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ABSTRACT 
To predict pulse detection performance when implemented in high speed photoreceivers, temporally 
resolved measurements of a 10-stage InAlAs/InGaAs single carrier multiplication (SCM) avalanche 
photodiode (APD)'s avalanche response to short multi-photon laser pulses were explained using instantaneous 
(time resolved) pulse height statistics of the device's impulse response. Numeric models of the junction carrier 
populations as a function of the time following injection of a primary photo-electron were used to create the 
probability density functions (pdfs) of the instances of the avalanche buildup process. The numeric pdfs were 
used to generate low frequency gain and excess noise models, which were in good agreement with 
analytic models of multiple discrete low-gain-stage APDs and with measured excess noise data. The 
numeric models were then used to generate the instantaneous and cumulative instantaneous low order 
statistics of the instances of the impulse response. It is shown that during the early times of the impulse 
response, the SCM APDs have lower excess noise than the pseudo-DC measurements and the 
common APDmodels used to describe them. The methods of determining the time resolved low order statistics 
of APDs are described and the importance of using time-resolved models of APDgain and noise is discussed. 

I. INTRODUCTION 
Voxtel has developed a single carrier multiplication (SCM) avalanche photodiode (APD) in the 
In0.52Al0.48As/In0.53Ga0.47As material system, which is epitaxial grown, lattice-matched to n-type InP substrates, by 
molecular beam epitaxy (MBE). Like other back-illuminated InGaAs detectors, the SCM APD is sensitive in the 
short-wavelength infrared (SWIR) from 950 to 1700 nm. Structurally, the SCM APD, shown in Figure 1, is a 
separate absorption-charge-multiplication (SACM) device with a 1.5-μm-thick InGaAs absorber and a 
multiplication region that consists of multiple cascaded p-i-p-i-n-i InAlAs/InAlGaAs gain stages, each about 
200 nm thick. The doping pattern and alloy selection within each gain stage are designed to modulate carrier 
energy and impact-ionization threshold so as to favor electron-initiated impact-ionization over 
hole ionization and restrict carrier multiplication to a single 30-nm layer in each gain stage. SCM APDs with 5, 7, 
and 10 gain-stages have been produced. The impulse response statistics of the J = 10 stage devices are reported 
here. 
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FIG. 1.Epitaxial layer structure of an SCM APD with n + 1 stages. 

In Figure 2 is plotted the output from a Monte Carlo simulation of the spatial distribution of impact-ionization 
inside a 10-gain-stage multiplier, overlaid on the SCM APD's axial electric field profile. Primary photoelectrons 
are injected from the left and multiply sequentially in each of the 10 gain stages as they drift to the right. The 
asymmetric doping and alloy composition pattern of each gain stage are ordered such that electrons are pre-
heated prior to injection into a layer with a low impact-ionization threshold, whereas the counter-propagating 
holes encounter the same regions in opposite order, and are injected into the multiplication layer cold. The 
resulting enhancement of the electron-initiated impact-ionization rate and suppression of 
hole ionization increases the electron ionizationprobability, Pe, and suppresses the 
hole ionization probability, Ph, in each gain stage, so that the gain is more deterministic than would occur in a 
homogenous multiplier. 
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FIG. 2.A plot of the spatial count of hole- and electron-initiated impact ionization events generated by a 1D 
Monte Carlo simulation superimposed on the electric field profile of the 10-gain-stage SCM APD architecture 
multiplier. The absorption layer (to the left of the diagram) is not shown. 

The effect of the SCM APD device structure and materials on the performance of a photoreceiver requires that a 
complete statistical description of the charge induced in the receiver circuits by the motion of the carriers in the 
junction be modeled on the time scales of the optical input pulses and integration times of the receiver circuits. 
The introduction of time dynamics into the calculations has no effect on the statistical moments or on the 
counting distribution, as long as the integration time is sufficiently long so that the entire current pulse is 
captured as a charge. However, when circuit decisions are based on photocurrent integrated over shorter times 
than the impulse response, such is common in digital information systems, new approaches to predicting 
receiver performance are required. 

II. DC EXCESS NOISE MODELS 
The excess noise factor of a linear-mode APD is normally defined in the low-frequency (quasi-DC) limit, meaning 
that the gain statistics are treated assuming sufficient time for all impact-ionization chains generating secondary 
carriers to complete before the end of the signal pulse. The avalanche noise in an APD is generally characterized 
by the normalized second central moment of the gain random variable for a single input photocarrier: 

𝐹𝐹(𝑀𝑀𝐷𝐷𝐷𝐷) = 〈𝑀𝑀𝐷𝐷𝐷𝐷
2〉/〈𝑀𝑀𝐷𝐷𝐷𝐷〉

2
. 

(1) 

The pseudo-DC excess noise factor is most often indirectly calculated from 
the measurednoise power, photocurrent, and gain using the assumption 

𝐹𝐹(𝑀𝑀𝐷𝐷𝐷𝐷) = 𝑆𝑆𝐼𝐼(0)/(2𝑞𝑞〈𝑀𝑀𝐷𝐷𝐷𝐷〉
2𝐼𝐼0), 

(2) 

where SI(0) is the noise power at 0 Hz and I0 is the unity-gain photocurrent. The current power can be obtained 
using the Wiener-Khinchin theorem by Fourier transform of the current autocorrelation function,1 i.e. 

𝑆𝑆𝐼𝐼(0) = 2𝑞𝑞2 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛) = 2q2〈n〉 = 2q〈I〉; 
(3) 

The DC component of I(t), after autocorrelation and Fourier transform, becomes the signal power, 〈I〉2δ(f), and 
it can be shown that at f ∼ 0 Hz,1 

𝑆𝑆𝐼𝐼(0) = 2𝑞𝑞2 𝑣𝑣𝑣𝑣𝑣𝑣(𝑛𝑛) = 2q2〈n〉 = 2q〈I〉; 
(4) 

this is the Schottky theorem for shot noise. Assuming n electrons are initially photo-generated and 
undergo avalanche multiplication, each with a multiplication of Mi, under the assumptions that the photo-
generated electrons are independent of each other, i.e., a Poisson distribution, and 〈Mi〉 = 〈M〉 and 〈Mi

2

〉 = 〈M2〉, the Burgess variance theorem2 can be applied so that 

𝑆𝑆𝐼𝐼(0) = 2 𝑞𝑞 (〈𝑀𝑀𝐷𝐷𝐷𝐷
2 〉/〈𝑀𝑀𝐷𝐷𝐷𝐷〉

2)〈𝑀𝑀𝐷𝐷𝐷𝐷〉
2𝐼𝐼0 = 2𝑞𝑞𝐹𝐹(〈𝑀𝑀𝐷𝐷𝐷𝐷〉)〈𝑀𝑀𝐷𝐷𝐷𝐷〉

2𝐼𝐼0, 
(5) 
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where 𝐹𝐹(𝑀𝑀𝐷𝐷𝐷𝐷)  is the excess noise factor that describes the amount the signal's noise is degraded from its lower 
(shot noise) limit. The validity of (5) depends critically on the assumption that the multiplied current pulses 
resulting from each photoelectron have negligible width, i.e., “instantaneous amplification.”3 

Traditional Mclntyre APD theory assumes DC operation and bases excess noise predictions on a 
uniform avalanche medium and an impact-ionization process independent of carrier history4 

𝐹𝐹(𝑀𝑀𝐷𝐷𝐷𝐷 ,𝑘𝑘) = 𝑀𝑀𝐷𝐷𝐷𝐷 �1 − (1 − 𝑘𝑘)(
𝑀𝑀𝐷𝐷𝐷𝐷 − 1
𝑀𝑀𝐷𝐷𝐷𝐷

)2�. 

(6) 

Conventionally, k defines the ratio of the hole-initiated ionization rate to the electron-
initiated ionization rate, k = β/α. Although in practice, we often use the inverse ratio 1/k to facilitate 
comparisons between materials, and for heterostructured APDs, we often use an empirically found 
effective ionization ratio, keff, which includes both the device structure effects and the inherent semiconductor 
material properties. Hereafter, we refer to k, 1/k, and keff simply as k, such that parameterized by a 
low k, (6) results in a gain distribution more tightly distributed around MDC; whereas with higher k values, the 
gain of individual events is much more widely distributed about the mean, and the APD response is less 
correlated to the optical input.5 

Because they represent, in a compact way, the lowest order statistical properties of the DC gain fluctuations that 
impose multiplicative noise on individual photon detections (excess noise), the McIntyre equation (6) and 
the electron count variance are useful statistics. However, McIntyre analysis assumes that impact ionization is a 
continuous local process, and that the ionization probability is only a function of the local electric field, 
irrespective of a carrier's ionization history; it is correct only at high gains and when the pulse width is longer 
than the duration of the impulse response.4,5 For these reasons, the McIntyre formula does not necessarily apply 
to the SCM APD. 

As the SCM APD is designed with a multiplication region comprised multiple discrete gain layers, when the 
number of ionizing collisions per primary transit is low, the discrete nature of the avalanche gain process must 
be taken into account. Such processes have been analyzed by Lukaszek et al.6 and by Van Vliet and Rucker,7 who 
predict a lowering of the excess noise factor compared to McIntyre predictions. Although their treatment was 
intended to describe multiplication noise in conventional APD's, their use of a deterministic number of shifted-
Bernoulli stages makes their model suitable for the instantaneous-multiplication discrete multi-stage device. 

Although structurally different, the gain and noise characteristics of an ideal multi-discrete-gain-stage 
SCM APD with no hole ionization feedback (i.e., k = 0) can be described using the approached developed by 
Capasso et al.8,9 for a “staircase” solid-state photomultiplier. For a multi-stage multiplier comprised discrete gain 
regions, if a secondary electron-hole pair is generated for each electron injected into a given gain stage and 
there is zero hole-initiated multiplication, the end-to-end gain for a photoelectron injected into the cascaded 
multiplier is MDC = 2 J, where J is the total number of gain stages. In this ideal case, the multiplication is 
deterministic and the avalanche gain is a constant. 

In practice, the avalanche gain per stage is less than 2 because the probability of electronionization, Pe, is less 
than one, and for 0 ≤ Pe < 1, the probability of the random variable that an electron injected into a gain stage 
fails to impact-ionize is δ = 1 − Pe, where δ is the fraction of electrons that do not impact ionize. Assuming 
uniform properties across all gain stages, the average end-to-end gain is then determined by 
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𝑀𝑀𝐷𝐷𝐷𝐷 = (2 − 𝛿𝛿)𝐽𝐽, 
(7) 

and the excess noise by7,8,10 

𝐹𝐹(𝐽𝐽, 𝛿𝛿) = 1 +
𝛿𝛿[1 − (2 − 𝛿𝛿)−𝐽𝐽]

(2 − 𝛿𝛿)
. 

(8) 

Note that in (8) F(J,δ) is <2 for any J, and when Pe = 1, in the absence of carrier fluctuations, var(J,δ) = δ(1 − δ) = 0 
and F(MDC) = 1, whereas for (6), the McIntyre model parameterized by k = 0 approaches F(MDC) = 2 at high gain. 

In practice, SCM APDs also may accumulate gain through hole initiated ionization. To accommodate 
both electron and hole ionization in a multi-stage discretized APD, the DC gain can be approximated by Van 
Vliet et al.11 

𝑀𝑀𝐷𝐷𝐷𝐷(𝐽𝐽) =
(1 + 𝑃𝑃𝑒𝑒)𝐽𝐽(1 − 𝑘𝑘𝑠𝑠)

(1 + 𝑘𝑘𝑠𝑠𝑃𝑃𝑒𝑒)𝐽𝐽+1 − 𝑘𝑘𝑠𝑠(1 + 𝑃𝑃𝑒𝑒)𝐽𝐽+1
 

(9) 

and the excess noise for MDC can be approximated by11,12 

𝐹𝐹(𝑀𝑀𝐷𝐷𝐷𝐷 ,𝑘𝑘𝑠𝑠,𝑃𝑃𝑒𝑒) = 1 +
�1 − 1

𝑀𝑀𝐷𝐷𝐷𝐷
� (1 − 𝑘𝑘𝑠𝑠)

2 + 𝑃𝑃𝑒𝑒(1 − 𝑘𝑘𝑠𝑠)
∗ �−𝑃𝑃𝑒𝑒 + 2

(1 − 𝑘𝑘𝑠𝑠𝑃𝑃𝑒𝑒2)
(1 + 𝑘𝑘𝑠𝑠𝑃𝑃𝑒𝑒)

�𝑀𝑀𝐷𝐷𝐷𝐷𝑘𝑘𝑠𝑠
(1 + 𝑃𝑃𝑒𝑒)
(1 − 𝑘𝑘𝑠𝑠)

+
1

1 + 𝑃𝑃𝑒𝑒
�� . 

(10
) 

Here, ks = Ph/Pe defines the ratio of the hole-ionization probability per stage, Ph, to the electron-ionization 
probability per stage Pe, where the distributed ionization coefficients αand β are lumped into the 
probabilities Pe and Ph, respectively; Ph = eβd − 1 and Pe = eαd − 1, where d is the length of each individual gain 
stage, and in the limit, ks ≈ β/α. 

Shown in Figure 3 is a plot of the measured F(MDC) values for a 10-stage SCM APD, plotted against the 
excess noise predicted by the Monte Carlo simulations shown in Figure 2. The Monte Carlo simulated 
and measured excess noise data show good agreement with each other and with (10) parameterized 
by ks = 0.036. Shown for comparison is a plot of the McIntyre equation (6) parameterized by k = 0.036. As 
expected, the SCM APD excess noise is lower than that predicted by (6) for most bias conditions. Only at high 
bias conditions (i.e., above about 〈MDC〉 = 150), does the McIntyre model approach the 
SCM APD measuredexcess noise data and the excess noise approximated by (10; ks = 0.036). From (9), a mean 
gain of 〈MDC〉 = 150 requires that Pe = 0.355, and with ks = 0.036, Ph = 0.0128. The lower excess noise of the 
SCM APD, compared to bulk semiconductor multiplication APDsdescribed by (6), is due to fact that 
carrier ionization occurs only at well-defined positions in space (at the low threshold regions of the gain stages), 
a significant portion of electroncarriers ionize at each gain stage, and hole ionization is low; thus the statistical 
variations of the gain are small. 
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FIG. 3.Plot of the data from the numeric “scattering aware” DSMT model of the SCM APD compared to the 
Monte Carlo model data used to design the 10-stage SCM APD, measured data, and the analytical model of 
VanVliet (8), showing both ks = 0.036 and ks = 0. 

Having verified the numerical model useful for describing the SCM APD's pseudo-DC response to optical pulses 
longer than the device's impulse response, next a predictive model of the instantaneous excess noise for the 
earliest times of the impulse response to short optical pulses was sought. 

III. SCM APD IMPULSE RESPONSE PROPERTIES 
The pseudo-DC measures of avalanche noise, as they assume that the optical pulse is longer than 
the APD's impulse response, are without reference to the temporal dynamics of the impact-ionization process. 
Analysis of the role that the underlying device structure and semiconductor materials play in the carrier 
dynamics allows us to obtain a better understanding of the complex interplay between the avalanche buildup 
time and the partial gain that determine the instantaneous statistics of the electrical current induced in the 
external decision circuits by motion of the carriers in the device. 

The current pulse arising from single photon absorption can be modeled as a superposition of contributions 
from the initial photoelectron and its subsequent generations of ionizing charge carrier progeny. The physical 
basis of the impulse response function is most readily understood in terms of the gain stage transit times of the 
two carrier species. Using an electron velocity ve and a hole velocity vh, the transit times of the two carrier 
species across a gain stage layer of length d are se and sh, respectively. As the net velocity of electronsgenerally 
typically from that of holes, we can define r = se/sh. Subsequently, the gain stage transit time is permitted to 
assume the form of a random variable. Although the probability density functions (pdfs) of the transit time can 
differ from stage to stage, it is reasonable to choose them to be independent identically distributed random 
variables.13 Assuming, for the sake of simplicity, that s = se = sh, so that v = ve = vh, and r = 1, the transit time of the 
multiplication region can be defined at deterministic transit time T = Jτ, which is the time it takes the carriers to 
transit the length of the multiplication region, D, where D = Jd. 

The SCM APDs InAlAs multiplication region is 2 μm thick, and assuming equal carrier velocities 
of v = 9.31 × 105 cm s−1, the transit time of the multiplication region is about T = 276 ps. The SCM APD includes a 
1.5 μm thick InGaAs absorption layer, so the total junction length is L = 3.5 μm, and the total junction transit 
time is 1.75 T, or about 500 ps. 

The total current delivered to an external circuit by the carriers in the junction of the APDcan be calculated using 
Ramo's theorem14 
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𝑖𝑖𝑇𝑇(𝑡𝑡) = (𝑞𝑞/(𝐿𝐿)∑𝑣𝑣𝑒𝑒(𝑡𝑡) + (𝑞𝑞/𝐿𝐿)∑𝑣𝑣ℎ(𝑡𝑡), 
(11) 

where the sums are taken over all of the carriers present in the junction at one time. Therefore, the 
instantaneous current contribution of a carrier is vqL−1, and the properties of the instantaneous current can be 
analyzed by tracking the populations of hole and electroncarriers over all of the times of the impulse response.15 

To describe the excess noise at the instances of the SCM APD's impulse response, it is helpful to define a mean 
instantaneous gain, 〈M(t,MDC)〉, and an instantaneous excess noise factor, F(〈M(t,MDC)〉), which for 
an APD biased for 〈MDC〉, describe the contributions to the gain and excess noise, respectively, by carriers 
present in the junction at any instance, t, of the impulse response from a single photon. The cumulative 
instantaneous excess noise F(MDC(τ)) is the excess noise integrated during the accumulation of the partial 
gain, MDC(τ), where  𝑀𝑀𝐷𝐷𝐷𝐷(𝜏𝜏) = ∫ 𝑀𝑀(𝑡𝑡,𝑀𝑀𝐷𝐷𝐷𝐷)𝑑𝑑𝑡𝑡𝜏𝜏

𝑡𝑡=0 . 

The temporal dynamics of the induced output current generated by that gain are determined in large part by the 
transit time of the carriers in the device. The initial photoelectron, injected into the multiplication region at t = 0, 
drifts the entire length of the device, and assuming uniform electric-field and short-circuit device conditions, this 
produces a rectangular current pulse in the circuit of duration (Lv−1) and magnitude vqL−1, so that the area is 
precisely the electronic charge q. Using the time that the photoelectron enters the multiplication region as t = 0, 
if the photoelectron creates an electron-hole pair at the first gain stage, at time s, the daughter electron gives 
rise in the circuit to a current pulse of magnitude vqL−1 that contributes to the photocurrent for a duration of 
time (J − 1)s; the conjugate hole gives rise to a similar magnitude current pulse for a duration of time s +(L − 
D)v−1, which includes the time to transit both the remaining gain stage and the absorption region. For each 
successive gain stage, j, each of the carriers of the electron-hole pairs created by ionization produces a 
charge q in the circuit, which contributes to the photocurrent for durations of (J − j)s and js + (L − 
D)v−1 respectively. 

A. Measurements of SCM APD impulse response 
To analyze the temporal gain distribution of the SCM APD, measurements of the impulse response of a 10-stage 
SCM APDs were carried out by means of simultaneous measurementsof average gain and noise power spectral 
intensity. The 〈MDC〉 values were obtained from I-V data collected using a computer-controlled HP 4155 A 
semiconductor parameter analyzer (SPA). The SPA applied the bias to a 190 K cooled SCM APD fixtured on a 
temperature stabilized cold post inside a windowed vacuum cryochamber. A 38 nW 1064-nm wavelength optical 
signal was projected from an OZ Optics OZ-2000 stabilized fiber-coupled diode laser, through the window of the 
cryochamber, and onto a spot that underfilled the SCM APDs optically active area. A bias tee coupled the DC 
component of the diode current to the SPA, and sent the AC component to an HP 8447D high-speed pre-
amplifier, which fed either a HP 8566B spectrum analyzer or a HP 8970B noise figure meter. 
The measured SCM APD data showed gains in excess of 6000 without evidence of avalanchebreakdown. 

Using a 7.5-fJ 1064-nm laser pulse from a Picoquant LDH81884 diode pumped solid state (DPSS) laser (∼45 ps 
width), driven with a Picoquant PDL800B, impulse response data were recorded at seven different biases, 
corresponding to 〈MDC〉 = 50, 100, 250, 500, 1000, 1500, and 2000, respectively. At each APD bias, a series of 
360 impulse response functions were captured with an Agilent DSO80804A 8-GHz scope. The impulse response 
data were then parsed and the means and standard deviations of the impulse responses were calculated. 

Shown in Figure 4 are plots of the mean impulse response functions for several 〈MDC〉 bias conditions. The 
power spectral densities, calculated by taking the square of the FFT of the impulse response functions, are 
shown in Figure 5. The data show an SCM APD gain-bandwidth product of about 50 GHz. 
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FIG. 4.Measured mean impulse response curves for various 〈MDC〉 biases averaged over three-hundred and 
sixty 45-ps laser pulses. The times of the impulse response plotted on the x axis are referenced from the trigger, 
without delay compensation, not from the onset of avalanche buildup. 

 
FIG. 5.The power spectral density of several of the impulse response curves calculated from the square of the 
FFT of the impulse response curves of Figure 4. 

To understand the temporal dynamics of the SCM APD under each DC gain condition, the partial gains were 
calculated by integrating the area under the impulse response curve normalized for 〈MDC〉, and the times of 
the impulse response that the partial gains occurred were recorded for each bias condition; these times are 
plotted in Figure 6. The data show that during the earlier times of the impulse response, the SCM APDs under 
high bias have a similar partial gain, whereas at later times, the times of partial gains are strongly bias 
dependent. 

 
FIG. 6.Scatter plot of the time required to reach a cumulative gain (area under the impulse response function) 
for APDs biased for a specific DC gain. 
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Figure 7 shows the normalized impulse response curves of Figure 4 plotted as a function of the estimated 
multiplication region transit times. The impulse response curves reveal the underlying SCM APD device structure 
and the bias-dependent correlations among the ionizing carriers. 

 

FIG. 7.Normalized impulse response curves from Figure 4 plotted against an estimated carrier multiplication 
region transit time, T = 276 ps, assuming equal hole and carrier velocities. 

In the SCM APD, the initial photoelectron and its primary electron progeny contribute maximally to the external 
current after they ionize in the 10th gain stage at about 1T transit times, whereafter the electrons recombine at 
the cathode, causing an instantaneous drop in photocurrent. The 1T transit time created holes remain in the 
junction and continue to contribute to the photocurrent as they travel in the −x direction. This first 
principle generation of holes experiences its maximum instantaneous gain contribution at 1.9T transit times, 
when they ionize in the 1st gain stage, after having ionized, with probability Ph, or “not-ionized,” with probability 
(1 − Ph), in each of the eight intervening gain stages. The first generation of holes continues to contribute to 
the photocurrent as it drifts through the absorption region until 2.75T transit times, when the hole carriers 
recombine at the anode. At 2.8T transit times, the second generation of electrons created at 1.9T, ionize in the 
10th gain stage; they immediately recombine at the cathode, whereas their conjugate holes continue to 
induce photocurrent until about 4.55T transit times. 

From this discussion, it can be seen that the SCM APD photocurrent is induced by generational carrier 
contributions that are dominated by the peak numbers of electron-hole pairs created by electrons ionizing in the 
10th gain stage, initially at 1T transit times and subsequently at 1.8T transit time increments. Ionization in the 
10th gain stage causes electron and hole induced currents that extend 0T and 1.75T transit times, respectively. 
The hole ionization feedback, which peaks as the holes traverse the 1st gain stage, delayed from 
the electron ionization peaks by 0.9T transit times, results in electron and hole 
induced photocurrent contributions of 0.9T and 0.85T transit times, respectively. It is the unique Peand Ph values 
at each bias that contributes to the “peak” and “saddle” structure see in each impulse response curve. 

After about 5.5T transit times, about the time of the maximum photocurrent contribution by the third principle 
wave of ionizing electrons, the branches of the ionization chains are “pruned” as the carriers leave the junction 
at a faster rate than new ionization branches are created. For each 〈MDC〉 bias, the slopes of the exponential 
decays of the impulse response curves are proportional to the bias-dependent Pe and Ph values and by the 
number of gain stages. The impulse responses end after all possible ionization chains have completed and the 
carriers leave the junctions. 

https://aip.scitation.org/doi/full/10.1063/1.4794345
https://aip.scitation.org/doi/full/10.1063/1.4794345
https://aip.scitation.org/doi/full/10.1063/1.4794345


This picture is oversimplified by its assumption of equal carrier velocities; however, the analysis of the recursive 
nature of the discrete gain stages is useful for understanding the time evolution of the impulse 
response properties.12,16,20 

B. Statistics of an impulse response 
The process of carrier impact ionization is inherently noisy and, in addition to inducing gain fluctuations, also 
introduces time response fluctuations. The impulse-response can be modeled as a stochastic process composed 
of the statistically correlated random variables of avalanche buildup time (pulse duration) and integrated signal 
(the multiplication factor). 

By analyzing the temporal dynamics of the ionization chains and adding the current contributions from all the 
offspring electrons and holes that are traveling in the multiplication region at time t, a buildup-time-limited 
impulse response values can be calculated. More precisely, if Ze(t,x) is the total number of electrons resulting 
from an initial parent electron born at location x at t units of time after its birth and Zh(t,x) is the total number of 
holes resulting from an initial parent electron at location x at t units of time after its birth, and ve and vh are the 
saturation velocities of the electron and hole, respectively, then assuming a single carrier injected 
at x = 0, (11) can be expressed as 

I(𝑡𝑡) =
𝑞𝑞
𝑤𝑤

[𝑣𝑣𝑒𝑒𝑍𝑍𝑒𝑒(𝑡𝑡, 0) + 𝑣𝑣ℎ𝑍𝑍ℎ(𝑡𝑡, 0)]. 
(12) 

The statistics of I(t) can, therefore, be readily calculated from the joint statistics of Ze(t,0) and Zh(t,0).17 

A calculation of the evolution of photocurrent excess noise over time requires knowledge of the second moment 
of the impulse-response function at all times. To calculate the integrated photocurrent variance, the impulse 
response autocorrelation function is also necessary.18,19 

A number of studies on the statistics of the impulse response function for conventional (continuous-
multiplication) APDs have been previously conducted. The impulse response function statistics for the dead-
space multiplication model, for which the ionizationsprocess has a nonlocalized nature, have also been 
studied.20 Many of the techniques used to calculate the second-order impulse response statistics in 
conventional APDs require intensive computations,21 and typically involve solving coupled integral or 
differential equations in multiple variables. Bandyopadhyay et al.22 proposed a computationally simple approach 
for calculating the mean impulse response function. Their theory, however, does not address the variance and 
the autocorrelation impulse response function. Hayat et al.23formulated a recurrence theory 
for avalanche multiplication that included the gain statistics and impulse response curve under non-uniform 
static electric fields. Tan et al.24 later extended that theory to accommodate for stochastic carrier velocity. Hayat 
and Dong17derived an integral equation approach to calculate the avalanche duration pdf, which they termed 
the random-response time, and showed how to calculate its mean value and the mean of its inverse, as it relates 
to the APD bandwidth. Their technique was restricted to constant carrier velocities and, although it allowed for 
an arbitrary ionization path length pdf, these authors used the technique only to assess the avalanche duration 
pdf for local ionization. Sun and Hayat25 subsequently generalized this approach with a probabilistic model that 
enables computation of the probability generating function and allows us to evaluate the joint pdf of 
the avalanche duration and the avalanche multiplication and to determine the statistical correlation between 
these two quantities. A parametric model,using the gain and the buildup time as parameters, was also 
developed to approximate the APD's stochastic impulse-response function.26 This allowed for computation of 
the APD'sstochastic impulse response moment-generating function (mgf).27 
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C. Numerically model of SCM APD excess noise 
To describe the SCM APD's properties, we developed a model, whose framework is based on dead space 
multiplication theory (DSMT).28 The DSMT models include an age-dependent recursive theory 
for avalanche multiplication that facilitates the calculation of the mean, variance, and excess noise factor of the 
impulse-response function.29 To accurately modelthe temporal dynamics of the mean, variance, and 
excess noise characteristics of a SCM APDof the type shown in Figure 1, we modified the DSMT to allow for the 
spatial distribution of the impact ionizations for arbitrarily heterostructured gain stages. 

To accommodate carrier phonon scattering in low field regions of the multiplication region (the “cool down” 
region of the SCM APD gain stages (i.e., region “iii” of Figure 2)), the modelfor the pdf of the distance to the first 
impact ionization was modified to include carrier relaxation mechanisms. Carrier relaxation was accommodated 
by developing “scattering aware” ionization coefficients, in which we assumed that the energy accumulated by a 
carrier was reset to zero once the carrier traveled a nominal distance under the influence of an electric field 
below a certain threshold. In our studies, we assumed that a carrier loses its energy and ceases to be able to 
impact ionize if it travels for 30 nm under an electric field below 103 V/cm. These scattering aware coefficients 
were then used to modify the DSMT's non-localized ionization coefficients. This new extension of DSMT allowed 
us to compute the pdf of the distance to the first ionization event in arbitrarily structured devices and 
to generate the impulse response function at arbitrary times within the impulse response. 

Using recursive equations, the DSMT models were used to calculate the numbers of impact ionization events 
triggered by electrons and holes in arbitrary sub-regions of the SCM APDsmultiplication region were 
determined. The ionization counts were used to characterize the joint pdf of the stochastic partial gain, MDC(τ), 
and its stochastic avalanche duration time, τ, resulting from a single avalanche trigger. The stochastic 
parametric model, in terms of 〈MDC〉, MDC(τ), and τ, was then used to approximate the low order statistics of 
the SCM APD's impulse-response function. 

Figure 8 plots the probability density (mass) function (pdf), P(n,t,x = 0), for a single edge 
injected electron, showing the probability of n carrier generation at each time of the impulse response function 
when the SCM APD is biased for 〈MDC〉 = 937. The n = 1 plot illustrates a discretized drop in probability 
through the duration of the 1T transit time, showing a nearly equal probability of the possible carrier number 
outcomes at 1T transit times. 

 
FIG. 8.Some terms of the probability density (mass) function (pdf) of the MDC = 937 bias impulse response 
function, at each time, P(n,t,x = 0) corresponding to an electron edge injection. 
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The numeric model of F(M937) is shown in Figure 3 and shows good agreement with measured data, as well as 
the Monte Carlo simulated results and the analytical values predicted by (10; ks = 0.036) for similar DC gain 
operation. 

D. Calculation of the mean impulse-response function 
The statistics of I(t) were readily calculated from the joint spatial and temporal statistics of the electron and 
hole ionization events that comprise the branching ionization chains. We defined Ze(t,x) and Zh(t,x) as the total 
stochastic number of impact ionizations effected by electrons only and holes only, respectively, at time t, when 
the avalanche process is triggered by a parent electron at location x. Similarly, we defined Ye(t,x) and Yh(t,x) as 
the total stochastic number of impact ionizations effected by electrons only and holes only, respectively, at 
time t, when the avalanche process was triggered by a parent hole at location x. The mean quantities 𝑧𝑧𝑒𝑒(𝑡𝑡, 𝑥𝑥) =
〈𝑍𝑍𝑒𝑒(𝑡𝑡, 𝑥𝑥)〉, 𝑧𝑧ℎ(𝑡𝑡, 𝑥𝑥) = 〈𝑍𝑍ℎ(𝑡𝑡, 𝑥𝑥)〉 and 𝑦𝑦𝑒𝑒(𝑡𝑡, 𝑥𝑥) = 〈𝑌𝑌𝑒𝑒(𝑡𝑡, 𝑥𝑥)〉,𝑦𝑦ℎ(𝑡𝑡, 𝑥𝑥) = 〈𝑌𝑌ℎ(𝑡𝑡, 𝑥𝑥)〉 were calculated 
using the recursive equationsdescribed in Ref. 20. 

We calculated the total number of electrons and holes produced by an injected electron in one equation by 
adding the recursive equations for Ze(t,x) and Zh(t,x) and called the sum Z(t,x). With this, we recast the mean as 

𝑖𝑖(𝑡𝑡) = 〈𝐼𝐼(𝑡𝑡)〉
𝑞𝑞𝑣𝑣
𝑤𝑤
𝑧𝑧(𝑡𝑡, 0). 

(13) 

For the numeric modeling work described here, we simplified the problem by assuming that holes 
and electrons travel at approximately the same velocity, so that ve = vh, and by assuming a absorption region of 
negligible width (i.e., D = L). Figure 9 plots the simulated impulse response obtained from the probability 
mass function for the case of 〈MDC〉 = 26 and 〈MDC〉 = 937. It can be seen that, as was the case for 
the measured SCM APD impulse response data, a significant fraction of the device's cumulative gain, MDC(τ), 
occurs during T = 1 transit time and is dominated by ionization of the initial photoelectron and its progeny as 
they cross the stages of the multiplication region. The figure shows that, for both bias conditions, the magnitude 
of the response is similar during the initial transit. At 1T transit times, the ratio I937(T)/I26(T) is only 1.6, despite 
their 〈MDC〉 ratio of 36. 

 
FIG. 9.Impulse responses for MDC = 937 and MDC = 26 developed by the DSMT numeric models using the time-
resolved carrier distribution functions, which include scattering coefficients. 

The second moment of the impulse response can be computed as 
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𝑖𝑖𝑡𝑡(𝑡𝑡) =
𝑞𝑞2𝑣𝑣2

𝑤𝑤2 〈𝑧𝑧2(𝑡𝑡, 0)〉, 

(14) 

and the standard deviation is computed as 

𝜎𝜎(𝑡𝑡) = �𝑖𝑖2(𝑡𝑡) − (𝑖𝑖2(𝑡𝑡))2. 
(15) 

Figure 10 shows the numerically modeled mean impulse response, (14), and standard deviation, (15), as a 
function of carrier transit time over the early portion of the impulse response for an 〈MDC〉 = 937 biased 
SCM APD. For optimal performance, the signal-to-noise ratio (SNR) of a pulse should be large within the period 
of time in which most of the energy is contained. From these data, the SNR can be shown to be SNR ≈ 1, up until 
2Ttransit times, about when the holes created by the photoelectron and its progeny in 10th gain stage, at 
1T transit times, exit the multiplication region. Unlike the measured data, where the holes traverse a 1.5-μm 
absorption region, the numerical model assumes no absorption region, so the hole carriers leave the junction at 
2T transit times. From 2T < τ <4T transit times, the noise has another plateau with a SNR ≈ 0.5. Taking into 
consideration the influence on the photocurrent by the absorption region, the 4T transit period is equivalent to 
the 5.5T peak of the measured SCM APD impulse response data (see Figure 7). At all later transit times, the SNR 
drops due to the variation in gain that results from stronger hole ionization feedback. 

 
FIG. 10.Simulated impulse response, i(t) (red curve), and impulse response plus the standard deviation, i(t) + σ(t) 
(blue curve), as a function of the electron transit time for a gain MDC = 937 using the scattering-aware ionization 
coefficients. 

E. Calculation of the probability distribution function of the impulse response function 
We calculated the probability mass function, P(n,t) = Pr{I(t) = (qv/w)n}, following the approach of Hayat and 
Saleh,20 in which recursive equations are solved to yield the mgf of the stochastic quantities Z(t,x) and Y(t,x), 
from which the mgf of I(t) is derived. We obtained the probability mass function of I(t) using a simple Fourier 
inversion applied to the mgf. The numerically modeled instantaneous excess noise, F(t,M937(t)), shown in 
Figure 11 represents, for the times of the impulse response up to T = 2 transit times, the 
excess noisecharacteristics of the carriers present in the junction at each time. 
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FIG. 11.Instantaneous excess noise estimated from (var(It) + Mt

2)/Mt
2 for various MDC values. 

In Figure 12, plotted as a function of carrier transit time, are the partial gain, M937(τ) and cumulative 
instantaneous excess noise F(M937(τ)). On the figure's secondary y-axis are plotted, on a linear scale, the 
numerically calculated impulse response, I937(t) data. As with the measured data of Figure 9, there is a first sub-
peak in the impulse responses that occurs at 1T transit times, where the partial gain is M937(T) ≈ 12. At the 
second peak of the impulse response, M937(2T) ≈ 23 and F(M937(2T)) ≈ 1.8. 

 
FIG. 12.Plot of the excess noise of partial gain of the impulse response for MDC = 937 bias plotted as a function of 
transit times. Also shown, for reference, is the numerically modeled impulse response. 

IV. DISCUSSION 
At the early times of the impulse response, the numerical models of the SCM APD predict a cumulative 
excess noise for partial gain, F(MDC(τ)) lower than the DC excess noise, F(MDC), for an APD biased for an 
equivalent gain. For example, when M937(τ) = 100 (at 5T transit times), the cumulative instantaneous 
excess noise is 2.8, but when MDC = 100, the DC excess noise is 5.6 (see Figure 3). 

The data support the notion of a multimodal gain process, which is dominated during the early times (i.e., τ 
< 2T transit times) of the impulse response by the partial gain contributions of the photoelectron and its 
progeny, both holes and electrons, created during 1T transit times. During these times, the partial gain can be 
approximated by the discrete multi-gain stage APD models of (7), with a Pe characteristic of the 〈MDC〉 bias 
condition, according to (7) Pe = MDC(τ)1/J − 1. 

Using ks = 0.036 used above to fit (10) to the experimental data, from (9) we can estimate that to achieve a DC 
gain of 937 a Pe = 0.369 is required. Assuming negligible hole ionizationfeedback, using these Pe values during 
the preliminary transit time, we can anticipate during 1T transit times, a total average carrier gain of (1 + 
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0.369)10 ≈ 23.12 for 〈MDC〉 = 937. This is consistent with the numerically modeled data (Figure 12) and 
the measured data (Figure 6). At the lowest bias, 〈MDC〉 = 50, the measured data show that at M50(τ) ≈ 12, 
which, from (7)yields Pe = 0.275. At later times of the impulse response, hole ionization feedback must be 
considered. 

In Figure 13 are plotted the numerically modeled F(M937) and F(M937(τ)) data, along with plots 
of (10) parameterized by Pe = 0.37 with both ks = 0.0350 and ks = 0. Another plot of (10), parameterized 
by Pe = 0.37 is shown for ks = 0.012 for F(M937) < 100 and ks = 0.015 for 100 < F(M937) < 300. At partial gains less 
than about 10, the numerically modeled F(M937(τ)) data are slightly above that modeled by (10). This is not 
surprising, as unlike the analytical DC models,the numeric models include the stochastic random variables of 
both avalanche buildup time and multiplication. The DSMT generated P(n,t,x = 0) plots (Figure 8) illustrate the 
temporal variability of the avalanche buildup process. The n = 1 curve shows a wide range of probabilities over 
the first transit period. The wide range of n = 1 probabilities during the initial transit time is a result of the 
chance of failure of the photoelectron to multiply earlier in the chain of gain stages. The plot of (10; ks = 0.012) 
begins to approximate the numerically modeled partial gain data after M937(τ) = 10, which, from Figure 8, 
probably occurs at about 0.5T transit times. 

 
FIG. 13.Plots of the numerically modeled excess noise of DC gain F(MDC) and the cumulative excess noise of 
partial gain F(Mτ) for a 〈MDC〉 = 937 bias, compared to the analytic models of (10) using J = 10 gain stages and 
(Pe = 0.037, ks = 0.035), (Pe = 0.037, ks = 0), and (Pe = 0.037, ks = 0.012). 

Another difference between the numerically modeled cumulative instantaneous excess noiseand the DC 
excess noise models of (10) is that the numeric models have a Pe, fixed by the bias, at all times, whereas (10) has 
a different Pe value at each gain as calculated from (9). Using (9; ks = 0.035) it can be shown that in order to 
achieve 〈MDC〉 = 937, a Pe = 0.369 and Ph = 0.013 are required. By examining the point in 
Figure 8 where P(1,0.5T,0) is approximately equal to P(5,0.5T,0), which occurs after the photoelectron ionizes, or 
not, in the 5th gain stage, and the values of P(1,1T,0) and P(25,1T,0), after the time the photoelectron transits 
the 10th gain stage, using (7) we can confirm our estimate of Pe ≈ 0.37 at the early times of the impulse 
response. 

The P(0,2T,0) value of ∼0.3 is indicative of a Ph nearly 0 over most of the first two transit times; it is apparent, 
over this time period, that carriers are leaving the junction at a rate much faster than they are being created. 
From the fit of the numeric cumulative instantaneous noise data with (10; ks = 0.012) at a partial gain of 100 at 
5T transit times, using Pe = 0.369, we can estimate an effective hole ionization probability, Ph,teff, equal to 0.004. 
This is about 1/3rd the hole ionization probability estimated for DC gains of comparable magnitude to the partial 
gain. It is not until later times, that ks = 0.035, resulting in Ph = 0.013. 
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V. SUMMARY AND CONCLUSION 
The work presented demonstrates a new method of predicting APD photoreceiver performance and the data 
support a conclusion that commonly used pseudo-DC APD noisemodels are inadequate for describing the gain 
and noise fluctuations of the circuits used in pulse detection, wherein the pulses are shorter than 
the avalanche buildup time. To the best of our knowledge, this is the first application of 
numeric models descriptive of measuredtime-resolved APD impulse responses used for predicting the 
instantaneous gain and noiseproperties of the photocurrents in threshold decision circuits. 

A numeric DSMT model, modified to take into account phonon scattering in low field regions, was used 
to model the SCM APDs gain and noise properties over a range of biases. After the model was shown to 
approximate measured DC excess noise data and Monte Carlo simulations, the instantaneous and partial gain 
and noise properties of the SCM APD were modeled. Unlike the analytic models, the DSMT model does not 
involve any fitting parameters (i.e., k or ks) to the empirical data; it only uses universal parameters for the non-
localized ionization coefficients and the materials' ionization threshold energies. 

The numerical models were used to gain insight into the SCM APD carrier dynamics over the times of the 
impulse response under different bias conditions. It was confirmed that during the early impulse response 
times, instantaneous gains are higher and the instantaneous excess noise lower than at the later times of the 
impulse response. Under MDC = 937 bias, the numeric models show that at a partial gain of 100, the effective 
excess noise of the SCM APDis less than 3. This is about 50% the numerically modeled pseudo-DC 
excess noise, which was shown to be in good agreement with measured data and with Monte Carlo models. 

The plots of (10; ks = 0.035) showed excellent correspondence with the DSMT modeled and measured DC gain 
and excess noise data. This finding confirms previous work that predicted that a single-carrier 
multiplication APD with dead space can be approximated by a superlattice APD for which the separation 
between the layers is the dead space and the ionization probability per layer is obtained by matching the gains 
of the two devices.30 With the data from the DSMT model, we were able to estimate, at the longer times of the 
impulse response, an electron ionization probability of about Pe = 0.368 and a hole ionizationprobability 
of Ph = 0.013 (ks = 0.035). These values were then used to parameterize the Van Vliet (10) and 
McIntyre (6) models. The McIntyre models were shown to apply only at high DC gain levels, and were not useful 
for predicting the instantaneous noise properties. At a partial gain of 100, the numerically modeled cumulative 
instantaneous excess noise of the SCM APD is less than 50% that predicted by (6) for a MDC equal to the partial 
gain. Significantly, the numerically modeled SCM APD data are 7% the excess noise predicted by the 
McIntyre models for common bulk InP multiplication layer APDs calculated using (6; k = 0.4). 

A fit of (10) using the estimated Pe = 0.368 values, and ks = 0.012 provided a reasonable estimation of the 
cumulative excess noise obtained at the partial gain obtained at early times of the impulse response. When 
ks was varied as a function of gain, to reflect the temporal dynamics of the carrier populations gain 
and noise statistics, the model could be fitted to the numeric model over all times. However, it is important to 
note, again, that (10) was developed to describe DC operating conditions; its usefulness in describing the 
temporal dynamics of the SCM APD is rooted in its recursive derivation.12 Its use here for analytically modeling 
the cumulative instantaneous excess noise using parameters based on device properties has not been proven. 
While it may be possible to modify (9) and (10) so that they incorporate the temporal correlations of the carriers 
over the partial gains obtained during the SCM APDs impulse response, we do not offer proof, and we leave that 
work for future efforts. Future work will also include using the predictive models to predict measuredreceiver 
operating characteristic (ROC) curves, and repeating the work presented here using data from 14 stage 
SCM APDs. 
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