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Abstract

When multiple mediators exist on the causal pathway from treatment to outcome, path

analysis prevails for disentangling indirect effects along paths linking possibly several

mediators. However, separately evaluating each indirect effect along different posited

paths demands stringent assumptions, such as correctly specifying the mediators’ causal

structure, and no unobserved confounding among the mediators. These assumptions

may be unfalsifiable in practice and, when they fail to hold, can result in misleading

conclusions about the mediators. Nevertheless, these assumptions are avoidable when

substantive interest is in inference about the indirect effects specific to each distinct

mediator. In this article, we introduce a new definition of indirect effects called

interventional indirect effects from the causal inference and epidemiology literature.

Interventional indirect effects can be unbiasedly estimated without the assumptions

above while retaining scientifically meaningful interpretations. We show that under a

typical class of linear and additive mean models, estimators of interventional indirect

effects adopt the same analytical form as prevalent product-of-coefficient estimators

assuming a parallel mediator model. Prevalent estimators are therefore unbiased when

estimating interventional indirect effects - even when there are unknown causal effects

among the mediators - but require a different causal interpretation. When other

mediators moderate the effect of each mediator on the outcome, and the mediators’

covariance is affected by treatment, such an indirect effect due to the mediators’ mutual

dependence (on one another) cannot be attributed to any mediator alone. We exploit

the proposed definitions of interventional indirect effects to develop novel estimators

under such settings.

Keywords: Direct and indirect effects; Interventional effects; Multiple mediation

analysis; Path analysis
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Disentangling indirect effects through multiple mediators without assuming any causal

structure among the mediators

Introduction

Mediation analysis is widely used in the behavioral, psychological and social

sciences to gain insight into the extent to which the causal effect of a treatment (A) on

an outcome (Y ) is transmitted through intermediate variables on the causal pathway

from A to Y . Consider the following social psychology example by Voelkel et al. (2019),

who investigated the causal effect of a political inclusion manipulation (A) on the level

of prejudice toward a political outgroup (Y ). Perceived worldview dissimilarity of the

political outgroup (M1) is considered a mediator if the manipulation affects how

strongly an individual regards the political outgroup as holding political or social beliefs

different from her/his own, which in turn causes a change in prejudice toward that

outgroup. Similarly, perceived fairness of the political outgroup (M2) is also considered

a mediator if the manipulation affects how strongly an individual regards the outgroup

as being open to different opinions, which in turn causes a change in prejudice toward

that outgroup. Many realistic mediation analyses involve multiple mediators, either

because interventions are designed to affect outcome by changing multiple (repeated

measures of) mediators, or because scientific interest is in trying to understand the

various causal pathways through (simultaneous) competing candidate mediators. Path

analysis (Wright, 1934; Duncan, 1966) is therefore commonly used to disentangle the

indirect or mediated effects of A on Y along the causal paths through the multiple

mediators.

Building on our example, the causal diagram of Figure 1(a) depicts the causal

relations between the variables when worldview dissimilarity (M1) and fairness (M2) are

assumed not to affect each other. In this article, a causal diagram is a causal directed

acyclic graph (DAG) (Hayduk et al., 2003; Pearl, 2012) that, similar to path diagrams

in the structural equation modeling (SEM) framework, represents (assumed) causal

relations among a set of variables. Vertices represent variables, and a directed edge e.g.,

from M1 to Y , represents the causal effect M1 may exert on Y . The absence of a
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directed edge between two variables, e.g., between M1 and M2 in Figure 1(a), implies

that neither variable causally affects the other, conditional on their common causes,

e.g., treatment A and observed baseline covariate(s), such as political ideology,

henceforth denoted by C. A summary of key concepts of causal DAGs can be found in

e.g., Moerkerke et al. (2015, Figure 2). Here and throughout, the causal effects between

the treatment and each mediator, between each mediator and the outcome, and

between the treatment and the outcome, are assumed to be based on well-established

scientific theoretical knowledge or empirical laws that satisfy logical and

causal-temporal constraints (Fiedler et al., 2018). Unlike path diagrams, causal DAGs

do not rely on (parametric) assumptions about the nature of the relationship between

the variables; hence path coefficients and error terms are not displayed on causal

diagrams in this article.

Mediation using path analysis within the SEM framework extends the Baron &

Kenny (1986) approach for a single mediator by employing (multiple) linear regression

models for the mediator(s) and the outcome; see e.g., MacKinnon (2008) and Hayes

(2018) for book-length presentations and the detailed references therein. A linear path

analysis model (or set of linear regression models) is first fitted to the outcome and the

mediator(s) using SEM (or ordinary least squares; OLS). The effect of treatment

transmitted along a particular path, as encoded by the (partial) regression coefficients

of the variables on the path, is then calculated using the product-of-coefficients method

(Alwin & Hauser, 1975; MacKinnon et al., 2002). This method prevails (as opposed to

the “difference” method) when there are multiple mediators (MacKinnon, 2000;

Preacher & Hayes, 2008). Continuing our example above in the causal diagram of

Figure 1(a), when M1 and M2 are assumed not to affect each other, the indirect effect

via M1 in the corresponding (linear) path model is defined to be the product of the

coefficient of A in the regression of M1 on A and C, and the coefficient of M1 in the

regression of Y on A,M1,M2 and C.
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Figure 1 . Causal diagrams with two mediators where either (a) M1 and M2 are

independent conditional on A and C, or (b) M1 causally precedes M2, or (c) M1 and M2

do not affect each other but share an unobserved common cause U , or (d) M2 causally

precedes M1. Rectangular nodes denote observed variables, while round nodes denote

unobserved variables. For visual clarity, edges emanating from C are drawn in gray.

Existing path analysis approaches for multiple causally linked mediators

When the assumed causal structure of the mediators allows for “compound” paths

from treatment to outcome that traverse several (causally) linked mediators, each

indirect effect along any path that passes through at least one of the mediators can be

separately assessed (Hayes, 2018). Using the motivating example, suppose that

worldview dissimilarity (M1) is assumed to causally affect fairness (M2), as depicted in

the causal diagram of Figure 1(b). The “three-path” mediated effect passing through

both mediators along the path A→M1 →M2 → Y (Taylor et al., 2008) is defined to

be the product of the coefficient of A in the regression of M1 on A and C, the coefficient

of M1 in the regression of M2 on A,M1 and C, and the coefficient of M2 in the

regression of Y on A,M1,M2 and C. However, there are three potential pitfalls when
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estimating the separate indirect effects along each path. First, the indirect effects are

well-defined exclusively when the assumed (directions of the) causal effects among the

mediators are correct. For example, suppose that the true causal relation between the

mediators was that fairness (M2) affected worldview dissimilarity (M1) as shown in the

causal diagram of Figure 1(d). The estimated mediated effect along the assumed path

A→M1 →M2 → Y will not (generally) be unbiased for the true effect along the

(different) path A→M2 →M1 → Y . Second, even when the causal effects are correctly

specified, estimates can be biased when there is hidden or unobserved confounding of the

mediators. For example, suppose that worldview dissimilarity (M1) and fairness (M2)

do not causally depend on each other, but instead share a hidden confounder U (such as

prior adverse interactions with a political outgroup) as depicted in Figure 1(c). Because

neither mediator exerts a causal effect on the other, there is no causal effect along any

path where one mediator affects the other. But incorrectly assuming that M1 affects M2

will result in biased (non-zero) estimates of the mediated effect along the path

A→M1 →M2 → Y . Specifically, the bias is due to biased estimates of the (partial)

regression coefficient of M1 (in the regression of M2 on A,M1 and C) because M1 and

M2 are correlated only due to hidden U , and not because M1 influences M2. Third,

even when the causal effects are correctly specified, and there is no hidden confounding

of the mediators, the causal effect transmitted along the path A→M1 →M2 → Y

cannot be (non-parametrically) identified in general without (empirically untestable)

assumptions about the mediators’ joint distribution. We elaborate on this last point

using the counterfactual-based mediation framework later in this article.

Notwithstanding the possibility of (unbiasedly) estimating separate indirect effects

along different assumed paths, substantive interest may be in the indirect effects

transmitted through each distinct mediator instead. We first consider settings where

the causal structure among the mediators can be (correctly) assumed, and defer settings

that do not require assuming any causal structure (among the mediators) to the next

section. Separate indirect effects along a set of different paths may be combined based

on a given definition of an indirect effect via a specific mediator (Bollen, 1987). For
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example, Greene (1977) proposes a restrictive definition of the indirect effect via a

mediator of interest to include only the path that intersects the particular mediator

alone and no other mediators, whereas Brown (1997), following Fox (1980), proposes a

less restrictive definition that includes all paths that intersect the particular mediator.

The former approach fails to account for mediated effects along compound paths

traversing several linked mediators, whereas the latter approach can potentially yield

indirect effects whose sum is greater than the total (treatment) effect. Alwin & Hauser

(1975) propose including all paths intersecting that mediator and any of its

descendants, and excluding all paths via mediators that causally precede the mediator

of interest. This approach ensures that the sum of the indirect effects via each mediator

equals the joint indirect effect via all the mediators, but only when each indirect effect

via a mediator is not moderated by any other mediator. Furthermore, we reiterate that

it is necessary to correctly specify the (directions of the) causal effects among the

mediators in the assumed path model for the above definitions of indirect effects via

each distinct mediator to be valid.

In general when multiple mediators are correlated, there may be several plausible

explanations of the associations, such as those depicted in the causal diagrams of

Figures 1(b), 1(c), and 1(d) for M1 and M2. Researchers seeking to learn about the

causal effects among the mediators may consider fitting different models assuming

different (possibly conflicting) causal structures, then ideally select the model that best

fits the observed data. But different models can be statistically indistinguishable, e.g.,

when they are saturated with zero degrees of freedom, or have identical goodness-of-fit

measures. Merely assuming causal effects among the mediators can result in severely

misleading conclusions about the mediated effects. Even when the assumed causal

effects among the mediators are correct, it may be unrealistic to assume that the

mediators do not share hidden or unobserved confounders, such as when the mediators

are manifestations of an unknown latent variable or process.
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A different definition of indirect effects via each mediator

In this article we propose a different definition of indirect effects when substantive

interest is in the indirect effects that are specific to each mediator. The proposed

definitions do not require (correctly) specifying how the mediators causally depend on

one another. We first provide an intuitive motivation, and defer its formal derivation to

the next section. Suppose that the outcome obeys the following linear and additive

mean model:

E(Y |A,M1,M2, C) = β0 + βAA+ β1M1 + β2M2 + βCC. (1)

The effect of each mediator Ms on outcome is encoded by the (partial) regression

coefficient βs, s = 1, 2 in (1). To avoid specifying any causal dependence among the

mediators, consider the marginal mean model for each mediator Ms, s = 1, 2, that

depends only on treatment A and baseline covariate(s) C, and does not depend on the

other mediator. In particular, suppose that the linear and additive (marginal) mean

model for Ms is:

E(Ms|A,C) = δ0s + δsA+ δCsC, s = 1, 2. (2)

It is important to note that (2) does not imply assuming that there are no causal effects

between M1 and M2. Indeed, the intention is simply to leave the causal structure of the

mediators unspecified, and to only consider the “overall” or “total” (i.e., marginal)

effect of treatment A on each mediator Ms, s = 1, 2 (conditional on C). The overall

effect of A on Ms captures all of the treatment effects that are transmitted through any

intermediate variables on the causal pathway between A and Ms. This overall or total

effect is simply encapsulated by the (partial) regression coefficient δs, s = 1, 2 in (2).

Using the product-of-coefficients method, the indirect effect via mediator Ms is

therefore encoded by βsδs. Estimating this product requires no knowledge of the

(possibly unknown) causal structure among the mediators from which the observed data

is generated.

The mean models implied by (1) and (2) therefore adopt the same functional form

as a (linear) path model corresponding to the causal diagrams of Figures 1(a) and 1(c),
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where the mediators are a priori assumed not to causally affect each other. Such path

models (without baseline covariates C) are termed “parallel” multiple mediator models

(Hayes, 2018). In fact, a prevalent approach (MacKinnon, 2000; Preacher & Hayes,

2008) is to fit a parallel multiple mediator model (henceforth termed a parallel path

model for simplicity) to the observed data. Recent examples across different areas in

psychology implementing this prevailing approach for multiple mediation analysis are

provided in the Discussion section. In a fitted parallel path model, the formulae for the

indirect effect is βsδs, because there is only one path from A to Y that intersects each

mediator Ms. Hence, existing indirect effects using parallel path models possess the

same interpretation as the proposed indirect effects when considering only the marginal

effect of treatment on each mediator, regardless of the unknown causal structure among

the mediators. Furthermore, the indirect effect estimates are robust against unobserved

confounding of the mediators, such as by U in Figure 1(c), that induces correlation

among the mediators unexplained by the mediators’ dependence on treatment A and

baseline covariates C. This is because the (point) estimates of the path coefficients βs

and δs in a fitted parallel path model remain the same regardless of whether the

mediator residuals covariances are constrained to zero (MacKinnon, 2000), or freely

estimated (Preacher & Hayes, 2008).

The indirect effect estimates remain unchanged when the mediator residuals are

permitted to covary only if either (i) there are no mediator-mediator interaction terms

in the outcome mean model (1) or (ii) the covariances do not depend on treatment.

When other mediators moderate the effect of each mediator on the outcome, and the

mediators’ covariances are affected by treatment, existing indirect effect estimates

assuming a parallel path model may be severely biased. Furthermore, there can be an

indirect effect that cannot be attributed to any specific mediator due to the mediators’

mutual dependence on one another. We therefore exploit the proposed definitions in this

article to develop indirect effects under such settings. We propose novel estimators of

the indirect effects that allow for the effect of each mediator on the outcome to be

moderated by treatment, or another mediator, or both, without having to specify a
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causal structure among the mediators. Unlike Hayes & Rockwood (2020) who consider

settings where covariates (unaffected by treatment) moderate the indirect effects of each

mediator, in this article we will focus on settings where mediators (possibly affected by

treatment) moderate each other’s indirect effects, and the mediators’ covariances are

permitted to change with treatment. The rest of this article is organized as follows. A

brief introduction to causal mediation using the counterfactual-based framework is

given. We describe conceptual definitions of the proposed interventional (in)direct

effects using the minimal example above with two mediators. Interpretations using the

causal diagrams of Figure 1 are provided to give readers intuition into the proposed

(in)direct effects. We formally demonstrate that under assumed linear and additive

models for the mediators and outcome, estimators of the interventional (in)direct effects

have the same analytical form as existing product-of-coefficient estimators in a fitted

parallel path model. Next, we propose novel estimators of the indirect effect due to the

mediators’ mutual dependence (on one another). We exploit the mediators’ covariances

under the assumed linear mean models, which simplifies closed form solutions for

settings with multiple mediators. Simulation studies based on a substantive mediation

analysis are used to illustrate estimating the proposed interventional (in)direct effects.

We empirically demonstrate how a misspecified path model, by either incorrectly

assuming causal effects among the mediators, or omitting mediator-mediator interaction

terms in the outcome model, can result in misleading conclusions about the indirect

effects. The proposed methods are utilized to assess the extent that the effect of

political inclusion on political prejudice is mediated by six distinct possible mediators in

a social psychology experiment. All scripts used to carry out the simulation studies, and

to estimate the interventional direct and indirect effects in the applied example, are

implemented in the open source R (R Core Team, 2019) statistical software

environment. The scripts are freely available online1, with more user-friendly functions

for applied researchers under development. We conclude with recommendations and

practical considerations for applied researchers using multiple mediation analyses to

1 https://github.com/wwloh/disentangle-multiple-mediators

https://github.com/wwloh/disentangle-multiple-mediators
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answer substantive questions.

Interventional direct and indirect effects

Mediation analysis using a counterfactual-based framework

Notwithstanding the widespread use of parametric approaches to mediation

analysis, a counterfactual-based framework for mediation analysis has been developed

using model-free definitions of natural direct and indirect effects (Robins & Greenland,

1992; Pearl, 2001). This development enables extensions to non-additive and non-linear

models, and formalizes the “ignorability” assumptions needed to identify the natural

(in)direct effects, without relying on a specific statistical model; see e.g., Imai, Keele, &

Tingley (2010) and Pearl (2014) for the single mediator setting. Under these

assumptions, the total effect can be decomposed into a direct and an indirect effect.

Using linear and additive (i.e., without interactions) mean models for the mediator and

outcome in the mediation formula yields the same estimators as the path analysis

approach using the product-of-coefficients method (Imai, Keele, & Yamamoto, 2010).

When there are multiple mediators, identifying the natural indirect effects via

each mediator is challenging because one mediator that is affected by treatment can

concurrently be a confounder of the mediator-outcome association for another mediator,

also known as post-treatment or treatment-induced confounding; see e.g., VanderWeele et

al. (2014) and Moerkerke et al. (2015). Here and throughout we will consider all

post-treatment confounders to be competing possible mediators. Continuing our

example above, suppose that worldview dissimilarity (M1) affects fairness (M2), as

depicted in Figure 1(b), so that M1 is a post-treatment confounder of the M2 − Y

relation. Then the natural indirect effect via M2 cannot be (non-parametrically)

identified because M1 is a recanting witness that is set to different counterfactual values

along the different paths A→M1 → Y and A→M1 →M2 → Y (Avin et al., 2005).

Strong (empirically untestable) parametric assumptions about the joint distribution of

the (counterfactual) mediators are required to identify the natural effects (Shpitser,

2013). Recent proposals of counterfactual-based mediation analysis for multiple



DISENTANGLING INDIRECT EFFECTS THROUGH MULTIPLE MEDIATORS 12

(repeated measures of) mediators have thus relied on stringent (“sequential

ignorability”) assumptions to carefully identify natural indirect effects either along

certain causal pathways (Daniel et al., 2015; Steen et al., 2017; Albert et al., 2019), or

assuming no causal effects among the mediators (Lange et al., 2013; Taguri et al.,

2018). But (fine-grained) decompositions of indirect effects using these existing methods

require correctly specifying the (absence of) causal effects among the mediators, and

assuming that the mediators share no hidden confounders. In most realistic scenarios,

the directions of the causal effects between the various mediators are unknown, thus

either violating the assumptions needed to identify the indirect effects, or demanding

additional assumptions about the correct specification of the causal structure.

In contrast, interventional (in)direct effects, first introduced by Didelez et al.

(2006) and VanderWeele et al. (2014) for a single mediator, then generalized by

Vansteelandt & Daniel (2017) to the multiple mediator setting, can be identified under

much weaker conditions than natural effects, and still achieve an exact decomposition of

the total effect. Unlike natural effects that are defined in terms of individual-level

(deterministic) interventions on the mediator, interventional effects consider

population-level (stochastic) interventions that set the value of the mediator to a

random draw from its counterfactual distribution. Continuing with the motivating

example above, the natural indirect effect via worldview dissimilarity (M1) is the

average change in prejudice (Y ) when each individual’s (counterfactual) value of

worldview dissimilarity is manipulated from being political included (A = 1) to that

under control (A = 0). In contrast, the interventional indirect effect is the average

change in prejudice when the (counterfactual) distribution of worldview dissimilarity

under the political inclusion manipulation is shifted to that under control.

Interventional effects can therefore be scientifically meaningful even when the treatment

cannot be realistically manipulated at the individual level. For example, Jackson &

VanderWeele (2018) describe interventional (in)direct effects using race as the treatment

and socioeconomic status as the mediator, without having to define nested potential

outcomes (for each individual) where race is set to one group but socioeconomic status
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is simultaneously set to its potential value under a different group, depending on the

treatment effect of race. Quynh Nguyen et al. (2019) compare different definitions of

direct and indirect effects used in causal mediation analysis that may be motivated by

different research questions. We refer interested readers to Lin & VanderWeele (2017),

Moreno-Betancur & Carlin (2018), and Lok (2019) among many others for discussions

of interventional effects in the causal inference and epidemiology literature.

Definition of potential outcomes

To facilitate the conceptual development of interventional (in)direct effects, we

present definitions under a setting with two mediators M1 and M2, and defer results for

more than two mediators to the Online Supplemental Materials. In this article,

uppercase letters denote (observed) random variables and (possibly unobserved)

potential outcomes, and lowercase letters denote specific values, for each individual. For

s = 1, 2, let Ms,a(s) denote the potential outcome for Ms if, possibly counter to fact,

treatment A is set to a(s). Let Yam1m2 denote the (individual) potential outcome for Y

if, possibly counter to fact, A is set to a, and when each mediator Ms is set to the value

ms, s = 1, 2.

Definition of interventional indirect and direct effects

In this section, we formally define the interventional indirect and direct effects and

describe the exact decomposition of the total effect for a binary treatment A. We

provide interpretations of the interventional (in)direct effects in terms of the underlying

causal path(s) in the causal diagrams of Figure 1.

Define the interventional indirect effect of treatment on outcome via M1,

henceforth denoted by IE1, as:

E
[ ∑

m1,m2

E(Y1m1m2|C) {Pr(M1,1 = m1|C)− Pr(M1,0 = m1|C)}Pr(M2,0 = m2|C)
]
. (3)

The interventional indirect effect via mediator M1 is the treatment effect of changing

M1 from its marginal (counterfactual) distribution under treatment level a(1) = 1 to its

distribution under level a(1) = 0, while fixing the mediator M2 at its distribution under



DISENTANGLING INDIRECT EFFECTS THROUGH MULTIPLE MEDIATORS 14

treatment level a(2) = 0, and the individual values of treatment at a(0) = 1. Continuing

the example above, the interventional indirect effect via worldview dissimilarity is the

average difference in political prejudice (Y ) when the distribution of worldview

dissimilarity is shifted from political inclusion to the control condition, while holding

the distribution of perceived fairness (M2) fixed under the control condition, among

individuals in the political inclusion group. In other words, the indirect effect describes

how political prejudice is potentially affected (on average) when worldview dissimilarity

is randomly drawn from its (counterfactual) distribution under treatment, as compared

to a specific other distribution under control. The distributions under treatment and

under control need not differ only in terms of the location (mean) parameter, or the

scale (variance) parameter, or both, and may generally adopt different (parametric)

forms.

The interventional indirect effect via M1 in (3) is defined to be a function of the

difference in (marginal) probabilities Pr(M1,1 = m1|C)− Pr(M1,0 = m1|C). When the

underlying causal structure among the mediators is as depicted in the causal diagrams

of Figures 1(a) – 1(c), the indirect effect via M1 therefore corresponds to the causal

effect transmitted along the path A→M1 → Y ; whereas in the causal diagram of

Figure 1(d), the indirect effect combines the effects along the paths A→M1 → Y and

A→M2 →M1 → Y . The interventional indirect effect via M1 thus captures all of the

treatment effect that is mediated by M1, and any other mediators causally preceding

M1, in the underlying causal diagram.

Similarly, define the interventional indirect effect of treatment on outcome via M2,

henceforth denoted by IE2, as:

E
[ ∑

m1,m2

E(Y1m1m2|C) Pr(M1,1 = m1|C) {Pr(M2,1 = m2|C)− Pr(M2,0 = m2|C)}
]
. (4)

The interventional indirect effect via mediator M2 can be analogously interpreted as the

indirect effect via M1. In particular, when the underlying causal structure among the

mediators is as depicted in the causal diagrams of Figures 1(a), 1(c), and 1(d), the

interventional indirect effect via M2 (4) corresponds to the causal effect transmitted

along the path A→M2 → Y ; in the causal diagram of Figure 1(b), the indirect effect
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combines the effects along the paths A→M2 → Y and A→M1 →M2 → Y . As

before, the interventional indirect effect via M2 is interpreted as the effect of treatment

that is mediated by M2, and any other mediators causally preceding M2, in the

underlying causal diagram. In general, when there are t > 2 distinct mediators, the

interventional indirect effect via each mediator Ms, henceforth denoted by IEs, for

s = 1, . . . , t, is defined in the Online Supplemental Materials.

In this article, subscripts in the notation for mediators are merely used to

distinguish the different mediators, and not to indicate an a priori assumed causal

ordering of the mediators; e.g., M1 is not necessarily assumed to causally precede M2.

Nonetheless, the definitions of the indirect effects via each mediator will generally, but

not necessarily, differ by changing the indices of the mediators, due to fixing the other

mediator at its distribution under a different hypothetical treatment level. For example,

had worldview dissimilarity been merely indexed as M2, the indirect effect via worldview

dissimilarity would hold the distribution of perceived fairness (now M1) fixed under the

political inclusion condition instead. The hypothetical treatment levels are fixed at

different values merely to ensure that the separate indirect effects via each mediator add

up to the same quantity in (5) defined below, regardless of the (typically arbitrary)

indices used solely to label the mediators for statistical analysis. Notwithstanding such

differences, we emphasize that the conceptual interpretation of the interventional

indirect effect via each mediator - in terms of the causal pathways in the underlying

causal structure - is invariant to the different mediator indices. In later sections, we

describe the estimators when the effect of each mediator on the outcome is moderated

by treatment, or the other mediator, or both, and describe a sensitivity analysis.

It follows that the sum of the separate interventional indirect effects via each

mediator, i.e., IE1 + IE2, is:

E
[ ∑

m1,m2

E(Y1m1m2|C) {Pr(M1,1 = m1|C) Pr(M2,1 = m2|C)

− Pr(M1,0 = m1|C) Pr(M2,0 = m2|C)}
]
. (5)

This indirect effect describes the average difference in the outcome when both marginal
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(counterfactual) distributions of the mediators M1 and M2 are simultaneously shifted

from the treated group (a(1) = a(2) = 1) to the control group (a(1) = a(2) = 0). Because

the product of the marginal distributions does not equal the joint distribution of the

mediators in general, define the joint indirect effect via the mediators, henceforth

denoted by IEjo, as:

E
[ ∑

m1,m2

E(Y1m1m2|C) {Pr(M1,1 = m1,M2,1 = m2|C)

− Pr(M1,0 = m1,M2,0 = m2|C)}
]
. (6)

We emphasize that in (6) the joint (counterfactual) distribution of the mediators M1

and M2 is shifted, instead of the marginal distributions as defined in (5). The difference

between IEjo in (6) and IE1 + IE2 in (5), henceforth denoted by IEmu, is therefore:

E
 ∑

m1,m2

E(Y1m1m2|C)

Pr(M1,1 = m1,M2,1 = m2|C)−
2∏

s=1
Pr(Ms,1 = ms|C)

− Pr(M1,0 = m1,M2,0 = m2|C) +
2∏

s=1
Pr(Ms,0 = ms|C)


. (7)

We refer to (7) as the indirect effect due to the mediators’ mutual dependence on each

other (Vansteelandt & Daniel, 2017). We will demonstrate in the next section that

under assumed linear models for the means of the mediators and the outcome, this

indirect effect is non-zero only if (i) the effect of each mediator on the outcome is

moderated by the other mediator, and (ii) the covariance of the mediators is affected by

treatment. Because this effect cannot be attributed to any mediator alone, it should be

considered separately from the indirect effects via each mediator.

The interventional direct effect of treatment on outcome that avoids both

mediators, henceforth denoted by DE, is correspondingly defined as:

E
[ ∑

m1,m2

{E(Y1m1m2|C)− E(Y0m1m2 |C)}Pr(M1,0 = m1,M2,0 = m2|C)
]
. (8)

The direct effect (8) is the treatment effect when controlling the joint (counterfactual)

distribution of the mediators M1 and M2 to be under control, i.e., a(1) = a(2) = 0. The

direct effect (8) corresponds to the causal effect along the path A→ Y that avoids all

the mediators in the causal diagrams of Figure 1. Define the sum of the joint indirect
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effect (6) and the direct effect (8) to be the total effect of treatment on outcome,

henceforth denoted by TE, as:

E
 ∑

m1,m2

{
E(Y1m1m2|C) Pr(M1,1 = m1,M2,1 = m2|C)

− E(Y0m1m2|C) Pr(M1,0 = m1,M2,0 = m2|C)
}
. (9)

In other words, TE = DE + IEjo = DE + IE1 + IE2 + IEmu. Definitions for settings with

more than two distinct mediators are provided in the Online Supplemental Materials.

Identification of interventional effects

Identification of the interventional effects defined above requires the following

assumptions (Vansteelandt & Daniel, 2017):

(A1) The effect of treatment A on outcome Y is unconfounded conditional on C.

(A2) The effect of both mediators M1,M2 on outcome Y is unconfounded conditional

on A and C.

(A3) The effect of treatment A on both mediators is unconfounded conditional on C.

Assumption (A1) states that there are no unobserved confounders between A and

Y , or equivalently, that the observed covariate(s) C are sufficient to adjust for

confounding of the effect of A on Y . This assumption is implied in the causal diagrams

of Figure 1 by the absence of any hidden common causes of A and Y .

Because the potential outcome Yam1m2 is unknown for each value of (a,m1,m2)

except for the observed realization (A,M1,M2), assumption (A2) states that there is

available sufficient covariate information observed in C so that the association between

any of (M1,M2) and Y is unconfounded within levels of the covariate(s) C. This

assumption requires that there is no confounder of any mediator-outcome association

that is affected by treatment; such potential post-treatment confounders can merely be

included in the set of possible mediators under the multiple mediator setting considered

in this article. This assumption is implied in the causal diagrams of Figure 1 by the

absence of any hidden common causes of any of (M1,M2) and Y . Hence one possible
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scenario under which assumption (A2) is violated, as illustrated by Mayer et al. (2014)

in their opening example (for a single mediator), is when baseline measurements of a

mediator and the outcome are correlated and unadjusted for, even in a randomized

experiment. For this reason, baseline covariates were adjusted for in models (1) and (2).

Because M1,a(1) and M2,a(2) are unknown for each value of {a(1), a(2)} except when

a(1) = a(2) = A, assumption (A3) states that there are no unobserved confounders

between A and any of (M1,M2), or equivalently, that the observed covariate(s) C are

sufficient to adjust for confounding of the effects of A on (M1,M2). This assumption is

implied in the causal diagrams of Figure 1 by the absence of any hidden common causes

of A and any of (M1,M2). Note that assumptions (A1) and (A3) are satisfied in

randomized trials when A is randomly assigned. When treatment is not randomly

assigned, observed (baseline) confounders of the treatment-mediator(s) and

treatment-outcome should be included in C and adjusted for in the mediator and

outcome models.

When the assumptions (A1)–(A3) hold, the interventional direct and indirect

effects defined above can be inferred from the observed data. In particular, the average

potential outcomes, and joint distribution of the counterfactual mediators, can be

(non-)parametrically identified by the following observable quantities:

E
[ ∑

m1,m2

E(Ya(0)m1m2|C)
2∏

s=1
Pr(Ms,a(s) = ms|C)

]

= E
[ ∑

m1,m2

E(Y |A = a(0),M1 = m1,M2 = m2, C)
2∏

s=1
Pr(Ms = ms|A = a(s), C)

]
; (10)

E
[ ∑

m1,m2

E(Ya(0)m1m2|C) Pr(M1,a(1) = m1,M2,a(1) = m2|C)
]

= E
[ ∑

m1,m2

E(Y |A = a(0),M1 = m1,M2 = m2, C) Pr(M1 = m1,M2 = m2|A = a(1), C)
]
.

(11)

In practice, unbiased estimation of the interventional direct and indirect effects

therefore depends on correctly modeling the outcome conditional on treatment,

mediators, and covariates, e.g., E(Y |A = a,M1 = m1,M2 = m2, C), that is unbiased for

E(Yam1m2|C), and a joint distribution of the observed mediators conditional on
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treatment and covariates, e.g., Pr(M1 = m1,M2 = m2|A = a, C), that is unbiased for

Pr(M1,a = m1,M2,a = m2|C).

Estimators of interventional indirect and direct effects

In this section we describe estimators of the interventional (in)direct effects

defined in the previous section. We first assume a parallel path model with no

interaction terms in the outcome model, then relax this assumption to allow for

treatment-mediator, mediator-mediator, and treatment-mediator-mediator interactions.

Outcome models without interaction terms

Suppose that the outcome obeys the linear and additive mean model in (1), i.e.,

E(Y |A,M1,M2, C) = β0 + βAA+ β1M1 + β2M2 + βCC. Further suppose that the

marginal treatment effect on each mediator, given baseline covariate(s) C, is

parametrized by the (partial) regression coefficient of treatment A in the linear and

additive (marginal) mean models in (2), i.e., E(Ms|A,C) = δ0s + δsA+ δCsC, s = 1, 2.

The interventional indirect effect via each mediator Ms, s = 1, 2, is identified upon

plugging the assumed outcome model (1) and mediator models (2) into (10); i.e.,

IEs = βs {E(Ms|A = 1)− E(Ms|A = 0)} = βsδs.

The joint indirect effect (IEjo) and direct effect (DE) are similarly identified under the

assumed outcome model (1) and mediator models (2) using (11); i.e.,

IEjo =
2∑

s=1
βs {E(Ms|A = 1)− E(Ms|A = 0)} =

2∑
s=1

βsδs, DE = βA.

Unbiased estimation of the interventional (in)direct effects thus requires correctly

specifying the outcome mean model (1) and mediator (marginal) mean models (2)

under assumptions (A1)–(A3).

As previously noted in the introduction, the derivation of the interventional effects

imply mean models (1) and (2) that adopt the same form for the expected values of the

outcome Y and mediators Ms, s = 1, 2, as a parallel path model where the mediators

are assumed not to causally affect each other. The interventional indirect effect via each
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mediator Ms thus equals the indirect effect using the product-of-coefficients method

βsδs for the path A→Ms → Y in the parallel path model. Similarly, the interventional

direct effect equals βA for the path A→ Y that avoids both mediators in the parallel

path model. Estimators of the interventional effects can therefore be straightforwardly

obtained by fitting the parallel path model to the observed data using linear SEM or

OLS, then plugging in estimates of the (partial) regression coefficients for the respective

effects using the product-of-coefficients method. Standard errors can be estimated using

a nonparametric percentile bootstrap procedure (Efron & Tibshirani, 1994) that

randomly resamples observations with replacement. In general when there are t > 2

distinct mediators, the estimators of the interventional indirect effects via each mediator

Ms, s = 1, . . . , t, are described in the Online Supplemental Materials.

Again we emphasize that δs in (2) encodes the overall or total effect of A on Ms

and captures all of the underlying treatment effects that are transmitted from A to Ms

through any causal ancestors of Ms. To see why fitting mean models (1) and (2) is

sufficient to obtain unbiased estimators of the interventional (in)direct effects, consider

the continuing example from the introduction corresponding to the causal diagram of

Figure 1(b). Suppose that the observed data is generated from a true (but unknown)

path model where M1 has a causal effect on M2, with the mediator and outcome models:

E(M1|A,C) = α∗
01 + α∗

1A+ α∗
C1C,

E(M2|A,M1, C) = α∗
02 + α∗

2A+ η∗
12M1 + α∗

C2C,

E(Y |A,M1,M2, C) = β∗
0 + β∗

AA+ β∗
1M1 + β∗

2M2 + β∗
CC.

(Asterisks denote parameters in the true but unknown data-generating model.) Note

that the αs parameter encodes the conditional association between treatment A and

mediator Ms, s = 1, 2, possibly given other mediators such as M1 in the model for M2,

and will therefore differ from δs in general. The mean of the implied marginal



DISENTANGLING INDIRECT EFFECTS THROUGH MULTIPLE MEDIATORS 21

distribution of M2, obtained by averaging over the distribution of M1, is then:

E(M2|A,C) =
∑
m1

E(M2|A,M1 = m1, C) Pr(M1 = m1|A,C)

= α∗
02 + α∗

2A+ η∗
12 E(M1|A,C) + α∗

C2C

= α∗
02 + α∗

2A+ η∗
12(α∗

01 + α∗
1A+ α∗

C1C) + α∗
C2C

= (α∗
02 + η∗

12α
∗
01) + (α∗

2 + η∗
12α

∗
1)A+ (α∗

C2 + η∗
12α

∗
C1)C.

The interventional indirect effect via M2 in the true but unknown model is thus

identified by β∗
2(α∗

2 + η∗
12α

∗
1). By fitting to the observed data a parallel path model with

outcome mean model (1), so that β2 = β∗
2 , and mediator mean model (2), so that

δ2 = α∗
2 + η∗

12α
∗
1, it follows that the interventional indirect effect can be unbiasedly

estimated using the product-of-coefficients method because β2δ2 = β∗
2(α∗

2 + η∗
12α

∗
1)

(assuming (A1)–(A3) hold). Hence the parallel path model is used merely to obtain

estimators of the interventional indirect and direct effects using ubiquitous linear SEM

or OLS estimation methods. Unbiased estimation does not require the mediators to be

causally independent, as implied in the parallel path model; in fact, the (marginal)

mean model (2) is used precisely so that the interventional indirect effects are agnostic

to the underlying causal dependence among the mediators.

Outcome models with treatment-mediator, mediator-mediator, and

treatment-mediator-mediator interaction terms

Under the assumed outcome model (1), the joint indirect effect via both mediators

(IEjo) equalled the sum of both separate indirect effects via each mediator (IE1 + IE2).

As we will demonstrate next, this was a consequence of excluding mediator-mediator

interaction terms from the outcome model, which precluded a non-zero estimate of the

indirect effect due to the mediators’ mutual dependence on each other (IEmu). The

effect of a mediator on the outcome is moderated by a third variable if the effect

depends on, or is a function of, the third variable. In this section, we develop estimators

for the interventional (in)direct effects when the effect of each mediator on the outcome

is moderated by treatment, or the other mediator, or both. First, allow for the following
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treatment-mediator, mediator-mediator, and treatment-mediator-mediator interaction

terms in the assumed linear mean model (1); i.e.,

E(Y |A,M1,M2, C) = β0 + βAA+ β1M1 + β2M2 + βA1AM1 + βA2AM2

+ β12M1M2 + βA12AM1M2 + βCC. (12)

Next, allow the mediators’ covariance to depend on treatment A, which we denote by

cov(M1,M2|A) = Σ(A) for notational simplicity. Then under the outcome mean model

(12) and mediator mean models (2), the indirect effect due to the mediators’ mutual

dependence (7) is identified by:

E
 ∑

m1,m2

E(Y |A = 1,m1,m2, C)

×
{

Pr(M1 = m1,M2 = m2|A = 1, C)− Pr(M1 = m1|A = 1, C) Pr(M2 = m2|A = 1, C)

− Pr(M1 = m1,M2 = m2|A = 0, C) + Pr(M1 = m1|A = 0, C) Pr(M2 = m2|A = 0, C)
}

= (β12 + βA12) E{cov(M1,M2|A = 1, C)− cov(M1,M2|A = 0, C)}

= (β12 + βA12){Σ(1)− Σ(0)}. (13)

We make the perhaps obvious point that the indirect effect (13) is non-zero only if (i)

there is a non-zero (treatment-)mediator-mediator interaction in the outcome model

(12), i.e., β12 + βA12 6= 0; and (ii) the covariance of the mediators is affected by

treatment, i.e., Σ(1)− Σ(0) 6= 0. Continuing the motivating example from the

introduction, perceived worldview dissimilarity (M1) and perceived fairness (M2) may

become more weakly correlated among those who were politically included (A = 1) than

those in the control condition (A = 0). The treatment group-specific covariances of the

mediators can be straightforwardly estimated from the observed data using the

empirical covariances within each observed treatment group.

The interventional indirect effect via mediator M1 (3) under the outcome mean
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model (12) is identified by:

E
 ∑

m1,m2

E(Y |A = 1,m1,m2, C)

×
{

Pr(M1 = m1|A = 1, C)− Pr(M1 = m1|A = 0, C)
}

Pr(M2 = m2|A = 0, C)


= {(β1 + βA1) + (β12 + βA12) E(M2|A = 0)}δ1

= {(β1 + βA1) + (β12 + βA12)(δ02 + δC2µC)}δ1,

where we denote µC = E(C) for simplicity. The interventional indirect effect via

mediator M2 (4) is similarly identified by:

{(β2+βA2)+(β12+βA12) E(M1|A = 1)}δ2 = {(β2+βA2)+(β12+βA12)(δ01+δ1+δC1µC)}δ2.

Estimators of the interventional indirect effects when there are more than two

mediators are provided in the Online Supplemental Materials. We emphasize that

unbiased estimation under the above (correctly-assumed) linear mean models for the

mediators and outcome therefore requires no distributional assumptions on the random

errors for the variables.

When a mean outcome model without interactions, such as (1), is assumed, the

resulting indirect effect estimators are invariant to the mediator indices. In other words,

merely switching the indices, e.g., by denoting worldview dissimilarity and fairness by

M2 and M1 respectively, yields the same estimators. In contrast, under the assumed

outcome model (12), the estimator of the indirect effect via one mediator is a (linear)

function of the mean value of the other mediator under a given treatment level. Hence

different indices lead to different estimators of the interventional indirect effects. For

example, the indirect effect via M1 would be {(β1 + βA1) + (β12 + βA12) E(M2|A = 1)}δ1

instead, where M2 is now fixed at its mean value under treatment; similarly, the indirect

effect via M2 would be {(β2 + βA2) + (β12 + βA12) E(M1|A = 0)}δ2 instead, with M1 fixed

at its mean value under control. Because the choice of mediator indices can lead to

different estimators, we describe in the applied example how to carry out a sensitivity

analysis where the mediator indices are permuted, and the indirect effects estimated

under each permutation. When the (true) effect of each mediator on the outcome is
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moderated by treatment, or the other mediator, or both, (incorrectly) assuming no

interactions in the outcome model can lead to biased estimates of the indirect effects.

We demonstrate this empirically using a simulation study in the next section.

Simulation studies

Three simulation studies were conducted to illustrate estimating the proposed

interventional indirect effects. In each study, all mediators were correlated due to an

unobserved confounder (of the mediators). In Study 1, a setting with two mediators was

used simply to demonstrate the estimators presented in the preceding section. In

Studies 2 and 3, we considered more complex and realistic settings with four mediators.

To provide an overview, in Study 2, a posited path model that incorrectly assumed (the

presence of) causal effects among merely correlated mediators was used to estimate

separate mediated effects along different paths. For comparison, existing

product-of-coefficient estimators under a parallel path model, that adopted the same

analytical form as interventional (in)direct effect estimators assuming linear and

additive models for the mediators and outcome, were calculated. In Study 3, the effect

of each (true) mediator on the outcome was moderated by another mediator, and the

mediators’ covariance (possibly) depended on treatment. The interventional indirect

effects, including the indirect effect due to the mediators’ mutual dependence on one

another, were estimated using an outcome model that included all mediator-mediator

interaction terms. For comparison, indirect effects using a misspecified parallel path

model (with only main effects for the mediators in the outcome model) were estimated.
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Simulation Study 1

Each observed dataset was generated with the following linear models

corresponding to the causal diagram of Figure 2:

A ∼ Bernoulli(0.5)

C,U ∼ N (1, 1)

M1 = α1A+ αC1C + αU1U + ε1, ε1 ∼ N (0, σ2
1)

M2 = α2A+ η12M1 + αC2C + αU2U + ε2, ε2 ∼ N (0, σ2
2)

Y = βAA+ β1M1 + β2M2 + βCC + εY , εY ∼ N (0, σ2
Y ).

Both mediators shared an unobserved (baseline) common cause U that precluded

unbiased estimation of the separate (three-path) mediated effect along

A→M1 →M2 → Y in general. The observed covariate C was a (baseline) confounder

of both mediators and the outcome. The variables A,C, U, and residuals ε1, ε2, εY , were

mutually independent of each other. The values of the (partial) regression coefficients in

the data-generating model were set as α1 = −0.09, β2 = −0.66, α2 = β1 = βa = 0, where

the non-zero values were the path coefficient estimates in Figure 5a of Voelkel et al.

(2019) that the motivating example was based on. The values of the remaining

coefficients and residual variances were set to one for simplicity. The interventional

indirect effect via M1 corresponded to the causal effect along the path A→M1 → Y ,

and was identified by β1α1. In this study, this indirect effect was zero because M1 did

not affect outcome (β1 = 0). The interventional indirect effect via M2 corresponded to

the combined causal effect along the paths for A→M2 → Y and A→M1 →M2 → Y ,

and was identified by β2(α2 + η12α1). In this study, even though M2 was unaffected by

treatment directly (α2 = 0), this indirect effect was non-zero because η12α1 was

non-zero. For simplicity, the direct effect βA was zero.

The interventional (in)direct effects were estimated by simply fitting to each

generated observed data: the (linear and additive) outcome mean model shown in (1),

and a (marginal) linear and additive mean model for each mediator, where each

mediator depended only on treatment A and observed (baseline) covariate C as shown
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A M2

M1U

Y

C

Figure 2 . Causal diagram used to generate each simulated dataset with two possible

mediators in simulation study 1. Rectangular nodes denote observed variables, while

round nodes denote unobserved variables. For visual clarity, edges emanating from the

baseline covariate C are drawn in gray, while edges emanating from the hidden

confounder U are drawn as broken lines.

in (2). Under the assumed models, the interventional (in)direct effect estimators

adopted the same analytical form as existing product-of-coefficient estimators under a

parallel path model. We reiterate that the mediators need not be causally independent,

as implied by the fitted parallel path model. The (marginal) mean models (2) are used

solely to estimate the interventional indirect effects that are agnostic to the underlying

causal structure among the mediators. 10000 observed datasets with sample size of

either 50, 200, or 1000 were generated. Average estimates and empirical standard errors

of the mediated effects from fitting the parallel path model to the generated data are

displayed in Table 1. As expected, all the interventional (in)direct effects were

unbiasedly estimated.

Simulation Study 2

This simulation study was motivated by a substantive mediation analysis on

climate change beliefs and attitudes from the psychology literature (van der Linden et

al., 2015). Each observed dataset was generated with the following linear and additive
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Table 1

Average estimates (“Est.”) and empirical standard errors (“Ese.”) of the mediated

effects in simulation study 1. The sample size (n) was either 50, 200, or 1000. All

results were rounded to two decimal places.

n = 50 n = 200 n = 1000

Effect True value Est. Ese. Est. Ese. Est. Ese.

IE1 0.00 0.00 0.09 -0.00 0.02 0.00 0.01

IE2 0.06 0.06 0.48 0.06 0.23 0.06 0.10

DE 0.00 -0.00 0.30 0.00 0.14 -0.00 0.06

models corresponding to the causal diagram of Figure 3:

A ∼ Bernoulli(0.5)

C,U ∼ N (0, 1)

Ms = αsA+ αCsC + αUsU + εs, s = 1, 2, 3,

M4 = α04 + αC4C + αU4U + ε4,

εs ∼ N (0, σ2
s), s = 1, 2, 3, 4,

Y = β2M2 + β3M3 + β4M4 + βCC + εY ,

εY ∼ N (0, σ2
Y ).

Under the (true) data-generating model, the unobserved variable U was a (baseline)

confounder of all four mediators, and the observed variable C was a (baseline)

confounder of all four mediators and the outcome. The variables A,C, U, and residuals

ε1, ε2, ε3, ε4, εY were mutually independent of each other. Following the path coefficient

estimates in Figure 2 of van der Linden et al. (2015), the values of the (partial)

regression coefficients in the data-generating model were set as

α1 = 12.80, α2 = 1.50, α3 = 1.92, β2 = β3 = 0.08, β4 = 0.19. The values of the remaining

coefficients and residual variances were set to one for simplicity. There were no indirect

effects via M1 or via M4 because M1 did not affect Y , and M4 did not depend on any of

the other mediators or treatment and hence unaffected by treatment. The
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interventional indirect effects via M2 and M3 corresponded to the causal effects along

the paths for A→M2 → Y and A→M3 → Y respectively, and were identified by β2α2

and β3α3. For simplicity, the direct effect was zero.

The interventional (in)direct effects were estimated by fitting to each generated

observed data: a (marginal) linear and additive mean model for each mediator, where

each mediator depended only on treatment A and observed (baseline) covariate C as

shown in (2), and the following (linear and additive) outcome mean model:

E(Y |M1,M2,M3,M4, C) = β0 + βAA+ β1M1 + β2M2 + β3M3 + β4M4 + βCC.

Under the assumed models, the interventional (in)direct effect estimators adopted the

same analytical form as existing product-of-coefficient estimators under a parallel path

model.

A M1 U

M2

M3

M4 Y

C

Figure 3 . Causal diagram used to generate each simulated dataset with four possible

mediators. Rectangular nodes denote observed variables, while round nodes denote

unobserved variables. For visual clarity, edges emanating from the baseline covariate C

are drawn in gray, while edges emanating from the hidden confounder U are drawn as

broken lines.

Now suppose that substantive interest was in assessing indirect effects through the

mediators by positing certain causal effects between the mediators, such as in the causal

diagram of Figure 4. This particular path model was posited by van der Linden et al.

(2015) as a “gateway belief model” representing “causal associations” between

perceptions of scientific consensus, key beliefs in climate change, and support for
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climate action. Treatment A was a randomly assigned consensus-message intervention,

mediators M1,M2,M3, and M4 were perceived level of scientific consensus, belief that

climate change is happening, belief in human causation (of climate change), and worry

about climate change respectively, and outcome Y was support for public action. In

particular, a causal structure among the variables was posited that assumed (i) the

consensus-message intervention (A) affected only the level of perceived consensus (M1),

and no other variables, (ii) the level of perceived consensus (M1) affected the key beliefs

in climate change (M2,M3,M4), (iii) belief that climate change is happening (M2), and

belief in human causation (M3) subsequently affected worry about climate change (M4),

and (iv) support for public action (Y ) was causally affected by the key beliefs in climate

change (M2,M3,M4), and neither level of perceived consensus (M1) or the

consensus-message intervention (A) directly.

A M1

M2

M3

M4 Y

C

Figure 4 . Causal diagram for positing indirect effects assuming the causal structure of a

“gateway belief model” (van der Linden et al., 2015). For visual clarity, edges

emanating from the baseline covariate C are drawn in gray.

A discussion of how to use causal diagrams to carefully represent causal

mechanisms in theoretical models based on established scientific knowledge and prior

careful experimentation is beyond the scope of this paper; we refer readers to Grosz et

al. (2020). Instead, we will only consider whether estimates of the separate mediated

effects along different assumed paths in Figure 4 can be unbiasedly estimated when the

observed data was generated using the model in Figure 3. Denote the three-path

mediated effect for the path A→M1 →Ms → Y by PE1s for s = 2, 3, 4, and denote the
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“four-path” mediated effect for the path A→M1 →Ms →M4 → Y by PE1s4 for

s = 2, 3. The true values of all these mediated effects were zero under the

data-generating model because M1 did not exert any causal effects on the other

mediators.

10000 observed datasets with sample size of either 50, 200, or 1000 were generated.

Average estimates and empirical standard errors of the mediated effects from fitting the

posited path model in Figure 4 to the generated data are displayed in Table 2. As

expected, all the estimated mediated effects for the separate paths were empirically

biased due to unobserved confounding of the mediators. The estimates could be either

positively or negatively biased, and remained biased even at large sample sizes. In

contrast, all the interventional indirect effects were unbiasedly estimated.

Table 2

Average estimates (“Est.”) and empirical standard errors (“Ese.”) of the mediated

effects under the posited “gateway belief” path model in the simulation study. The

sample size (n) was either 50, 200, or 1000. All results were rounded to two decimal

places.

n = 50 n = 200 n = 1000

Effect True value Est. Ese. Est. Ese. Est. Ese.

PE12 0.00 0.14 0.22 0.14 0.10 0.14 0.05

PE13 0.00 0.17 0.25 0.17 0.12 0.17 0.05

PE14 0.00 -0.19 0.16 -0.19 0.07 -0.19 0.03

PE124 0.00 0.11 0.10 0.11 0.04 0.11 0.02

PE134 0.00 0.13 0.11 0.13 0.05 0.13 0.02

IE1 0.00 0.03 1.79 0.02 0.82 -0.00 0.37

IE2 0.12 0.12 0.22 0.12 0.10 0.12 0.04

IE3 0.15 0.15 0.27 0.15 0.13 0.15 0.05

IE4 0.00 -0.00 0.10 0.00 0.04 -0.00 0.02

DE 0.00 -0.03 1.71 -0.01 0.79 0.00 0.35
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Simulation Study 3

This simulation study was used to demonstrate how to obtain estimators of the

interventional indirect effects that allowed for mediator-mediator interaction terms in

the outcome model. Each observed dataset was generated with the following linear

models corresponding to the causal diagram of Figure 3:

A ∼ Bernoulli(0.5)

C,U ∼ N (0, 1)

Ms = αsA+ αCsC + αUsU + αUAs(U × A) + εs, s = 1, 2, 3,

M4 = α04 + αC4C + αU4U + αUA4(U × A) + ε4,

εs ∼ N (0, σ2
s), s = 1, 2, 3, 4,

Y = β2M2 + β3M3 + β4M4 + β23M2M3 + βCC + εY ,

εY ∼ N (0, σ2
Y ).

The (true) data-generating model in this study differed from the previous study in two

respects. The effect of the unobserved confounder U on each mediator was moderated

by treatment A due to the U − A interaction term in each mediator mean model. The

effect of each (true) mediator on the outcome was moderated by the other (true)

mediator due to the M2 −M3 interaction term in the outcome mean model. The true

value of the coefficient for this interaction was set to e.g., β23 = −(β2 + β3), simply to

amplify possible biases that may arise when omitting this term in the fitted outcome

model. For simplicity, there were no other interaction effects in the outcome model, and

the direct effect was zero. The variables A,C, U, and residuals ε1, ε2, ε3, ε4, εY were

mutually independent of each other. The covariance between the mediators, induced by

the unobserved confounder U , was Σsp(A) = (αUs + αUAsA)(αUp + αUApA) for s 6= p,

and therefore depended on treatment when αUAs 6= 0 or αUAp 6= 0. Following the Online

Supplemental Materials, the indirect effect due to the mediators’ mutual dependence

was identified by β23(αU2αUA3 + αU3αUA2 + αUA2αUA3). The indirect effects via M2 and

via M3 were respectively identified by {β2 + β23 E(M3|A = 0)}α2 and

{β3 + β23 E(M2|A = 1)}α3.
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We generated data under each of two different scenarios in turn. (I) In the first

setting, the coefficients for the confounder-treatment interactions in the mediator

models were set to zero, i.e., αUAs = 0, s = 1, . . . , 4, so that the mediators’ covariance

did not differ by treatment. The indirect effect due to the mutual dependence of the

mediators was therefore zero. However, the indirect effect estimates assuming a parallel

path model would be biased due to omitting the mediator-mediator interaction terms in

the fitted outcome model. (II) In the second setting, set the coefficients

αUAs = 0.1, s = 1, . . . , 4, so that the indirect effect due to the mediators’ mutual

dependence was non-zero. The remaining coefficients and residual variances for both

scenarios were set to the same values as in Simulation Study 1.

The interventional indirect effects were estimated by fitting to each generated

data a (marginal) mean model for each mediator, where each mediator depended only

on treatment A and observed (baseline) covariate C as shown in (2), and the following

outcome model that included all mediator-mediator interaction terms:

E(Y |M1,M2,M3,M4, C)

= β0 + βAA+ β1M1 + β2M2 + β3M3 + β4M4 + βCC

+ β12M1M2 + β13M1M3 + β14M1M4 + β23M2M3 + β24M2M4 + β34M3M4.

For simplicity, no treatment-mediator or treatment-mediator-mediator interaction terms

were included. The indirect effect estimators, as shown in the Online Supplemental

Materials, were respectively:

IE1 = {β1 + β12 E(M2|A = 0) + β13 E(M3|A = 0) + β14 E(M4|A = 0)}δ1,

IE2 = {β2 + β12 E(M1|A = 1) + β23 E(M3|A = 0) + β24 E(M4|A = 0)}δ2,

IE3 = {β3 + β13 E(M1|A = 1) + β23 E(M2|A = 1) + β34 E(M4|A = 0)}δ3,

IE4 = {β4 + β14 E(M1|A = 1) + β24 E(M2|A = 1) + β34 E(M3|A = 1)}δ4,

IEmu =
4∑

k,l=1,
k<l

βkl{Σkl(1)− Σkl(0)}.

Under the assumed outcome model, different indices for the mediators lead to different

(definitions and) estimators of the indirect effects. In particular, swapping the labels for
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M2 and M3 would lead to an estimator for the indirect effect via M2 where M3 is fixed

at its mean value under treatment instead; i.e.,

{β2 + β12 E(M1|A = 1) + β23 E(M3|A = 1) + β24 E(M4|A = 0)}δ2. Similarly, the

estimator for the indirect effect via M3 would fix M2 at its mean value under control

instead; i.e., {β3 + β13 E(M1|A = 1) + β23 E(M2|A = 0) + β34 E(M4|A = 0)}δ3. A

sensitivity analysis where the mediator indices are permuted, and the indirect effects

estimated under each permutation, is carried out and discussed in the applied example,

and hence not considered here.

10000 observed datasets with sample size of either 50, 200, or 1000 were

generated, and estimators of the indirect effects from a fitted outcome model that either

included all mediator-mediator interactions, or excluded such interactions in a parallel

path model, were obtained. The model syntax in R describing the fitted models and the

indirect effect estimators are provided online as part of the R scripts for this article2.

Average estimates and empirical standard errors of the (in)direct effects are displayed in

Table 3. As expected, the (in)direct effects assuming a parallel path model were

empirically biased under both scenarios even in large samples. Furthermore, the

indirect effect via a mediator may be of the opposite sign as the true effect. In contrast,

estimates of the interventional indirect effects allowing for mediator-mediator

interaction terms in the outcome model were empirically unbiased under both scenarios.

Summary of simulation studies

The results of Simulation Study 1 empirically demonstrated that the parallel path

model can be used to unbiasedly estimate the interventional indirect and direct effects

proposed in this article, even when the mediators can be causally ordered, and there is

hidden confounding among the mediators. However, this is predicated on the outcome

model being correctly specified in that there are no mediator-mediator interaction

terms. Unbiased estimation does not require the mediators to be causally independent,

as implied in the parallel path model; in fact, the (marginal) mean model (2) is used

2 https://github.com/wwloh/disentangle-multiple-mediators

https://github.com/wwloh/disentangle-multiple-mediators
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Table 3

Average estimates (“Est.”) and empirical standard errors (“Ese.”) of the interventional

indirect and direct effects under each fitted model in the simulation study. An

interaction between the mediators’ unmeasured confounder U and the treatment A was

either absent (“U − A int.”=False) or present (“U − A int.”=True) when generating the

data. The assumed outcome model either included all mediator-mediator interactions

(“M −M int.”), or main effects only (“Parallel”). The sample size was either 50, 200,

or 1000. All results were rounded to two decimal places.

n = 50 n = 200 n = 1000
Fitted model Effect U − A int. True value Est. Ese. Est. Ese. Est. Ese.

M −M int.

IE1
False 0.00 -0.01 1.93 0.01 0.86 -0.00 0.37
True 0.00 0.00 1.94 -0.01 0.85 0.00 0.36

IE2
False 0.12 0.13 0.48 0.12 0.19 0.12 0.08
True 0.12 0.13 0.46 0.12 0.18 0.12 0.08

IE3
False -0.31 -0.32 0.44 -0.31 0.19 -0.31 0.08
True -0.31 -0.34 0.47 -0.31 0.20 -0.31 0.09

IE4
False 0.00 0.00 0.12 0.00 0.04 0.00 0.02
True 0.00 -0.00 0.15 0.00 0.06 -0.00 0.02

IEmu

False 0.00 0.00 0.19 -0.00 0.09 -0.00 0.04
True -0.48 -0.48 0.31 -0.48 0.15 -0.48 0.06

DE
False 0.00 0.01 1.79 -0.01 0.81 0.00 0.35
True 0.00 -0.01 1.80 0.01 0.79 -0.00 0.34

Parallel

IE1
False 0.00 0.01 2.14 0.02 1.02 -0.01 0.45
True 0.00 -0.45 2.52 -0.48 1.20 -0.48 0.53

IE2
False 0.12 -0.11 0.28 -0.11 0.13 -0.11 0.06
True 0.12 -0.18 0.35 -0.17 0.16 -0.17 0.07

IE3
False -0.31 -0.08 0.36 -0.08 0.17 -0.08 0.07
True -0.31 -0.16 0.43 -0.15 0.20 -0.15 0.09

IE4
False 0.00 0.00 0.10 0.00 0.04 0.00 0.02
True 0.00 -0.01 0.13 0.00 0.05 -0.00 0.02

DE
False 0.00 -0.01 2.04 -0.02 0.98 0.00 0.43
True 0.00 0.12 2.40 0.14 1.15 0.13 0.51

precisely so that the interventional indirect effects are agnostic to the underlying causal

dependence among the mediators. The results of Simulation Study 2 showed that the

estimated mediated effects along separate paths were empirically biased when the
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statistical associations between the mediators were (incorrectly) assumed to be causal

effects. In contrast, the existing product-of-coefficient indirect effect estimates under a

parallel path model were unbiased. When the (true) mediators moderated each other’s

effects on the outcome in Simulation Study 3, the indirect effect estimates under a fitted

parallel path model were empirically biased even in large samples. The biases were due

to omitting mediator-mediator interaction terms in the (misspecified) outcome model

fitted to the data. Hence allowing for (all) mediator-mediator interaction terms in the

(fitted) outcome model yielded unbiased estimates of the interventional indirect effects.

We have focused on unbiased estimation of the proposed interventional indirect

effects in the simulation studies. Inference using a non-parametric bootstrap as

suggested in this paper is straightforward and builds on established bootstrap theory

and procedures. For this reason, we have chosen not to evaluate the statistical efficiency

of the resulting confidence intervals or hypothesis tests. Comparisons of the

(non-parametric) bootstrap with other (parametric) methods, such as the Monte Carlo

method (MacKinnon et al., 2004; Preacher & Selig, 2012), are thus deferred to future

work.

Application

The proposed estimation procedure was illustrated using a publicly-available data

set from a randomized study assessing the effect of (non-)political inclusion on political

prejudice that was possibly mediated by six different mediators (Voelkel et al., 2019).

The data set is available as part of a preregistered study via the Open Science

Framework 3. The goal of the study was to assess the causal effect of either political

inclusion or non-political inclusion versus control on momentary prejudice toward the

political outgroup. The sample consisted of college freshmen from a large university in

the Netherlands who received course credit in a psychology course for their

participation. Participants were randomly assigned to one of three conditions: political

inclusion, non-political inclusion, or control. For the purposes of illustration, we

3https://osf.io/jcmmp/?view_only=3af8cb6b1f2845b1ba3fd69cb0b89585

https://osf.io/jcmmp/?view_only=3af8cb6b1f2845b1ba3fd69cb0b89585
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considered only the 183 participants assigned to either political inclusion (A = 1) or

control (A = 0). In the treatment group, participants’ political inclusion experiences

were manipulated using an online political discussion. In the control group, participants

experienced a neutral scenario where no discussion (political or non-political) occurred,

and they were only asked to fill in a questionnaire. The outcome Y (prejudice) was an

average of three items: dislike of, social distance from, and perceived immorality of, the

participant’s political outgroup. Larger values indicated higher levels of prejudice.

To understand how political inclusion affected prejudice, the authors of the study

considered six possible mediators of the causal relationship between political inclusion

and prejudice: satisfaction of the need to belong (M1), satisfaction of the need for

self-esteem (M2), satisfaction of the need for control (M3), satisfaction of the need for

meaningful existence (M4), perceived worldview dissimilarity of the political outgroup

(M5), and perceived fairness of the political outgroup (M6). In addition, we considered

political ideology (“Ideology”), age in years (“Age”), and gender (“Gender”) as

(baseline) confounders of the mediator-outcome relation for all the mediators.

Summaries of the variables for each treatment group are provided in Table 4. We

adjusted for the baseline covariates toward satisfying the assumptions (A1)–(A3)

needed to identify the interventional direct and indirect effects.

The total effect of treatment was estimated by regressing prejudice on treatment,

political ideology, gender and age (without any mediators). The estimated total effect of

the political inclusion manipulation (versus control) was an average change in prejudice

by −0.076 (95% confidence interval (CI) = (−0.135,−0.017)). All standard errors and

95% (percentile) confidence intervals were constructed using 1000 (non-parametric)

bootstrap samples. To estimate the interventional (in)direct effects, the following

mediator and outcome models were fitted to the observed data:

E(Ms|A,C) = δ0s + δsA+ δC1sIdeology + δC2sAge + δC3sGender, s = 1, . . . , 6;

E(Y |A,M1, . . . ,M6, C) = β0 + βAA+
6∑

s=1
(βs + βAsA)Ms +

6∑
k,l=1,

k<l

(βkl + βAklA)MkMl

+ βC1Ideology + βC2Age + βC3Gender.
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Table 4

Sample means and standard deviations (in brackets) for the baseline confounders,

mediators and outcome for each treatment group in the applied example.

Treatment group A = 0 A = 1

Number of participants 95 88

Ideology -0.51 (0.9) -0.43 (0.7)

Gender 0.73 (0.4) 0.76 (0.4)

Age 20.0 (2.3) 20.1 (2.5)

M1 (belong) 0.81 (0.2) 0.69 (0.2)

M2 (self-esteem) 0.50 (0.2) 0.50 (0.2)

M3 (control) 0.37 (0.2) 0.30 (0.2)

M4 (meaningful existence) 0.83 (0.2) 0.81 (0.2)

M5 (worldview dissimilarity) 0.65 (0.2) 0.56 (0.2)

M6 (fairness) 0.48 (0.2) 0.62 (0.2)

Y 0.46 (0.2) 0.38 (0.2)

Each mediator depended only on treatment, political ideology, age, and gender. The

outcome model included all treatment-mediator, mediator-mediator, and

treatment-mediator-mediator interaction terms. Closed form expressions for the

interventional direct and indirect effect estimators as functions of the outcome and

mediator model parameters are provided in the Online Supplemental Materials. The

estimated effects using the observed data are shown in Table 5.

The estimated interventional direct effect was −0.013 (95%CI = (−0.088, 0.085)),

suggesting that politically included individuals had lower prejudice (than if assigned to

the control condition), when holding the (counterfactual) distributions of all mediators

(given ideology, age, and gender) fixed under those of the control condition. There was

only one mediator with a statistically significant indirect effect. The estimated indirect

effect via fairness was −0.077 (95%CI = (−0.139,−0.021)), so that shifting the
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Table 5

Interventional (in)direct effect estimates, bootstrap standard errors (“SE”) and 95%

bootstrap (percentile) confidence intervals (“CI”) for the applied example. All results

were rounded to three decimal places.

Interventional effect Estimate Bootstrap SE 95% CI

Indirect effect via M1 (belong) 0.016 0.017 (-0.016, 0.053)

Indirect effect via M2 (self-esteem) 0.000 0.007 (-0.015, 0.015)

Indirect effect via M3 (control) -0.002 0.012 (-0.029, 0.020)

Indirect effect via M4 (meaningful existence) -0.003 0.008 (-0.024, 0.008)

Indirect effect via M5 (worldview dissimilarity) -0.006 0.011 (-0.029, 0.015)

Indirect effect via M6 (fairness) -0.077 0.030 (-0.139, -0.021)

Indirect effect due to mutual dependence 0.009 0.025 (-0.048, 0.051)

Direct effect -0.013 0.044 (-0.088, 0.085)

Total effect -0.076 0.031 (-0.135, -0.017)

(counterfactual) distribution of fairness from the political inclusion manipulation to

that under control resulted in lower prejudice on average, while holding treatment and

the distributions of all other mediators fixed. The estimated indirect effects via the

remaining mediators were not statistically significant at 5%. For example, the indirect

effect of changing the (counterfactual) distribution of the need to belong from the

politically included group to the control group (holding treatment and distributions of

all other mediators fixed) was an increase in prejudice by 0.016 on average, but the 95%

CI of (−0.016, 0.053) included zero. The indirect effect due to the mediators’ mutual

dependence on one another was 0.009 (95%CI = (−0.048, 0.051)), suggesting a positive

(but not statistically significant) average effect on prejudice when changing the

mediators’ covariance from the political inclusion manipulation to that under control.

The mediator indices were arbitrarily labelled and used merely to distinguish the

mediators for statistical analysis when considering simultaneous mediators, and did not
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represent or imply any causal ordering of the mediators. Under the assumed outcome

model where the effect of each mediator on the outcome was moderated by treatment,

or another mediator, or both, a different permutation of the (arbitrary) mediator labels

corresponded to a different decomposition of the joint indirect effect, whereby the

indirect effects via each mediator held the (counterfactual) mediator distributions fixed

at different hypothetical treatment levels. We carried out a sensitivity analysis, by

considering each of the 6! = 720 possible permutations of the six mediators in turn, and

calculated the indirect effects (and the 95% CIs) under each permutation. Each

permutation of the indices thus implies a different decomposition of the joint indirect

effect, and subsequently, may result in different estimates of the separate indirect

effects. Details on enumerating all possible permutations, especially with a large

number of mediators, when implementing the sensitivity analysis are provided online as

part of the R scripts for this article4. The minimum and maximum estimates (and

bounds of the 95% CIs) across all the permutations are shown in Table 6. Inference for

the indirect effects was unchanged across the different decompositions resulting from

different permutations of the mediator indices. We again emphasize that the conceptual

interpretations of the interventional indirect effects via each mediator using the causal

paths in the underlying causal structure remain the same regardless of the chosen

decomposition. For example, the estimated indirect effect via fairness was significantly

different from zero (statistically at the 5% level) regardless of the chosen decomposition.

Conversely, the 95% CIs for the indirect effect via the need to belong always included

zero. In general, when changing the mediators’ labels leads to conflicting inferences

about the indirect effects, theoretical knowledge may be used to determine the most

scientifically relevant decomposition (of the joint indirect effect) and the implied

definitions of the indirect effects. These results suggested that the total diminishing

effect of political inclusion on prejudice was primarily explained by the mediating effect

through perceived fairness of the political outgroup.

4 https://github.com/wwloh/disentangle-multiple-mediators

https://github.com/wwloh/disentangle-multiple-mediators
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Table 6

Interventional (in)direct effect estimates and 95% bootstrap (percentile) confidence

intervals (“CI”) for the applied example. The minimum (“min.”) and maximum

(“max.”) estimates, and 95% CI lower and upper bounds, across all 6! = 720 possible

permutations of the mediator indices are presented. All results were rounded to three

decimal places.

Estimate 95% CI

Interventional indirect effect Min. Max. Min. (lower) Max. (upper)

Belong 0.011 0.025 -0.045 0.073

Self-esteem 0.000 0.000 -0.019 0.021

Control -0.012 0.012 -0.044 0.053

Meaningful existence -0.004 -0.001 -0.034 0.014

Worldview dissimilarity -0.014 0.006 -0.049 0.039

Fairness -0.094 -0.074 -0.156 -0.013

Discussion

Recommendations for multiple mediation analysis

When there are multiple or competing mediators on the causal pathway from

treatment to outcome, path analysis is commonly used to disentangle the indirect

effects transmitted along causal path(s) through each mediator. But indirect or

mediated effects along separate paths traversing several linked mediators are valid only

when (i) the causal dependence among the mediators is correctly specified, and (ii)

there is no unobserved confounding of the mediators. When these assumptions are

violated, estimates of mediated effects along separate paths can be severely biased; the

biases were demonstrated empirically using a simulation study in this article.

When scientific interest is in inferring indirect effects transmitted through each

distinct mediator, the aforementioned assumptions are avoidable by using the

interventional indirect effects proposed in this article. Intuitively, the causal dependence
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among the mediators is left unspecified, by focusing on only the marginal mean model

for each mediator that captures the overall treatment effect (on that mediator). The

interventional indirect effect via a mediator of interest is interpreted as the combined

effect along all (unknown) causal pathways from treatment to outcome that intersect

that mediator and any others that causally precede the mediator in question.

Interventional indirect effects are therefore agnostic to the (unknown) causal structure

of the mediators. Estimators assuming linear and additive mean models for the

mediators and the outcome, such as (1) and (2), imply the same analytical form as

prevailing indirect effects using parallel path models. But when treatment affects the

mediators’ covariance, and the effect of each mediator on the outcome is moderated by

the other mediator(s), such an indirect effect that is due to the mediators’ mutual

dependence on one another cannot be attributed to any mediator alone. We proposed

new estimators of interventional indirect effects under such settings that exploit the

mediators’ covariance under the assumed linear mean models, thus simplifying closed

form solutions when there are more than two mediators. Unbiased estimators of the

interventional effects can be straightforwardly obtained using conventional OLS

estimation methods, and are robust against an incorrectly specified causal structure of

the mediators, and unobserved confounding among the mediators.

Practical considerations for applied researchers

It is important to note that we are not advocating researchers avoid multiple

mediation analyses using “serial” mediation models (Hayes, 2018) whose causal

structure among the mediators represent theoretical models. On the contrary, we

encourage mediation analysis using causal structures that are grounded in established

scientific knowledge or prior thoughtful experimentation; see e.g., Pek & Hoyle (2016)

and Fiedler et al. (2018) for the single mediator setting. For example, in the single

mediator setting, experimentally manipulating the mediator to examine its effect on the

outcome can lend empirical support for the posited causal effects (Spencer et al., 2005).

In principle, such methods may be extended to multiple mediator settings toward
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establishing the mediators’ causal structure, by experimentally manipulating each

mediator in turn to examine its causal effect(s) on other mediator(s). Valid inference of

causal effects using causal diagrams that carefully represent theoretical models is

invaluable toward understanding and reasoning of underlying causal mechanisms (Grosz

et al., 2020). But often in practice the plausibility of an assumed (path) model is

evaluated based solely on statistical associations or observed goodness-of-fit criteria.

Practitioners of multiple mediation analysis should therefore be cognizant of the implied

causal assumptions when inferring causal effects linking different mediators and the

implications when the assumptions are violated.

Applied researchers across different areas in psychology (often) seek to explore

attributing the total effect of a treatment on an outcome to each of multiple possible

mediators, without having to specify (arbitrary) causal effects among the mediators.

Recent examples include Bergfeld & Chiu (2017), Brooks et al. (2019), Irwin et al.

(2019), Schroeder et al. (2019), and Ren et al. (2020), among many others. Possible

reasons may be that the mediators were contemporaneously measured, or there was

simply insufficient theoretical or experimental justification to warrant positing a causal

structure among the mediators. The framework proposed in this article is particularly

well-suited for such (common) research settings, because interventional indirect effects

have the benefit of being well-defined and possessing the same interpretation, regardless

of the mediators’ underlying causal structure. Existing indirect effects using prevailing

parallel path models are unbiased estimators of the interventional indirect effects -

without necessarily requiring the absence of causal effects among the mediators as

implied by the fitted model - under certain assumptions. When these assumptions fail

to hold, such as when the (true) effect of each mediator on the outcome is moderated by

another mediator, incorrectly fitting a parallel path model can lead to biased estimates

of the interventional indirect effects. We therefore recommend applied researchers

conducting multiple mediation analysis to consider outcome models with

mediator-mediator interactions terms when feasible, and investigate the indirect effect

due to the mediators’ mutual dependence, which may reveal part of the treatment effect
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that simply cannot be attributable to any mediator alone.

One of the assumptions (A2) required to identify the interventional (in)direct

effects presented in this paper is that there be no hidden common causes of the

mediators and outcome. Future research could include extending sensitivity analyses to

unobserved confounding of the mediator-outcome relations for a single mediator (Cox et

al., 2013; Fritz et al., 2016; Hong et al., 2018; Liu & Wang, 2020) to the multiple

mediator setting. The path analysis approach can be extended to accommodate latent

mediators or outcome, or both, by including latent variable models; see e.g., Loeys et al.

(2014) and Loh, Moerkerke, Loeys, Poppe, et al. (2020). VanderWeele &

Tchetgen Tchetgen (2017) proposed interventional indirect effects for mediation analysis

with longitudinal data under a formal causal framework, and described estimators using

sets of linear structural equation models under the so-called “Autoregressive Model III”

of MacKinnon (2008). The interventional indirect effects defined in this paper have

focused on a binary treatment, continuous mediators, and a continuous outcome.

Continuous treatments may be accommodated by extending the interventional effect

models proposal (Loh, Moerkerke, Loeys, & Vansteelandt, 2020a) to parameterize a

linear treatment effect in future work. When there are non-continuous mediators, or

outcome, or both, the product-of-coefficients method may not result in a valid

decomposition of the direct and indirect effects, due to misspecification of non-linear

(e.g., logistic regression) models for the mediators or outcome; see MacKinnon et al.

(2020) for the single mediator setting. Assuming non-linear models for the means of the

mediators, or the outcome, or both, will generally lead to different estimators of the

interventional indirect effects defined in this paper. For example, when the outcome is

binary and rare, and a logistic outcome model is assumed, the indirect effect due to the

mediators’ mutual dependence (7) is non-zero only if (i) the main effect of each

mediator on the outcome is non-zero, and (ii) the covariance of the (continuous)

mediators is affected by treatment (Loh, Moerkerke, Loeys, & Vansteelandt, 2020b).

Unlike the linear setting assumed in this paper, estimating this indirect effect may not

require a mediator-mediator interaction term in the (non-linear) outcome model. More
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general estimation strategies for non-continuous mediators, or outcome, or both, are

described in Vansteelandt & Daniel (2017) and Loh, Moerkerke, Loeys, & Vansteelandt

(2020a). Estimation requires (correctly) specifying a model for the joint distribution of

the mediators and a (mean) model for the outcome, and proceeds via Monte Carlo

integration.
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