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ARTICLE INFO ABSTRACT

Keywords: This paper presents a simulation study of the impact of Light Emitting Diode (LED) output power
VLP uncertainty on the accuracy of Received Signal Strength (RSS)-based two-dimensional (2D) and
RSS three-dimensional (3D) Visible Light Positioning (VLP). The actual emitted power of a LED is
2D never exactly equal to the value that is tabulated in the datasheet, with possible variations (or
iagerprinting tolerances) up to 20%. Since RSS-based VLP builds on converting estimated channel attenuations
Trilateration to distances and locations, this uncertainty will impact VLP accuracy in real-life setups. For 2D, a

Transmit power typical configuration with four LEDs is assumed here, and a Monte-Carlo simulation is executed

LED to investigate the distribution of the resulting positioning errors for four tolerance values at seven
locations. It is shown that median errors are the highest just below the LEDs, when using a
traditional Least-Squares minimization metric. When tolerance values on the LED power increase
from 5% to 20%, median errors vary from at most 2 cm to at most 10 cm. Maximal errors can be
as high as 17 cm just below the LED, already for tolerance values of only 5%, and increase up to
40 cm for tolerance values of 20%. An alternative cost metric using normalized Least-Squares
minimization makes the errors spatially more homogeneously distributed and reduces them by
35%. For a 3D case, median errors of around 5 cm for a tolerance value of 5% increase to as much
as 22 cm for a tolerance value of 20%. As the receiver heights increase, positioning errors de-
crease significantly.

1. Introduction

The introduction of Light Emitting Diodes (LEDs) has not only revolutionized the lighting world thanks to the increased energy
efficiency and lifetime compared to traditional lighting bulbs, but it has also unlocked new applications. The ability to modulate the
emitted light signal allows transmitting data, a technology known as Visible Light Communication (VLC) [1]. Another promising
application of visible light is Visible Light Positioning (VLP) [1,2], where e.g., the location of a photodiode (PD) is estimated.
Advantages over well-known Radio-Frequency (RF) solutions, such as Ultra-Wide-Band (UWB) Time-of-Arrival (ToA)-based posi-
tioning [3], Angle-of-Arrival (AoA)-based positioning, or Received Signal Strength Indicator (RSSI)-based location tracking [4],
include achieving high positioning accuracies while maintaining a low deployment cost. Similarly to RF solutions, VLP can use AocA
or RSS-based approaches. The latter approach is often preferred thanks to the lower complexity of the receiver. It builds on the link
between observed light intensities and distances between the LED source and the receiving photodiode, using (or assuming)
knowledge of the visible light channel attenuation as a function of distance. However, such conversion also requires exact knowledge
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of the LED characteristics. E.g., in [5], the impact of the LED beam profile is investigated, while in [6], the transmitter semi-angle and
spatial LED configuration are optimized. Also in [7], the impact of the Lambertian order on positioning accuracy is investigated. Next
to more common research on the impact and correction of receiver tilt in VLP [8], work in [9] studied the impact of LED tilt on VLP
accuracy. Another important factor in the visible light link is transmitted power of each of the LEDs. Research in [10] investigated the
optimal allocation of LED powers in a VLP system. In reality, the precision of these powers is limited, and uncertainties typically
amount to around 5% [11]. For Chips on Board (COBs) LEDs, tolerances are up to + 10% [12], and for some LED manufacturers,
uncertainties could be as high as 20%. To the authors’ knowledge, up to now, no research efforts have been made to characterize the
impact of this uncertainty on the performance of VLP in terms of accuracy. In [13], the authors presented the impact of LED power
uncertainty for a simple two-dimensional (2D) configuration. This paper will extend this research and proposes an alternative metric
to reduce this impact. Further, it will also assess the impact for a three-dimensional (3D) VLP configuration [14]. A Monte-Carlo
simulation will be executed, in which it is assumed that each of the four deployed LEDs has a certain unknown (and uncorrelated)
deviation on its assumed output power. This way, the positioning error will be characterized for different locations within the test
site, and for four different tolerance values (5, 10, 15, and 20%).

Section 2 will present the visible light channel model that will be used in the positioning algorithm. In Section 3, the simple VLP
test setups that will be assumed for the simulations, will be discussed, while Section 4 will present the 2D and 3D positioning
algorithms. Results will be discussed in Section 5, and the main findings of this work will be summarized in Section 6.

2. Channel model

In this work, only the Line-of-Sight (LoS) path between the transmitting LED source and the receiving PD will be assumed.
Reflections are not considered as a source of 'measurement noise’, in order to be able to unambiguously assess the effect of only the
tolerance on the LEDs’ output powers, and to compare both effects. For the same reason, no actual noise (e.g., shot noise or thermal
noise) is initially considered in this study. The model parameters of the visible light channel are displayed in Fig. 1. The power Py
received at the photodiode is calculated according to the channel model used in [15]:

Pr = Pg-hyes, 1)

with Pg the emitted optical power by the LED, which will thus be statistically distributed in this paper. h;,s is the channel gain along
the direct link and can be described as follows [15]:
At ()

2

hios = Rp($, v)-— 75— Tr(¥)-Gr(¥),

d (2)

where Rg(¢, y) is the radiation pattern of the LED, with ¢ the angle of irradiance (see Fig. 1) and y the azimuthal angle. In case of a
Lambertian emitter, the radiation pattern is axially symmetric and for order m, reduces to mzjrlcosm(¢). Tr(y) and Gg(y) are the
optical filter's gain and the optical concentrator's gain at the receiver respectively, with y the angle of incidence. The field-of-view
(FOV) of the photodiode is two times y (see Fig. 1), such that h;,s becomes equal to zero for |y| > . Within the FOV of the PD,
Tr(y) and Gr(y) will be assumed equal to 1 in the following. It will further be assumed that the PD's FOV is sufficiently large to record

the signals from all LEDs within the configuration. In addition, both the LED and PD orientation will be assumed horizontal,
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Fig. 1. Overview of visible light channel and the involved parameters.
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corresponding to their respective normal vectors WLED and ﬁ}D being parallel. In this case, the angle of irradiance ¢ = y (see Fig. 1),
with cos(¢) = cos(y) being equal to h/d, with h the height difference between the LED and the PD, and d the distance between the
LED and the PD. Ay is the effective photodiode area, which is equal to the photodiode area that is perpendicular to the angle of
incidence y:

Aest () = Ag-cos(¥), 3

with Ag the actual photodiode area, here equal to 1 cm?. For a Lambertian emitter, Eq. (1) can be rewritten as [15]:

Py = P m+1 -cos™(¢)-Ag-cos(p).

27d? 4

3. Simulation configuration
3.1. 2D configuration

The simulation tests for the 2D case will be executed for the room that is depicted in Fig. 2a. The dimensions of the room are
5m x5m, with a ceiling height of 2.5 m. The Lambertian order m of the LEDs, each of which is horizontally oriented, is equal to 1,
for all four LEDs. The receiver PD is also assumed to be horizontally oriented, at a height of 0.85 m. In this 2D scenario, we assume
that the receiver height is fixed and known (representing a use case where e.g., a cart with a PD on top is being moved around),
reducing the estimation of the receiver location to a planar problem. A receiver grid of 2 mm will be considered here, meaning that
the PD center can be located at N; = 25002 locations. Further, we assume that the receiver hardware is able to demultiplex the
contributions of the different LED sources [16]. Four LEDs with an assumed optical power of 10 W are attached to the ceiling
(h = 2.5m), at the locations indicated in Fig. 2. However, in reality, the emitted power Pg; of LED; (i = 1 ... N) will be normally
distributed around the value of 10 W:

P ~ N(10, 0?).

In this study, four tolerance values Tygp will be tested: = 5%, = 10%, + 15%, and + 20%. These tolerance values typically refer
to 3-sigma deviations, meaning that the standard deviations o of these normal distributions around the 10 W-value will correspond to
0.167 W, 0.333 W, 0.5 W, and 0.666 W, respectively. Further, it will be assumed that there is no correlation between the deviations of
the transmit power value of the different LEDs in the room.

Fig. 3a shows the seven positions at which the location will be estimated. Thanks to the 8-fold symmetry of the setup, only
locations within the triangle A-C-E need to be considered, since the statistical distribution of the positioning errors will repeat itself
at the corresponding locations of the different parts of the 5m X 5m area. It should be noted though that each single simulation will
result in an asymmetric setup, since for each simulation, the power of each LED will be randomly and independently chosen.
However, the resulting distribution at corresponding locations will be the same when enough simulations are considered, due to the
fact that the statistical distribution of the LED power is the same for each of the LEDs. Table 1 shows the coordinates of each of the
positions A-G, where A is set at the center of the coordinate system, and G is the centroid of the triangle formed by the other points
(see Fig. 3a).

In this work, a position estimation for each of the seven positions (A-G) will be executed for 10 000 random sets of LED power
values (Pg1, Pgs, Pgs, ..., Pgy) in the Monte-Carlo simulation (N = 4 here). Each position estimation will be done according to the
algorithm presented in Section 4.1.
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Fig. 2. Overview of the simulation setup.
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Fig. 3. Top view of the simulation setups, with indication of the four LEDs (yellow dots) and the seven (2D) or six (3D) locations (letters, see
Table 1) for which the positioning error will be evaluated. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Coordinates (m) of the considered locations, where A is set at the center of the coordinate system, the x-axis pointing rightwards, and the y-axis
pointing upwards (see Fig. 3).

2D configuration (see Fig. 3a)

Location A B C D E F G

o,y (0,0) (1.25,1.25) (2.25,2.25) (2.25,1.25) (2.25,0) (1.25,0) (1.67,0.83)

3D configuration (see Fig. 3b)

Location A B C D E F

0ey) (0,0) 1,3) (2,0) (1.5 j) (1,0 (05 j)
) 2

3.2. 3D configuration

Similarly to the 2D configuration, the 3D configuration is a 5m X 5m room, where the LEDs’ Lambertian mode m equals 1, and
their optical powers are again normally distributed around their assumed nominal value of 10 W. However, the assumed LED height
hzep is 5m here, i.e., the ceiling height. Fig. 2b depicts the considered area, where the PD height is not known a priori here. Further,
the LEDs are not mounted in the typical square configuration of Fig. 2a, as such configuration does not allow an unambiguous 3D
position estimate, as shown in [17]. Instead, we opt for the star-shaped configuration of Fig. 2b, where 3 LEDs are located around one
central LED, each at a distance of 2m. The PD and all LEDs are horizontally oriented. Fig. 3b shows the six positions at which the
location will be estimated via a Monte-Carlo simulation. Again, thanks to the 6-fold symmetry of the setup, only locations within the
triangle A-B—C are considered here. Table 1 shows the coordinates of each of the positions A-F, where A is set at the center of the
coordinate system, and D, E, and F are the middles of the triangle sides. Besides the LEDs located at A and C, the two other LEDs have
coordinates (— 1, v/3) and (- 1, —+/3). Similarly to the 2D case, a position estimation for each of the six positions (A to F) will be
executed for 10 000 random sets of LED power values in the Monte-Carlo simulation. Each position estimation will be done according
to the algorithm presented in Section 4.2. The procedure will be executed at a height of 0.85 m (same as 2D case) and at a height of
3m, in order to compare the influence of the receiver height.

4. Positioning algorithm
4.1. 2D positioning algorithm

The adopted positioning algorithm is based on a commonly used Least-Squares minimization [4]. It compares the set of observed
received photodiode powers P from each LED; (i = 1, ..., N) at the unknown PD location, with the set of fingerprinted PD powers
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Plfg”mdel from LED; at all (2500%) locations L in the grid. Observations can either be simulations or actual measurements. For the
construction of the fingerprinting database of the PL™%! values, Py is assumed equal to 10 W for each LED, as it is the most probable
value for Pg. The set of observations (P, 3%, P, ..., PS%) represent the observed values in the realistic setup investigated here.
They are obtained from (Pg1, Pgs, Pgs, ..., Pen), where Pg; values are obtained as samples from N (10, ¢2). The larger the uncertainty
on the Py; values (larger o® values), the larger the positioning errors will be.

The algorithm estimates the unknown location L to be at the spot where the cost function Csﬁuare has a minimum [18]:

N
Csléuare = Z (Plgibs - P}é,model)z_
- (5)
Each position estimation thus consists of a comparison of the set of observations (PX*, PR, ...,PSY) against all
(Pfymodel pLimodel - plimodel) gets that are stored in the database. In total, Ny sets of N values of P5™! are precalculated and stored in
a fingerprinting database, i.e., the received power at Ny locations from each of the N LEDs, according to the LoS channel model from
Section 2. For the configuration under test, N = 4 and N; = 25002 = 6 250 000, meaning that 25 million values are stored. It is clear
L

that more advanced search algorithms will be useful here, in order to quickly find the location with the lowest Cqgyare-

4.2. 3D positioning algorithm

While the 2D positioning algorithm is based on a model-based fingerprinting approach with a 2mm granularity [4,19], this
approach becomes unfeasible in 3D due to the requirement of large memory and computation time to iterate over the 3D map. In 3D,
we use the trilateration method from [17] where the 3D position could be quickly retrieved, solely based on the observed PD powers
and without any prior knowledge of the PD receiver height. It is based on an iterative 2D trilateration where different candidate PD
receiver heights are evaluated based on a cost function which, at its minimum value, yields the received position. The positioning
algorithm is summarized in the following.

Given an observed power P from LED; (i = 1, ..., 4) and knowing that cos(¢,) = cos(i),) = dﬁi for horizontally oriented LEDs and

PD (see Fig. 1), Eq. (4) can be rewritten to allow the calculation of the estimated distance (fi between LED; and PD:

N [
d; = m+i/(m + 1).2PE LA

TR}

6

For each possible height difference h between the LEDs and the PD, a 2D trilateration is then performed, leading to a set of
candidate 3D position estimates (x(h), y(h), higp — h), one per evaluated height difference h. Finally, each of these candidate
positions is evaluated based on a cost function C(h), comparing estimated LED-PD distances at the assumed height difference h with
LED-PD distances at the 3D estimated position at that height difference. The height difference h = h” that produces a minimum value
C(h), yields the 3D position estimate (% (h*), y (h*), hygp — h") [17].

4
C(h) = i D 1di(R) = @& () — x> + G(h) — y)* + WP,
i—1 )

with (x;, i, hiep) the coordinates of LED;, i = 1 ...4 for the configuration depicted in Fig. 2b. Candidate receiver PD heights between
25 cm and 3.5 m will be considered here, with a granularity of 2 mm.

5. Results
5.1. 2D positioning
Table 2 lists the median (pse) and 95%-percentile (pgs) values of the positioning errors that are obtained from 10* simulations in

each of the locations A to G in Fig. 3a, for tolerances Ty zp of + 5%, + 10%, = 15%, and = 20%, respectively. For T;zp = 5%, median
errors are 2.3 cm at most (C). Maximal errors are limited to 5.6 cm (C), except in location B, where the maximal error amounts to

Table 2
Median (psp) and maximal (pgs) errors (cm) at each of the seven locations A-G (see Fig. 3a) for four tolerance values Tygp of the LEDs.
Trep A B C D E F G
5% Pso 1.2 1.7 2.3 1.9 1.6 1.4 2.2
Pos 2.4 17.6 5.6 4.1 3.5 4.4 5.2
10% Pso 2.3 3.3 4.7 3.8 3.3 2.7 4.4
Pos 4.7 26.7 10.9 8.2 6.9 20.3 10.4
15% Pso 3.4 4.5 7.1 5.7 5.0 4.7 6.7
Pos 7.1 33.8 15.8 12.7 10.5 30.0 15.6
20% Pso 4.6 5.6 9.5 7.6 6.5 6.6 9.0
Pos 9.6 40.1 18.7 16.6 13.8 37.5 20.6
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Fig. 4. Cdfs of the errors obtained from 10 000 simulations at the locations A, B, and F for all four LED tolerance values.

17.6 cm.

All median errors scale more or less linearly with the tolerance values: the errors increase by approximately 100, 200, and 300%,
when T;gp increases from 5% to 10, 15, and 20%, respectively. For these positions, median errors (pso) vary between 2 and 5 cm for
Tiep = 10%, 3-7.5 cm for Ty zp = 15%, and between 4 and 10 cm for Ty zp = 20%. Apart from positions B and F, maximal errors (pgs)
also show a more or less linear increase: values from 2.5 to 5cm for Tyzp = 5%, from 5 to 10 cm for Tygp = 10%, 7 to 15 cm for
Tiep = 15%, and between 10 and 20 cm for T;zp = 20% are observed. Moreover, pgs values are between 2 and 2.5 times as high as
the median errors for all values of Tygp.

As mentioned earlier, maximal errors at location B are at least three times as high as at other locations for T;zp = 5%. Although
this error does not increase at the same rate as for the other locations when T;gp increases, pos is still at least twice as high as at the
other locations for Trgp = 20%. Maximal errors at location F are in line with the other locations for Ty zp = 5%, but for higher T;zp
values (=10%), a trend similar to that at location B is observed: a large portion of the LED configurations leads to remarkably higher
errors compared to locations A-C-D-E-G. In general, position A (middle of the room, middle between the four LEDs) shows the
lowest median (< 5cm) and maximal (< 10 ¢cm) errors.

Fig. 4 collects for positions A, B, and F the cumulative distribution functions (cdfs) of the errors for the four values of T;zp, where
the x-axis has been limited to 40 cm for reasons of clarity. It shows that for position A (black curves), the errors increase in a regular
way as Trgp increases. The same counts for position F (blue curves), but the increase of the errors is significantly larger. Finally, for
position B (red curves), it can be seen that the smallest 40% of the errors is affected in a very limited way as T;gp increases, and that
these errors are lower than at positions A and F. However, the largest half of the errors in B is (significantly) larger than in A (and F).

In order to gain more insight into this position-dependency of the error, the errors for T;zp = 10% within the top right quarter of
Fig. 3 (square formed by sides AE and CE) have been simulated on a denser grid of 50 by 50 positions, but due to calculation time, for
only 100 instead of 10 000 simulations per position. Since the error distribution should be symmetric around line A-C, the 100 errors
per position have additionally been mirrored around this symmetry line, so that a symmetrical pattern was obtained with 200
simulations per position. Fig. 5a and b shows the resulting spatial error map of the median (pso) and maximal (pgs) error respectively.
The axis coordinates adhere to the system used in Table 1, and the white dots indicate positions A-G. Position B at (1.25;1.25) is not
indicated to better visualize the rapid variation of the error at that location. The median error over the entire area equals 4.21 cm, the
maximal (pgs) error 10.75 cm.

Fig. 5a shows that the largest median (pso) errors are found under the LED (7-9 cm), but at the exact location under the LED
(position B), the error remains limited to 3.3 cm (see Table 2 and the bluish spot in the middle of the red area in Fig. 5a). Further,
median errors appear to be larger along the sides of the square that is formed by the four LEDs and toward the corners. Unlike for the
median errors, the largest maximal (pgs) errors in Fig. 5b do occur exactly below the LED (26.7 cm, see also Table 2). With respect to
position F, Fig. 5a and b shows that although larger median errors are observed to the right of position F (for x around 1.5m, see
Fig. 5a), maximal errors are large exactly in F (x around 1.25 m, see Fig. 5b).

5.2. Alternative cost function

To better understand the spatial behavior of Fig. 5, a scatter plot of the estimated location for 100 locations in the same area as
Fig. 5 (top right corner of the area) is shown in Fig. 6a. The white-edged dots in each point cloud indicate the real position, the larger
orange dots indicate positions A-G. Fig. 6a again illustrates the symmetry along line A-B-C. As mentioned before, error clouds are
more irregular around location B (middle of the figure), corresponding with the red cloud. Fig. 6a further shows that locations around
B are drawn toward B. This can be explained when looking at the used cost metric (Eq. (5)). For locations near B, the absolute values
of P> and PL™%! will be large for i = ip, with iy defined as the index number of the LED right above B. Since LED power tolerances
are not absolute, but relative to the tabulated power, the factor (Pl%bs - PIf{““’del)z in the cost metric will also be large for i = iz. This

makes that, near B, the power received from the LED above B has a larger influence on the global cost value than the power received
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Fig. 5. Spatial error distribution obtained from 200 simulations in the square A—-C-E of Fig. 3a, for a LED tolerance value of 10% (white dots indicate
locations A-G, except B).
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Fig. 6. Scatter plots of 1000 location estimations for each of 100 locations (indicated by white-edged dots) in the square A—C-E of Fig. 3a, for a LED
tolerance value of 10% (orange dots indicate locations A-G). (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

from the three other LEDs. Further, since we assume a Gaussian LED power distribution, the actual emitted power of the LED above B
will be larger than the tabulated power in half of the cases. Since for i = iz (the LED above B), P5™%! is maximal in B (for L. = B), the
cost function will draw the estimated location toward B for this half of the PS> values that are larger than those obtained from the
tabulated transmit powers. This behavior is indeed observed in Fig. 6a and in Fig. 5a. In B itself, half of the times, location B is indeed
favored, leading to the aforementioned low median errors. In case the actual transmit power for the LED above B is lower than the
tabulated value (other half of the cases), the location is drawn away from B. Given the aforementioned large contribution of
(PR — pLmodely2 in the cost function for i = i, the location is drawn away relatively far, further supported by the lower gradient of
the LED's radiation pattern around B in the (x, y)-plane.

To counter this effect, an alternative cost metric to Eq. (5) is proposed. To reduce the effect of the large influence of one LED in the
area right below it, the received power values are normalized in the alternative cost metric:

CL B i P}gibs _ Pl{,i,model 2
square — .
- Pl{,i,model (8)

Fig. 6b shows the same scatter plot of the estimated locations, but using the alternative cost metric (Eq. (8)). It is shown that a
much more homogeneous error distribution is obtained, without the high maximal errors that were previously found around B. Fig. 7
shows the spatial error maps of the median (pso) and maximal (pgs) error for the alternative cost metric. Compared to the median
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Fig. 7. Spatial error distribution obtained from 200 simulations in the square A-C-E of Fig. 3a, for a LED tolerance value of 10% (white dots indicate
locations A-G, except B), using the alternative cost function.

error over the entire area of 4.21 cm, and the maximal (pys) error of 10.75 cm using the traditional cost metric (see Fig. 5), the
alternative metric yields a median error of 2.61 cm and a maximal error of 6.99 cm over the same area, a reduction of 38% (median)
and 35% (pos). Fig. 7 shows that especially inside the LED square, errors remain limited.

5.3. Comparison with impact of noise and reflections

Fig. 8 shows the median positioning error for each of the seven considered locations, as a function of the standard deviation oy
[W] of the observed noise power (without uncertainty on the LED power). It shows that from oy values of around 10 ~7W and higher,
the median error becomes larger than 1 cm. Location C (the furthest from the LEDs) is most prone to errors due to noise, while A (at
the center of the 4 LEDs) is most resilient to noise. In our lab, a oy of around 1.4-10~7 W was obtained. Table 3 shows the median
(pso) and maximal (pgs) values of the errors at the seven locations, considering LED power uncertainty and an assumed value of
on = 1.4-10~7 W. The table shows that at locations A, E, and G (the locations where noise has the lowest impact according to Fig. 8),
the increase of the errors with respect to the errors listed in Table 2 (i.e., without considering noise) is indeed very limited: average
errors increase at most 2%. At locations B, D, and F, an average error increase between 6 and 10% is noticed. At location C, Fig. 8
showed that noise had the largest impact on the positioning error. This is confirmed in Table 3: errors increase by 51%. On average,
the relative impact of adding noise is obviously larger for lower T;gp values.

In realistic environments, the visible light channel will be altered due to walls, furniture, people, ... [20]. In [18], the impact of
reflections on the positioning accuracy was simulated for the same configuration, assuming diffuse reflections on the entire surface of
all four side walls. One bounce was considered. The median and maximal errors obtained for this configuration due to a LED
tolerance of 10% were equal to 4.21 and 10.75 cm, respectively. Using the same traditional Least-Squares cost metric ‘square’ [18],
the median and maximal errors due to reflections amounted to 8.7 and 11.6 cm respectively, when a wall reflectance factor of 0.3 is
assumed. It can be concluded that for the given configuration, the impact of noise is smaller than that of the LED power uncertainty,
although the noise impact also becomes significant when moving further away from the LEDs. The impact of reflections is more or

10° . ‘ .

-
S
T

median error [m]

102}

10-3 L L L
10° 10°® 107 10 10°
7 W]

Fig. 8. Impact of noise on positioning accuracy for different positions.
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Table 3
Median (pso) and maximal (pgs) errors (cm) at each of the seven locations A-G (see Fig. 3a) for four tolerance values T;gp of the LEDs and a oy value
of 1.4-10 77 W.

Tiep A B C D E F G
5% Dso 1.2 2.2 5.0 2.3 1.7 1.7 2.3
Dos 2.5 17.4 13.7 5.0 3.5 6.0 5.3
10% Pso 2.3 3.7 6.5 4.0 3.3 3.2 4.6
Dos 4.9 26.9 16.7 8.8 7.0 20.6 10.6
15% Pso 3.5 4.9 8.4 5.9 4.9 4.9 6.8
Pos 7.2 33.4 18.9 12.9 10.4 29.8 15.7
20% Pso 4.6 5.8 10.5 7.7 6.5 6.7 9.0
Pos 9.6 39.4 20.5 16.7 13.8 37.2 20.4

less comparable to that of a tolerance on the LED power of 10%.
5.4. 3D positioning

Fig. 9a, b, ¢, and d shows the cdfs that are obtained from 10* simulations at each of the locations A to F in Fig. 3b, for tolerances
Tyep of 5, 10, 15, and 20%, respectively, for a PD receiver height of 0.85 m (which is unknown by the algorithm). Table 4 lists the
median (pso) and 95%-percentile (pgs) values of the errors for the six locations and four tolerance values, for two PD receiver heights
(h=0.85m and h = 3m). At h = 0.85m, and for T;zp = 5%, median errors are 5.6 cm at most (in B and C). Maximal errors are
limited to 11.3 cm (B). At h = 3m, and for T;zp = 5%, median errors are 2.8 cm at most (in C and D). Maximal errors are limited to
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Fig. 9. 3D cdfs of the errors obtained from 10 000 simulations at the locations A-F at h = 0.85 m.
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Table 4
Median (psp) and maximal (pgs) errors (cm) at each of the six locations A-F (see Fig. 3b) for four tolerance values T;gp of the LEDs and for two PD
receiver heights (h = 0.85m and h = 3m).

h=0.85m
Tiep A B C D E F
5% Pso 5.0 5.6 5.6 5.4 5.1 5.2
Pos 9.3 11.3 11.1 10.6 9.8 9.8
10% Pso 9.9 11.3 11.2 10.7 10.2 10.3
Pos 18.8 22.4 22.3 21.3 19.6 19.4
15% DPso 14.8 16.8 16.7 16.3 15.2 15.4
Dos 27.8 34.2 33.1 32.4 29.3 29.8
20% Pso 19.7 22.5 22.2 21.8 20.4 20.3
Pos 37.9 45.6 44.8 43.9 39.4 39.6
h=3m
Tiep A B C D E F
5% DPso 2.2 3.0 2.8 2.8 2.5 2.5
Pos 4.1 7.1 5.8 6.1 4.8 5.0
10% Pso 45 6.2 5.6 5.6 5.0 5.0
Pos 8.3 14.7 11.4 12.2 9.6 10.2
15% Pso 6.8 9.3 8.5 8.3 7.5 7.5
Pos 12.6 21.6 18 18.1 14.3 15.2
20% Pso 9.1 12.3 11.3 11.2 9.9 10.0
Pos 17.1 28.5 23.4 24.7 19.6 20.5
7.1 cm (B).

All median errors scale very much linearly with the tolerance values: the errors increase between 97 to 107%, 196 to 210%, and
290 to 317%, when Tyxp increases from 5% to 10, 15, and 20%, respectively (for h = 0.85 and 3 m). Errors at h = 3 m are consistently
lower than at h = 0.85 m: over all T;gp values and positions, median errors at h = 3 m are 45 (in B) to 56% (in A) lower, and maximal
errors 37 (in B) to 56% (in A). The reason is that the gradient of the received powers in the (x, y)-plane is higher closer to the LEDs
(i.e., for larger h values), so that a larger area of the N-dimensional space of Py; values (i =1, ..., N, N = 4 here) is used, and
deviations on the LED powers have a smaller impact on the positioning error. Fig. 9a, b, c, and d indeed shows the linear increase of
the positioning errors at positions A to F, as a function of T;gp. The set of cdfs look very similar in the different figures, but are
stretched horizontally, i.e., they correspond to increasing errors.

The presented values in Table 4 suggest that smaller errors are obtained for positions closer to the central LED (position A): errors
in E and F are larger than in A, but smaller than in B, C, and D (see also Fig. 3b). To verify this assumption, median and maximal
errors for Trgp = 10% within the top half of Fig. 3b (above line A-C) have been simulated on a grid of 100 by 50 positions, at a PD
receiver height of 0.85 m. Due to calculation time, the number of simulations per location is limited to 1000 instead of 10 000. The
resulting error distribution is symmetric around line A-C, due to the layout of the LED configuration (see Fig. 3b). Figs. 10 and 11
show the spatial error map of the median (pso) and maximal (pgs) error in the considered area, respectively. The axis coordinates
adhere to the system used in Table 1, and the white dots indicate positions A-F. The median error over the entire area equals
11.00 cm, the maximal error 22.23 cm.

Figs. 10 and 11 indeed show that the smallest median and maximal errors are found near position A (9.91 and 18.32 cm in A), and
increase gradually toward the edges of the room. When comparing median and maximal errors, the same spatial pattern is observed,
leading to seemingly almost identical figures. When comparing Figs. 10 and 11 with the corresponding 2D figures (Fig. 5a and b), it is
seen that the 3D configuration/algorithm shows a smoother global error trend than the 2D setup/algorithm (see the very local
maxima in B in Fig. 5a and b). At a smaller scale however, the 3D case shows larger variations between adjacent evaluation points
(which are 5 cm apart) than the 2D case (see the speckled pattern in Figs. 10 and 11). Compared to the 2D case, the 3D configuration
leads to median and maximal errors within a relatively limited range: median errors are between 9.5 cm and 13.5 cm, and maximal
errors between 18 and 30 cm.

6. Conclusions

In this paper, it is investigated to what extent the uncertainty or tolerance on the actual emitted LED power impacts the RSS-based
VLP accuracies, both for a 2D and 3D configuration. For a 5m X 5m room with four LEDs, the distributions of the resulting posi-
tioning errors are evaluated, based on a Monte Carlo simulation consisting of 10* simulations. For the 2D case, median errors are
below 2.5 cm at most locations for a tolerance of 5%, and these errors increase approximately linearly as the tolerance values on the
LED powers increase, with most median errors below 10 cm for a tolerance of 20%. However, it is shown that median and maximal
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T ep = 10% Pgo [om]

135
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Fig. 10. Spatial distribution of median (pso) error, obtained from 100 simulations in the upper half of the configuration of Fig. 3b, for a LED
tolerance value of 10% (white dots indicate locations A-F).

T ep = 10% Pgs [cm]

0.5 1 15 2 25 3 3.5 4 4.5
x [m]

Fig. 11. Spatial distribution of 95%-percentile (pys) error, obtained from 100 simulations in the upper half of the configuration of Fig. 3b, for a LED
tolerance value of 10% (white dots indicate locations A-F).

errors show significant local variations, where the highest positioning errors are observed at locations just below the LEDs. For
tolerance values of only 5%, maximal errors can already be as high as 17 cm just below the LED, and increase up to 40 cm for
tolerance values of 20%. An alternative cost metric using normalized received power is proposed, which reduces aforementioned
impact. For the considered configuration, a tolerance value of 10% has an impact on positioning accuracy that is comparable to that
of wall reflections, and has a larger impact than noise. For the investigated 3D case, median errors increase from around 5 cm for a
tolerance value of 5% to as much as 22 cm for a tolerance value of 20%. As the receiver height increases from 85cm to 3m,
positioning errors decrease significantly, with median errors around 2.5 cm for a tolerance value of 5%, up to 12 cm for a tolerance
value of 20%.

Future work includes an experimental analysis of actual LED power tolerances and LED positions. Further, the impact on the error
will be investigated when the powers of the different LEDs are correlated, since LEDs from a same batch might be likely to have
similar deviations from the tabulated power. Also, the 2D study can be repeated for commercial LED sources instead of Lambertian
radiators.
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