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Abstract

In this work we study a discrete-time multiserver queueing system with an infinite storage capacity and
deterministic service times equal to 1 slot. Specific to the model under study is that the system is assumed to
be in one of two different states (state-1 or state-2) and that both the distribution of the number of available
servers and the arrival process depend on the system state. State changes can only occur at slot boundaries
and mark the beginning and end of state-1-periods and state-2-periods. The lengths of these state-1-periods
and state-2-periods, expressed as a number of slots, are assumed to be two independent sets of independent
and identically distributed stochastic variables. The number of available servers during a slot is a stochastic
variable with a distribution that is completely determined by the system state during that slot. Likewise, the
distribution of the number of arrivals during a slot only depends on the system state during that slot. The
only restrictions we put on the distributions of the state-1-periods, state-2-periods and number of available
servers is that they have rational probability generating functions (pgfs), and that during each slot at least
one server is available. For the considered queueing system we present a method to determine the pgf of
the steady-state system content at various observation instants. Several numerical examples demonstrate the
possibilities of this model.
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1. Introduction

Queueing theory has been the subject of mathematical analysis for a number of decades. Its applications
are wide and vary from production lines over service industries to the Internet. The research domain of
queueing systems is subdivided based on a large number of criteria, some of which are the choice of time
line (continuous or discrete), the used solution technique (simulation, analytical or semi-analytical solution
techniques, numerical procedures, etc.) and the presence of specific restrictions or assumptions in the model
(with respect to the number of servers, the arrival process, the distribution of service times, etc.)

In many applications of queueing theory the number of available servers is not constant over time. This
can be due to internal reasons (e.g. a server that takes a vacation when it finds its queue idle) or due to
external reasons (e.g. a machine that breaks down in a production facility). In this paper, we focus on
discrete-time multiserver queueing systems with a server availability that varies independently of the system
content, so due to external reasons. A way to model such varying server availability is the introduction of
server interruptions. The analysis of discrete-time queueing systems with various types of random server
interruptions has received considerable attention so far; we refer to [1] for a recent survey. Most of the
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available research with respect to server interruptions, however, concerns the single-server case, see e.g.
[2, 3, 4, 5, 6] for some related results.

For the multiserver case (with m > 1 servers), on the contrary, only a limited number of studies on queues
with server interruptions are available in the literature. In the simplest studies [7, 8, 9] the server availability
is assumed to be independent from slot to slot. Specifically, [7] considers the case where interruptions of
the m servers occur simultaneously, i.e., either no servers or all m servers are available during a slot, and
independently from slot to slot, where a single parameter σ indicates the probability that the servers are
available. In [8, 9], the number of available servers during a slot can take all values from 0 to m, and is
independent and identically distributed (i.i.d.) from slot to slot. Some extensions to a time-correlated server-
interruption process are reported in [10, 11, 12]. In particular, the number of available servers is assumed
to be a first-order Markov chain in [10]. In the model of [11], the time horizon is divided into on-periods
(of geometrically distributed lengths) and off-periods (of arbitrarily distributed lengths). Here, during off-
periods no servers are available, while the number of available servers during a slot of an on-period takes a
random value and changes independently from slot to slot. In the recent analysis [12], a two-server queueing
system is considered, where one server is permanently available and the other server is only intermittently
available according to a correlated interruption process with alternating geometric up-periods and arbitrarily
distributed down-periods.

All the previous studies [7, 8, 9, 10, 11, 12] on multiserver queues with varying server availability have in
common that the numbers of arrivals are considered to be i.i.d. from slot to slot. The simultaneous presence
of time-correlation in both the arrival process and the server availability has to the best of our knowledge
only been considered in the single-server case, see e.g. [4, 5, 6]. Even for discrete-time queues without server
interruptions, the effect of time-correlated arrivals has mainly been studied for single-server queues, see e.g.
[13, 14, 15, 16, 17].

The main aim of the current paper exactly is to analyze a discrete-time multiserver queueing model that
includes a more general time-correlated description of both the server-availability process and the arrival
process. In our paper, we will assume the queueing system to alternate between two different system states,
each with arbitrarily distributed sojourn times. In addition, each state is characterized by its own arbitrary
distribution for the number of available servers during a slot. Moreover, in the considered model, the arrival
process to the queueing system may also depend on the system state. The analysis in this paper is an extension
of previous work in the sense that we allow both states to have a stochastic number of servers available, we do
not limit neither of the state periods to have geometrically distributed lengths and we introduce correlation
in the arrival process by allowing the number of arrivals during a slot to depend on the system state. The
objective of our analysis is to find the distribution of the system content at several observation points.

The motivation for this model are the many applications with both (correlated) variation in the number
of available servers and correlated (e.g. bursty) arrivals. Examples are models of the airport check-in process
[18] and models of production inventory systems [19]. Another practical case is the increasing use of peer-
to-peer logistics in cities, e.g. for food deliveries [20, 21]. Courier services use smartphone applications to
assign self-employed drivers to pick up and deliver food orders. Here both the number of available servers
(bike couriers) and the number of customers can be stochastically dependent on the time of the day, weather
situations, etc.

The outline of the paper is as follows. In the next section we describe the queueing model under study in
detail and in Section 3 we perform the mathematical queueing analysis. Specifically, in Section 3, we develop
a method to determine the pgf of the steady-state system content at the beginning of an arbitrary state-1-
period, state-2-period, state-1-slot and state-2-slot and at the beginning of an arbitrary slot. The results are
obtained after finding a finite number of roots within the complex unit disk of a non-polynomial function
and solving a set of linear equations. In Section 4 we give an expression for some important performance
measures of the system. We discuss some numerical examples in Section 5, before concluding the paper in
Section 6.
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2. Queueing model under study

In discrete-time queueing models the time axis is divided into time slots of equal length. For the model
considered in this paper we take the slot length equal to the deterministic service time of customers. Let us
have a closer look at the events that can occur around slot k. Suppose that at the beginning of slot k, gk−1

customers are present in the queueing system and sk servers are available. The minimum of gk−1 and sk
customers enter service at the beginning of slot k. During the slot, a total of ck new customers arrive; these
cannot enter service before the beginning of the next slot, even if there are servers idle at the moment of
arrival. We assume infinite storage capacity, so an arriving customer will always join the system. At the end
of the slot, the customers that were taken into service leave the system. Linking the system content from
slot to slot in this case leads to the following equation:

gk = (gk−1 − sk)+ + ck , (1)

with the operator (...)+ defined as max(..., 0). Here the sk and ck are given, or at least their distributions
are given, while we aim to solve the equation for the distribution of gk in steady state. When the series {sk}
and {ck} are both sets of i.i.d. random variables, the analysis is rather straightforward, but then the model
does not allow any correlation in the arrivals or in the server availability. In this paper we introduce a way
to allow more correlation while keeping the corresponding queueing analysis mathematically tractable.

For this purpose, we assume a queueing system with two states; we refer to the states as state-1 and
state-2. Each state has its own distribution for the number of servers available and the number of arrivals
per slot. Within a given state, these variables are i.i.d. Slots are either state-1-slots or state-2-slots and
state transitions are only allowed at slot boundaries. These transitions mark the beginnings and ends of
state-1-periods and state-2-periods. Each period has its own distribution for its period lengths. If we denote
by rik the length of the kth state-i-period, then the series {r1k} and {r2k} are two (different) sets of i.i.d.
random variables.

In the remainder of this section we define the necessary distributions and parameters. We note here that
throughout this paper we will always use i to indicate a system state and we will further not explicitly repeat
that it can only take values 1 and 2. Furthermore, we will use the notation ı̄ to refer to the other state:

ı̄ , 3− i . (2)

For the period lengths we have

ri(n) , Prob[state-i-period has n slots] ; (3)

Ri(z) ,
∞∑
n=1

ri(n)zn ; (4)

ri ,
∞∑
n=1

nri(n) = R′i(1) . (5)

The probability that an arbitrary slot is a state-1-slot corresponds to the fraction of time during which the
system is in state-1 and is given by

σ ,
r1

r1 + r2
. (6)

The distributions of the number of servers available during a slot are
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Figure 1: Illustration of the random variables gik.

si(n) , Prob[n servers available during state-i-slot] ; (7)

Si(z) ,
∞∑
n=1

si(n)zn ; (8)

si ,
∞∑
n=1

nsi(n) = S′i(1) . (9)

The arrival process is described by

ci(n) , Prob[n customers arrive during state-i-slot] ; (10)

Ci(z) ,
∞∑
n=0

ci(n)zn ; (11)

λi ,
∞∑
n=1

nci(n) = C ′i(1) . (12)

The average arrival intensity λ is then given by

λ , σλ1 + (1− σ)λ2 . (13)

For the system to be stable the average arrival intensity needs to be strictly smaller than the average
number of customers that can be served [22]. The stability condition is therefore expressed as

λ < σs1 + (1− σ)s2 . (14)

It will prove useful to introduce the following notation:

Yi(z) , Ci(z)Si

(
1

z

)
. (15)

3. Mathematical analysis

To analyze the behavior of the considered 2-state queueing system, we introduce system equations similar
to (1). Let us first define the stochastic variables gik, k ≥ 0, as the system content at the beginning of the
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(k + 1)st slot of a state-i-period, with corresponding probability generating function (pgf) Gik(z). Figure 1
illustrates the definition of these random variables. For the system equations we get

gik = (gik−1 − sik)+ + cik , (16)

with sik the number of servers available in the kth slot of a state-i-period and with cik the number of arrivals
in such a slot.

The next step is the transformation of (16) into the z-domain. By the law of total expectation the pgf
Gik(z) then follows as

Gik(z) = Ci(z) Esik

[
Egik−1

[
z(gik−1−s

i
k)+
∣∣∣sik] ]

= Ci(z)

∞∑
j=1

 ∞∑
l=j

Prob[gik−1 = l]si(j)z
l−j +

j−1∑
l=0

Prob[gik−1 = l]si(j)


= Ci(z)

∞∑
j=1

[ ∞∑
l=0

Prob[gik−1 = l]zlsi(j)z
−j +

j−1∑
l=0

Prob[gik−1 = l]si(j)(1− zl−j)
]

= Yi(z)G
i
k−1(z) + Ci(z)

∞∑
l=0

∞∑
j=1

Prob[gik−1 = l]si(l + j)
(
1− z−j

)
, (17)

where to remove the (.)+ operator we first have distinguished between the cases gik−1 ≥ sik and gik−1 < sik; in
the last step we have introduced the appropriate pgfs in the first double summation, while in the second we
have changed the order of the summations over j and l and then used the substitution j → j + l. Recursive
application of (17) leads to

Gik(z) = [Yi(z)]
k
Gi0(z) +

1

Si
(

1
z

) k∑
m=1

[Yi(z)]
m
∞∑
l=0

∞∑
j=1

Prob
[
gik−m = l

]
si(l + j)(1− z−j) . (18)

Based on (18), we derive in the next subsections the pgfs of the system content at the beginning of a
state-i-period, at the beginning of an arbitrary state-i-slot and at the beginning of an arbitrary slot.

3.1. System content at the beginning of a period
In order to obtain a relationship between Gi0(z) and Gı̄0(z), we express that the system content at the

beginning of a state-i-period equals the system content at the end of a state-̄ı-period. We then get the
following expression for the function Gı̄0(z):

Gı̄0(z) =

∞∑
k=1

ri(k)Gik(z) . (19)

Let us further work out (19) using (18). This yields
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∞∑
k=1

ri(k)Gik(z) =

∞∑
k=1

ri(k) [Yi(z)]
k
Gi0(z)

+
1

Si
(

1
z

) ∞∑
k=1

ri(k)

k∑
m=1

[Yi(z)]
m
∞∑
l=0

∞∑
j=1

Prob
[
gik−m = l

]
si(l + j)(1− z−j)

=Ri(Yi(z))G
i
0(z)

+
1

Si
(

1
z

) ∞∑
m=1

∞∑
k=0

∞∑
l=0

∞∑
j=1

Prob
[
gik = l

]
si(l + j)ri(k +m) [Yi(z)]

m
(1− z−j)

=Ri(Yi(z))G
i
0(z) +

1

Si
(

1
z

) [Qi(Yi(z) , 1)−Qi
(
Yi(z) ,

1

z

)]
. (20)

Note that in the second step we have changed the order of the summations over k and m and used the
substitution k → k +m. The unknown functions Qi(x, z) are defined as

Qi(x, z) ,
∞∑
m=1

∞∑
j=1

qi(m, j)x
mzj ; (21)

qi(m, j) ,
∞∑
k=0

∞∑
l=0

Prob
[
gik = l

]
si(l + j)ri(k +m) . (22)

From (19) and (20) we then get a set of 2 linear equations for the pgfs G1
0(z) and G2

0(z):

Gi0(z) = Rı̄(Yı̄(z))G
ı̄
0(z) +

1

Sı̄
(

1
z

) [Qı̄(Yı̄(z) , 1)−Qı̄
(
Yı̄(z) ,

1

z

)]
, i = 1, 2 . (23)

Solving this set of equations we find the following explicit expression for the function Gi0(z):

Gi0(z) =
Sı̄
(

1
z

)
Rı̄(Yı̄(z))

[
Qi(Yi(z) , 1)−Qi

(
Yi(z) ,

1
z

)]
+ Si

(
1
z

) [
Qı̄(Yı̄(z) , 1)−Qı̄

(
Yı̄(z) ,

1
z

)]
Si
(

1
z

)
Sı̄
(

1
z

)
[1−Ri(Yi(z))Rı̄(Yı̄(z))]

. (24)

3.2. System content at the beginning of an arbitrary slot of a period
Similar to the definition of gik as the system content at the beginning of the (k+1)st slot of a state-i-period,

we introduce the variable gi as the system content at the beginning of an arbitrary slot of a state-i-period,
with corresponding pgf Gi(z). The ordinate of this arbitrary slot within its period will be noted as Ki. We
can then write

Gi(z) =

∞∑
k=1

Prob[Ki = k]Gik−1(z) . (25)

It is known that the random variable Ki has the following probability mass function (pmf) and pgf, see
e.g. [23]:

Prob[Ki = k] =

∑∞
n=k ri(n)

ri
; (26)

∞∑
k=1

Prob[Ki = k] zk =
z [Ri(z)− 1]

(z − 1)ri
. (27)
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Substituting (18) into (25), then in a similar way as before changing the order of the summations over k
and m, now using the substitution k → k +m+ 1, and finally introducing (26) and (27), we can derive

Gi(z) =
1

ri
Gi0(z) +

∞∑
k=2

Prob[Ki = k]

{
Yi(z)

k−1
Gi0(z)

+
1

Si
(

1
z

) k−1∑
m=1

Yi(z)
m
∞∑
l=0

∞∑
j=1

Prob
[
gik−1−m = l

]
si(l + j)(1− z−j)

}

=

∞∑
k=1

Prob[Ki = k]Yi(z)
k−1

Gi0(z)

+
1

Si
(

1
z

) ∞∑
m=1

∞∑
k=0

∞∑
l=0

∞∑
j=1

Prob[Ki = k +m+ 1] Prob
[
gik = l

]
si(l + j)Yi(z)

m
(1− z−j)

=Gi0(z)
Ri(Yi(z))− 1

[Yi(z)− 1] ri
+

1

Si
(

1
z

) [Ti(Yi(z) , 1)− Ti
(
Yi(z) ,

1

z

)]
, (28)

where the unknown functions Ti(x, z) are defined as

Ti(x, z) ,
∞∑
m=1

∞∑
k=0

∞∑
l=0

∞∑
j=1

∑∞
n=k+m+1 ri(n)

ri
Prob

[
gik = l

]
si(l + j)xmzj

=
1

ri

∞∑
k=0

∞∑
l=0

∞∑
j=1

∞∑
n=2

n−1∑
m=1

Prob
[
gik = l

]
si(l + j)ri(n+ k)xmzj

=
1

ri

∞∑
n=2

∞∑
j=1

∞∑
k=0

∞∑
l=0

Prob
[
gik = l

]
si(l + j)ri(n+ k)

(xn − x)

x− 1
zj

=
Qi(x, z)− xQi(1, z)

ri (x− 1)
, (29)

in view of (21) and (22). Combination of (28) and (29) then leads to

Gi(z) = Gi0(z)
Ri(Yi(z))− 1

ri [Yi(z)− 1]
+
Qi(Yi(z) , 1)− Yi(z)Qi(1, 1)−Qi

(
Yi(z) ,

1
z

)
+ Yi(z)Qi

(
1, 1

z

)
riSi

(
1
z

)
[Yi(z)− 1]

. (30)

Finally, the pgf G(z) of the system content at the beginning of an arbitrary slot can be expressed as

G(z) = σG1(z) + (1− σ)G2(z) , (31)

where the probability σ of having a state-1-slot is given by (6).

3.3. Finding the remaining unknowns
Until now, our results still contain an infinite number of unknowns, present in the functions Qi(x, z). In

this subsection we will impose a restriction on some of the system characteristics. We will prove that this
restriction reduces the unknowns to a finite number and we will provide a method to determine them.

In particular, in the remainder of our analysis we limit the pgfs Ri(z) and Si(z) to be rational functions
of their arguments. Let us thus write
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Ri(z) =
Air(z)

Bir(z)
, (32)

with Air(z) and Bir(z) mutually prime polynomials given by

Air(z) ,
miα∑
l=1

αilz
l , Air(1) = 1 ; (33)

Bir(z) ,

miβ∑
j=0

βijz
j , Bir(1) = 1 , (34)

and

Si(z) =
Ais(z)

Bis(z)
, (35)

with Ais(z) and Bis(z) mutually prime polynomials given by

Ais(z) ,

miγ∑
l=1

γilz
l , Ais(1) = 1 ; (36)

Bis(z) ,
miδ∑
j=0

δijz
j , Bis(1) = 1 . (37)

We also introduce the following notations:

mi
r , max

(
mi
α,m

i
β

)
; (38)

mi
s , max

(
mi
γ ,m

i
δ

)
. (39)

Next, we recall the equations (21) and (22) for the definition of the unknown functions Qi(x, z). We can
combine and rewrite these into

Qi(x, z) =

∞∑
k=0

∞∑
l=0

Prob
[
gik = l

]
Sil (z)R

i
k(x) , (40)

where we have introduced the following functions:

Sil (z) ,
∞∑
j=1

si(l + j)zj , l ≥ 0 ; (41)

Rik(x) ,
∞∑
m=1

ri(k +m)xm , k ≥ 0 . (42)

We will now prove the functions Sil (z) and Rik(x) have the following properties:
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(a) they are rational functions of their arguments;

(b) their denominator equals Bis(z) and Bir(x) respectively;

(c) their numerator is of maximum degree mi
s and mi

r respectively and

(d) they are divisible by their argument, i.e. Sil (0) = Rik(0) = 0.

Proof: Property (d) clearly holds by definition. To prove (a) to (c) we use mathematical induction. The base
step follows from the observation that

Si0(z) = Si(z) ;

Ri0(z) = Ri(z) .

Now for the induction step, assume that the propositions are valid for Sil (z), then we get for Sil+1(z):

Sil+1(z) =

∞∑
j=1

si(l + 1 + j)zj

=

∑∞
j=1 si(l + j)zj

z
− si(l + 1)

=
Sil (z)

z
− si(l + 1) ,

which proves (a) to (c). Analogously, when the propositions are valid for Rik(x), then we get for Rik+1(x):

Rik+1(x) =

∞∑
m=1

ri(k + 1 +m)xm

=

∑∞
m=1 ri(k +m)xm

x
− ri(k + 1)

=
Rik(x)

x
− ri(k + 1) ,

which proves (a) to (c). This concludes the proof. �
As Qi(x, z) is a linear combination of all Sil (z)R

i
k(x) (with k, l ≥ 0), we can state based on the above

properties that Qi(x, z) is a rational function in x and z with a numerator of degree mi
r in x and of degree

mi
s in z and with denominator equal to Bir(x)Bis(z):

Qi(x, z) =

∞∑
k=0

∞∑
l=0

Prob
[
gik = l

]
Sil (z)R

i
k(x) =

Aiq(x, z)

Bir(x)Bis(z)
, (43)

where Aiq(x, z) is of the following form:

Aiq(x, z) ,
mir∑
m=1

mis∑
j=1

εimjx
mzj . (44)

This reduces the infinite number of unknowns given by all Prob
[
gik = l

]
to the finite number mi

rm
i
s, so that

the total number of unknowns M is given by
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M , m1
rm

1
s +m2

rm
2
s . (45)

In order to determine these M unknowns, we will rely on the properties of pgfs, namely that they are
normalized and that they are analytical within the complex unit disk. Let us consider (24) for i = 1 while
taking into account (32), (35) and (43). After moving all the poles to the denominator, we get the following
expressions for the numerator N1(z) and denominator D1(z) of G1

0(z):

N1(z) =A2
r(Y2(z))B2

s

(
1

z

)m2
r

zm
2
rm

2
sA2

s

(
1

z

)
zm

2
s

[
A1
q(Y1(z) , 1)B1

s

(
1

z

)
−A1

q

(
Y1(z) ,

1

z

)]
B1
s

(
1

z

)m1
r

zm
1
rm

1
szm

1
s

+B1
r (Y1(z))B1

s

(
1

z

)m1
r

zm
1
rm

1
sA1

s

(
1

z

)
zm

1
s

[
A2
q(Y2(z) , 1)B2

s

(
1

z

)
−A2

q

(
Y2(z) ,

1

z

)]
B2
s

(
1

z

)m2
r

zm
2
rm

2
szm

2
s ; (46)

D1(z) =A1
s

(
1

z

)
zm

1
sA2

s

(
1

z

)
zm

2
s{

B1
r (Y1(z))B1

s

(
1

z

)m1
r

zm
1
rm

1
sB2

r (Y2(z))B2
s

(
1

z

)m2
r

zm
2
rm

2
s

−A1
r(Y1(z))B1

s

(
1

z

)m1
r

zm
1
rm

1
sA2

r(Y2(z))B2
s

(
1

z

)m2
r

zm
2
rm

2
s

}
. (47)

Let us look more closely at the first parts of (47):

• The location of the zeros of A1
s

(
1
z

)
zm

1
sA2

s

(
1
z

)
zm

2
s is unspecified. However, we can conclude that the

numerator of G1
0(z) is divisible by this part, by observing that the function Aiq(x, z) is divisible by both

of its arguments, such that in view of (15) Aiq(Yi(z) , z) is divisible by Ais
(

1
z

)
.

• Bir(x) has mi
β zeros xij outside the complex unit disk. By application of Rouché’s theorem (see

e.g. [24]) we get that Bis
(

1
z

)
zm

i
sxij − Ci(z)Ais

(
1
z

)
zm

i
s = 0 has mi

s solutions within the complex unit
disk. Thus Bir(Yi(z)) has mi

sm
i
β zeros within the complex unit disk. Multiplying this expression with

Bis
(

1
z

)mir zmirmis removes its poles and adds another (mi
r−mi

β)mi
s zeros which are all inside the complex

unit disk. We can thus conclude that Bir(Yi(z))Bis
(

1
z

)mir zmirmis as a whole has mi
sm

i
r zeros within the

complex unit disk.

The first part of (47) thus has M = m1
sm

1
r + m2

sm
2
r zeros within the complex unit disk. By application

of Rouché’s theorem to D1(z) we can conclude that the denominator of G1
0(z) as a whole also has M zeros

within the complex unit disk. For these zeros, the numerator must then vanish due to the property that
pgfs are analytical within the complex unit disk. As it can be easily observed that z = 1 is already a zero
of both numerator and denominator, independently of the unknowns, we obtain M − 1 linearly independent
equations to determine the remaining unknowns. The required extra equation can be found by expressing
the normalization condition for pgfs:

lim
z→1

G1
0(z) =

∂
∂zQ1(x, z)

∣∣
(x,z)=(1,1)

+ ∂
∂zQ2(x, z)

∣∣
(x,z)=(1,1)

r1(s1 − λ1) + r2(s2 − λ2)
= 1 . (48)
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4. Important performance measures

The determination of the exact form of the functionsQi(x, z) is only an intermediate step in the calculation
of some important performance characteristics of the queueing system. In this section we are particularly
interested in the mean value of the system content at several observation epochs:

• mean system content at the beginning of a state-i-period: E
[
gi0
]

= d
dzG

i
0(z)

∣∣
z=1

;

• mean system content at the beginning of an arbitrary state-i-slot: E
[
gi
]

= d
dzG

i(z)
∣∣
z=1

;

• mean system content at the beginning of an arbitrary slot: E[g] = d
dzG(z)

∣∣
z=1

.

Let us first introduce the following notations:

Qiz(1, 1) ,
∂

∂z
Qi(x, z)

∣∣∣∣
(x,z)=(1,1)

=
∂

∂z
Aiq(x, z)

∣∣∣∣
(x,z)=(1,1)

− d

dz
Bis(z)

∣∣∣∣
z=1

Aiq(1, 1)

=

mir∑
m=1

mis∑
j=1

[
j −Bis

′
(1)
]
εimj ; (49)

Qixz(1, 1) ,
∂2

∂x∂z
Qi(x, z)

∣∣∣∣
(x,z)=(1,1)

=
∂2

∂x∂z
Aiq(x, z)

∣∣∣∣
(x,z)=(1,1)

− ∂

∂x
Aiq(x, z)

∣∣∣∣
(x,z)=(1,1)

d

dz
Bis(z)

∣∣∣∣
z=1

−Qiz(1, 1)
d

dx
Bir(x)

∣∣∣∣
x=1

=

mir∑
m=1

mis∑
j=1

m
[
j −Bis

′
(1)
]
εimj −Bir

′
(1)Qiz(1, 1) ; (50)

Qizz(1, 1) ,
∂2

∂z2
Qi(x, z)

∣∣∣∣
(x,z)=(1,1)

=
∂2

∂z2
Aiq(x, z)

∣∣∣∣
(x,z)=(1,1)

− 2
d

dz
Bis(z)

∣∣∣∣
z=1

Qiz(1, 1)− d2

dz2
Bis(z)

∣∣∣∣
z=1

Aiq(1, 1)

=

mri∑
m=1

mis∑
j=1

[
j(j − 1)−Bis

′′
(1)
]
εimj − 2Bis

′
(1)Qiz(1, 1) . (51)

Here the prime and double prime are used as concise notations for the first and second derivative of the
functions of one variable. Furthermore we introduce ψ and χ as

ψ ,
2∑
i=1

{
2(λi − si)Qixz(1, 1) +R′′i (1) (si − λi)2 −Qizz(1, 1)− 2(1 + si)Q

ı̄
z(1, 1)

− ri
[
4λisi + 2λisı̄ − C ′′i (1)− 2si − S′′i (1)− 2sisı̄ − 2s2

i

] }
; (52)

χ ,
2∏
i=1

ri(si − λi) . (53)
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Calculation of the first derivative of Gi0(z) from (23) and evaluation at z = 1 leads to the mean system
content at the start of a state-i-period. The result is given by

E
[
gi0
]

=
2 [λı̄rı̄ − rı̄sı̄]Qiz(1, 1) + ψ + χ

2r1(s1 − λ1) + 2r2(s2 − λ2)
. (54)

Note that as the average arrival intensity goes to the average number of available servers per slot, i.e. as the
system becomes unstable, the denominator factor 2r1(s1−λ1) + 2r2(s2−λ2) in (54) goes to zero. Numerical
results confirm that the mean system content indeed goes to infinity in this case.

The mean system content at the beginning of an arbitrary state-i-slot is given by

E
[
gi
]

= E
[
gi0
]
− Qiz(1, 1)

ri
+
Qixz(1, 1)

ri
+
R′′(1) (λi − si)

2ri
. (55)

Finally, for the mean system content at the beginning of an arbitrary slot we get

E[g] = σE
[
g1
]

+ (1− σ)E
[
g2
]
. (56)

Note that we can make the following specific choices for the input distributions: C1(z) = C2(z), S1(z) =
z2, S2(z) = z and a geometrical distribution for the state-1-period lengths. We then have a queueing system
that can also be analyzed by the method described in [12]. We verified that the current analysis and the
method of [12] lead to the same results for this specific special case.

5. Numerical examples

In this section we will look at some examples of queueing systems that can be analyzed with the developed
method. The section is also used to validate the method by simulation. On all graphs in this section, the
lines represent the theoretical results, while the marks represent values obtained by simulation.

Let us first introduce an interesting probability distribution: the mixture of two geometrics. This distri-
bution will prove to be a convenient choice for the period lengths and for the number of available servers.
For a random variable f , the corresponding pmf is as follows:

Prob[f = n] , ω(1− α1)αn−1
1 + (1− ω)(1− α2)αn−1

2 , n ≥ 1 , (57)

where all 3 parameters have a value between 0 and 1: 0 < ω, α1, α2 < 1. The average f for this distribution
is given by

f =
ω

1− α1
+

1− ω
1− α2

. (58)

As a measure of the variance of a distribution we will use the squared coefficient of variation C2
f :

C2
f ,

var[f ]

f
2 . (59)

In order to reduce the number of parameters, we still add the following (arbitrary) constraint:

ω

1− α1
=

1− ω
1− α2

. (60)
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Then we can fully describe the distribution of f based on two meaningful parameters: f and C2
f . The

advantage of this distribution is that it gives a large freedom of choice for average value (1 < f < ∞) and
variance (1 − 1

f
≤ C2

f < ∞), while remaining fairly simple (only 2 parameters) and its pgf F (z) is given by
the ratio of two second-degree polynomials:

F (z) =
(1 + fC2

f )z − fC2
fz

2

(1 + f + fC2
f ) f2 − (1 + f + fC2

f )(f − 1)z +
2−(1+f+fC2

f )(2−f)

2 z2

. (61)

Note that if 1− 1
f

= C2
f , expression (61) reduces to z

f−(f−1)z
, which corresponds to a geometric distribution.

In a first set of examples we study the impact of the mean values and variances of the numbers of servers
available and the period lengths and in particular the effect of the server unbalance between the 2 states on
the system performance. A second set of examples focuses on the influence of traffic burstiness on the system
behavior.

5.1. Unbalanced server availability
One way to use the model is to look at situations where the arrival process to the system is always of the

same nature, but the server availability is not. Throughout this subsection, we choose the lengths of both
periods to have the same distribution (which leads to σ = 0.5) according to a mixture of 2 geometrics as
described above.

R1(z) = R2(z) . (62)

For the distribution of the numbers of servers available we also use a mixture of 2 geometrics. We choose
an overall average of 10 available servers:

σs1 + (1− σ)s2 = 10 ⇐⇒ s1 + s2 = 20 . (63)

We introduce the server unbalance ∆s as

∆s , |s2 − s1| . (64)

We consider arrivals either according to the well-known Poisson process or according to a so-called
“disaster” process. In the latter case, there is a high probability of no arrivals and a low probability of
a very high number of arrivals. Their respective pgfs are given by

CPoisson(z) = eλ(z−1) ; (65)

Cdisaster(z) = (1− α) + αzN . (66)

Note that for the disaster-process, N is an integer number and the arrival intensity is given by λ = αN . We
use for both states the same type of arrivals with the same parameters.

C1(z) = C2(z) . (67)

In a first example we look at the influence of the average period lengths and the average numbers of
available servers on the system performance. Specifically, in Figure 2 we plot the mean system content at the
beginning of an arbitrary slot versus the server unbalance ∆s for the case of Poisson arrivals. We look at 4
cases of correlated server availability (thick lines), all with C2

ri = 1 and different mean period lengths. The
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Figure 2: Mean system content in function of server unbalance, Poisson arrivals with λ = 7, C2
si = 1 and for different mean

period lengths.

average arrival intensity considered in Figure 2 is λ = 7, and C2
si = 1. We see that the mean system content

increases monotonously with increasing ∆s. The effect is stronger with longer average period lengths (i.e.
with higher correlation on the number of servers available from slot to slot). We also consider the case of
C2
ri = 0.5 and ri = 2, which corresponds to a geometric distribution with parameter 0.5 for the period lengths.

In this case the correlation on the number of available servers is removed; the resulting mean queue content
is plotted with thin line. We observe that correlation has a considerable effect on the system performance.

In Figure 3 we repeat the experiment of Figure 2, but now we consider arrivals according to a disaster
process. We choose N = 70 and α = 0.1 which corresponds to an average arrival intensity λ = 7. The
variance of the number of arrivals from slot to slot is now much larger, which results in larger mean system
contents. The effects of server unbalance in relation to the average period lengths remains, the system content
increases with increasing ∆s and the effect is stronger with longer average period lengths. The effect is not
negligible even if the mean system content is already increased due to the higher variance of the arrival
process.

When the server unbalance is small, and thus both periods have an average number of available servers
close to 10, the system is able to efficiently clear all the incoming customers independently of its state,
and there is little influence of the average period lengths on the mean system content. For a larger server
unbalance, we get a situation where the system states can be identified as a state of work accumulation and a
state of work removal: the average number of available servers is smaller, respectively larger than the average
number of incoming customers per slot. When this occurs, the average period lengths have a higher impact
on the mean system content. This is because the longer the periods are, the longer the system accumulates
work before the queue can be emptied during a state of work removal. The larger the server unbalance is,
the stronger the effect of longer periods, as the work will accumulate at a higher rate during periods of work
accumulation.

In the next 2 examples we investigate the effect of the variance of the period lengths and the numbers
of available servers, we do this for Poisson arrivals. In Figure 4 we consider a scenario with average period
lengths of 10 slots and a small server unbalance of ∆s = 4. We plot the mean system content versus the
arrival intensity λ. The solid line depicts the base situation with all squared coefficients of variation equal to
1. The dashed line shows the effect of an increased variance of the period lengths and the dotted line shows
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Figure 3: Mean system content in function of server unbalance, disaster arrivals with α = 0.1, N = 70, λ = αN = 7, C2
si = 1

and for different mean period lengths.

the effect of an increased variance of the numbers of available servers. We can see that in this scenario the
variance of the numbers of available servers has a large impact on the mean system content; this impact is
already noticeable for lower arrival intensities. This observation is explained by the fact that with a large
variance on the numbers of available servers, it occurs more frequently that, regardless of the system state,
in consecutive slots only a few servers are available and thus the system content increases strongly.

We also see from Figure 4 that the variance of the period lengths only has an impact when the average
arrival intensity to the system goes to 8, which is the average number of servers available during state-1-slots.
This is in line with the observations from Figure 2 and Figure 3; the length of the periods plays a role when
one of the system states can be identified as work accumulating. A large variance of the period lengths then
means that occasionally a very long period of work accumulation occurs, which significantly increases the
mean system content. This delayed effect appears to be less prominent when the variance of the number of
available servers in state-1-slots is lightly increased, as can be seen from the dash-dotted line. In this case, it
occurs more frequently that work accumulates during state-1-periods, even for lower arrival intensities.

From Figure 4 we can conclude that in the case of a small server unbalance, a higher variance of the
numbers of available servers is much worse for the system performance in terms of mean system content
compared to a higher variance of the period lengths.

In Figure 5 we consider a situation with average period lengths of 10 slots and a large server unbalance of
∆s = 12, and we again plot the mean system content versus the arrival intensity λ. The solid line depicts the
base situation with all squared coefficients of variation equal to 1. This base situation yields a larger mean
system content as compared to the base situation of Figure 4, which is due to the larger server unbalance.
The dotted line shows the mean system content when the variance of the numbers of available servers is
increased, and the dashed line when the variance of the period lengths is increased. It can be seen that
the relative effects of the two types of variance have reversed. The dashed line (with increased C2

ri) shows
the highest mean system content. Because of the large server unbalance, the system is in a state of either
work accumulation or work removal. When the variance of the period lengths is increased, it occurs more
frequently that the system resides in a very long period of work accumulation, resulting in large mean system
contents.

With the final example of this subsection we illustrate that the effect of variance is continuous and strongly
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Figure 4: Mean system content in function of average arrival intensity λ, for Poisson arrivals, r1 = r2 = 10, s1 = 8, s2 = 12 and
different values of the squared coefficients of variation.
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Figure 5: Mean system content in function of average arrival intensity λ, for Poisson arrivals, r1 = r2 = 10, s1 = 4, s2 = 16 and
different values of the squared coefficients of variation.
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Figure 6: Mean system content in function of squared coefficient of variation, for Poisson arrivals with λ = 7, r1 = r2 = 10 and
with different ∆s.

depending on the exact configuration of a queueing system. We consider Poisson arrivals with λ = 7 and
mean period lengths of 10 slots. In Figure 6 we plot the mean system content in function of the squared
coefficient of variation of either the period lengths or the numbers of available servers, while keeping the
other squared coefficient of variation fixed at 1. The top set of 2 lines is for a large ∆s, while the bottom
set is for a small ∆s. For both sets, the dotted line shows the influence of the variance of the period lengths,
while the solid and dashed line show the influence of the variance of the numbers of servers.

Variance is obviously bad for the performance of a queueing system, but Figure 4, Figure 5 and Figure 6
demonstrate that not all systems are equally sensitive to the same kind of variance. In general, the variance
of the period lengths will be more meaningful for a queueing system when the server unbalance is larger.

5.2. Bursty arrivals
Another way to use the model of this paper is to look at a bursty arrival process. Many applications deal

with some form of bursty traffic where short periods of high arrival intensity are alternated with long periods
of low arrival intensity. In this subsection we will assume that 2 servers are constantly available:

S1(z) = S2(z) = z2 . (68)

We choose state-1 to be the high-traffic state with λ1 = 10λ2. To limit the number of parameters in this
example we choose the period lengths to be geometrically distributed:

R1(z) =
(1− α1)z

1− α1z
; (69)

R2(z) =
(1− α2)z

1− α2z
. (70)

We assume Poisson arrivals for the state-2-slots:
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C2(z) = eλ2(z−1) . (71)

In state-1-slots we consider arrivals according to a Poisson process or according to a disaster process, as
introduced in the previous subsection.

C1,Poisson(z) = eλ1(z−1) ; (72)

C1,disaster(z) = (1− α) + αzN , (73)

with N an integer and the arrival intensity given by λ1 = αN , where we take α = 0.1.
In Figure 7 we plot the mean system content versus the average arrival intensity for these two different

arrival processes during high-traffic (state-1). The thick lines in this figure correspond to α1 = 0.8 and
α2 = 0.96, which leads to r1 = 5, r2 = 25 and σ = 1

6 . We observe that the mean system content is
considerably higher in the disaster case, which is logical as the variability of the arrival process is a lot higher
in this case. For the same mean number of arrivals per slot, it then occurs more frequently that a high
number of customers enter the system during the same slot, and it takes a long time for the 2 servers to
recover from this.

For the thin lines in Figure 7, the parameters α1 and α2 are set as α1 = 1
6 and α2 = 1 − α1 = 5

6 . This
choice changes the values of r1 and r2 without changing their ratio, i.e. without changing the value of σ. The
probability for any slot to be a state-1-slot then equals α1 and the probability for any slot to be a state-2-slot
becomes 1 − α1, regardless of the state of the previous slot, so the correlation in the arrival process is now
removed. From the position of the curves in Figure 7 we again observe that the effect of correlation is clearly
not negligible.

In a final experiment we investigate whether the variability of the arrival process is the main cause of
the higher mean system content for the disaster case as compared to the Poisson case in Figure 7, or also
other factors such as the shape of the distribution function play a role. We therefore again set α1 = 0.8
and α2 = 0.96, and consider a third type of arrival process in state-1-slots, namely a mixture of two Poisson
processes, with the following pgf:

C1,mix Poisson(z) = ωeΛ1(z−1) + (1− ω)eΛ2(z−1) . (74)

We look at various values of 0 < ω < 1 and choose the remaining parameters 0 < Λ1,Λ2 of the arrival process
in such a way that the first two moments of C1,disaster(z) and C1,mix Poisson(z) are equal, i.e. the average and
squared coefficient of variation are equal. The resulting mean system content for this third arrival process
turns out to be indistinguishable of the disaster case (and is therefore not plotted in Figure 7). This suggests
that the exact shape of the arrival process is not significant for the mean system content as soon as its first
two moments are given.

6. Conclusion

In this paper we studied a discrete-time multiserver queueing model with the possibility to add correlation
to the arrival process and/or the server availability. This is achieved by the introduction of two different
system states. Each state is characterized by its own distribution for the number of arrivals per slot and
its own distribution for the number of available servers during a slot. State changes can only occur at slot
boundaries and mark the beginnings and ends of state-periods. The lengths of these periods are assumed to
be two independent sets of i.i.d. stochastic variables and within a given state-period there is no correlation
between the numbers of arrivals from slot to slot nor between the numbers of available servers from slot to
slot. Because we do not limit the distributions of the period lengths to be geometrical, our model goes beyond
the first-order Markov approach that is regularly used in literature where state changes are only dependent
on the state of the last slot, and not on the time the system is already in a certain state. The model is suited
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Figure 7: Mean system content in function of average arrival intensity λ, for two different arrival distributions during high-traffic
periods with and without correlation.

for situations where for example long periods of light traffic are alternated with short periods of heavy traffic,
while also the number of available servers can be different during light and heavy traffic.

To keep the mathematical analysis tractable, we imposed small restrictions on the distributions of the
numbers of available servers and period lengths, namely they need to have rational pgfs. We obtained the
distributions of the number of customers present in the queueing system at the beginning of a period, at the
beginning of an arbitrary slot within a certain period and at the beginning of an arbitrary slot. For this, it
is necessary to compute the zeros of a non-polynomial function within the complex unit disk, and solve a set
of linear equations. For many common choices of the distributions this does not require large computational
effort.

We illustrated the analysis with several numerical examples to give further insight in the practical use of
the model. The examples showed that correlation in the arrival process and in the availability of servers can
have a significant effect on the mean system content. The model also allows us to investigate the effects of
different types of variance on the system performance. Further research could include models with more than
2 system states (where the transition from state to state is either a cyclical process or based on a Markovian
transition process).
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