

ECCE12 The 12th EUROPEAN CONGRESS OF CHEMICAL ENGINEERING Florence 15-19 September 2019

Development of a catalyst for oxidative coupling of methane in a gas-solid vortex reactor

Saashwath Swaminathan Tharakaraman¹, Guy B. Marin¹, Mark Saeys^{1*}

1 Laboratory for Chemical Technology, Ghent University, Technologiepark 125, 9052 Gent, Belgium;

*Corresponding author: Mark.Saeys@ugent.be

Highlights

- Synthesis of a thermally and mechanically stable catalyst for OCM in a GSVR.
- First demonstration of oxidative coupling of methane in GSVR.
- Process intensification of OCM

1. Introduction

Oxidative coupling of methane (OCM) is a promising pathway for the direct synthesis of C_2 hydrocarbons from methane according to the following global chemical reactions.^[1]

$2CH_4 + O_2 \rightarrow C_2H_4 + 2H_2O$	ΔH ⁰ _r = -282 kJ mol ⁻¹	(1)
$2CH_4 + 0.5O_2 \rightarrow C_2H_6 + H_2O$	ΔH ^{,0} = -177 kJ mol ⁻¹	(2)

The presence of oxygen and the high reaction temperature can facilitate the overoxidation of reactants and products to CO and CO₂, typically limiting the C_2 hydrocarbon yields to below 30%.^[2]

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 $\Delta H_r^{0} = -801 \text{ kJ mol}^{-1}$ (3)

The high reaction exothermicity moreover dictates the need for a suitable heat management strategy.

In a gas-solid vortex reactor (GSVR), a rotating fluidized bed of solids is obtained by the tangential injection of gas at high velocities (Figure 1).^[3] In the bed, the centrifugal forces on the catalyst particles balance the drag forces, leading to a dense and uniform bed. The very high gas-solid slip velocities intensify interfacial transfer of mass, energy and momentum, allowing a reduction in gas phase residence time. Using extensive computational fluid dynamics (CFD) simulations, a gas-solid vortex reactor has been designed and commissioned at Ghent University^{[3]Error! Reference source not found.} The diameter of the reaction chamber is 80 mm, containing 8 inlet slots with a width of 1 mm (Figure 1).^{[3]Error! Reference source not found.}

Figure 1 . Top view and operation of a gas solid vortex reactor in static geometry

Using bifurcation analysis incorporating detailed microkinetic models, Vandewalle et al.^[4] showed that the good thermal back mixing combined with limited species back mixing in the GSVR can potentially improve C_2 yields when the reactor is operated on an ignited branch close to the extinction state.^[5]

The high reaction temperature, the high solid velocities, and the low space times in the GSVR at those conditions require the development of a novel catalyst with high attrition resistance, high

thermal stability, high activity, and proper size distribution. In this presentation, we report the development of such a supported catalyst, and compare its performance in a fixed bed reactor with that in the GSVR.

2. Results and Discussion

Cold flow experiments were performed in the GSVR with inlet gas flow rates in the range of 15-30 $Nm^3 hr^{-1}$, and slot velocities exceeding 100 m s⁻¹ to test the stability of the catalyst bed and its attrition resistance. Under these conditions, a stable bed of 10 g of catalyst material with a thickness

of about 10 mm could be a) retained in the GSVR at room temperature for a duration of 1 hour (Figure 2a). Over the 1 hour experiment, less than 1% of the material was entrained. Similar experiments with conventional Sr/La₂O₃OCM catalyst pellets and with inert α -Al₂O₃ pellets resulted rapid attrition and in entrainment of the pulverised pellets with the gas stream. The

Figure 2 a) Azimuthal velocity of solids in the GSVR $^{[3]}$ and b) CH_4 conversion and C_2 selectivity vs. space time for synthesized catalyst at 800 $^\circ$ C

gas flow rates and the catalyst material holdup in the GSVR correspond to very low space times of 0.1 kg_{cat} s mol⁻¹ _{CH4,0}. For these space times, the synthesized catalyst material was tested in a quasiisothermal fixed bed reactor at 800 °C and for a O₂:CH₄ inlet ratio of 4. A reasonable C₂ selectivity of 40-50% and a CH₄ conversion of 5-10 % were obtained for this high activity catalyst (Figure 2b). Typical OCM catalysts like Li/MgO and NaMnWO₄/SiO₂ show essentially no CH₄ conversion for space times below 5.0 kg_{cat} s mol⁻¹_{CH4,0}. ^[6] Next, the synthesized catalyst will be tested under reactive conditions in the GSVR. Based on detailed microkinetic simulations based on the fixed-bed experiments a methane conversion of 4% and a C₂ selectivity of 45% are expected.

3. Conclusions

A thermally and mechanically stable OCM catalyst material was synthesized, which forms a stable catalyst bed under the harsh conditions in the GSVR reactor. At the conditions and at low space times, the synthesized catalyst material displayed a methane conversion between 5 and 10 % and a C_2 selectivity around 50%. Detailed simulations indicate that a similar performance can be expected in the GSVR. These proof-of-concept experiments are currently scheduled and will be reported at the conference.

References

- [1] G. Keller, M. Bhasin. J. Cat. 73 (1982). 9-19.
- [2] U. Zavyalova, M. Holena, R. Schlögl, M. Baerns. ChemCatChem 3 (2011). 1935-1947.
- [3] A. Gonzalez-Quiroga, P.A. Reyniers, S.R. Kulkarni, M.M. Torregrosa, P. Perreault, G.J. Heynderickx, K.M. Van Geem, G.B. Marin. Chem. Eng. J .329 (2017). 198-210
- [4] L.A. Vandewalle, I. Lengyel, D.H. West, K.M. Van Geem, G.B. Marin. Chem. Eng. Sci. (2018).
- [5] S. Sarsani, D. West, W. Liang, V. Balakotaiah. Chem. Eng. J.328 (2017). 484-496
- [6] V. Alexiadis, M. Chaar, A. van Veen, M. Muhler, J. Thybaut, G.B. Marin. App. Cat. B: Environmental 199 (2016). 252-259