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Background: High-momentum nucleons in a nuclear environment can be associated with short-range correlations
(SRC) that primarily occur between nucleon pairs. Observations and theoretical developments have indicated
that the SRC properties can be captured by general quantitative principles that are subject to model-dependence
upon quantification. The variations in the aggregated effect of SRC across nuclei, however, can be quantified
in an approximately model-independent fashion in terms of the so-called SRC scaling factors that capture the
aggregated effect of SRC for a specific nucleus A relative to the deuteron (A-to-d).

Purpose: Provide predictions for the SRC scaling factors across the nuclear periodic table and determine the
relative contribution of the different nucleon pair combinations to this quantity. Determine the SRC scaling factors
for both bound protons and bound neutrons and study how these quantities evolve with the neutron-to-proton
(N
Z

) ratio in asymmetric nuclei.

Methods: We employ the low-order correlation operator approximation (LCA) to compute the SRC contribution
to the single-nucleon momentum distribution and ratios of A-to-d momentum distributions. We do this for a
sample of fifteen nuclei from He to Pb thereby gaining access to the evolution of the SRC scaling factor with the
nuclear mass 4 ≤ A ≤ 208 and the neutron-to-proton ratio 1.0 ≤ N

Z
≤ 1.54.

Results: We provide evidence for approximate A-to-d scaling of the single-nucleon momentum distribution at
nucleon momenta exceeding about 4 fm−1. For the studied sample of fifteen nuclei, the total SRC scaling factor is
in the range 4.05-5.14 of which roughly 3 can be attributed to proton-neutron (pn) correlations. The SRC scaling
factors receive sizeable contributions from pp and nn correlations. They depend on the

(
N
Z

)
ratio reflecting the

fact that the minority species (protons) becomes increasingly more short-range correlated with increasing
(
N
Z

)
.

We compare the computed SRC scaling factors in the LCA with those of ab-initio calculations and with measured
quantities from SRC-sensitive inclusive electron-scattering data.

Conclusions: It is shown that the LCA provides predictions for the SRC scaling factors across the nuclear table
that are in line with measured values. In asymmetric nuclei there are sizeable differences between the SRC
scaling factors for protons and neutrons. It is suggested that this phenomenon may impact the variations of the
magnitude of the European muon collaboration (EMC) effect across nuclei. Our results corroborate the finding
that SRC physics can be qualitatively understood by universal principles that build on local modifications of
mean-field wave functions of nucleon pairs.

I. INTRODUCTION

Nuclear short-range correlations (SRC) are a pri-
mary source of high-momentum and high-energy spatio-
temporal fluctuations in atomic nuclei. They are con-
nected to nucleon-pair correlations in nuclei and in-
duce dynamical effects that go beyond the independent-
nucleon picture of atomic nuclei [1–4]. Throughout the
last decade an improved quantitative understanding of
SRC has been accomplished thanks to concerted exper-
imental efforts in exclusive and semi-exclusive electron-
scattering reactions of nuclei under peculiar kinematics.
The analysis of A(e, e′pp), A(e, e′np) [5] and A(e, e′N)
reactions has for example provided detailed information
on the isospin dependence [5–9], on the quantum num-
bers [10], and on the center-of-mass motion [11, 12] of
short-range correlated nucleon pairs.

There are also two known classes of inclusive electron-
scattering A(e, e′) reactions that have been connected to
SRC. In both situations the aggregated impact of SRC
in nucleus A is determined relative to the deuteron d and
involves the observation of a scaling mechanism of the ra-
tio of the cross sections on A relative to d. Both classes,

however, refer to different resolution scales and nucleon-
momentum conditions. These physical conditions are
commonly quantified by the virtuality Q2 = −qµqµ of
the exchanged virtual photon (four-momentum qµ(ω, ~q)
in the laboratory frame) in the electron-nucleus inter-
action, and the Lorentz scalar known as the Bjorken-

Feynman variable x = Q2

2MNω
, with MN the nucleon mass.

• First, it has been observed that in well-selected
kinematics [13]—namely sufficiently small resolu-
tion scales and x values 1.5 . x . 1.9 that single
out virtual-photon absorption on nucleon pairs—
theA-to-d (e, e′) cross sections approximately scale.
The extraction of the scaling factor

aexp2 (A) =
2

A

σA(e, e′)

σd(e, e′)

(
1.5 . x . 1.9 ; Q2 ≈ 2 GeV2

)
,

(1)
has been the subject of intense experimental cam-
paigns. To our knowledge, the aexp2 (A) have been
measured [14–16] for nine target nuclei: 3He, 4He,
9Be, 12C, 27Al, 56Fe, 63Cu, 197Au, 208Pb.

• The European muon collaboration (EMC) effect
refers to the observation that at resolution scales
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that probe partons (Q2 & 5 GeV2 ) and condi-
tions 0.2 . x . 0.7 (moderate- to high-momentum
quarks), the ratio of the nucleon-weighted cross sec-

tions 2
A
σA(e,e′)
σd(e,e′)

depends on the target nucleus. This

observation is commonly parameterized by means
of the quantity

bexp2 (A) ≡ −dREMC(A, x)

dx

= −
d
(

2FA
2 (x,Q2)

AFd
2 (x,Q2)

)

dx(
0.2 . x . 0.7 ; Q2 & 5 GeV2

)
, (2)

where one has that σA(e, e′) ∼ FA2 (x,Q2). The
bexp2 (A) have been measured for the same nine tar-
get nuclei for which aexp2 (A) data are available. It
came as a rather big surprise [17–19] that within
the error bars the size of the EMC effect param-
eterized by bexp2 (A) is roughly linearly correlated
with the measured values of aexp2 (A).

As it is inherently challenging to compute the coef-
ficients bexp2 (A) and aexp2 (A) from ratios of computed
σA(e, e′) and σd(e, e′) cross sections in selected but large
ranges of phase space, one has resorted to alternate tech-
niques to gain theoretical access to their values. It has
been argued that theoretical predictions for the aexp2 (A)
(and indirectly for the bexp2 (A)) can be obtained by eval-
uating ratios of bound-nucleon probability distributions
in the limits of vanishing relative distance r12, or equiv-
alently, infinitely high relative momentum p12

a2(A) = lim
r12→0

ρA(r12,Λ)

ρd(r12,Λ)
, (3)

a2(A) = lim
p12→∞

nA(p12,Λ)

nd(p12,Λ)
. (4)

Here, the ρA(r12,Λ)r2
12dr12 is related to the probability

to find a nucleon pair in A with a relative separation
r12 = |~r1 − ~r2| in the interval [r12, r12 + dr12]. Simi-
larly, the nA(p12,Λ)p2

12dp12 is related to the probability
to find a nucleon pair in A with a relative momentum
p12 = |~p1 − ~p2| in the interval [p12, p12 + dp12]. The va-
lidity of the Eqs. (3) and (4) is very much based on the
idea that the very short internucleon behavior in nuclei
is characterized by universal functions that simply differ
across nuclei by a scaling factor that relates to the mea-
sured aexp2 (A). In coordinate space this property can be
captured by the factorization expression

ρANN ′∈{pn, pp, nn}(r12 . rΛ,Λ)

≈ CANN ′(Λ) |ψNN ′(r12,Λ)|2 . (5)

Hereby, rΛ is of the order of 1 fm. Its precise value is con-
nected with the ultraviolet regulator scale Λ implicit for
a particular nucleon-nucleon interaction model and the
larger Λ the smaller rΛ [20]. Further, the variation across

nuclei is contained in the factor CANN ′(Λ), whereby the
index NN ′ accounts for variations in the scaling factors
across the different types of nucleon pairs. The quanti-
ties CANN ′(Λ) are often referred to as the “contacts” for
NN ′ pairs [21–24]. The distributions in the Eqs. (3) and
(4) are model-dependent [20, 25], an aspect that is high-
lighted by the label Λ. By evaluating A-to-d ratios as in
Eqs. (3) and (4), however, one can gain access to quanti-
ties that are approximately model-independent and forge
connections with measured quantities. The model inde-
pendence of the ratio of Eqs. (3) can be intuitively un-
derstood by realizing that for a given nucleon-nucleon
interaction the highly local positional neighbourhood of
a nucleon in nucleus A is not very different from the one
of a nucleon in the deuteron.

A major challenge is to isolate the generative mecha-
nisms in the scaling factors aexp2 (A) and bexp2 (A). For ex-
ample, the isospin dependence of the size of the EMC ef-
fect bexp2 (A) provides access to the important issue of the
flavor dependence in nuclear quark distributions [26, 27],
and has been a subject of recent debates [16, 28, 29]. Ac-
cess to these issues can be gained from determining the
contribution of the different nucleon pair combinations
to the short-distance modifications of nucleons embed-
ded in a nuclear environment. This is the major topic of
investigation in this paper.

Ab-initio low-energy nuclear theory has been used to
compute the a2(A) for a number of light nuclei with A ≤
40 [20, 30]. The calculations use advanced importance-
sampling based quantum many-body theories [31–33]
in combination with various forms of nucleon-nucleon
(NN) interactions to determine the limr12→0

ρA(r12,Λ)
ρd(r12,Λ)

of

Eq. (3). These calculations have also shed light on the
appropriateness of the expression (3) and the sensitiv-
ity to the adopted model “Λ”. The 40Ca result in Fig-
ure 3 of [20] has illustrated that the proposed A-to-d
scaling for the relative density distribution at very short
internucleon distances is approximate. Also the shrink-
ing size of phase space for limr12→0 poses challenges for
the importance-sampling techniques. The (generalized)
contact formalism [21–24, 34] builds on the Eq. (5) to
construct pair-density functions and correlation functions
for the pp, nn and pn pairs. The contact formalism can
be applied to heavy nuclei (A > 40) but requires input
from either data [5] or from computed momentum dis-
tributions [22, 24]. As A > 40 ab-initio calculations are
not available, no systematic predictions for the SRC scal-
ing factor for medium-heavy and heavy nuclei have been
produced so far.

The low-order correlation operator approximation
(LCA) as proposed in [35, 36] is an alternate approxi-
mate method to compute the impact of SRC on nuclear
momentum distributions. Recently, we have shown [36]
that LCA can reproduce the major trends of the observed
N/Z dependence of SRC [9]. In line with the results of
alternate calculations [37, 38], LCA accounts for the fact
that through the operation of the tensor force, the minor-
ity component (protons) is substantially more correlated
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Figure 1. Schematic representation of the dominant contributions to the single-nucleon momentum distribution nA(�p) (defined
in diagram (a)) in LCA. The black dashed lines denote IPM nucleons. The purple dotted lines denote the correlation operators
in Eq. (8). Diagram (b) is the IPM contribution and dominates for p < pF . Diagram (c) represents one of the SRC contributions
between nucleon pairs and provides the bulk of the strength to nA(�p) for p > pF .

the high-momentum (short-distance) behavior of nuclei.
To this end, we have included both symmetric (NZ = 1)

and asymmetric (NZ > 1) nuclei providing a window on
asymmetric neutron-rich matter [39]. The selection of
nuclei was not random but was made on the basis of
reaching a good coverage of both the mass dependence
(4 ≤ A ≤ 208) and the neutron-to-proton dependence
(1 ≤ N

Z ≤ 1.54) of SRC. The four symmetric nuclei that

are contained in our study are: 4He, 12C, 16O, 40Ca. The
eleven asymmetric ones are 9Be, 27Al, 40Ar, 48Ca, 56Fe,
63Cu, 84Kr, 108Ag, 124Xe, 197Au, 208Pb. With the pre-
sented calculations we can also address questions like (i)
the degree of validity of the scaling behavior of the Eq. (4)
and, (ii) in how far the short-distance modifications affect
protons and neutrons differently in asymmetric nuclear
matter.

In what follows, Sec. IIA introduces the LCA method
for computing the SRC contribution to single-nucleon
momentum distributions. In Section II B we discuss
the pair composition of the SRC part of the nu-
cleon momentum distributions and forge connections to
measured quantities from exclusive electroinduced two-
nucleon knockout. In Sec. II C we proceed with present-
ing and discussing the LCA results for the SRC scaling
factors for 15 nuclei. We have included checks and bal-
ances and compared the computed SRC scaling factors
with both data and theoretical results of ab-initio calcu-
lations. We also conduct robustness checks by presenting
results of SRC scaling factors obtained with two alternate
approaches. Section IID focuses on the differences in the
SRC scaling factors for proton and neutrons in asymmet-
ric nuclei. In Sec. II E we exploit the conjectured rela-
tionship between the size of the EMC effect and the SRC
scaling factors to shed light on the isospin dependence of
the underlying (unknown) generative mechanisms.

II. FORMALISM AND RESULTS

A. Single-nucleon momentum distributions

The LCA is a methodology with applications in nuclear
reactions and nuclear structure. In LCA one can com-
pute the observables for SRC dominated nucleon knock-
out reactions [10, 40–43]. Furthermore, the impact of
SRC on nuclear momentum distributions [35, 36] can be
quantified across the nuclear mass range as even for the
heaviest nuclei the numerical calculations are manage-
able. Central to the results of this work is the single-
nucleon momentum distribution that is generally defined
as

nA(�p) ∼ �ΨA| a†�p a�p |ΨA� , (6)

with |ΨA� the ground-state wave function of nucleus
A. In LCA, the complexity of the calculation is shifted
from the wave functions to the operators. The compli-
cated |ΨA� is obtained from a simple wave function |ΦA�
through the action of an operator

|ΨA� =
1�

�ΦA| �G† �G |ΦA�
�G |ΦA� , (7)

where |ΦA� is a Slater determinant wave function for nu-

cleus A and �G an operator that accounts for the SRC
correlations. In LCA, we account for the central (Jas-
trow), tensor and spin-isospin SRC correlations

�G = �S
� A�

i<j=1

�
1− gc(rij) + ftτ (rij)�Sij�τi · �τj

+fστ (rij)�σi · �σj�τi · �τj
��

= �S
� A�

i<j=1

�
1 + �Gij(rij)

��
, (8)

Figure 1. Schematic representation of the dominant contributions to the single-nucleon momentum distribution nA(~p) (defined
in diagram (a)) in LCA. The nA(~p) quantifies the probability of removing from the nuclear ground state a momentum ~p at a
certain location ~r and putting it instantly back at another location ~r ′ for all possible combinations of ~r and ~r ′. The black
dashed lines denote IPM nucleons: they are characterized by their isospin N,N ′ ∈ {p, n} and other IPM quantum numbers
α, β. The purple dotted lines denote the correlation operators in Eq. (8). Diagram (b) is the IPM contribution expressed in
the format of Eq. (13). The IPM contribution dominates for p < pF . Diagram (c) represents one of the SRC contributions
between nucleon pairs (see Eq. (11)) and provides the bulk of the strength to nA(~p) for p > pF .

than the majority component (neutrons) in asymmetric
nuclei.

In this work we present a systematic study of the SRC
scaling factors based on the asymptotic high-momentum
behavior of single-nucleon momentum distributions com-
puted in LCA. We include fifteen nuclei in our study, in-
cluding eight for which aexp2 (A) and bexp2 (A) data is avail-
able. One of the major goals of the presented study is to
uncover the trends in the isospin (flavor) composition of
the high-momentum (short-distance) behavior of nuclei.
To this end, we have included both symmetric (NZ = 1)

and asymmetric (NZ > 1) nuclei providing a window on
asymmetric neutron-rich matter [39]. The selection of
nuclei was not random but was made on the basis of
reaching a good coverage of both the mass dependence
(4 ≤ A ≤ 208) and the neutron-to-proton dependence
(1 ≤ N

Z ≤ 1.54) of SRC. The four symmetric nuclei that

are contained in our study are: 4He, 12C, 16O, 40Ca. The
eleven asymmetric ones are 9Be, 27Al, 40Ar, 48Ca, 56Fe,
63Cu, 84Kr, 108Ag, 124Xe, 197Au, 208Pb. With the pre-
sented calculations we can also address questions like (i)
the degree of validity of the scaling behavior of the Eq. (4)
and, (ii) in how far the short-distance modifications affect
protons and neutrons differently in asymmetric nuclear
matter.

In what follows, Sec. II A introduces the LCA method
for computing the SRC contribution to single-nucleon
momentum distributions. In Section II B we discuss the
pair composition of the SRC part of the nucleon mo-
mentum distributions and forge connections to measured
quantities from exclusive electroinduced two-nucleon
knockout. In Sec. II C we proceed with presenting and
discussing the LCA results for the SRC scaling factors
for 15 nuclei. We have included checks and balances and
compared the computed SRC scaling factors with both
data and theoretical results of ab-initio calculations. We

also conduct robustness checks of the presented method-
ology by testing the sensitivity of the SRC scaling factors
to the momentum range that determines the “asymptotic
part” of the single-nucleon momentum distribution. Sec-
tion II D focuses on the differences in the SRC scaling
factors for proton and neutrons in asymmetric nuclei. In
Sec. II E we exploit the conjectured relationship between
the size of the EMC effect and the SRC scaling factors
to shed light on the isospin dependence of the underlying
(unknown) generative mechanisms.

II. FORMALISM AND RESULTS

A. Single-nucleon momentum distributions

The LCA is a methodology with applications in nuclear
reactions and nuclear structure. In LCA one can com-
pute the observables for SRC dominated nucleon knock-
out reactions [10, 40–43]. Furthermore, the impact of
SRC on nuclear momentum distributions [35, 36] can be
quantified across the nuclear mass range as even for the
heaviest nuclei the numerical calculations are manage-
able. Central to the results of this work is the single-
nucleon momentum distribution that is generally defined
as

nA(~p) ∼ 〈ΨA| a†~p a~p |ΨA〉 , (6)

with |ΨA〉 the ground-state wave function of nucleus
A. In LCA, the complexity of the calculation is shifted
from the wave functions to the operators. The compli-
cated |ΨA〉 is obtained from a simple wave function |ΦA〉
through the action of an operator

|ΨA〉 =
1√

〈ΦA| Ĝ†Ĝ |ΦA〉
Ĝ |ΦA〉 , (7)
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where |ΦA〉 is a Slater determinant wave function for nu-

cleus A and Ĝ an operator that accounts for the SRC
correlations. In LCA, we account for the central (Jas-
trow), tensor and spin-isospin SRC correlations

Ĝ = Ŝ
( A∏

i<j=1

[
1− gc(rij) + ftτ (rij)Ŝij~τi · ~τj

+fστ (rij)~σi · ~σj~τi · ~τj
])

= Ŝ
( A∏

i<j=1

[
1 + Ĝij(rij)

])
, (8)

where Ŝ and Ŝij are the symmetrization and tensor op-
erator. In computing the nA(~p) in LCA all terms are
included up to order O(G2) which implies that the im-

pact of SRC on nA(~p) is included as two-body operators.
The momentum distribution nA(~p) is then the sum of
two terms (see also the diagrams (b) and (c) of Fig. 1)

nA(~p) = nAIPM(~p) + nASRC(~p) +O(G3) . (9)

The first term nAIPM (IPM stands for independent particle
model) is reminiscent of independent nucleons

nAIPM(~p) ∼
∑

N∈{p,n}

∑

α

〈Nα| a†~p a~p |Nα〉 , (10)

where α extends over all occupied single-particle states
in the Slater determinant |ΦA〉. The second term is the
result of the SRC operators of Eq. (8). It is determined
by two-nucleon contributions of which the dominant con-
tribution is of the form (see also diagram of Fig. 1(c))

nASRC(~p) ∼
∑

NN ′∈{p,n}

∑

αβ

∑

~K ~k ~k′

Ĝ†12

(
~K

2
+ ~k − ~p

)
Ĝ12

(
~K

2
+ ~k′ − ~p

)

×〈Nα,N ′β| a†~K
2 +~k

a†~K
2 −~k

a ~K
2 +~k′

a ~K
2 −~k′

|Nα,N ′β〉 . (11)

For the sake of simplicity of the notation we make ab-
straction of the spin- and isospin dependence of the above
two-body matrix elements. Note that in computing the
nASRC(~p) one integrates over the center-of-mass momen-

tum ~K of the correlated pair, as well as over the relative

momenta ~k and ~k′. The neglected terms of order O(G3)
in Eq. (9) include three-body correlations. The compu-
tation of those terms across the nuclear mass table is
computationally prohibitive. There are indications, how-
ever, that the effect of three-nucleon correlations in the
tail part of the nA(~p) is relatively small. Direct evidence
comes from nuclear-matter calculations where the impact
of three-nucleon effects has been studied [44]. Indirect
theoretical evidence for the dominant role of two-nucleon
correlations stems from the fact that QMC calculations
for light nuclei, that include all possible diagrams, pro-
vide strong indications for A-to-d scaling in the tail part
of nA(~p) [33].

We restrict ourselves to spherically symmetric nuclei
nASRC(p) ∼ nASRC(~p). Of high relevance for the isolation of
the isospin composition of SRC is that both contributions
(10) and (11) to nA(p) can be written as a sum of four
terms

nA(p) ≡ nApp(p) + nApn(p)
︸ ︷︷ ︸
nA
p (p) (proton part)

+ nAnn(p) + n[1]
np(p)

︸ ︷︷ ︸
nA
n (p) (neutron part)

. (12)

As schematically shown in Fig. 1 the separation in the
four pair combinations can done for both the IPM and the
SRC contribution in Eq. (9). For the SRC contribution
of Eq. (11) the pairs Nα,N ′β in the matrix elements give

rise to the four pair combinations considered. In order to
identify the pair combinations to the IPM contribution,
one can rewrite Eq. (10) as

nAIPM(~p) ∼
∑

N∈{p,n}

∑

N ′∈{p,n}

∑

α

∑

β

∑

~p′

×〈Nα| a†~p a~p |Nα〉 〈N
′β| a†~p′ a~p′ |N

′β〉 .(13)

Herein, the summations
∑
N∈{p,n}

∑
N ′∈{p,n} give natu-

rally rise to four pair combinations. Note that in iden-
tifying the different pair combinations to nA(p) in the
IPM, one integrates over the momentum of the second
nucleon N ′β. We adopt the normalization convention∫
dp p2nA(p) = A. In the adopted LCA, the four pair

combinations stemming from pp, pn, nn and np con-

tribute respectively a fraction Z(Z−1)
(A−1) , NZ

(A−1) , N(N−1)
(A−1)

and NZ
(A−1) to the total norm A of nA(p). These nor-

malisations are not artificially imposed but obtained by

expanding the matrix element of 〈ΦA| Ĝ†Ĝ |ΦA〉 in the
denominator in Eq. (7) up to the second order in the
correlation operator [35]. One finds

〈ΦA| Ĝ†Ĝ |ΦA〉 = A+ CA +O
(
G3
)
, (14)

where CA can be interpreted as a measure for the aggre-
gated effect of SRC in nucleus A(N,Z) [35].

Of great relevance for reactions involving nuclear tar-
gets is the probability distribution

PA(p) = p2nA(p)/A

(∫
dpPA(p) = 1

)
(15)
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to find a nucleon with momentum p in A(N,Z). An im-
mediate consequence of Eq. (12) is that

PA(p) = PApp(p) + PApn(p)
︸ ︷︷ ︸
PA

p (p) (proton part)

+ PAnn(p) + PAnp(p)
︸ ︷︷ ︸
PA

n (p) (neutron part)

. (16)

The correlation functions in Eq. (8) are input to the
LCA approach. We adopt a data-driven methodology
and use a set that has been systematically tested in com-
parisons of reaction-model calculations and SRC-driven
data [10, 45–47]. The ftτ (r12) and fστ (r12) correlation
functions are from a variational calculation [48]. An anal-
ysis of 12C(e, e′pp) [45] and 16O(e, e′pp) [47] experimental
results systematically excluded “soft” central correlation
functions gc and preferred a “hard” gc(r12) inferred from
a G-matrix calculation with the Reid soft-core interac-
tion in nuclear matter [49].

Different interactions generate different correlations –
particularly for the central ones– and are sources of the-
oretical uncertainties in LCA. In Ref. [36] we have pre-
sented LCA results with the “hard” gc from [49] and the
“soft” gc from [48] that is consistent with the adopted ftτ
and fστ . The choice of the gc mainly affects the highest
momentum parts of the single-nucleon momentum distri-
butions. We found, however, that for light and medium-
heavy nuclei the LCA in combination with the “hard” gc
produces nA(~p) that are in line with those from quantum
Monte Carlo calculations with the effective AV18 NN in-
teraction. In addition, many extracted SRC properties
are obtained from ratios of nA(~p) for which the sensitivity
to the choice of the gc is at the percent level [36].

In this work, all calculations are performed in coor-
dinate space with a “hard” gc and harmonic oscillator
(HO) single-particle states |Nα〉 as they offer the pos-
sibility to separate the pair’s relative and c.m. motion
in the pair wave functions |Nα,N ′β〉 of Eq. (11) with
the aid of Moshinsky brackets. As the major purpose of
this study is to determine the systematic properties of
the SRC scaling factors and their pair composition, we
use the HO parameters from the global parameterization
~ω = 45A−

1
3−25A−

2
3 . More advanced calculations could

find the optimum HO parameter for each specific nucleus
but this complication is beyond the scope of the current
paper. It has been numerically shown [11, 35, 40, 42, 50]
and experimentally confirmed [10, 47] that the major
source of SRC strength stems from correlation operators
acting on IPM pairs in a nodeless relative S-state. This
can be intuitively understood by noting that the proba-
bility of finding close-proximity IPM pairs is dominated
by pairs in a nodeless relative S-state. Those S wave
functions are not very sensitive to the details of the mean-
field potential which partially explains the robustness of
the SRC properties in nuclei.

Figure 2 displays the probability distributions PA(p) of
Eq. (16) for four nuclei out of our sample of fifteen nuclei.
In essence, there are two separated momentum regimes in
the probability distributions. The underlying generative
dynamics for the observed p dependence has been dis-
cussed in great detail in Refs. [35, 36]. Summarizing, the

low-momentum part is reminiscent of the independent-
particle model. The high-momentum regime is charac-
terized by a fat tail that displays a universal momentum
dependence across the different nuclei. The pair com-
position of the low-momentum regime is roughly deter-
mined by the combinatorics imposed by the neutron and
the proton numbers N and Z. In the SRC regime, on
the other hand, there is an obvious proton-neutron dom-
inance. As one approaches the highest momenta studied
here, the proton-proton and neutron-neutron parts gain
in relative importance relative to the dominant pn con-
tribution. There is a degree of model-dependence in the
probability distributions PA(p) of Fig. 2 [25, 36, 51]. In-
clusion of SRC physics through the operators of Eq. (8)
preserves the long-distance physics which makes the mo-
mentum dependence of the probability distributions be-
low the Fermi momentum pF = 1.25 fm−1 to be indepen-
dent of the choices made with regard to the correlation
operators. For p < pF the major effect of the SRC corre-
lations is to deplete the PA(p < pF ) with a scaling factor
that is model-dependent. As we have shown in Ref. [36]
the high-momentum tail PA(p & 2 fm−1) displays some
sensitivity to the choices made with respect to the cor-
relation functions. For 40Ca —the heaviest nuclei for
which ab-initio momentum distributions are available—
we can compare the LCA result for PA(p) with the one
obtained with quantum Monte-Carlo methods using a re-
alistic phenomenological NN interaction [33]. We observe
a fair agreement providing confidence in our approach. In
the following Sec. II B we connect the LCA predictions
for the pair composition of the SRC tail of PA(p) to re-
cent A(e, e′np) and A(e, e′pp) data.

B. Tail part of single-nucleon momentum
distributions

The relative weight of the pp and pn correlations in the
tail of the momentum distribution can be “measured” by
evaluating the ratio of the triple-coincidence A(e, e′pp)
and A(e, e′np) cross sections in a large-acceptance detec-
tor thereby probing a large fraction of the phase space
and imposing kinematical cuts selecting initial 2N SRC
pairs [5]. This amounts to evaluating a cross-section ratio
of the form

σen
2σep

σA(e, e′pp)

σA(e, e′np)

∼ Probability for pp SRC pair in A

Probability for pn SRC pair in A
. (17)

Here, σep (σen) denotes the off-shell electron-proton
(electron-neutron) cross section and σA(e, e′NN ′) is the
cross section for NN ′ knockout [where typically the
“fast” nucleon has pN � pF and the recoil nucleon of
the SRC pair has pN ′ = O(pF )] aggregated over a cer-
tain initial-nucleon momentum range. The above ratio
of probabilities can be made conditional on certain con-
straints for example with regard to the initial nucleon
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Figure 2. The probability distribution PA(p) to find a nucleon with momentum p as computed in LCA for four nuclei. The
separate contributions from the four possible NN ′ combinations detailed in Eq. (16) are shown together with the total. For 40Ca
we compare the LCA result for PA(p) with the one from the Argonne group obtained with the effective AV18 nucleon-nucleon
interaction [33].
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Figure 3. The nuclear mass dependence of the ratios (in percent units) of pp-to-pn SRC correlated pairs in two momentum
ranges above the Fermi momentum pF . The blue circles are LCA predictions based on the ratio of the pp and pn contributions
to the PA(p) in the selected momentum ranges. The data are from Ref. [5].

momenta where the picture is adopted that the “fast”
nucleon N has absorbed the virtual photon. As experi-
ments probing SRC quantities often tag the momentum
of the “active” nucleon and require events with an in-
active A-2 core, the single-nucleon momentum distribu-

tion (see diagram (c) in Fig. 1) offers many opportunities
for theory-experiment comparisons [36]. The theoretical
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counterpart of the ratio (17) reads

C
∫ ph
pl
dpPApp(p)

∫ ph
pl
dp
[
PAnp(p) + PApn(p)

] , (18)

where pl and ph are determined by the experimental cuts
for the inferred initial-nucleon momenta. The ratio of
Eq. (17) has recently been measured for carbon, alu-
minium, iron and lead for two initial momentum ranges
[pl, ph] [5]. We use Eq. (18) to compare those data to
the LCA predictions. The results for the other 11 nuclei
in our sample provide more detailed information about
the variations across nuclei. The results of the theory-
experiment comparisons are summarized in Fig. 3. Apart
from effects stemming from detector efficiencies for ex-
ample, an important contribution to the factor C in the
above equation are the final-state interactions (FSI). At-
tenuation will roughly equally affect protons and neu-
trons at the kinetic energies considered [52]. Single-
charge exchange (SCX), however, is an important cor-
rection factor [42] when extracting SRC information for
two-nucleon knockout reactions. Indeed a considerable
amount of detected pp knockout events originate from
virtual-photon absorption on pn SRC pairs. In Fig. 3 an
overall reduction factor C = 0.5 in the theoretical ratio
of Eq. (18) is used. In line with the data, the LCA pre-
dictions for the number of pp-to-pn SRC pairs is fairly
constant along the fifteen nuclei in our sample and in-
creases with increasing nucleon momentum. For a fixed
momentum range, the variation in the predicted pp-to-
pn SRC pair ratios across nuclei is of the order of few
percent in line with the experimental observations.

The experimentally determined aexp2 (A) of Eq. (1) is
extracted from ratios of A-to-d (e, e′) cross section ratios.
In the impulse approximation those cross sections can be
computed by integrating the phase-space weighted mo-
mentum distributions over selected ranges R determined
by experimentally imposed conditions

aexp2 (A) =
2

A

σA(e, e′)

σd(e, e′)
∼ 2

A

∫
R dpp

2nA(p)∫
R dpp

2nd(p)
∼
∫
R dpP

A(p)∫
R dpP

d(p)
.

(19)
Here, R is the momentum-range that corresponds to high
initial-nucleon momenta and constant A-to-d (e, e′) cross
sections. As those conditions can be associated with the
tail part of the probability distributions of Fig. 2, an
estimate of the aexp2 (A) of Eq. (19) can be obtained from
the ratio of the weight in the tail parts of the computed
PA(p)

a2(A) =

∫
p>2 fm−1 dpPA(p)∫
p>2 fm−1 dpP d(p)

. (20)

With the aid of the decomposition (16) the contribu-
tion of the pp, nn and pn+np pairs to the numerator can
be computed and the isospin composition of the SRC can
be quantified. The denominator of Eq. (20) accounts for
the weight of the tail part of the deuteron momentum
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Figure 4. LCA results for the the SRC scaling factors a2(A)
(orange open diamonds) along with the separate pp (blue
open triangles), nn (brown stars) and pn (purple solid circles)
contributions plotted versus atomic weight A. The shaded
regions mark the pn (blue) and the pp+nn (green) contribu-
tions. All results are computed from the A-to-d weight of the
tail part (p > 2 fm−1) of the nucleon probability distribu-
tion PA(p) [see Eq. (20)]. All PA(p) (including the deuteron
one) are computed in LCA. The aexp2 (A) data are from the ex-
tended data tables of Ref. [16] and include data from Ref. [15].

distribution. Obviously, this number is model dependent
[51, 53]. For example, with the AV18 (LCA) deuteron
momentum distribution the denominator is 0.127 (0.103)
which corresponds with the tail part carrying about 10-
13% of the total probability in the deuteron. In Fig. 4
we present results of the above ratio for the 15 nuclei
in our sample. For reasons of consistency, the deuteron
probability distribution used is also computed in LCA.
From 4He to 208Pb the SRC scaling factor as computed
with the aid of the Eq. (20) has an increment of about
25% — from ≈ 3.8 to ≈ 4.8 — indicative of a very soft
A-dependence that is also observed in the data. The soft
A-dependence of the a2 can be intuitively understood by
considering that a2 is determined by the local neighbor-
hood of a nucleon. For light nuclei and increasing A. 20
the local neighborhood gradually fills up to reach ap-
proximate saturation for A&20. In the A-to-d ratio the
pn+np contribution is about 70% of the total value and
the pp part is of the order of 10%. For N

Z = 1 the pp and

nn parts equally contribute. For 197Au and 208Pb, the
two most asymmetric nuclei in our sample, the nn con-
tribution approaches 20% of the total. These numbers

are to be compared to N(N−1)
A(A−1) = 0.36 and 0.37, and is

indicative for the isospin selectivity of the SRC. In com-
paring the LCA predictions to the data it is important
to realize that there are corrections to be applied, for ex-
ample stemming from the center-of-mass motion of the
NN pairs [15, 54] and the fact that in a finite nucleus
pairs can have excitation energies [55]. These corrections
require either a full reaction model or a detailed Monte
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Carlo simulation and are outside the scope of this work.

C. Asymptotic single-nucleon momentum
distributions and SRC scaling factors

In what follows we extract the SRC scaling factors a2

from the asymptotic behavior of the A-to-d momentum
distributions. The SRC scaling factors extracted from
this method will be compared with those from Fig. 4
that use the aggregated weight in the SRC part of the
PA(p). With this comparison we explore the sensitivity
of our methodology to the choices made with regard to
the limits of integration in the tail parts of the single-
nucleon momentum distributions. We start with study-
ing the momentum dependence of the A-to-d probability
distributions to identify the momentum ranges for which
an A-to-d scaling behavior emerges. In Fig. 5 we display
the momentum dependence of the four ratios

PA(p)

P d(p)
,

(
PApn(p) + PAnp(p)

)

P d(p)
,
PAnn(p)

P d(p)
,
PApp(p)

P d(p)

for our sample of fifteen nuclei. For each value of the

momentum p, the PA(p)
Pd(p)

provides the ratio of the per-

nucleon probability of finding a nucleon in A(N,Z) rela-
tive to the deuteron. Obviously, any deviation from one
is a measure for the medium dependence of the nucleon
probabilities. The increased A-to-d relative probability
PA

Pd for 0.75 . p . 1.65 fm−1 is connected to Fermi mo-
tion in finite nuclei. In that momentum range the pp,

nn and pn contribute to PA

Pd roughly in accordance to

their weight in A(A−1)
2 . At p & 2.25 fm−1 one observes a

plateau in the PA(p)
Pd(p)

that extends to the highest momenta

studied here. The plateau is characterized by an approx-
imately universal momentum dependence of the A-to-d

ratio PA(p)
Pd(p)

at high momenta. Variations across nuclei

can be captured by an SRC scaling factor that depends
on A(N,Z). The onset of a plateau in the high-momenta

results of PA(p)
Pd(p)

in Fig. 5 provide support for the use of

Eq. (4) for extracting the SRC scaling factor. Indeed, in
the limit of very high nucleon momenta relations between
single-nucleon and two-nucleon momentum distributions
can be established [22]. The major trends in the A-to-
d ratios of Fig. 5 are in line with those of a study for
six nuclei with A ≤ 10 reported in [22]. The numerical
calculations of that study also identify the p & 4 fm−1

region as the one suitable for extracting the A-to-d SRC
scaling factor.

The SRC scaling factor extracted from the “high-

momentum” (p ≈ 4.5 fm−1) behavior of PA(p)
Pd(p)

for the

total probability distribution for 4He is about 4. For the
lightest nuclei in our sample — 9Be, 12C, 16O, 27Al —
the SRC scaling factor increases with A to reach the value
of approximately 4.8 for 27Al. Small increments in the

high-momentum values of P
A(p)

Pd(p)
with increasing mass are

observed for A > 27.
Yet a closer look at the pp, nn and pn+np contribu-

tions to the PA(p)
Pd(p)

in Fig. 5 indicates that the onset of

the high-momentum plateau is most outspoken for the

pn+np parts. For the pp and nn contributions to PA(p)
Pd(p)

the high-momentum scaling is not so pronounced as for
the pn+np parts but there are indications that also these
two ratios approximately saturate for p & 4 fm−1. After
all, this is not so surprising given that there is no such a
thing as proton-proton and neutron-neutron correlations
in the deuteron. Along the same lines, there are stronger

variations for the pp and nn contributions to PA(p)
Pd(p)

across

nuclei than for the pn+np contribution. The variation in
the pp and nn contribution to the A-to-d SRC scaling fac-
tor cannot be captured by an A-dependence and as will
be discussed later on the N/Z ratio plays an important
role. For the pn+np parts the A-to-d SRC corrections
at nucleon momenta p & 4 fm−1 are substantially larger
than the corrections attributed to the Fermi motion in
the 0.75 . p . 1.65 fm−1 range. For the pp and nn
parts, on the other hand, the SRC A-to-d modifications
are of the same order as the ones attributed to Fermi
motion. Following up on the above discussion about the

fact that the
PA

pp(p)

Pd(p)
and

PA
nn(p)
Pd(p)

plateaus are not really

very flat at high nucleon momentum, we have confirmed

that the corresponding
PA

pp(p)

P 4He(p)
and

PA
nn(p)

P 4He(p)
plateaus are

far more flat.
The results of Fig. 5 provide support for extracting

to A-to-d SRC scaling factor from the high-momentum
behavior of the ratio

a2(A) = lim
high p

PA(p)

P d(p)
, (21)

where “high p” stands for the momentum range for which
a plateau in the A-to-d momentum distribution is visible.
We stress that the above expression for a2(A) is similar
in vein to the ones of Eqs. (3) and (4) that have been de-
rived within the context of effective field theories (EFTs)
[20, 30] and of the contact formalism [21, 23, 24]. The
following results are computed in the spirit of the expres-
sion (21) whereby we have defined “high p” well in the
asymptotic p region of the A-to-d momentum distribu-
tions (see Fig. 5). As is clear from Fig. 5 the plateau in
the A-to-d probability distributions can be clearly identi-
fied for the dominant pn contribution. For the pp and nn
parts, on the other hand, the A-to-d scaling is approxi-
mately realized but at the highest p there are indications
for saturation. To this end, the “high-p limit” limhigh p

of the A-to-d probability distributions of Eq. (21) was
numerically evaluated by means of the ratios

a2(A) = lim
high p

PA(p)

P d(p)
≈
∫

∆phigh
dp PA(p)∫

∆phigh
dpP d(p)

(22)

Similar expressions are used to evaluate the limhigh p of
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Figure 5. The nucleon momentum dependence of the ratio of the single-nucleon momentum distribution for nucleus A relative
to the deuteron. Ratios are shown for the total momentum distribution, the sum of the proton-neutron and neutron-proton
contributions, the neutron-neutron and proton-proton contributions. All the nucleon momentum distributions (including the
deuteron one) are computed in LCA. Note that the y-axis scale for the nn and pp contributions (bottom figures) is different
from the one used for the “total” and “pn+pn” ones (top figures). The grey shaded area shows the momentum range where
Fermi motion dominates the displayed A-to-d momentum distributions.

the ratios
PA

pp

Pd ,
PA

nn

Pd ,
PA

np

Pd , and
PA

pn

Pd . Based on the lo-
cation of the occurrence of the plateaus in Fig. 5 the

range ∆phigh of high − p values is
[
phigh
l , phigh

u

]
with

phigh
l > 3.8 fm−1 and phigh

u < 4.5 fm−1. In the pro-

cess of selecting the boundaries of the range ∆phigh we
have also taken into consideration the good practice of
keeping the nucleon momenta smaller than the nucleon
mass in non-relativistic calculations. The range ∆phigh is
of the order of 100 MeV. There are some systematic un-
certainties in our approach that are connected with the
selection of the “high-momentum” regime. Referring to
the results of Fig. 5 the highest uncertainty stems from
the nn contribution. A very conservative estimate of the
error induced by defining a “high-p” regime of the ratios
ofA-to-d is that it induces an uncertainty in the extracted
ap2 and an2 of the order of 0.50, which corresponds to an
error of about 10%.

Figure 6 shows the SRC scaling factors as computed
with the aid of the expression (22) for the fifteen nuclei
in our sample. We provide the total SRC scaling factor
as well as the separated proton-proton, neutron-neutron
and proton-neutron contributions to it. The results can
be compared with those of Fig. 4 that use the aggre-

gated weight in the SRC part of the momentum distri-
butions [Eq. (20)]. All-in-all the two methods to deter-
mine the SRC scaling factors a2(A) provide comparable
predictions for all nuclei considered in this work. The
method based on the evaluation of the high-p limit of
PA(p)
Pd(p)

tends to predict larger pp and nn contributions to

a2(A). In essence, Figs. 4 and 6 use different ranges of
integration (p > 2 fm−1 and 3.8 < p < 4.5 fm−1) to de-
termine the a2(A). The difference between the extracted
numbers can be seen as a measure for the sensitivity to
the adopted ranges of integration in the tail parts of the
single-nucleon momentum distributions.

Figure 7 compares the LCA results for a2 using
Eq. (21) with those from ab-initio calculations and data.
Within the error bars the LCA results are compatible
with those from ab-initio calculations and the data. For
40Ca and 48Ca we predict a2 = 4.99 and a2 = 4.89. The
heaviest nucleus for which ab-initio results are available
is 40Ca and the LCA result of 4.99 compares well with
the ab-initio result of 5.15±0.67. The LCA prediction
for 12C (a2 = 4.48) is in line with the measured values:
aexp2 = 4.49± 0.17 [16] and aexp2 = 4.75± 0.16 [17].
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Table I. Results for the proton and neutron SRC scaling factors ap2 and an2 and related quantities as computed in LCA for a

sample of 15 nuclei. The ap2 and an2 are computed with the aid of the Eq. (25). The − dREMC
dx

are computed with the aid of
the Eq. (28).

Nucleus N
Z

ap2 an2
Za

p
2+Nan

2
A

aexp2
Za

p
2−Nan

2
A

− dREMC
dx

bexp2

4He 1.00 4.05 4.05 4.05 3.60± 0.10 [17] -0.00 0.268 0.207± 0.025 [56], 0.222± 0.045 [57]
9Be 1.25 4.37 3.97 4.15 3.91± 0.12 [17] -0.26 0.336 0.326± 0.026 [56], 0.283± 0.028 [57]
12C 1.00 4.48 4.48 4.48 4.75± 0.16 [17] -0.00 0.306 0.340± 0.022 [16], 0.285± 0.026 [56],

4.49± 0.17 [16] 0.322± 0.033 [57]
16O 1.00 4.73 4.73 4.73 -0.00 0.328
27Al 1.08 4.83 4.69 4.76 4.83± 0.18 [16] -0.10 0.354 0.347± 0.022 [16]
40Ar 1.22 5.15 4.72 4.92 -0.28 0.408
40Ca 1.00 4.99 4.99 4.99 -0.00 0.351
48Ca 1.40 5.33 4.59 4.89 -0.46 0.446
56Fe 1.15 5.13 4.83 4.97 4.80± 0.22 [16] -0.21 0.397 0.472± 0.023 [16], 0.391± 0.025 [57]
63Cu 1.17 5.01 4.80 4.89 5.21± 0.20 [17] -0.29 0.407 0.391± 0.025 [57]
84Kr 1.33 5.38 4.77 5.03 -0.42 0.450
108Ag 1.30 5.38 4.85 5.08 -0.39 0.449
124Xe 1.30 5.42 4.92 5.14 -0.41 0.458
197Au 1.49 5.34 4.98 5.12 5.16± 0.22 [17] -0.84 0.554 0.511± 0.030 [57]
208Pb 1.54 5.64 4.77 5.11 4.84± 0.20 [16] -0.66 0.513 0.539± 0.020 [16]

D. Proton and neutron SRC scaling factors for
symmetric and asymmetric nuclei

In an asymmetric N 6= Z nuclear environment one can
anticipate that the A-to-d SRC scaling factors are differ-
ent for protons and neutrons [36]. In order to quantify
this and gain better insight into the N

Z dependence of the
SRC scaling factors we introduce

a2(A) = lim
high p

PA(p)

P d(p)
= lim

high p

PAp (p) + PAn (p)

P d(p)

≡ Zap2(A) +Nan2 (A)

A
. (23)

We remind that with the adopted normalization conven-
tions one has

∫
dpPAp (p) =

Z

A
,

∫
dpPAn (p) =

N

A
, (24)

and that for the deuteron we can formally write P d =
P dp +P dn = 2P dp = 2P dn . Rearranging the above equations

leads to the definitions ap2(A) and an2 (A)

ap2(A) = lim
high p

A PAp
Z P dp

, an2 (A) = lim
high p

A PAn
N P dn

. (25)

Accordingly, ap2(A) encodes the per-proton probability
to find a high-momentum proton in A(N,Z) relative to
d. Similarly, an2 (A) encodes the per-neutron probability
to find a high-momentum neutron in A(N,Z) relative to
d. Note that ap2(A = d) = an2 (A = d) = 1. A devia-
tion from ap2(A) = an2 (A) is reminiscent of the fact that

there are differences in the per-proton and per-neutron
dynamical modifications attributed to the short-distance
structure of the nuclear environment in A(N,Z). We stress
that in the absence of pp and nn correlations the high-
momentum tails of PAp (PAn ) would only receive a PApn
(PAnp) contribution. For predominant proton-neutron cor-

relations one has that PApn(p > pF ) ≈ PAnp(p > pF ) and
one can infer that

ap2(A) ≈ N

Z
an2 (A) (for pn exclusivity) . (26)

Note that the ap2 and an2 defined in Ref. [16] obey this “pn-
exclusivity” inspired relation by construction and that in
the limit of vanishing pp and nn correlations one has the
strict relationship between a2, ap2 and an2

a2(A) =
2Z

A
ap2(A) =

2N

A
an2 (A) (for pn exclusivity) .

(27)
In Fig. 8 we show the evolution of the computed ap2(A),

an2 (A) and a2(A) with mass number A and proton-to-
neutron ratio N

Z . The limhigh p in Eq. (25) is numerically
evaluated as outlined in Eq. (22) and the discussion fol-
lowing this expression. All numerical values for the ap2(A)
and an2 (A) are also contained in Table I. For asymmet-
ric nuclei N

Z > 1 one finds that ap2(A) > an2 (A). This
implies that per nucleon the proton minority component
contribute more to the SRC scaling factors than the neu-
tron majority component, which is in line with previous
observations [36–38]. This result is not surprising given
that pn exclusivity gives rise to the relation ap2 ≈ N

Z a
n
2

[Eq. (26)]. The ratio
ap2(A)
an2 (A) increases with growing N

Z .
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Figure 6. LCA results for the the SRC scaling factors a2(A)
(orange open diamonds) along with the separate pp (blue
open triangles), nn (brown stars) and pn (purple solid circles)
contributions plotted versus atomic weight A. The shaded
regions mark the pn (blue) and the pp+nn (green) contribu-
tions. All results are obtained from the asymptotic high-p
behavior of the A-to-d single-nucleon nucleon momentum dis-
tribution PA(p) (see Eq. (21) and text for details). All PA(p)
(including the deuteron one) are computed in LCA. The
aexp2 (A) data are from the extended data tables of Ref. [16]
and include data from Ref. [15].

Whereas for A & 27 the an2 (A) varies between 4.59 and
4.98, one observes that the ap2(A) increases with N

Z to
reach a value of about 5.5 for the most neutron-rich nuclei
considered here (197Au and 208Pb). For 48Ca (NZ = 1.4)
the ap2(A) is about 15% larger than the an2 (A). The out-
lier in the SRC scaling factors at N

Z = 1.25 is for 9Be and
reflects the fact that for light nuclei the a2 is about one
unit smaller than for medium-heavy and heavy nuclei. In
other words, 9Be is the sole light asymmetric nucleus in

our sample. Table I also lists the values of
Zap2−Na

n
2

A a
quantity that vanishes for N = Z nuclei. In asymmetric

nuclei,
Zap2−Na

n
2

A approaches zero in the scenario of pre-

vailing proton-neutron correlations. Obviously,
Zap2−Na

n
2

A

grows increasingly negative with N
Z which reflects the

fact that the nn correlations increase in importance with
growing N

Z as can be inferred from Figs. 5 and 6.

E. Size of EMC effect

We exploit the conjectured linear relationship between
the a2 coefficients (per nucleon modification relative to
the deuteron) and the size of the EMC effect to connect
the LCA predictions for ap2(A) and an2 (A) to the EMC
data. We suggest to parameterize the size of the EMC
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Figure 7. Comparison of the LCA results for the SRC scaling
factors a2(A) with those from ab-initio calculations and with
measured values. The ab-initio results are from Table II of
Ref. [20] (results referred to as “N2LO Eτ R0=1.0 fm” ex-
cept for 40Ca where the sole available ab-initio result uses
the “AV4′+UIXc” nucleon-nucleon interaction). The aexp2 (A)
data are from the extended data tables of Ref. [16] and include
data from Ref. [15].

effect as defined in Eq. (2) in the following way

bexp2 (A) = −dREMC(A, x)

dx

= m1

(
Zap2(A) +Nan2 (A)

A
− 1

)

+m2

(
Zap2(A)−Nan2 (A)

A

)
, (28)

with m1 and m2 two parameters that are here determined
from theory-experiment comparisons. By construction
the deuteron has a vanishing EMC effect. In the above
linear relationship that connects the measured size of the
EMC effect bexp2 (A) to the computed SRC scaling fac-
tors for protons and neutrons, the first term (weight m1)
is reminiscent of an isospin blind generative mechanism.
Indeed, in the first term of Eq. (28) the protons and neu-
trons contribute according to their weight Z

A and N
A in

the total number of nucleons. For this reason, we refer
to the term with weight m1 as the “isoscalar” contribu-
tion. We refer to the second term (weight m2) as the
“isovector” contribution that could find its origin in an
isospin-dependent generative mechanisms for the EMC
effect. Within the framework of relativistic quark-level
models of nuclear structure, it has been suggested that
those so-called flavor-dependent or isovector nuclear ef-
fects influence the size of the EMC effect in nuclei with
a neutron excess [26, 27]. We remind that in the limit
of vanishing proton-proton and neutron-neutron correla-
tions in N 6= Z nuclei, the ap2(A) and an2 (A) obey the
relation of Eq. (26) and the m2 term in the above equa-
tion vanishes.
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Figure 8. The LCA predictions for the SRC scaling factors
for a sample of 15 nuclei as a function of A (top panel) and
N/Z (bottom panel). Results are displayed for the proton ap2
(circles), neutron an2 (triangles) and total a2 (diamonds) SRC
scaling factors. The LCA results are obtained with the ex-
pression (22) with ∆phigh ≡

[
3.90 fm−1, 4.40 fm−1

]
. The ex-

perimental data are from the extended data tables of Ref. [16]
and include data from Ref. [15].

In Fig. 9 we compare the LCA predictions based on the
Eq. (28) with data for the EMC slopes without applying
isoscalar corrections to those data. We use χ2 minimiza-
tion to fit the computed ap2(A) and an2 (A) to 13 measured
EMC slopes using the expression (28). We include the
measured EMC slopes for the following nuclei (with xm
we denote that there are x measurements for a partic-
ular target nucleus): 4He (2m), 9Be (2m), 12C (3m),
27Al (1m), 56Fe (2m), 63Cu (1m), 197Au (1m), 208Pb
(1m). Accordingly, there are 8 target nuclei included in
the fit, including 6 asymmetric ones. The best descrip-
tion of the data is obtained with the combination (m1 =
0.0878± 0.003,m2 = −0.229± 0.030). The values for the
EMC slopes obtained with the Eq. (28) are contained in
Table I. The extracted value for m1 = 0.0878 ± 0.003
is in line with the quoted value m1 = 0.084 ± 0.004
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Figure 9. LCA results for the size of the EMC effect based on
a linear connection with the proton and neutron SRC scaling
factors. The “LCA (s)” results (blue open circles) assume
a generative mechanism that is isospin (flavor) blind (m1 =
0.103 ± 0.002,m2 = 0 in Eq. (28)). The “LCA (s+v)” re-
sults (orange open diamonds) assume generative mechanisms
that are the combination of an isospin-dependent and an
isospin-independent component (m1 = 0.0878 ± 0.003,m2 =
−0.229 ± 0.030 in Eq. (28)). The non-isoscalar corrected
bexp2 (A) data for the EMC slopes are from the summarizing
tables of Ref. [16]. Overlapping data points have been slightly
displaced for the sake of clarity.

in Ref. [20] that is based on fit of −dREMC(A,x)
dx versus

aexp2 (A). The fit of Ref. [20] includes all EMC data
for light nuclei (A ≤ 12) and the isoscalar-corrected
EMC data for 56Fe and 197Au. The results presented
in Ref. [20] include solely the first term of the r.h.s. of
the Eq. (28). The EMC data for A ≤ 63 can be reason-
ably reproduced without inclusion of an isovector term
(m1 = 0.103 ± 0.002,m2 = 0)—result referred to as
“LCA(s)”. Without inclusion of the isovector term, the
EMC slope for 4He and 27Al tends to be over-predicted
whereas for the EMC slopes of 197Au and 208Pb the op-
posite is observed. Inclusion of the m2 term results in
a stronger variation of the EMC slopes across the nu-
clear mass table and results in an improved description
of the data. Indeed, after including the m2 term the
reduced χ2 is 2.66 whereas the fit with solely the m1

term has a reduced χ2 of 7.3. Obviously, a more precise
determination of the m2 term requires more data and
extended studies on asymmetric N

Z > 1 nuclei. For ex-
ample, the effect of including the m2 term works very
differently for the nuclei 40Ca and 48Ca. Power-counting
arguments within the framework of effective-field theory

[20] indicate that the isovector term
Zap2(A)−Nan2 (A)

A can

be neglected relative to the isoscalar one
Zap2(A)+Nan2 (A)

A .
Inspecting Table I we find that the isoscalar term is in
the range 4.05-5.11, whereas the iosvector term is in the
range −0.84 − 0.00. The isovector term is vanishing
for N = Z nuclei and reaches its largest values for the
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most asymmetric nuclei considered here: −0.66 for 208Pb
and −0.84 for 197Au. We stress that the above theory-
experiment comparisons for the EMC slopes cannot shed
light on underlying mechanisms that are due to non-SRC
related medium modifications.

III. CONCLUSIONS

The SRC scaling factors a2 represent the relative prob-
ability of nucleon-pair SRC in a specific nucleus relative
to the deuteron. They are conventionally expressed per
nucleon and can be computed from the high-momentum
properties of momentum probability distributions. In the
framework of the low-order correlation operator approx-
imation used throughout this work one can determine
the pp, pn, nn, np SRC contributions to the momen-
tum probability distributions PA(p) for a specific nucleus
A(N,Z). We have determined those contributions for a
sample of 15 nuclei extending in mass number from He to
Pb. Across that sample, that includes 4 symmetric and
11 asymmetric nuclei, there is relatively little variation
in the computed a2 with values in the range between 4.05
(for 4He) and ≈ 5.10 (all studied nuclei with A ≥ 108).
We find that the pn contribution to the SRC scaling fac-
tor is approximately 3 and that there are non-negligible
contributions from pp and nn correlations in the LCA ap-
proach. The pp and pn (nn and np) SRC contributions to
the high-momentum probability distributions determine
the proton (neutron) SRC scaling factors ap2 (an2 ). The ap2
and an2 provide more detailed information on the abun-
dance of nucleon-pair SRC than the “total SRC scaling
factor a2”. For asymmetric N > Z nuclei one systemati-
cally finds that ap2 > an2 with deviations approaching 20%
for the most asymmetric nuclei in our study. This means
that in N > Z nuclei the SRC induced medium modifi-
cations of the protons and the neutrons are substantially

different. We have done robustness checks and used two
different techniques to compute the SRC scaling factors
(a2, a

p
2, a

n
2 ). For light and medium-heavy nuclei, the LCA

predictions for the SRC scaling factors are in line with
those from ab-initio approaches and the values extracted
from inclusive electron scattering under selected condi-
tions.

In the LCA framework we can shed light on the valid-
ity of the A-to-d factorization of the momentum proba-

bility distributions by studying the ratios
PA

NN′ (p)

Pd(p)
. For

NN ′=pn and np the A-to-d factorization is very well re-
alized at p & 3.5 fm−1. For the pp and nn correlations,

on the other hand, the A-to-d factorization of
PA

NN′ (p)

Pd(p)
is

only approximate but indications for a plateau are visible
for p & 4.0 fm−1. We have expressed the measured size
of the EMC effect in terms of the computed proton and
neutron SRC scaling factors. The measured size of the
EMC effect displays a stronger variation across the nu-
clear mass table than the SRC scaling factor and larger
EMC effects are observed in nuclei with a neutron ex-
cess. These qualitative features can be captured in terms
of a linear relationship between the size of the EMC ef-
fect and the computed proton and neutron SRC scaling
factors that includes both an isoscalar and an isovector
term.
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