
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

University of Massachusetts Medical School Faculty Publications 

2019-11-05 

The adaptive potential of the M-domain of yeast Hsp90 [preprint] The adaptive potential of the M-domain of yeast Hsp90 [preprint] 

Pamela A. Cote-Hammarlof 
University of Massachusetts Medical School 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/faculty_pubs 

 Part of the Amino Acids, Peptides, and Proteins Commons, Biochemistry, Biophysics, and Structural 

Biology Commons, and the Ecology and Evolutionary Biology Commons 

Repository Citation Repository Citation 
Cote-Hammarlof PA, Fragata I, Flynn JM, Zeldovich KB, Bank C, Bolon DN. (2019). The adaptive potential 
of the M-domain of yeast Hsp90 [preprint]. University of Massachusetts Medical School Faculty 
Publications. https://doi.org/10.1101/832022. Retrieved from https://escholarship.umassmed.edu/
faculty_pubs/1648 

Creative Commons License 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in University of 
Massachusetts Medical School Faculty Publications by an authorized administrator of eScholarship@UMMS. For 
more information, please contact Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/275701555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/faculty_pubs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/faculty_pubs?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/14?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1101/832022
https://escholarship.umassmed.edu/faculty_pubs/1648?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
https://escholarship.umassmed.edu/faculty_pubs/1648?utm_source=escholarship.umassmed.edu%2Ffaculty_pubs%2F1648&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Lisa.Palmer@umassmed.edu


 

The adaptive potential of the M-domain of yeast Hsp90 

Pamela A. Cote-Hammarlof ​1​*, Inês Fragata​2​*​§​, Julia Flynn ​1​, Konstantin B. Zeldovich ​1​, 
Claudia Bank ​2#​, and Daniel N.A. Bolon ​1#  

 
*Co-first authors 
#Co-corresponding authors  
1​ University of Massachusetts Medical School, Worcester, USA 
2​ Instituto Gulbenkian de Ciência, Oeiras, Portugal 
§​ Current address: Centre for Ecology and Evolution, Lisbon, Portugal 
 
Corresponding authors:  
Daniel N.A. Bolon, Dan.Bolon@umassmed.edu  
Claudia Bank, evoldynamics@gmail.com 

Abstract 

Comparing the distribution of fitness effects (DFE) of new mutations across different 
environments quantifies the potential for adaptation in a given environment and its cost in 
other environments. So far, results regarding the cost of adaptation across environments have 
been mixed, and there were no sufficiently large data sets to map its variation along the 
genome. Here, we study the DFEs of ≈2500 amino-acid changing mutations obtained from 
deep mutational scanning of the 118 amino-acid-long middle domain of the heat-shock 
protein Hsp90 in five environments and at two expression levels. This region is known to be 
important for client binding, stabilization of the Hsp90 dimer, stabilization of the N-M and 
M-C interdomains and regulation of ATPase-chaperone activity. Despite the diverse and 
stressful environments, we find that fitness correlates well across environments, with the 
exception of one environment, diamide. Consistent with these results, we find very little cost 
of adaptation; on average only one in seven beneficial mutations is deleterious in another 
environment. We identify a hotspot of beneficial mutations in a region of the protein that is 
located within an allosteric center. The identified protein regions that are enriched in 
beneficial, deleterious, and costly mutations  coincide with  residues that are involved in the 
stabilization of Hsp90 interdomains and stabilization of client binding interfaces or residues 
that are involved in ATPase chaperone activity of Hsp90. Thus, our study yields information 
regarding the role and adaptive potential of a protein sequence that complements and extends 
known structural information. 

Introduction 

The distribution of fitness effects (DFE) describes the proportions of new mutations that are 
beneficial, deleterious or neutral (Eyre-Walker & Keightley 2007, Loewe 2010, Bataillon & 
Bailey 2014). This provides a snapshot of the robustness of the genome to changes in the 
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DNA and on the expected amount of genetic diversity within populations. Moreover, the 
beneficial part of the DFE informs on the adaptive potential of populations when introduced 
in a new environment (Sniegowski & Gerrish 2010, Bataillon & Bailey 2014). While 
maintaining the same shape of the DFE, mutations in one environment can be deleterious in 
another (Bataillon et al 2011). So far, it has been difficult to address the prevalence of such 
costs of adaptation (also termed antagonistic pleiotropy), because it was difficult to measure 
the fitness of the same mutations across various environments (but see, e.g., Hietpas et al 
2013, Sane et al 2018).  
 
Around a decade ago, inference of the complete DFE of different regions in several model 
species started to become feasible, using a combination of directed site mutagenesis and deep 
sequencing (Fowler et al. 2010, Hietpas et al 2012, Boucher et al. 2014). These studies 
usually reported a bimodal DFE with two peaks that represent neutral (or wild-type like) 
mutations and another that represents strongly deleterious mutations [Acevedo et al 2014, 
Bank et al 2014, Boucher et al 2014] ​.​ ​With improvements of the experimental and 
sequencing technologies, studies of hundreds of thousands of mutant effects have become 
feasible (Melamed et al 2013, Boucher et al 2014, Doud et al 2016, Sarkisyan et al 2016, ). 
However, few studies have quantified the impact of environmental challenges on the shape of 
these DFEs (but see Hietpas et al 2013). That is partly because inferring the adaptive 
potential across environments and the cost of beneficial mutations in alternative 
environments requires a high experimental resolution of selection coefficient estimates.  
 
Experimentally quantifying the DFE across environments is important because natural 
environments can change due to the alterations of abiotic factors including, temperature, 
salinity, and pH, which can have diverse evolutionary consequences that are directly related 
to the shape of the DFE (Dhar et al. 2011; Arribas et al. 2014; Mumby and van Woesik 2014; 
Brennan et al. 2017). Because environments are in general likely to change faster than genetic 
adaptation can proceed, the long-term fitness of individuals depends on their ability to deal 
with a wide range of environmental stresses.  
 
Environmental challenges manifest at many biological levels, including the protein level. For 
example, increased temperature can cause protein unfolding and aggregation, which can 
disrupt function, ultimately affecting organismal fitness and survival (Richter et al. 2010).  
Chaperones, such as the heat shock protein Hsp90, help the cellular machinery survive stress 
conditions (Chen et al. 2018). They are an important line of defense for new and recurring 
environmental challenges and can also function to increase standing genetic variation that can 
facilitate adaptation to new stress conditions (Barrett and Schluter 2008; Jarosz and Lindquist 
2010; Fitzgerald and Rosenberg 2019). Therefore, it is important to understand how 
chaperones themselves evolve, and how the selection pressure on the chaperone itself 
changes upon exposure to different environmental challenges. 
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Hsp90 is a chaperone that plays an essential role in protecting cells from environmental stress 
and is required at elevated levels for yeast growth at high temperature (Borkovich et al. 
1989). Under optimal conditions Hsp90 can suppress the phenotypic consequences of 
mutations in signal transduction pathways by correctly folding mutant clients (Sangster et al. 
2004; Jarosz and Lindquist 2010; Zabinsky et al. 2019). However, in stressful conditions 
there is an increase in the concentration of stress-induced unfolded and damaged proteins, 
which compete for Hsp90 chaperone function (Sangster et al. 2004; Taipale et al. 2010). 
Thus, mutations in protein clients and in Hsp90 itself may have phenotypic and ultimately 
fitness consequences.  
 
Recent studies using systematic mutagenesis have begun to address how mutations to a 
highly conserved client binding site of Hsp90 can impact evolutionary adaptation in yeast 
(Hietpas et al. 2013). ​ ​Multiple mutations in a nine amino acid client-binding site of yeast 
Hsp90 provided a growth advantage under elevated salinity conditions (Hietpas et al. 2013). 
Another recent study found that at low Hsp90 expression levels, changes in environment 
greatly changed the shape of the DFE, and that some environments showed a higher 
prevalence of both beneficial and deleterious mutations (Flynn et al 2019). However, another 
previous study proposed that at low expression the fitness effects of mutations, especially 
deleterious ones, should be larger (Jiang et al 2013). Thus, it was not possible to separate how 
much of the observed effect in this new study were due to expression level and which was 
due to environmental changes. 
 
Here we examine a 119 amino acid region (encompassing positions 291-409, Fig 1) of the 
yeast middle domain Hsp90, known to bind to many client proteins (Nathan and Lindquist 
1995; Nathan et al. 1997; Meyer et al. 2003; Hawle et al. 2006; Hagn et al. 2011). Several 
studies have demonstrated that the middle domain of Hsp90 plays a prominent role in client 
binding, and suggested that mutations in this region may impact the relative affinity or 
priority of different clients and physiological pathways with the potential to provide an 
adaptive benefit (Hagn et al. 2011, Zhang et al. 2005, Sato et al. 2000, Karagoz et al. 2014, 
Verba et al. 2016; Czemeres et al. 2017).  
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Figure 1 ​:​ Middle domain of Hsp90  
(A) In this image of the structure of Hsp90, the middle domain (amino acids 291-409) is 
highlighted in purple. A solvent exposed amphipathic loop implicated in client binding 
(amino acids 327-341) is highlighted in yellow and residues implicated in client binding 
(amino acids W300, F329, F349) are shown in grey. This representation is a modification of a 
monomer based on a crystal structure of the M domain of WT yeast Hsp90 (PDB 1HK7). (B) 
Amino acid sequence alignment of the M-domain region of study in yeast Hsp82 and human 
Hsp90. Boxed in red are the amino acid residues that form the solvent exposed amphipathic 
loop implicated in client binding (amino acids 300, 327-341). 
 
We here used the EMPIRIC approach of deep mutational scanning (Hietpas et al 2012) to 
estimate the selection coefficient of all amino-acid changing mutations in the M-domain of 
Hsp90 across five environments. Whereas this study was performed at normal expression 
levels, we included low-expression data from Flynn et al. 2019 in diamide, salt and standard 
conditions in our analysis to test the impact of protein expression on the fitness effect of 
mutations. Using the inferred DFEs, we identified regions of the M-domain that stand out 
with respect to their potential for adaptation upon environmental change. To this end we: a) 
quantified the impact of environmental changes on the overall shape of the DFE, b) identified 
regions that show the largest proportions of beneficial or deleterious mutations, c) quantified 
hotspots of costs of adaptation, and d) compared the identified regions with known client 
binding or other structurally important sites to connect the phenotypic and fitness effects of 
mutations.  
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Results and Discussion 

DMS across environments and expression levels reveals distributions of fitness effects. 

To investigate the adaptive potential of the M domain region of yeast Hsp90 (amino acids 
291-409) we used systematic site-directed mutagenesis in this region. This resulted in ≈2500 
amino-acid changing mutations, whose selection coefficients were estimated from 2-3 
replicates of bulk competitions that were performed for five environments. We focused our 
analysis on the standard lab conditions and four environmental stresses that affect growth rate 
in yeast ( Supplementary figure 9) and the adaptive gene expression response (Gasch et al. 
2000) , two that cause osmotic stress (0.5M salinity or 0.6M sorbitol) and two that cause 
oxidative stress (0.6 mM H202 or 0.85mM diamide). These conditions were chosen because 
of Hsp90’s role in yeast response to these environmental stressors. In yeast, responses to 
environmental stress requires changes in signaling pathways that dramatically alters gene 
expression programs (de Nadal et al. 2011). For example, during osmotic stress, Hog1, the 
yeast homolog of the mammalian p38 mitogen activated protein kinase becomes activated 
(Hawle et al., 2007) and results in the induction of ~600 genes required for yeast response to 
osmotic stress (Westfall et al. 2004). Hsp90 function is required for adaptation to osmotic 
stress (Yang et al. 2006) and Hsp90 is necessary for the activation of the HOG pathway 
(Hawle et al. 2007; Yang et al. 2007). Although Hsp90 function is required for the osmotic 
stress response, increased expression of Hsp90 does not occur in this condition (Gasch et al. 
2000). In contrast, the oxidative stresses of diamide and H202 cause an increase in the 
expression of chaperones, including Hsp90 (Gasch et al. 2000). Moreover, while each of 
these conditions causes changes in the expression of ~900 genes, diamide and H202 stress 
promote similar gene expression responses to those observed during thermal stress in yeast 
(Gasch et al. 2000). To allow for comparisons of mutational fitness across expression levels 
(Dekel and Alon 2005; Manceau et al. 2011), we included three data sets that were obtained 
in previous work (Flynn et al, Biorxiv), which evaluated the same mutations at constitutively 
low expression levels in the standard lab environment, the high-salinity environment, and the 
diamide environment.  
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DFEs across all environments show many wild-type like mutations. ​The shape of the DFE 
indicates the relative importance of purifying or directional selection as compared with 
neutral evolution. In apparent contrast with the strong conservation of the Hsp90 M-domain 
in natural populations, we observed DFEs with mostly wild-type like mutations across all 
environments (Supplementary Figure 1). Here, we categorized mutants as wild-type like if 
the 95% confidence interval of the estimated selection coefficient overlapped with 0 (see also 
Supplementary Table 1, Materials & Methods). According to this criterion, at high expression 
levels, between 50 % (in H2O2 environment) and  65% (in standard environment) of 
mutations showed a fitness effect that is indistinguishable from the reference type. At low 
expression levels, where the experimental resolution was lower, between 63% and 73% of 
mutations (in standard and diamide environments, respectively) showed a wild-type like 
effect. Large numbers of wild-type like mutations have been observed previously in DMS 
studies of DFEs (Soskine and Tawfik 2010, Hietpas et al 2013, Melamed et al 2013, Bank et 
al 2014, Hom et al 2019). Both biological and technical factors can be invoked as an 
explanation for the large number of wild-type like mutations. Firstly, the resolution of the 
experiment is likely much lower than the resolution at which natural selection may occur in 
large yeast populations (Ohta 1992). Secondly, selection pressures in the laboratory might 
differ greatly from those in nature (Reznick & Ghalambor 2005, Kvitek and Sherlock 2013). 
Finally and relatedly, selection pressures in nature might be fundamentally different and 
rapidly fluctuating (Mustonen and  Lässig 2009). For example, a recent study of the DFE of 
the full Hsp90 sequence found that those mutations which were most robust across a set of 
diverse environments were those most likely observed in natural sequences (Flynn et al., 
2019). 
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Correlations across conditions reveal that diamide stands out with respect to mutational 

effects. ​We next quantified the correlations of fitness effects across replicates, environments 
and expression levels (Figure 2, Supplementary Table 2). Consistent with the high accuracy 
of the experiment, we observed strong correlations between replicates (mean Pearson 
correlation r=0.91). Across environments and expression levels, we observed a large variation 
of correlations ranging from r=0.36 between diamide and low-expression salt to r=0.98 
between H2O2 and the standard environment. In this analysis, diamide clearly stood out by 
showing consistently lower correlations with other environments and expression levels than 
all others (mean correlation including diamide r=0.64, mean correlation of all others r=0.83). 
This could be do to the fact that diamide, unlike any of the other conditions examined, has 
multiple negative effects on the cell, including oxidative stress on proteins, protein unfolding, 
and cell wall damage (Gasch et al. 2000).  These detrimental effects place extra pressure on 
the chaperone system and thus require the increased expression of chaperone proteins 
including Hsp90 (Gasch et al. 2000). The observed differences between the two oxidative 
stress environments diamide and H202 can be explained by their different effects on the 
nuclear localization of Yap1 transcription factor (Gulshan et al. 2011). Yap1 is  a 
transcription factor that is required to mount an adaptive response to diamide but is crucial 
for an adaptive response to H202 (Gulshan et al. 2011). Thus, the observed differences 
between fitness effects observed under diamide conditions and other conditions and 
expression levels are likely to arise from a combination of the global stress diamide exerts on 
the organism, and by specific differences between diamide and other oxidative stress 
conditions.  

 
Figure 2: Histogram of correlations of fitness effects among replicates, expression levels, 

and environments reveals that diamide stands out as different.​ The stacked histogram is 
split into comparisons of replicates, expression levels, comparisons that include diamide, and 
all other comparisons. 
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We also observed a tendency to larger correlations of selection coefficients from the same 
batch of experiments (Supplementary Table 2).  We tried to mitigate this effect by 
performing some of the analyses with the average of the estimated fitness effects between 
replicates and re-categorizing mutations based on the mutant category of both replicates, as 
indicated. 
 
Finally, we compared the correlations of fitness effects across environments with those of the 
same environment, but obtained at a different (constitutive) expression level. A general 
expectation is that the Pearson correlation of DFEs between different expression levels 
should on average be larger than between environmental conditions. This would be consistent 
with the results and the verbal model of Jiang et al. 2013, who showed that the variance of the 
DFE increases at lower expression level. That is expected because at lower expression, small 
effects should become more important for protein production and thus become visible. 
However, we do not see any difference in the mean correlations within environments at the 
same expression level compared with correlations between expression levels (mean Pearson 
correlation across expression levels: r=0.76, vs. r=78 for correlations of environments with 
the same expression level). Again, we find that diamide stands out with a particularly low 
correlation between low and high expression levels. This makes sense with respect to the 
above-mentioned arguments, because an increase in Hsp90 expression levels is required to 
maintain protein and cellular homeostasis under diamide conditions (Gasch et al. 2000), 
which is compromised when Hsp90 is expressed at lower-than-normal expression levels. 
 
The large correlations observed between most environments suggest that potential costs of 
adaptation (discussed in detail further below) should be the exception rather than the rule. 
This is at odds with previous results from a smaller region of Hsp90 (Hietpas et al 2013), 
where most beneficial mutations detected in high salinity were deleterious in other 
environments. A potential explanation for this discrepancy lies in the choice of the region. 
Whereas the previous study focused on only nine amino acids and thus chose a set of 
positions that are likely to show functionally interesting patterns, we here had the 
experimental power to scan a larger region of the protein. Along a larger, less specifically 
chosen, stretch of the protein, it is likely that many positions and mutations play the same role 
across most environments. Consequently, only a small number of mutations in this greater set 
may have a functionally different role across environments, leading to costs of adaptation. In 
such case, costs of adaptation of beneficial mutations could still be large, but due to their low 
proportion they barely affect the correlation of selection coefficients across environments.  
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Beneficial mutations appear across all environments, and are enriched in a region of 

Hsp90 that is implicated in stabilization of interdomains and client binding interfaces. 

Next, we identified the proportion and identity of putatively beneficial mutations across all 
treatments (Supplementary Table 1, Supplementary Figure 2, 3). We categorized mutants as 
putatively beneficial if the lower limit of the 95% confidence interval of the selection 
coefficient was larger than 0, and we considered as strongest candidates those that overlapped 
between replicates from the same environment. As reported above, wild-type like mutations 
are the most abundant category in all environments, with a low proportion but considerable 
number of beneficial mutations in almost all environments. We find the lowest number of 
beneficial mutations in H2O2 and salt environments (n ​H2O2​=65 and n​Salt​=64, around 2.5% of 
the mutations) and the highest in diamide (n ​Diamide​=307, 12.3%). Interestingly, in diamide 
beneficial mutations were dispersed across the whole M-domain, whereas most of the other 
environments showed a clear enrichment of beneficial mutations in the region of positions 
356-366 (Figure 3). This hotspot of beneficial mutations was particularly strong in sorbitol 
(Supplementary Figure 2). Out of the 31 beneficial mutations that show a beneficial effect in 
at least two environments, 18 are located in this hotspot.  

 

 
Figure 3: ​Hotspots of beneficial and deleterious mutations along the protein region do 

not coincide with known client binding loop.​ Average proportion of beneficial and 
deleterious mutations along the genome across all environments, illustrated using a 
10-amino-acid sliding window. The region with the 10% largest proportions of beneficials is 
highlighted in light orange (position 356-366), the region with the 10% largest proportions of 
deleterious mutations is highlighted in light gray (positions 347 and 376-385). A known 
client binding loop (positions 327-341) is highlighted in light gray.  
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Interestingly the beneficial hotspot contains residues that are part of an allosteric center that 
mediates distinct conformations in structures with and without client (Czemeres et al. 2017). 
Despite its different structural arrangements, the hydrophobic amino acids in this region are 
mostly buried from solvent, indicating that the primary role of this region is mediating the 
stability and rearrangement of different conformations. Of note, the position with the greatest 
number of beneficial mutations is F364. The burial of the large hydrophobic side chain of 
F364 should provide local stability. The beneficial mutations at position 364 and in this 
region in general suggest that disruption of local stability and conformational dynamics may 
alter Hsp90 function. Based on the M-domains prominent role in binding to clients, we 
hypothesize that Hsp90 function may be altered in a manner that alters the relative affinity 
and thereby priority of different clients - a property that could provide benefits in specific 
conditions. The premise being that natural selection will balance client priorities integrated 
over multiple conditions, providing opportunities for Hsp90 mutations to improve priorities 
for individual conditions. 
 
 

The proportion of deleterious, wild-type like, and beneficial mutations varies greatly 

along the protein sequence. ​We showed above that the correlations of fitness effects across 
environments are generally large, which indicates similar effects of the same mutations 
across environments. In contrast, the proportions of beneficial, wild-type like, and deleterious 
mutations vary greatly along the protein sequence, and whereas the overall pattern is similar 
between environments, the relative proportions differ between environments (Supplementary 
Figure 2, 3). For example, at low expression there is a decrease in the number of beneficial 
mutations, but the regions that show deleterious mutations are similar between expression 
levels. The finding that the same positions are enriched for deleterious and beneficial 
mutations across environments suggests that the structural properties of the M domain in 
those regions rather than its binding partners might be the most important factor in predicting 
the fitness effects of mutations.  

 
One position that particularly stands out with respect to the proportions of beneficial, 
wild-type like and deleterious mutations is 364. Position 364 lies at the center of the cluster 
of the 10% largest average proportions of beneficial (Figure 3), and thus shows a clear 
deviation from the usually observed DFE with an enrichment of beneficials (Supplementary 
Figure 4). Specifically, we identified 6 mutations at this position that are beneficial in at least 
two environments. As mentioned above this may be due to a disruption on the stability of the 
protein that may alter the relative affinity of Hsp90 to its clients, which may be beneficial in 
specific environments.  
 
Interestingly, the regions with the largest proportions of deleterious mutations are located 
near the ends of the beneficial hotspot region (position 347 and 376-385, respectively). At the 
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latter deleterious hotspot, around 70% of all mutations are deleterious in a sliding window of 
10 amino-acid positions. Such a shift of the DFE towards deleterious mutations suggests that 
this protein region is under strong purifying selection. Structurally, the region 376-385 is part 
of a catalytic loop required for ATP hydrolysis which is required for the activation of all 
known clients (Wolmarans et al. 2016). R380 in the catalytic loop binds to and stabilizes the 
leaving phosphate of ATP and mutations at this position are lethal. The efficiency of catalysts 
depend strongly on geometry, and the precise location of R380 relative to ATP is likely 
tightly linked to Hsp90 function. The regions adjacent to R380 appear to be important for 
positioning the catalytic arginine, providing a rationale for the strong purifying selection that 
we observe. 

Few mutations show costs of adaptation. ​Among the identified beneficial mutations, we 
were specifically interested in those that are deleterious in other environments, which results 
in a so called "cost of adaptation". This same phenomenon has also been termed antagonistic 
pleiotropy. In previous work we reported a large prevalence of costs of adaptation in a 
9-amino-acid region of Hsp90 (Hietpas et al 2013). In this study, we found that costs of 
adaptation are not pervasive (Figure 4, Supplementary Table 3). Consistent with the 
comparatively low correlations of fitness effects and the special role of the diamide stress 
discussed above, we see the largest proportion of mutations that show costs of adaptation 
between diamide and other environments. Whereas the mean proportion of mutations 
displaying costs of adaptation across all comparisons of environments was 14.3%, 
comparisons that included diamide showed on average 22.7% mutations with costs of 
adaptation. The largest proportions of mutations with costs of adaptation (>40%) were seen in 
comparisons of low-expression diamide and high-expression H2O2.  

 

 
Figure 4: Histogram of proportions of mutations that display costs of adaptation 

illustrates that costs of adaptation are generally rare, and most likely if comparisons 

involve diamide environments. ​ The stacked histogram is split into comparisons of 
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replicates, expression levels, the subset of other comparisons that include diamide, and all 
other comparisons. 
 
Mapping the proportion of beneficials that are deleterious in other environments along the 
protein sequence, we observed that there is a hotspot for costs of adaptation at amino-acid 
positions 381-391 (Figure 5). Interestingly, this region, which partly overlaps with the 
hotspot of deleterious mutations (positions 376-385) showed costs of adaptation across 
environments, which indicates that each environment has specific beneficial mutations, which 
are deleterious in other environments. Structurally, this region also belongs to the catalytic 
loop involved in ATP hydrolysis discussed above.  
 
 

 
Figure 5: A hotspot of costs of adaptation is located at positions 381-391​. The 10% 
positions with the largest mean proportion of mutations that display costs of adaptation (dark 
blue line) are highlighted in gray. The lighter curves indicate the mean proportion of 
beneficial mutations in a focal environment that is deleterious in another environments. A 
10-amino-acid sliding window was used to locate region-specific effects. To avoid biases, the 
mean was computed across the subset of two replicates of all normal-expression 
environments. 
 
We next computed whether there was a correlation between the effect of beneficial mutations 
in one environment with their effect in the other environments, which would indicate that 
larger-effect beneficial mutations are more likely to have stronger deleterious effects in other 
environments. Indeed, the effects of beneficial mutation in diamide are in general negatively 
correlated with the same mutation's effect in all other environments (Figure 5, Supplementary 
Figure 5) except H202. Thus, the larger the effect of a beneficial mutation in diamide, the 
lower it tends to be in salt, standard and sorbitol. Again, this suggests that the beneficial 
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mutations we identified in diamide may be involved in the response to a very specific type of 
stress. Across all other environments, we do not see any evidence that stronger beneficial 
mutations tend to have a more deleterious effect in other environments. 
 
When comparing low and normal expression levels for diamide and salt (Supplementary 
Table 3), we observed that the percentage of beneficials at normal levels of expression that 
were deleterious at low expression is small, but that there is a larger percentage of beneficials 
at low expression that are deleterious at high expression. This pattern is inverted for the 
standard environment, which is consistent with the results from Jiang et al 2013. The 
asymmetric cost between expression levels in salt and diamide environments suggests that 
mutations that are beneficial in low expression levels and deleterious in normal levels, may 
be involved in changes of protein synthesis/increase in protein production. Conversely, the 
low cost of beneficials in normal expression, may point to mutations that are involved in the 
general response to the diamide stress. 

Conclusion 

Recent advances in experimental and technological approaches have led to the feasibility of 
large-scale screens of the DFE of new mutations, which, from an evolutionary point of view, 
is a key entity to determine the potential for adaptation. Here, we took a new route by 
mapping the proportions of beneficial, wild-type like, and deleterious mutations along a 
119-amino-acid region of the Hsp90 protein in yeast, a protein that is heavily involved in the 
response to environmental stressors. By comparing the DFE along the protein sequence and 
between environments, we identified hotspots of beneficial and deleterious mutations that are 
common across environments, and a region in which beneficial mutations in one environment 
tend to be deleterious in other environments. Interestingly, neither of these regions coincided 
with the best described client binding loop in the studied region, which we had ​a priori 
considered the most likely candidate to display patterns different from the rest of the region. 
Moreover, our analyses suggested that mutational effects change little across environments 
except in diamide, which stands out both with respect to the number and also the distribution 
of beneficial mutations along the studied protein region. Altogether, our study highlights how 
the study of the DFE across environments sheds light on the evolutionary role of specific 
protein regions from a new perspective. 

Materials and Methods 

Generating point mutations ​. To accurately measure the fitness effects of all possible point 
mutations in a large portion of the middle (client-binding) domain of yeast Hsp90, we used 
saturation mutagenesis at positions 291-409 (see Figure 6). We used a cassette ligation 
strategy to introduce mutations as previously described (Hietpas et al. 2012).  This strategy 
reduces the likelihood of secondary mutations because it avoids the potential for errors during 
PCR steps. As a control for the mutational procedure, twelve positions were randomized in 
isolation and Sanger sequenced to assess the level of incorporation of all four nucleotides at 
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each position in the target codon. At all randomized nucleotide positions within these twelve 
samples, we observed a similar magnitude of signal for each of the four nucleotides. For 
larger scale production, libraries were generated at 10 positions at a time as previously 
described (Hietpas et al. 2012).  As additional controls, we generated a sample containing 
individual stop codons as well as the parental wildtype Hsp90 sequence. All variants of 
Hsp90 were generated in a plasmid (pRS414GPD) previously shown to produce endogenous 
levels of Hsp90 protein in yeast (Chang and Lindquist 1994). 

 

Constructing barcoded libraries. ​To improve the efficiency and accuracy of fitness 
estimates, we added barcodes to a non-functional region of the plasmid, ~200 NTs 
downstream from the 3’ untranslated region of Hsp90. ​ ​Barcodes were introduced using a 
cassette ligation strategy (Supplementary Figure 5). Plasmid libraries were treated with Not1 
and Asc1 to generate directional sticky ends. Not1 and Asc1 recognize 8-base cut sites that 
are unlikely to cut any of the Hsp90 variants in the library. We designed and annealed 
barcode forward and barcode reverse oligos together such that the resulting duplex product 
included a central N18 region bracketed by constant regions that facilitate annealing and 
overhangs that direct directional ligation into Not1 and Asc1 overhangs.  One of the constant 
ends in the designed oligo cassette contains an annealing region for an Illumina sequencing 
primer. Barcoded libraries were transformed into ​E. coli ​and pooled into a bulk culture that 
contained about 10-fold more transformants than Hsp90 variants in the library. We purified 
barcoded plasmids from this bulk culture. This procedure resulted in approximately 10 
barcodes for each Hsp90 codon variant in the library (Supplementary figure 6). The potential 
diversity in the N18 barcode that we used (4 ​18 ​~ 10 ​11 ​) far exceeds the number of barcodes that 
we utilize (~64*119*10~10 ​5​), which makes it likely that each Hsp90 variant will have a 
barcode that differs from all other barcodes at multiple nucleotides. With this setup, errors in 
sequencing of barcodes can be detected and eliminated from further analysis, which reduces 
the impact of sequencing misreads on estimates of variant frequency and fitness. Additional 
controls consisting of individual stop codons and wildtype Hsp90 were barcoded separately. 
For these controls, we isolated barcoded plasmid DNA from individual bacterial colonies and 
determined the barcodes by Sanger sequencing (Supplementary figure 5). 

Associating barcodes to mutants. ​To identify the barcodes associated with each Hsp90 
variant in our libraries, we used a paired-end sequencing approach essentially as previously 
described (Hiatt et al. 2010).  Using paired-end sequencing on an Illumina MiSeq Instrument 
barcodes were associated with variant genotypes via reading from the Hsp90 gene with a 250 
base-pair read and the associated N18 barcode with a 50 base-pair read. To reduce the size of 
the DNA fragments for efficient Illumina sequencing, we removed a portion of the Hsp90 
gene such that the randomized regions were closer to the N18 barcode. This was done to 
increase the density of DNA on the sequencer by reducing the radius of clonal clusters during 
sequencing. Plasmid DNA was linearized with Stu1 and Not1 endonucleases that removed 
bases of DNA.  The linearized products were circularized by blunt ending followed by 
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ligation at DNA concentrations that predominantly lead to unimolecular ligations (REF). The 
resulting DNA products were amplified using a PE2_F primer and the standard Illumina PE1 
primer that anneals next to the N18 barcode. Two PE2_F primers were designed in order to 
read across the region of Hsp90 that we randomized. PCR products were gel purified and 
submitted for paired end sequencing. We obtained sufficient paired-end reads such that the 
average barcode was read more than 10 times. The paired-end sequencing data was subjected 
to a custom data analysis pipeline to associate Hsp90 variants with barcodes. First, very 
low-quality reads with any Phred score less than 10 in reads 1 or 2 were discarded. Next, the 
data were organized by the barcode sequence. For barcodes with three or more reads, we 
constructed a consensus of the Hsp90 sequence read. We compared the consensus sequence 
to the parental Hsp90 sequence in order to determine mutations. Consensus sequences 
containing more than one protein mutation were discarded. The pipeline output generated is a 
file organized by point mutation that lists all barcodes associated with that mutation 
(Supplementary excel file-Hsp90_291_409_BarcodeAssociationTable). This output is what is 
used for calling a variant. 

 ​Yeast competitions. ​As in previous work (Hietpas et al. 2012; Hietpas et al. 2013), we 
performed Hsp90 competitions using a shutoff strain of ​S. cerevisiae ​ (DBY288) (Figure 6). 
The sole copy of Hsp90 in DBY288 is driven by a galactose-inducible promoter, such that the 
strain requires galactose for viability and cannot grow on glucose. The introduction of a 
functional Hsp90 variant driven by a constitutive promoter rescues the growth of DBY288 in 
glucose media. We introduced the library of middle domain variants of Hsp90 driven by a 
constitutive promoter into DBY288 cells using the lithium acetate method (Gietz and Schiestl 
2007). The efficiency of transformation was more than 10-fold higher than the number of 
barcodes, such that the average barcode was transformed into more than 10 individual cells. 
To enable the analyses of full biological replicates, transformations were performed in 
replicate such that a separate population of yeast were transformed for each biological 
replicate. Transformed yeast were initially selected in RGal-W (synthetic media that lacked 
tryptophan and contained 1% raffinose and 1% galactose supplemented with 100 μg/mL 
ampicillin to hinder bacterial contamination) to select for the plasmid, but not function of the 
plasmid encoded Hsp90 variant. This enabled us to generate a yeast library containing Hsp90 
variants that could support a full range of fitness from null to adaptive. Cells were grown for 
48 hours at 30 °C in liquid SRGal-W until the culture was visibly opaque compared to a 
control transformation sample that lacked plasmid DNA but was otherwise identical to the 
library sample. 

To initiate the competition, cells were transferred to shut-off conditions and different 
environmental stresses. In order to deplete the pool of wild type Hsp90 protein, the library 
sample was diluted into SD-W (synthetic media lacking tryptophan with 2% glucose and 100 
μg/mL of ampicillin) and grown at 30 °C for 10 hours. After depletion of wild type Hsp90 
protein, the cells were split into different stress conditions in SD-W media at 30 °C: salt 
stress (0.5M NaCl), osmotic stress (0.6M sorbitol), oxidative stress (0.6 mM hydrogen 
peroxide or 0.85 mM diamide), as well as a control non-stress condition. We used a custom 
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built turbidostat (Figure 6) to provide constant growth conditions during this competition 
phase of the experiment. Cells were grown under consistent density and population size. 10 ​9 
cells were maintained in a 50 mL volume over the course of 40 hours for each condition. 
Rapid magnetic stirring was used to provide aeration to the media and cells. Samples of 10 ​8 
cells were collected after 0, 4, 8, 12, 24, 32, 40, and 48 hours of competition in the different 
conditions. At the time of collection, samples were centrifuged and the pellets immediately 
frozen at -80 °C. 

 

 
Figure 6 ​: Systematic approach to measure the adaptive potential of the M domain of yeast 
Hsp90 ( amino acids 291-409). 
 
Sequencing of time samples. ​The fitness effects of Hsp90 variants were estimated based on 
frequencies observed in next-generation sequencing analyses essentially as previously 
described (Hietpas et al. 2012). DNA was isolated from each timepoint sample as described 
(Hietpas et al. 2013) and the barcodes were amplified and sequenced. Barcodes were 
amplified using the standard Illumina PE1 primer that anneals next to the N18 barcode and 
custom designed barcode_forward primers. A set of barcode_forward primers were designed 
with identifier sequences that could be read during sequencing and used to distinguish each 
timepoint sample. Each identifier sequence was eight nucleotides in length and differed by at 
least two bases from all other identifier sequences. Twenty cycles of PCR were sufficient to 
generate clear products from all samples. These PCR products were purified on a silica 
column (Zymo Research) and sequenced for 100 base single reads on an Illumina NextSeq 
instrument. The barcode corresponded to the first 18 bases and the identifier at positions 
91-98. The resulting fastq files were processed and analyzed using customized software tools. 
First, poor quality reads containing any positions with a Phred score less than 20 were 
discarded. Reads were tabulated if the barcode matched a barcode associated with a point 
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mutation and if the identifier matched with a timepoint. The analyses scripts output a file with 
the number of reads for each amino acid point mutant at each timepoint in each 
condition(Supplementary excel file-Hsp90_291_409_BarcodeAssociationTable). Barcodes 
with 0 reads at the first time point, or with a total of 1 read along the whole trajectory were 
removed from the analysis. 

Estimation of selection coefficients. ​Inference of selection coefficients was performed via 
log-linear regression as described in Matuszewski et al 2016. To improve estimation accuracy 
by incorporating information from each individual barcode, the linear model for each 
amino-acid changing mutation included barcode identities as nominal variables. For each 
amino-acid changing mutation we obtained a selection coefficient and 95% confidence 
interval (CI) of the estimates, representing the variation within amino acid due to differences 
in codon*Barcode tag throughout time. This allowed to test for consistency of barcode 
trajectory through time, reducing the impact of potential outliers and also to account for 
repeatability of synonymous codons within amino acid. Mutants with 50 or less reads at the 
first time point were removed from the data set. Finally, we normalized all selection 
coefficients, by subtracting the median of all mutations that were synonymous to the wild 
type. This ensures that the average of the selection coefficients of wild type synonyms 
represents a selection coefficient of 0. To categorize mutations as beneficial, deleterious or 
neutral we tested the overlap of the CI with 0. Namely, if the lower CI limit was larger than 0, 
a mutation was considered beneficial, and if the upper CI limit was smaller than 0, a mutation 
was considered deleterious. All other mutations were considered wild-type like.  
 
Costs of adaptation.​ To compute the costs of adaptation for Figure 4 and 5, we first selected 
all mutations in a focal environment that were categorized as beneficial. We then computed 
the proportion of this subset of mutations that was deleterious either in one other environment 
(for Fig. 4) or across all other environments (excluding replicates of the focal environments 
and low-expression environments; for Fig. 5). Calculating the proportion of mutations with 
costs of adaptation compensates for variable numbers of beneficial mutations across 
environments, which occur due to both biological and experimental reasons. 
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