
Holland.

[15] Á. P. Dorneles, O. C. B. de Araújo, and L. S. Buriol. A fix-and-optimize
heuristic for the high school timetabling problem. Comput. Oper. Res.,
52:29–38, 2014.

[16] G. Dupont, M. Nedelec, A. McCall, D. McCormack, S. Berthoin, and
U. Wislff. Effect of 2 soccer matches in a week on physical performance
and injury rate. Am. J. Sport. Med., 38:1752–1758, 2010.

[17] G. Durán, M. Guajardo, and D. Sauré. Scheduling the South American
qualifiers to the 2018 FIFA World Cup by integer programming. Eur. J.
Oper. Res., 262:1109 – 1115, 2017.

[18] G. Durán, S. Durán, J. Marenco, F. Mascialino, and P. A. Rey. Scheduling
Argentina’s professional basketball leagues: A variation on the travelling
tournament problem. Eur. J. Oper. Res., 2019.

[19] T. Easton and R. G. Parker. On completing latin squares. Discrete Appl.
Math., 113:167 – 181, 2001.

[20] A. E. Eiben, J. E. Smith, et al. Introduction to evolutionary computing,
volume 53. Springer, 2003.

[21] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-
commodity flow problems. In 16th Annual Symposium on Foundations of
Computer Science (sfcs 1975), pages 184–193, 1975.

[22] D. Forrest and R. Simmons. New issues in attendance demand: The case
of the English football league. J. Sports Econ., 7:247–266, 2006.

[23] D. Fronček and M. Meszka. Round robin tournaments with one bye and
no breaks in home-away patterns are unique. In G. Kendall, E. K. Burke,
S. Petrovic, and M. Gendreau, editors, Multidisciplinary Scheduling:

21

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

|T | = 10 |T | = 14 |T | = 18 |T | = 22
h a / |S | 100 175 250 100 175 250 100 175 250 100 175 250

Gurobi 3h
0 0-20 6.6 3.4 2.2 18.9 7.7 5.8 41.4 20.4 16.2 67.4 42.2 28.1

30-50 3.0 5.4 3.2 15.1 11.4 7.4 12.1 28.2 19.9 8.0 59.3 34.0
5 0-20 0.0 0.0 0.0 0.7 0.1 0.4 5.7 4.1 17.7 32.6 22.1 59.6

30-50 0.1 0.0 0.1 6.9 0.3 0.2 24.5 6.8 7.4 59.1 17.1 35.1
10 0-20 0.0 0.0 0.0 1.0 0.6 2.4 6.7 26.7 37.2 29.1 121.8 433.38

30-50 0.0 0.0 0.0 5.8 0.1 1.3 27.2 11.2 35.5 - 74.8 371.5
15 0-20 0.0 0.0 0.0 0.4 8.12 4.4 6.3 62.9 269.59 52.6 310.32 428.926

30-50 0.0 0.0 0.0 6.8 1.1 2.5 20.4 30.7 164.92 - 136.7 440.814

ALNS
0 0-20 7.6 5.9 3.7 21.8 25.2 40.4 47.5 52.7 71.3 110.3 71.9 112.4

30-50 4.3 7.2 5.6 18.7 33.3 36.4 28.7 53.2 69.5 57.7 88.6 106.7
5 0-20 0.4 0.6 1.2 17.4 14.1 22.4 85.4 87.6 76.2 190.0 211.4 278.7

30-50 2.5 0.9 1.4 25.9 16.8 21.0 64.7 75.7 85.6 93.5 179.7 184.5
10 0-20 0.6 1.1 1.4 22.5 16.5 49.4 101.5 213.0 265.8 225.4 433.6 432.8

30-50 0.5 0.6 1.0 24.3 19.2 20.3 85.7 94.8 191.1 - 313.3 438.0
15 0-20 1.7 2.2 7.6 22.7 96.9 140.0 97.3 285.1 285.9 287.4 438.1 622.1

30-50 0.6 0.2 2.1 43.9 24.9 78.1 84.0 219.3 274.3 - 438.2 433.8

Memetic
0 0-20 7.1 3.8 2.7 18.8 8.8 6.2 37.0 17.0 13.0 57.6 34.9 21.9

30-50 3.8 6.0 4.0 15.7 12.2 8.4 11.0 25.2 16.6 8.3 49.6 27.0
5 0-20 0.0 0.0 0.0 1.3 0.0 0.0 7.6 2.1 0.8 25.6 9.4 5.1

30-50 1.4 0.0 0.1 10.8 0.6 0.2 25.7 5.1 1.4 49.0 16.8 8.2
10 0-20 0.0 0.0 0.0 0.1 0.0 0.0 2.3 0.3 0.1 15.0 3.8 2.2

30-50 0.1 0.0 0.0 3.1 0.0 0.0 22.2 1.2 0.4 - 8.2 3.7
15 0-20 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.0 13.1 1.9 1.2

30-50 0.0 0.0 0.0 0.9 0.0 0.0 10.9 0.5 0.2 - 4.4 1.7

Table 7: Mean break value of the randomly generated test instances for the different solution methods. Superscripts indicate the total number of instances for which
the IP solver was stopped due to an out-of-memory error.

LB No obj. Gur. 1h Gur. 3h ALNS Memetic

ARTP 2,297 4,407,468 2,951 1,951 2,127 1,661
GPDI 1 5.7 0.9 0.8 1 1

Breaks 0 86.2 0 0 5.1 0

Table 8: Mean absolute gaps for the different solution methods on the artifi-
cial single round-robin test instances. Gaps are based on the best lower bound
found by Gurobi run with 3 hours of computation time (see column ‘LB’). The
‘No obj.’ column represents the mean gap when solving the IP model without
considering any objective.

Theory and Applications, pages 331–340, Boston, MA, 2005. Springer.
[24] F. Galvin. The list chromatic index of a bipartite multigraph. Journal of

Combinatorial Theory, Series B, 63:153–158, 1995.
[25] M. Grabau. Softball scheduling as easy as 1-2-3 (strikes you’re out).

Interfaces, 42:310–319, 2012.
[26] R. Häggkvist and J. Janssen. New bounds on the list-chromatic index of

the complete graph and other simple graphs. Comb. Probab. Comput., 6:
295–313, 1997.

[27] R. Hoshino and K. Kawarabayashi. Scheduling bipartite tournaments to
minimize total travel distance. J. Artif. Intell. Res., 42:91–124, 2011.

[28] T. Januario, S. Urrutia, C. R. Celso, and D. de Werra. Edge coloring: A
natural model for sports scheduling. Eur. J. Oper. Res., 254:1 – 8, 2016.

[29] G. Kendall, S. Knust, C. C. Ribeiro, and S. Urrutia. Scheduling in sports:
An annotated bibliography. Comput. Oper. Res., 37:1–19, 2010.

[30] D. E. King. Dlib-ml: A machine learning toolkit. J. Mach. Learn. Res.,
10:1755–1758, 2009.

[31] S. Knust. Scheduling non-professional table-tennis leagues. Eur. J. Oper.
Res., 200:358–367, 2010.

[32] S. Knust and M. von Thaden. Balanced home–away assignments. Dis-
crete Optim., 3:354–365, 2006.

[33] K. J. Kostuk and K. A. Willoughby. A decision support system for
scheduling the Canadian Football League. Interfaces, 42:286–295, 2012.

[34] J. Kyngäs, K. Nurmi, N. Kyngäs, G. Lilley, T. Salter, and D. Goossens.
Scheduling the Australian Football League. J. Oper. Res. Soc., 68:973–
982, 2017.

[35] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and
T. Stützle. The irace package: Iterated racing for automatic algorithm
configuration. Oper. Res. Perspect., 3:43–58, 2016.

[36] N. Mladenović and P. Hansen. Variable neighborhood search. Comput.
Oper. Res., 24(11):1097–1100, 1997.

[37] P. Moscato and M. G Norman. A memetic approach for the traveling
salesman problem implementation of a computational ecology for com-
binatorial optimization on message-passing systems. Parallel computing
and transputer applications, 1:177–186, 1992.

[38] G. L. Nemhauser and M. A. Trick. Scheduling a major college basketball
conference. Oper. Res., 46:1–8, 1998.

[39] Gurobi Optimization. Inc., Gurobi optimizer reference manual. www.

gurobi.com, 2019.
[40] D. Pisinger and S. Ropke. Large Neighborhood Search, pages 399–419.

Springer, Boston, MA, 2010. ISBN 978-1-4419-1665-5.
[41] R. Pollard and M.A. Gómez. Components of home advantage in 157

national soccer leagues worldwide. International Journal of Sport and
Exercise Psychology, 12:218–233, 2014.

[42] R. Pollard, J. Prieto, and M.A. Gómez. Global differences in home ad-
vantage by country, sport and sex. International Journal of Performance
Analysis in Sport, 17:586–599, 2017.

[43] S. Ropke and D. Pisinger. An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows. Transport.
Sci., 40:455–472, 2006.

22

This is the peer-reviewed author-version of https://doi.org/10.1016/j.cor.2019.104856, published in Computers & Operations Research.

MA|PM No local (µ, λ) (µ + λ) Parallel

ARTP 286 1,753 (<2e-16) 304 (<2e-16) 315 (<2e-16) 266 (< 2e-16)
GPDI 1.11 1.95 (<2e-16) 1.08 (0.71) 1.17 (9.7e-05) 1.01 (1.1e-08)

Breaks 0.14 9.71 (<2e-16) 0.08 (0.00063) 0.10 (0.31244) 0.09 (0.06541)

Table 9: Contribution of local search operators and population management strategy. Numbers outside brackets represent the mean absolute gap of a solution method
on the real-life double round-robin problem instances. Numbers in brackets represent the p-values resulting from a pairwise Wilcoxon rank sum test comparing the
mean absolute gap of an alternative with the MA|PM setting.

[44] U. Schauz. Proof of the list edge coloring conjecture for complete graphs
of prime degree. The Electronic Journal of Combinatorics, 21:3–43,
2014.

[45] U. Schauz. The tournament scheduling problem with absences. Eur. J.
Oper. Res., 254:746 – 754, 2016.

[46] J. Schönberger, D. C. Mattfeld, and H. Kopfer. Automated timetable gen-
eration for rounds of a table-tennis league. In Evolutionary Computation,
2000. Proceedings of the 2000 Congress on, volume 1, pages 277–284.
IEEE, 2000.

[47] J. Schönberger, D. C. Mattfeld, and H. Kopfer. Memetic algorithm
timetabling for non-commercial sport leagues. Eur. J. Oper. Res., 153:
102–116, 2004.

[48] J. A. M. Schreuder. Combinatorial aspects of construction of competition
Dutch professional football leagues. Discrete Appl. Math., 35:301–312,
1992.

[49] G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt, and G. Dueck. Record
breaking optimization results using the ruin and recreate principle. J.
Comput. Phys., 159:139–171, 2000.

[50] V. Scoppa. Fatigue and team performance in soccer: Evidence from the
FIFA World Cup and the UEFA European Championship. J. Sport. Econ.,
16:482–507, 2015.

[51] P. Shaw. Using constraint programming and local search methods to solve
vehicle routing problems. In M. Maher and J.-F. Puget, editors, Princi-
ples and Practice of Constraint Programming — CP98, pages 417–431,
Berlin, Heidelberg, 1998. Springer.

[52] K. Sörensen and M. Sevaux. MA|PM: memetic algorithms with popula-
tion management. Comput. Oper. Res., 33:1214 – 1225, 2006.

[53] W. Suksompong. Scheduling asynchronous round-robin tournaments.
Oper. Res. Lett., 44:96–100, 2016.

[54] T. A. M. Toffolo, J. Christiaens, F. C. R. Spieksma, and G. Vanden Berghe.
The sport teams grouping problem. Ann. Oper. Res., 2017.

[55] M. A. Trick. Integer and constraint programming approaches for round-
robin tournament scheduling. In E. Burke and P. De Causmaecker, editors,
Practice and Theory of Automated Timetabling IV, pages 63–77, Berlin,
Heidelberg, 2003. Springer.

[56] S. Urrutia and C. C. Ribeiro. Maximizing breaks and bounding solutions
to the mirrored traveling tournament problem. Discrete Appl. Math., 154:
1932–1938, 2006.

[57] D. Van Bulck and D. Goossens. Time-relaxed round-robin problem in-
stances with availability constraints – website. www.sportscheduling.
ugent.be/research.php, 2019.

[58] D. Van Bulck, D. Goossens, J. Schönberger, and M. Guajardo. Robinx:
A three-field classification and unified data format for round-robin sports
timetabling. Eur. J. Oper. Res., 280(2):568 – 580, 2019.

[59] D. Van Bulck, D. R. Goossens, and F. C. R. Spieksma. Scheduling a non-
professional indoor football league: a tabu search based approach. Ann.
Oper. Res., 275:715–730, 2019.

[60] V. G Vizing. On an estimate of the chromatic class of a p-graph. Discret
Analiz, 3:25–30, 1964.

23

