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Abstract 
A novel theory was recently reported for the avalanche multiplication process in avalanche photodiodes (APDs) 
under dynamic reverse-biasing conditions. It has been shown theoretically that the bit-synchronized, periodic 
modulation of the electric field in the multiplication region can offer improvements in the gain-bandwidth 
product by reducing intersymbol interference in optical receivers. This paper reports a rigorous formulation of 
the sensitivity of optical receivers that employ dynamically biased APDs. To enable the sensitivity analysis, a 
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recurrence theory is developed to calculate the joint probability distribution function (PDF) of the stochastic gain 
and avalanche buildup time in APDs that are operated under dynamic biasing. It is shown that in an ideal 
buildup-time limited scenario, a minimum receiver sensitivity of -20 dBm is predicted at an optimal gain of 
approximately 47 for a 60 Gb/s communication system, compared to a minimum of 0 dBm in the static-bias 
case. The receiver sensitivity analysis also reveals that, as the peak-to-peak voltage of the dynamic reverse bias 
increases, the device optimal gain increases while maintaining a short avalanche buildup time and reduced ISI. 
Of course, a point of diminishing return exists in practice when the tunneling current in the multiplication region 
becomes dominant. 

SECTION I. Introduction 
To meet the demands of the exponential growth in video, voice, data and mobile device traffic over the internet, 
the telecommunication industry has been moving toward higher-speed protocols [1]. The Synchronous Optical 
Network standards, OC-48 and OC-192, specify the data rates in optical networks as 2.5 Gb/s [2] and 10 Gb/s [3], 
respectively; however, the data rates are increasing to 40 Gb/s and 100 Gb/s [4] for more recent standards. 
InGaAs pin diodes have been the preferred choice in high speed optical communications due to their good 
electron transport properties and their low loss absorption in the 1.0–1.7 μm wavelength region [5]. Several 
proposed structures for pin diodes meet the requirements of the OC-192 and the OC-768 standards [6], [7]. 
Presently, the only commercially viable option for direct detection in 40-Gb/s long-haul optical links is the 
InGaAs pin photodiode combined with optical preamplification, since very high bandwidth and sensitivity can be 
achieved with this combination [8]. However, these receivers can be bulky and expensive due to their optical-
amplifier requirement. The need for optical pre-amplification may be removed by using an avalanche 
photodiodes (APDs), in which an internal gain is generated by converting each detected photon into a cascade of 
offspring electrons and holes. It is well known that the internal gain of APDs provides a higher sensitivity in 
optical receivers than that of pin photodiodes [9]– [10] [11] [12]. 

Although APDs have been successfully deployed in 10 Gb/s optical communication systems [13], [14], moving 
their utility to higher speeds has been a big challenge due to the avalanche buildup time, which is the stochastic 
time required for the cascade of impact ionizations to complete each time an avalanche is triggered. The 
avalanche buildup time limits the receiver performance by inducing intersymbol interference (ISI) at high 
speeds [15]– [16] [17]. Numerous attempts have been recorded to achieve higher data rates through the use of 
APDs with separate absorption and multiplication layers; these include APDs with thin multiplication 
regions [18], [19] as well as impact-ionization engineering of the multiplication region [20]. Recently, Hayat and 
Ramiraz[21], [22] proposed a novel approach for operating APDs in the linear mode while employing bit-
synchronous and sinusoidal dynamic biasing that can reduce the buildup time dramatically in any buildup-time 
limited APD-based optical receiver. The essence of the dynamic-biasing approach is to promote very strong 
impact ionizations in the early phase of an optical bit (to benefit from the high gain) while suppressing the 
ionizations near the end of the bit (to reduce ISI). They showed that dynamic biasing can offer up to a five-fold 
increase in the gain-bandwidth product of the receiver when the dynamic bias is properly selected [23]. 
However, no analysis of the receiver sensitivity has been developed to date for dynamically biased APDs. The 
requirement that the dynamic biasing of the APD should be synchronous with the data stream can be 
implemented easily in practice. The approach would be to use the output of the clock/data recovery (CDR) 
circuit, which is standard in any optical receiver, and use it as the input to a sine-wave generator, which makes it 
synchronous to the data stream. 

In this paper, we rigorously analyze the APD's sensitivity under dynamic biasing. To enable the calculation of the 
bit-error rate (BER) under an on-off keying (OOK) setting, we develop the first theory for the joint probability 
distribution of the stochastic gain and stochastic buildup time in dynamically biased APDs. This development 



constitutes a major expansion of (i) the recursive equations developed in [15] under the traditional assumption 
of a static bias, and (ii) the recursive technique characterizing the gain and buildup time individually [21]. The 
new theory enables us to calculate the statistical properties of the APD's photocurrent, such as its mean, 
variance and autocorrelation function all under dynamic biasing. This, in turn, is used to formulate analytically 
the sensitivity of a dynamically biased APD-based receiver and to optimize the sensitivity over system and device 
parameters. The analysis in this paper will specifically capture the effects of ISI and dark current, as well as 
transimpedance-amplifier noise (used in the pre-amplification stage of receivers). The sensitivity formulation 
developed here can be used as a guide in designing dynamically biased APD-based receivers for specific system 
performance requirements well beyond the limits previously known under the traditional constant-bias setting. 

The remainder of this paper is organized as follows. In Section II we present a recursive method to calculate the 
joint distribution of the gain and buildup-time of a dynamically biased APD. Numerical calculations for the joint 
statistics of the stochastic gain and stochastic buildup time are presented in Section III. In Section IV we 
approximate the impulse response function of the dynamically biased APD using a parametric model while 
exploiting the calculated joint statistics of stochastic gain and buildup time. Analytical expressions for the 
statistics of the output of the dynamically biased APD receiver are presented in Section V. Predictions of the 
receiver sensitivity are presented in Section VI, and the conclusions are drawn in Section VII. 

SECTION II. Age-Dependent Recursive Theory for Joint Probability 
Distribution of Gain and Buildup Time Under Dynamic Biasing 
For its relevance to this paper, we first begin by reviewing the proposed model introduced by Hayat and Ramirez 
in [21], which employs the use of a bit-synchronous and periodic dynamic biasing of an APD for linear-mode 
operation in direct-detection optical receivers. Next, we introduce the parameters and random variables 
required to derive the recursive equations that describe the joint probability distribution of gain and buildup 
time under dynamic biasing scheme. 
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Fig. 1. The dynamic-biasing approach (red curves) reported in [21] compared with the traditional static-biasing 
approach (green curve). The impulse response of early photons has high avalanche gain but limited avalanche 
duration, and late photons trigger avalanches with low-gain and limited transit-time duration due to 
experiencing a weakened electric field in the multiplication region. 

A. Review of the Dynamic-Biasing Approach 
It was shown theoretically that the use of a bit-synchronous and periodic dynamic biasing of an APD can offer 
substantial reduction in the duration of the APD's pulse response, thereby minimizing ISI without sacrificing 
avalanche gain [21]. Specifically, a dynamic-biasing approach, with the same frequency of the pulse transmission 
rate as illustrated in Fig. 1 (red curve, top plot), can yield a pulse response with the following two properties. 
First, photons that arrive early in the optical pulse experience a period of high electric field in the multiplication 
region of the APD, where they can generate a strong avalanche current in the early phase of the optical-pulse 
window, as shown inFig. 1 (solid red curve, bottom plot). As a low electric field period follows the high-field 
phase within the optical pulse window, carriers in the multiplication region undergo a much weakened impact 
ionization process, which can lead to the termination (with high probability) of the stochastic avalanche current. 
Second, photons that arrive late in the optical-pulse window generate impulse responses that are characterized 
by a much reduced buildup time due to the weakening of impact ionization in the second phase of the bias 
period, as depicted schematically by the dashed red curve in Fig. 1. In contrast to traditional APD biasing which is 
static, the pulse response of the dynamically biased APD will be characterized by a high gain yet with a buildup 
time that is potentially terminated just before the start of the next bit. It was shown theoretically in [21] that the 
dynamic-biasing approach can improve the gain-bandwidth product (GBP) by a factor of 5 compared to the 
conventional static bias case. For instance, in an InP-based APD with a 200 nm multiplication width, the 
calculated gain-bandwidth product of the pulse response due to a 16.5-ps rectangular optical pulse was 
enhanced from 238 GHz in the static-bias case to a pulse gain-bandwidth product of 1169 GHz in the dynamic-
bias case [21]. 

Following [21], the dynamic-field scenario brings about a new element to the analysis of impact ionization. This 
element is the age (or time stamp) of a carrier measured from the point in time when the dynamic bias is 
launched. The age will play a key role in the statistical analysis of the avalanche multiplication process. 
Specifically, carriers born at different times will experience different dynamical electric fields ahead of them as 
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they generate their own chains of impact ionizations. To take the age-factor into account in the analysis of the 
avalanche multiplication process, the usual ionization probability of a carrier is parameterized by the time at 
which the parent carrier is injected in the multiplication region. The key enabling idea in modeling the joint 
distribution for a dynamic reversed bias APD is to consider the age of the parent carrier relative to the launch 
instant of the dynamic bias as discussed next. 

B. Definitions 
Consider a multiplication region of the APD extending from 𝑥𝑥 = 0 to 𝑥𝑥 = 𝑤𝑤. Assume that a dynamic electric 
field, 𝐸𝐸(𝑡𝑡) = 𝑉𝑉(𝑡𝑡)/𝑤𝑤, is present in the multiplication region, where 𝑉𝑉(𝑡𝑡) is the time-varying applied bias 
voltage. When a carrier enters the multiplication region at an age 𝑠𝑠 relative to the launch of the dynamic bias, an 
age-dependent avalanche process will be triggered. For a parent carrier entering the multiplication region with 
age s and triggering an avalanche multiplication process, let 𝑇𝑇𝑠𝑠 be the stochastic time required for the avalanche 
process to terminate, and let 𝐺𝐺𝑠𝑠 be the total number of electron-hole pairs generated by this process. Note 
that 𝑇𝑇𝑠𝑠 is the stochastic duration of the APD's impulse-response function induced by an injected carrier in the 
multiplication region with age 𝑠𝑠. Meanwhile, 𝐺𝐺𝑠𝑠 is proportional to the area under the stochastic impulse-
response function. 

The age-dependent joint probability distribution function (PDF) associated with 𝐺𝐺𝑠𝑠 and 𝑇𝑇𝑠𝑠 is the probability that 
a parent carrier entering the multiplication region at age sgenerates 𝑚𝑚 electron-hole pairs in a time less than or 
equal to 𝑡𝑡. Formally, we define the joint PDF as 𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡; 𝑠𝑠) = P{𝐺𝐺𝑠𝑠 = 𝑚𝑚,𝑇𝑇𝑠𝑠 ≤ 𝑡𝑡}. Following the concept of the 
recursive approach [21], let the random variable 𝑍𝑍(𝑥𝑥, 𝑠𝑠) be the total number of electrons and holes (including 
the parent carrier) initiated by a parent electron located at location 𝑥𝑥 with age 𝑠𝑠. Similarly, let 𝑌𝑌(𝑥𝑥, 𝑠𝑠) be the 
total number of electrons and holes (including the parent carrier) initiated by a parent hole located at 
location 𝑥𝑥 with age 𝑠𝑠. Note that if we assume that the electric field is in the opposite direction of the x-axis and 
the multiplication region span the region from 𝑥𝑥 = 0 to 𝑥𝑥 = 𝑤𝑤, by convention 𝑍𝑍(𝑤𝑤, 𝑠𝑠) = 𝑌𝑌(0, 𝑠𝑠) = 1, 𝑠𝑠 ≥ 0, 
since an electron (hole) generated at the right (left) edge of the multiplication region will exit the multiplication 
region without ionization. 

Let 𝑋𝑋ℎ and 𝑋𝑋𝑒𝑒 be the stochastic free-path distances that the holes and electrons, respectively, travel before the 
impact ionization. The age-dependent probability density function of the free paths 𝑋𝑋ℎ and 𝑋𝑋𝑒𝑒, denoted 
by ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) and ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠), respectively, were defined in [21] according to the dead-space multiplication 
theory (DSMT). Under a dynamic electric field, the probability density function of the first ionization by a parent 
carrier of age 𝑠𝑠 and at location 𝑥𝑥 is zero before the dead space is traveled and exponential with a nonuniform 
rate after the dead space. Specifically, in[21] these densities have been formulated as 

ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) = �𝛽𝛽(𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ)𝑒𝑒−∫ 𝛽𝛽(𝜎𝜎,𝑠𝑠+𝜏𝜏ℎ)𝑑𝑑𝑑𝑑𝑥𝑥−𝑑𝑑ℎ(𝑥𝑥,𝑠𝑠)
𝜉𝜉 , 𝜉𝜉 < 𝑥𝑥 − 𝑑𝑑ℎ(𝑥𝑥, 𝑠𝑠)

0, otherwise
 

and 

ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) = �𝛼𝛼(𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒)𝑒𝑒−∫
𝜉𝜉
𝑥𝑥+𝑑𝑑𝑒𝑒(𝑥𝑥,𝑠𝑠) 𝛼𝛼(𝜎𝜎,𝑠𝑠+𝜏𝜏𝑒𝑒)𝑑𝑑𝑑𝑑 , 𝜉𝜉 > 𝑥𝑥 + 𝑑𝑑𝑒𝑒(𝑥𝑥, 𝑠𝑠)

0, otherwise
 

where 𝛽𝛽(𝑥𝑥, 𝑡𝑡) and 𝛼𝛼(𝑥𝑥, 𝑡𝑡) are the position and age dependent ionization coefficients, 
𝑑𝑑ℎ(𝑥𝑥, 𝑠𝑠) and 𝑑𝑑𝑒𝑒(𝑥𝑥, 𝑠𝑠) represent the age-dependent dead spaces for a hole and electron, respectively, 𝜏𝜏𝑒𝑒 = (𝜉𝜉 −
𝑥𝑥)/𝑣𝑣𝑒𝑒 and 𝜏𝜏ℎ = (𝑥𝑥 − 𝜉𝜉)/𝑣𝑣ℎ is the electron and hole, respectively, transport time between 𝑥𝑥 and 𝜉𝜉. Note 



that ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑 approximates the probability that an electron born at location 𝑥𝑥 and of age 𝑠𝑠 impact ionizes 
for the first time in the interval [𝜉𝜉, 𝜉𝜉 + 𝑑𝑑𝑑𝑑]. 

Other intermediate quantities required in this formulation are the buildup times. As in[21], 
define 𝑍𝑍(𝑥𝑥, 𝑠𝑠) (𝑌𝑌(𝑥𝑥, 𝑠𝑠)) as the totality of electrons and holes due to avalanche processes triggered by a parent 
electron (hole) of age s relative to the launch instant of the electric field. Now let 𝑇𝑇𝑍𝑍(𝑥𝑥, 𝑠𝑠) be the random time 
required for the 𝑍𝑍(𝑥𝑥, 𝑠𝑠) carries to exit the multiplication region; similarly, 𝑇𝑇𝑌𝑌(𝑥𝑥, 𝑠𝑠) is defined in the same way. It 
is worth to mention that 𝑇𝑇𝑍𝑍 (or 𝑇𝑇𝑌𝑌) is always greater than the electron (or hole) transport time 
between 𝑥𝑥 and 𝑤𝑤, which is the time needed for the parent electron (or hole) to exit the multiplication region. 
We define the joint PDFs of the pairs (𝑍𝑍,𝑇𝑇𝑍𝑍) and (𝑌𝑌,𝑇𝑇𝑌𝑌) as follows: 

𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = P{𝑍𝑍(𝑥𝑥, 𝑠𝑠) = 𝑚𝑚,𝑇𝑇𝑍𝑍(𝑥𝑥, 𝑠𝑠) ≤ 𝑡𝑡},
𝑓𝑓ℎ(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = P{𝑌𝑌(𝑥𝑥, 𝑠𝑠) = 𝑚𝑚,𝑇𝑇𝑌𝑌(𝑥𝑥, 𝑠𝑠) ≤ 𝑡𝑡}. (1a)(1b) 

Note that with this notation, the stochastic buildup time 𝑇𝑇𝑠𝑠 defined earlier becomes 𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑌𝑌(𝑤𝑤, 𝑠𝑠), and its 
corresponding stochastic gain is 𝐺𝐺𝑠𝑠 = 0.5(𝑌𝑌(𝑤𝑤, 𝑠𝑠) + 1). For example, for an InGaAs-InP APD in which photo-
generated holes are responsible for initiating avalanches in the InP multiplication region, we have 
𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡, 𝑠𝑠) = 𝑓𝑓ℎ(2𝑚𝑚− 1, 𝑡𝑡;𝑤𝑤, 𝑠𝑠). 

C. Recursive Equations 
The key observation needed in the formulation of a recursion for the PDFs defined above is that a parent 
electron born at location 𝑥𝑥 and of age 𝑠𝑠 generates a certain number of offspring carriers ( 𝑍𝑍(𝑥𝑥, 𝑠𝑠) = 𝑚𝑚, say) 
within a certain time (𝑇𝑇𝑍𝑍(𝑥𝑥, 𝑠𝑠) ≤ 𝑡𝑡, say) precisely when its two offspring electrons and offspring hole, born for 
example at location 𝜉𝜉, will collectively create the same intended number of carriers (𝑚𝑚) albeit within a reduced 
time 𝑡𝑡 − 𝜏𝜏𝑒𝑒. The age of the two offspring electrons and hole at birth is 𝑠𝑠 + 𝜏𝜏𝑒𝑒. With this regeneration concept in 
mind and by using the fact that all carries impact ionize independently of one another other, and by averaging 
over all the possible locations 𝜉𝜉 ∈ [𝑥𝑥,𝑤𝑤] of the first ionization of the parent electron (using the probability 
density function ℎ𝑒𝑒), we obtain the following recursive equation: 

𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = 𝑔𝑔𝑒𝑒(𝑥𝑥, 𝑡𝑡, 𝑠𝑠)𝛿𝛿𝑚𝑚−1

+∫ [𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏𝑒𝑒; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒) ∗ 𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏𝑒𝑒; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒)𝑤𝑤
𝑥𝑥

∗ 𝑓𝑓ℎ(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏𝑒𝑒; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒)]ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑,
 (2) 

where 𝛿𝛿𝑖𝑖  is the Kronecker delta function (𝛿𝛿𝑖𝑖 = 1 when 𝑖𝑖 = 0 and zero otherwise) and ∗ denotes discrete 
convolution in the variable 𝑚𝑚. The function 𝑔𝑔𝑒𝑒(𝑥𝑥, 𝑡𝑡, 𝑠𝑠) represents the probability that the parent electron does 
not ionize within time 𝑡𝑡, and it is given as: 

𝑔𝑔𝑒𝑒(𝑥𝑥, 𝑡𝑡, 𝑠𝑠) = 𝑢𝑢 �𝑡𝑡 − 𝑤𝑤−𝑥𝑥
𝑣𝑣𝑒𝑒
� ∫ ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑∞

𝑤𝑤 , (3) 

where 𝑢𝑢(𝑥𝑥) is the unit step function. Similarly, if we start with a parent hole, we obtain another recursive 
equation 

𝑓𝑓ℎ(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = 𝑔𝑔ℎ(𝑥𝑥, 𝑡𝑡, 𝑠𝑠)𝛿𝛿𝑚𝑚−1

+∫ [𝑓𝑓ℎ(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏ℎ; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ) ∗ 𝑓𝑓ℎ(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏ℎ; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ)𝑥𝑥
0

∗ 𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡 − 𝜏𝜏ℎ; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ)]ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑,
 (4) 

where 𝑔𝑔ℎ(𝑥𝑥, 𝑡𝑡, 𝑠𝑠) is the probability that the parent hole does not ionize at within time 𝑡𝑡, and it is given by 



𝑔𝑔𝑒𝑒(𝑥𝑥, 𝑡𝑡, 𝑠𝑠) = 𝑢𝑢 �𝑡𝑡 − 𝑤𝑤−𝑥𝑥
𝑣𝑣𝑒𝑒
� ∫ ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑∞

𝑤𝑤 . (5) 

The coupled pair of recursive equations in (2) and (4), which fully characterize the PDFs 𝑓𝑓𝑒𝑒 and 𝑓𝑓ℎ, can be solved 
numerically to determine the joint PDF 𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡, 𝑠𝑠). However, the discrete convolution under the integrals can 
be simplified to multiplication using the 𝑧𝑧-transform properties. Let 𝐹𝐹𝑒𝑒(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) and 𝐹𝐹ℎ(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) be the 𝑧𝑧-
transforms of 𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) and 𝑓𝑓𝑒𝑒(𝑚𝑚, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) with respect to the variable 𝑚𝑚. More precisely, if we define 

𝐹𝐹𝑒𝑒(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = � 𝑓𝑓𝑒𝑒(𝑘𝑘, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠)𝑧𝑧𝑘𝑘∞
𝑘𝑘=0

𝐹𝐹ℎ(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = � 𝑓𝑓ℎ(𝑘𝑘, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠)𝑧𝑧𝑘𝑘∞
𝑘𝑘=0 ,

 (6a)(6b) 

for all complex |𝑧𝑧| ≤ 1, then the discrete recursive equations defined in (2) and (4) can be simplified to 

𝐹𝐹𝑒𝑒(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = 𝑔𝑔𝑒𝑒(𝑥𝑥, 𝑡𝑡, 𝑠𝑠)𝑧𝑧 + ∫ 𝐹𝐹𝑒𝑒2(𝑧𝑧, 𝑡𝑡 − 𝜏𝜏𝑒𝑒; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒)𝑤𝑤
𝑥𝑥

× 𝐹𝐹ℎ(𝑧𝑧, 𝑡𝑡 − 𝜏𝜏𝑒𝑒; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏𝑒𝑒)ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑,
𝐹𝐹ℎ(𝑧𝑧, 𝑡𝑡; 𝑥𝑥, 𝑠𝑠) = 𝑔𝑔ℎ(𝑥𝑥, 𝑡𝑡, 𝑠𝑠)𝑧𝑧 + ∫ 𝐹𝐹ℎ2(𝑧𝑧, 𝑡𝑡 − 𝜏𝜏ℎ; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ)𝑥𝑥

0
× 𝐹𝐹𝑒𝑒(𝑧𝑧, 𝑡𝑡 − 𝜏𝜏ℎ; 𝜉𝜉, 𝑠𝑠 + 𝜏𝜏ℎ)ℎℎ(𝜉𝜉;𝑥𝑥, 𝑠𝑠)𝑑𝑑𝑑𝑑.

 (7) 

After solving the coupled recursive equations numerically over 𝑧𝑧 = 𝑒𝑒−𝑗𝑗𝑗𝑗(−𝜋𝜋 < 𝜔𝜔 ≤ 𝜋𝜋), 𝑡𝑡 ≥ 0, 𝑥𝑥 ∈
[0,𝑤𝑤] and 𝑠𝑠 ∈ [0,𝑇𝑇𝑇𝑇], while using the time shifting and scaling properties of the 𝑧𝑧-transform, we obtain the 𝑧𝑧-
transform (with respect to variable 𝑚𝑚), 𝐹𝐹𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠, of the joint distribution 𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠 of the random variables 𝐺𝐺𝑠𝑠 and 𝑇𝑇𝑠𝑠. 
More precisely, 

𝐹𝐹𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑧𝑧, 𝑡𝑡; 𝑠𝑠) = √𝑧𝑧𝐹𝐹ℎ(√𝑧𝑧, 𝑡𝑡;𝑤𝑤, 𝑠𝑠). (8) 

The joint PDF can then be found by using the inversion formula [24], i.e., by evaluating the 𝑧𝑧-transform on the 
unit circle and find its Fourier series coefficients 

𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡; 𝑠𝑠) = 1
2𝜋𝜋
� 𝐹𝐹𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑒𝑒

𝑗𝑗𝑗𝑗, 𝑡𝑡; 𝑠𝑠)𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑑𝑑
𝜋𝜋

−𝜋𝜋
. (9) 

SECTION III. Numerical Calculation of the Age-Dependent Joint PDF of the 
Gain and Buildup Time 
Consider an InGaAs-InP APD with a multiplication layer of width 𝑤𝑤 = 200 nm. The APD is dynamically biased 
with a sinusoidal reverse voltage of the form 𝑉𝑉𝐵𝐵(𝑡𝑡) = 𝐵𝐵 + 𝐶𝐶sin (2𝜋𝜋𝑓𝑓𝑏𝑏𝑡𝑡 + 𝜓𝜓), where 𝑓𝑓𝑏𝑏 is the bit transmission 
rate, i.e., 𝑓𝑓𝑏𝑏 = 1/𝑇𝑇𝑏𝑏, and 𝑇𝑇𝑏𝑏 is the optical pulse window. The probability density functions of the free path, 
ℎ𝑒𝑒(𝜉𝜉; 𝑥𝑥, 𝑠𝑠) and ℎℎ(𝜉𝜉; 𝑥𝑥, 𝑠𝑠), were calculated according to the dead-space multiplication theory (DSMT) as 
described in [21]. The calculation of the free path's probability density functions requires the knowledge of the 
ionization coefficients and ionization-threshold energies for the InP multiplication region, which can be 
extracted from [25]. Our main goal is to select the sinusoidal parameters for optimal receiver performance. As 
an example, the peak-to-peak and the DC parameters of the sinusoidal-biasing parameters were selected as 𝐵𝐵 =
13V, 𝐶𝐶 = 6V and 𝜓𝜓 = 0. The sinusoidal-biasing period is equal to 5.5 transit times, which is equivalent to a data 
rate of 𝑓𝑓𝑏𝑏 = 60Gb/s. The electron and hole saturation velocity are approximated as 𝑣𝑣𝑒𝑒 = 𝑣𝑣ℎ = 0.67 × 107cm/s. 

We first solve numerically the coupled recursive equations (7) using a simple iterative method. Next, the joint 
PDF of the random gain and 𝐺𝐺𝑠𝑠 and the random buildup time Tswere calculated from (9). Fig. 2 shows examples 
of the age-dependent joint PDF 𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡, 𝑠𝑠) calculated for different values of the age variable, 𝑠𝑠 = 0, 𝑠𝑠 =
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𝑇𝑇𝑏𝑏/4 and 𝑠𝑠 = 3𝑇𝑇𝑏𝑏/4. The hole transit time is simply 𝑤𝑤/𝑣𝑣ℎ = 3.0ps. The correlation between the gain and the 
buildup time is clear from the joint PDF plots in agreement with the behavior of the static bias case [15]. The 
numerical calculations show that the arrival time of the incident photon to the multiplication region, 𝑠𝑠, plays a 
key role in the distribution function, a property that is heavily exploited in reducing the buildup time for optical 
receivers by adjusting the arrival time, 𝑠𝑠, of the incident photon relative to dynamic-bias cycle. For instance, by 
examining the shape of the PDF, the age-dependent joint PDF of an avalanche triggered by a photon arrived at 
the beginning of the pulse (𝑠𝑠 = 0), is expected to have a higher mean gain (E[𝐺𝐺𝑠𝑠]) and longer mean buildup 
time (E[𝑇𝑇𝑠𝑠]) compared to a photon arrived at a later time (e.g., 𝑠𝑠 = 3𝑇𝑇𝑏𝑏/4). 

 

 
Fig. 2. Joint PDF fGs,Ts of the stochastic gain 𝐺𝐺𝑠𝑠 and the stochastic buildup time 𝑇𝑇𝑠𝑠 for an InP APD with a 200-nm 
multiplication layer. Fig. 2(a)–(d) correspond to different initiating parent hole of age 𝑠𝑠 = 0, 𝑠𝑠 = 0.25𝑇𝑇𝑏𝑏, 𝑠𝑠 =
0.5𝑇𝑇𝑏𝑏 and 𝑠𝑠 = 0.75𝑇𝑇𝑏𝑏, respectively. The reverse dynamic voltage bias is of the form 𝑉𝑉𝑏𝑏(𝑡𝑡) = 13 +
6sin (2𝜋𝜋𝜋𝜋/𝑇𝑇𝑏𝑏), where 𝑇𝑇𝑏𝑏 is the bit duration with 1/𝑇𝑇𝑏𝑏 ≈ 60Gb/s. 
 

In order to better understand the effect of the incident photon's arrival age, 𝑠𝑠, the probability mass function 
(PMF) of the stochastic gain 𝐺𝐺𝑠𝑠 can be found by taking the limit of the joint PDF as 𝑡𝑡 approaches infinity, 
i.e., 𝑓𝑓𝐺𝐺𝑠𝑠(𝑚𝑚, 𝑠𝑠) = 𝑙𝑙𝑙𝑙𝑙𝑙

𝑡𝑡→∞
𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡, 𝑠𝑠). The result is shown in Fig. 3(a). Furthermore, the cumulative distribution 

function (CDF) of the stochastic buildup time 𝑇𝑇𝑠𝑠 [ Fig. 3(b)] as a function of the age, s can be found as 

follows: 𝐹𝐹𝑇𝑇𝑠𝑠(𝑡𝑡, 𝑠𝑠) = � 𝑓𝑓𝐺𝐺𝑠𝑠,𝑇𝑇𝑠𝑠(𝑚𝑚, 𝑡𝑡, 𝑠𝑠
∞

𝑚𝑚=1
). Fig. 3(a) shows a high mean for the gain (accompanied by a larger 

spread) at the beginning of the period (at 𝑠𝑠 = 0) and decreases to unity when s is around 70% of the bit 
period 𝑇𝑇𝑏𝑏. Moreover, the CDF of the buildup time shows a similar behavior in Fig. 3(b), where the expected 
buildup approaches a unit of transit time when the age, 𝑠𝑠 is around 0.7𝑇𝑇𝑏𝑏. Recall that the minimum possible 
buildup time is the hole transit time 𝑤𝑤/𝑣𝑣ℎ, i.e., P{𝑇𝑇𝑠𝑠 ≤ 1} = 0. This feature is observed in Figs. 2 and 3(b).  
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Fig. 3. Marginal distributions of the stochastic gain, 𝐺𝐺𝑠𝑠 and the stochastic buildup time, 𝑇𝑇𝑠𝑠. (a) Marginal 
probability mass function (PMF) of the age-dependent stochastic gain, 𝐺𝐺𝑠𝑠, as a function of the initiating hole 
age, s (in bit duration window, 𝑇𝑇𝑏𝑏). (b) Marginal cumulative distribution function (CDF) of the age-dependent 
stochastic buildup time, 𝑇𝑇𝑠𝑠, as a function of the initiating hole age, 𝑠𝑠 (in bit duration, 𝑇𝑇𝑏𝑏). 
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Fig. 4. Calculated age-dependent impulse response function under a sinusoidal dynamic bias for different ages 
(photon arrival time). The dynamic-biasing parameters used are: 𝐵𝐵 = 13V, 𝐶𝐶 = 6V, and 𝜓𝜓 = 0. 

For this example, the average gain calculated by Hayat and Ramirez [21] for this particular receiver is 28. The 
marginal density function of the gain (obtained by integrating the joint PDF over the buildup time) yields the 
mean of 26.7, which is in good agreement with the previous results found in [21]. 

We next use the joint PDF of 𝐺𝐺𝑠𝑠 and 𝑇𝑇𝑠𝑠 to calculate the statistical properties of the impulse-response function 
and investigate the effect of the dynamic reverse bias on ISI and receiver performance in high-speed digital 
receivers. 

SECTION IV. Mean Impulse-Response Function 
In this section, we introduce a novel model for the mean impulse-response function that facilitates the 
calculation of the receiver statistics once the age-dependent joint PDF of the gain and the buildup time has been 
determined. For the constant reverse bias, the mean impulse response, 𝑖𝑖(𝑡𝑡) = E[𝐼𝐼(𝑡𝑡)], and its second 
moment, 𝑖𝑖2(𝑡𝑡) = E[𝐼𝐼2(𝑡𝑡)], are known to decay exponentially at the same rate [26]. The calculation of the age-
dependent impulse response function in the case of the dynamic bias is shown in Fig. 4 for different values of 
the age variable 𝑠𝑠. These curves were obtained by solving Eqs.(10a) and (10b) in [21] numerically using the 
method of iterations. Fig. 4 shows that the tail of the impulse response can be approximated by a decaying 
exponential function with a constant average rate, 𝑏𝑏. It is clear from the numerical calculations that the average 
decay rate, 𝑏𝑏, is independent of the carrier age, i.e., regardless of the arriving time of the photon with respect to 
the dynamic electric field the impulse response function decays at the same average rate. Moreover, the 
fluctuations in the tail can be ignored because we are interested in the asymptotic behavior of the impulse 
response, where the average decay rate exponent dominates the bounded sinusoidal fluctuations, 
i.e., 𝑒𝑒−𝑏𝑏𝑏𝑏+𝛿𝛿sin (𝜔𝜔𝑏𝑏𝑡𝑡) ≈ 𝑒𝑒−𝑏𝑏𝑏𝑏 when 𝑡𝑡 is large. With this in mind, we approximate the mean and the second 
moment of the impulse response as follows: 

𝑖𝑖(𝑡𝑡, 𝑠𝑠) ≈ 𝑎𝑎𝑠𝑠𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑠𝑠)𝑢𝑢(𝑡𝑡 − 𝑠𝑠) (10a) 
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and 

𝑖𝑖2(𝑡𝑡, 𝑠𝑠) ≈ 𝑐𝑐𝑠𝑠𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑠𝑠)𝑢𝑢(𝑡𝑡 − 𝑠𝑠), (10b) 

where 𝑎𝑎𝑠𝑠 and 𝑐𝑐𝑠𝑠 are age-dependent coefficients to be determined and 𝑏𝑏 represents the average decaying rate of 
the impulse response tail. To see the effect of the dynamic biasing scheme on the ISI, we calculated the mean 
pulse-response function by integrating the age-dependent impulse responses over the age variable 𝑠𝑠 in the 
interval [0,𝑇𝑇𝑏𝑏]. Fig. 5 shows the calculated mean pulse response of a 200 nm multiplication region InP-based 
APD, when it is illuminated by a rectangular non-return-to-zero (NRZ) pulse. For simplicity, in this example we 
assume a uniformly distributed random stream of photons. Two cases are considered: sinusoidal dynamic bias 
and a constant reverse bias. In this example the width of the optical pulse is 16.5 ps (consistent with 60-Gb/s 
NRZ bit stream). The reduction in the tail of the pulse response in the dynamic-bias case is clearly evident 
compared with that for the constant-bias case.The total mean gain generated by the pulse under dynamic-
biasing is 27 and its bandwidth is 80 GHz, giving rise to an average GBP (i.e., the GBP averaged over the age 
variable sin the interval [0,𝑇𝑇𝑏𝑏]) of 2,161 GHz, which is compared to 437 GHz in the constant-bias case as pointed 
out in [21]. This shows that a dynamically biased APD can increase the pulse-response gain-bandwidth product 
of an APD by a factor of 5. 

 

 
Fig. 5. Calculated time response to an 16.5-ps rectangular optical pulse of dynamically biased APD, with a 
sinusoidal-dynamic bias function as shown, and a conventional InP APD. A five-fold enhancement in the GBP is 
predicted. 
 

By overlaying sweeps of different segments of a long data stream, an eye diagram can be simulated. We 
consider 213 − 1 NRZ bits with a pulse width of 25 ps as in a 40-Gb/s NRZ bit stream. Fig. 6 shows the simulated 
eye diagram of the 200 nm multiplication region APD, once with the sinusoidal dynamic-field (upper plot) and 
once with the static reverse bias (lower plot). We observe that in the presence of channel noise, the eye opening 
of the sinusoidal-bias case is wide open compared to that for the static-bias case. This shows that dynamically 
biased APD can increase the receiver performance substantially compared to the same APD operated under the 
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conventional static biasing scheme. Note that, the shape of the eye diagram for dynamic-bias case is different 
from that of the conventional OOK NRZ. This result is expected since dynamic biasing provides strong avalanche 
current in the early phase of the optical-pulse window followed by a much weaker impact ionization that 
terminates the avalanche current with high probability before the start of next bit. This can also be realized in 
the logarithmic plot of the pulse response depicted in 5. 

 
Fig. 6. Receiver eye diagram of a 200 nm InP dynamically biased APD (upper plot) compared to the traditional 
constant-biasing APD (lower plot) for an OOK communication system operating at 40 Gb/s. 
 

Our next step is to explore the physical meaning of the age-dependent coefficients, 𝑎𝑎𝑠𝑠 and 𝑐𝑐𝑠𝑠 and the decay 
rate 𝑏𝑏 introduced in (10) . Following [15], we approximate the stochastic impulse-response, 𝐼𝐼(𝑡𝑡, 𝑠𝑠) by a specified 
shape function that is parameterized by the age-dependent random gain 𝐺𝐺𝑠𝑠 and the age-dependent random 
buildup time 𝑇𝑇𝑠𝑠. An example of such a function is the rectangular random-duration (RD) with random 
height 𝑞𝑞𝐺𝐺𝑠𝑠/𝑇𝑇𝑠𝑠 and random duration 𝑇𝑇𝑠𝑠, where 𝑞𝑞 is the electronic charge. Note that the area under this function 
is 𝑞𝑞𝐺𝐺𝑠𝑠. The randomness in the impulse-response functions area represents the gain uncertainty and the 
randomness in its duration represents the uncertainty in the buildup time. This parametric approach for 
representing the stochastic impulse-response function significantly simplifies the complexity of the impulse-
response function while maintaining the key features that govern the random gain, the excess-noise and speed 
properties of the APD. (Non-rectangular shape functions have also been considered [15].) Therefore, 

∫ 𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑∞
𝑠𝑠 ≈ � 𝑎𝑎𝑠𝑠𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑠𝑠) = 𝑎𝑎𝑠𝑠

𝑏𝑏

∞

𝑠𝑠
 and

E �� 𝐼𝐼𝑝𝑝(𝑡𝑡, 𝑠𝑠)d𝑡𝑡
∞

𝑠𝑠
�

≈ E[� 𝑞𝑞 𝐺𝐺𝑠𝑠
𝑇𝑇𝑠𝑠

(𝑢𝑢(𝑡𝑡 − 𝑠𝑠) − 𝑢𝑢(𝑡𝑡 − 𝑠𝑠 − 𝑇𝑇𝑠𝑠))d𝑡𝑡] = 𝑞𝑞E[𝐺𝐺𝑠𝑠]
∞

𝑠𝑠
,

 (11)(12) 

and by equating the above two equations, we conclude that 𝑎𝑎𝑠𝑠 = 𝑞𝑞𝑞𝑞E[𝐺𝐺𝑠𝑠]. Unlike the static-bias case, the 
statistics of the buildup time and gain of an APD operating under dynamic reverse bias will vary cyclically with 
time with a period equal to the dynamic field period; therefore, 𝑎𝑎𝑠𝑠 is periodic in 𝑠𝑠 with a period equal to bit 
duration and to the dynamic reverse voltage period 𝑇𝑇𝑏𝑏. Similarly, the parameter 𝑐𝑐𝑠𝑠 of the second moment, 
𝑖𝑖2(𝑡𝑡, 𝑠𝑠), can be found as follows: 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/26/7240139/7161318/elhow6-2457923-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/26/7240139/7161318/elhow6-2457923-large.gif
https://ieeexplore.ieee.org/document/#deqn10a
https://ieeexplore.ieee.org/document/#deqn10b


∫ 𝑖𝑖2(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑∞
𝑠𝑠 ≈ � 𝑐𝑐𝑠𝑠𝑒𝑒−𝑏𝑏(𝑡𝑡−𝑠𝑠) = 𝑐𝑐𝑠𝑠

𝑏𝑏

∞

𝑠𝑠
 and

E �� 𝐼𝐼𝑝𝑝2(𝑡𝑡, 𝑠𝑠)d𝑡𝑡
∞

𝑠𝑠
�

≈ E[� 𝑞𝑞2 𝐺𝐺𝑠𝑠
2

𝑇𝑇𝑠𝑠2
(𝑢𝑢(𝑡𝑡 − 𝑠𝑠) − 𝑢𝑢(𝑡𝑡 − 𝑠𝑠 − 𝑇𝑇𝑠𝑠))d𝑡𝑡] = 𝑞𝑞2E �𝐺𝐺𝑠𝑠

2

𝑇𝑇𝑠𝑠
�

∞

𝑠𝑠
.

 (13)(14) 

As a result, 𝑐𝑐𝑠𝑠 = 𝑞𝑞2𝑏𝑏E[𝐺𝐺𝑠𝑠2/𝑇𝑇𝑠𝑠]. 

We now proceed to characterize the decay rate, 𝑏𝑏. By comparing the exact expression(30) and its 
simplification (31) for the photocurrent variance, as derived in theAppendix, we can relate the decay rate to the 
statistics of the impulse response 𝐺𝐺𝑠𝑠 and 𝑇𝑇𝑠𝑠 as follows: 

𝑏𝑏 =
2 ∫ E𝑇𝑇𝑏𝑏

0 [𝐺𝐺𝑠𝑠2/𝑇𝑇𝑠𝑠]𝑑𝑑𝑑𝑑

∫ E𝑇𝑇𝑏𝑏
0 [𝐺𝐺𝑠𝑠2]𝑑𝑑𝑑𝑑

. (15) 

We note that for a static-bias case, the dependence on the age variable s will be absent in 𝐺𝐺𝑠𝑠 and 𝑇𝑇𝑠𝑠, and the 
parameters 𝑎𝑎𝑠𝑠, 𝑐𝑐𝑠𝑠, and 𝑏𝑏 of the approximated impulse response statistics collapse to their static-field 
counterparts reported in [15] [Eqs. (11), (26) and(29)]. In the next section, we use the impulse-response-function 
approximations described above to determine the receiver performance of an APD operating with a dynamically 
reversed bias. We particularly investigate the effect of the different bias settings (DC level, peak-to-peak value 
and phase) on the receiver BER. 

SECTION V. Receiver Performance Analysis Under Dynamic Reverse Biasing 
In this section, we develop expressions for the statistics of the output of an APD-based integrate-and-dump 
receiver operating under dynamic biasing. We will consider an arbitrary past bit-pattern of length 𝐿𝐿 bits and 
calculate the mean and the variance of the photocurrent and the receiver output conditional on the value of the 
current bit while taking into account the ISI contributions from past bits. This is done by adding up the 
contributions from the past bits in the pattern to the present bit. Next, by averaging over all possible past bit-
patterns, we determine the average BER. The analysis developed here offers closed-form expressions for the 
mean and variance of a dynamically biased APD receiver's output, with well-defined parameters that capture ISI, 
Johnson noise and the APD's speed. 

A. Output of the Integrate-and-Dump Receiver 
Consider a modulated optical photon stream with a bit duration 𝑇𝑇𝑏𝑏. The photocurrent generated by the 
dynamically biased APD is fed into a bit integrator that is synchronized with the optical stream. Let Γ𝑛𝑛 be the 
integrate-and-dump receiver output when the nth past bit is “1” and all other past bits are “0” (including the 
present bit). The mean of the receiver output can be expressed as 

⟨Γ𝑛𝑛⟩ = 𝜙𝜙∫  𝑇𝑇𝑏𝑏
0 ∫  −(𝑛𝑛−1)𝑇𝑇𝑏𝑏

−𝑛𝑛𝑇𝑇𝑏𝑏
𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, (16) 

where 𝜙𝜙 is the average photon absorption rate by the detector. Note that, the average photon absorption rate 
can be defined as 𝜙𝜙 = 𝜂𝜂Φ, where 𝜂𝜂 is the quantum efficiency of the APD defined as the probability that a single 
photon incident generates an impulse response and 𝛷𝛷 is the photon flux incident on the photodetector. Using 
the parametric model of the mean impulse response described in Section IV, the mean of the nth bit 
photocurrent output can be shown to be 

https://ieeexplore.ieee.org/document/#deqn30
https://ieeexplore.ieee.org/document/#deqn31
https://ieeexplore.ieee.org/document/#deqn11-12
https://ieeexplore.ieee.org/document/#deqn26-27
https://ieeexplore.ieee.org/document/#deqn28-29


𝜇𝜇𝑛𝑛 = ⟨Γ𝑛𝑛⟩ =
𝜙𝜙𝑒𝑒−𝑛𝑛𝑛𝑛𝑇𝑇𝑏𝑏

𝑏𝑏 (𝑒𝑒𝑏𝑏𝑇𝑇𝑏𝑏 + 𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 − 2)�
𝐴𝐴𝑘𝑘

𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑏𝑏 + 𝑏𝑏

∞

𝑘𝑘=−∞

, 

where the 𝐴𝐴𝑘𝑘's are the Fourier series coefficients of the periodic function 𝑎𝑎𝑠𝑠 with 𝐴𝐴𝑘𝑘 = 𝑇𝑇𝑏𝑏−1 ∫ 𝑎𝑎𝑠𝑠𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑇𝑇𝑏𝑏𝑑𝑑𝑑𝑑𝑇𝑇𝑏𝑏
0 . 

To calculate the variance of Γ𝑛𝑛, we undertake a cyclostationary stochastic analysis shown in the Appendix. This 
results in 

𝜎𝜎Γ𝑛𝑛
2 = 2𝜙𝜙

𝑏𝑏2
𝑒𝑒−𝑛𝑛𝑛𝑛𝑇𝑇𝑏𝑏(𝑒𝑒𝑏𝑏𝑇𝑇𝑏𝑏 − 1)(1− 𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 − 𝑏𝑏𝑇𝑇𝑏𝑏𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏)

× � 𝐶𝐶𝑘𝑘
𝑏𝑏+𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑏𝑏

∞

𝑘𝑘=−∞
,
 (17) 

where 𝐶𝐶𝑘𝑘's represent the Fourier series coefficients of the periodic function 𝑐𝑐𝑠𝑠 with 𝐶𝐶𝑘𝑘 =
𝑇𝑇𝑏𝑏−1 ∫ 𝑐𝑐𝑠𝑠𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑

𝑇𝑇𝑏𝑏
0 . Now consider an arbitrary past bit pattern, 𝐼𝐼𝑗𝑗, of length 𝐿𝐿 representing the transmitted 

information. The bit-length parameter, 𝐿𝐿, can be chosen to be sufficiently large to capture all the previous bits 
that has significant impacts on the current output; an appropriate value of 𝐿𝐿 can be determined in practice by 
trial and error. To calculate the mean of the receiver output for the bit pattern 𝐼𝐼𝑗𝑗 when the present bit is zero, 
we add up the contributions from each non-zero past bits in the pattern, which yields the expression 

𝜇𝜇Γ|0(𝐼𝐼𝑗𝑗) = � 𝑢𝑢𝑛𝑛(𝐼𝐼𝑗𝑗)𝜇𝜇𝑛𝑛
2𝐿𝐿

𝑛𝑛=1
, (18) 

where 𝑢𝑢𝑛𝑛(𝐼𝐼𝑗𝑗) is 1 when the 𝑛𝑛th bit in the pattern 𝐼𝐼𝑗𝑗 is a “1” bit and 𝐼𝐼𝑗𝑗 is 0 otherwise. 

Similarly, one can calculate the variance of the receiver output associated with the pattern 𝐼𝐼𝑗𝑗 while conditioning 
on the first bit being 0 bit by adding up the contributions from the non-zero past bits as well as contribution 
from Johnson noise and obtain 

𝜎𝜎Γ|0
2 (𝐼𝐼𝑗𝑗) = � 𝑢𝑢𝑛𝑛(𝐼𝐼𝑗𝑗)𝜎𝜎Γ𝑛𝑛

2 + 𝜎𝜎𝐽𝐽2
2𝐿𝐿

𝑛𝑛=1
. (19) 

Next, the mean and variance of the receiver output when the present bit is 1 are found by adding the 
contributions from the photons in the present bit to 𝜇𝜇Γ|0 and 𝜎𝜎Γ|0

2 , respectively. The contribution to the mean of 
the receiver output from the photons available in the present bit (for 𝑛𝑛 = 0) is  

𝜇𝜇0 = 𝜙𝜙∫  𝑇𝑇𝑏𝑏
0 � 𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜙𝜙 𝐴𝐴0

𝑏𝑏2
(𝑏𝑏𝑇𝑇𝑏𝑏 − 1 + 𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏)

𝑡𝑡

0

+𝜙𝜙� 𝐴𝐴𝑘𝑘
𝑏𝑏(𝑗𝑗2𝜋𝜋𝜋𝜋𝑓𝑓𝑏𝑏+𝑏𝑏)

(𝑒𝑒𝑏𝑏𝑇𝑇𝑏𝑏 − 1)
∞

𝑘𝑘=−∞
𝑘𝑘≠0

.
 (20) 

View Source The contribution to the variance of the receiver output from the photons available in the 
present bit is 



𝜎𝜎02 = 𝜙𝜙�  
𝑇𝑇𝑏𝑏

0
�  
𝑇𝑇𝑏𝑏

0
�  
𝑡𝑡1∧𝑡𝑡2

0
𝑅𝑅𝐼𝐼(𝑡𝑡1, 𝑡𝑡2, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2

= 𝜙𝜙
2𝐶𝐶0
𝑏𝑏3 [𝑏𝑏𝑇𝑇𝑏𝑏 + 𝑏𝑏𝑇𝑇𝑏𝑏𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 + 2𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 − 2] + �  

∞

𝑘𝑘=−∞
𝑘𝑘≠0

2𝜙𝜙𝐶𝐶𝑘𝑘
𝑏𝑏 + 𝑗𝑗2𝜋𝜋𝑓𝑓𝑏𝑏𝑘𝑘

× [
𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 − 1

𝑏𝑏(𝑏𝑏 + 𝑗𝑗2𝜋𝜋𝑓𝑓𝑏𝑏𝑘𝑘) +
𝑏𝑏𝑇𝑇𝑏𝑏𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 + 𝑒𝑒−𝑏𝑏𝑇𝑇𝑏𝑏 − 1

𝑏𝑏2 ].

 

Finally, when we combine 𝜇𝜇0 and 𝜎𝜎02 with the contribution from the previous bits (𝜇𝜇𝑛𝑛 and 𝜎𝜎𝑛𝑛2 for 𝑛𝑛 = 1,2,⋯), we 
obtain the mean and the variance of the receiver output associated with the pattern 𝐼𝐼𝑗𝑗 conditioning on the 
present bit being 1. More precisely, 

𝜇𝜇Γ|1(𝐼𝐼𝑗𝑗) = 𝜇𝜇Γ|0(𝐼𝐼𝑗𝑗) + 𝜇𝜇0, (21) 

and 

𝜎𝜎Γ|1
2 (𝐼𝐼𝑗𝑗) = 𝜎𝜎Γ|0

2 (𝐼𝐼𝑗𝑗) + 𝜎𝜎02. (22) 

A common approximation for the receiver output is the Gaussian distribution [27]. By conditioning on the 
transmitted bit, the conditional distribution of the receiver output for a specific pattern 𝐼𝐼𝑗𝑗, is assumed to be 
Gaussian with mean 𝜇𝜇Γ|𝑖𝑖(𝐼𝐼𝑗𝑗) and variance 𝜎𝜎Γ|𝑖𝑖

2 (𝐼𝐼𝑗𝑗) for 𝑖𝑖 ∈ {0,1}. Therefore, for every pattern, 𝐼𝐼𝑗𝑗, the pattern-
specific BER is 

BER(𝐼𝐼𝑗𝑗) =
1
4 [erfc(

𝜃𝜃 − 𝜇𝜇Γ|0(𝐼𝐼𝑗𝑗)
𝜎𝜎Γ|0√2

) + erfc(
𝜇𝜇Γ|1(𝐼𝐼𝑗𝑗) − 𝜃𝜃
𝜎𝜎Γ|1√2

)], 

where 𝜃𝜃 is the decision threshold. In practice, 𝜃𝜃 is optimized to minimize the overall BER. In the next section, we 
show an efficient method to determine 𝜃𝜃. By assuming an equiprobable distribution on the past bits, the overall 
BER is calculated by averaging over all possible bit patterns. More precisely, 

BER = 1
2𝐿𝐿
∑ BER2𝐿𝐿
𝑗𝑗=1 (𝐼𝐼𝑗𝑗). (23) 

B. The Decision Threshold, 𝜽𝜽 
The derivation of the BER expressions involves the computation of the decision threshold, 𝜃𝜃, i.e., the optimized 
threshold that minimizes the overall BER. The optimal decision threshold can be characterized analytically by 
setting the derivative of the BER with respect to the decision threshold to zero. As a result, we obtain 

� 𝑒𝑒
−

(𝜇𝜇Γ|1(𝐼𝐼𝑗𝑗)−𝜃𝜃)2

2𝜎𝜎Γ|1
2 (𝐼𝐼𝑗𝑗)

2𝐿𝐿

𝑗𝑗=1

/𝜎𝜎Γ|1(𝐼𝐼𝑗𝑗) = � 𝑒𝑒
−

(𝜃𝜃−𝜇𝜇Γ|0(𝐼𝐼𝑗𝑗))2

2𝜎𝜎Γ|0
2 (𝐼𝐼𝑗𝑗)

2𝐿𝐿

𝑗𝑗=1

/𝜎𝜎Γ|0(𝐼𝐼𝑗𝑗). (24) 

Unfortunately, the obtained result cannot be solved analytically; however, the optimal decision threshold can be 
determined numerically by means of an exhaustive search. Here we report a convenient analytical 
approximation to the optimal threshold. Let 𝐼𝐼 = arg 𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑗𝑗
𝜇𝜇Γ|0(𝐼𝐼𝑗𝑗) and 𝐼𝐼 = arg 𝑚𝑚𝑚𝑚𝑚𝑚

𝐼𝐼𝑗𝑗
𝜇𝜇Γ|1(𝐼𝐼𝑗𝑗). It is clear that the 



left hand side of(24) is dominated by the exponent (𝜇𝜇Γ|1(𝐼𝐼) − 𝜃𝜃)2/2𝜎𝜎Γ|1
2 (𝐼𝐼) and the right hand side is 

dominated by (𝜃𝜃 − 𝜇𝜇Γ|0(𝐼𝐼))2/2𝜎𝜎Γ|0
2 (𝐼𝐼). Thus, by equating the dominant terms, the decision threshold 𝜃𝜃

^
 can be 

approximated by 

𝜃𝜃
^

= 𝜎𝜎Γ|0(𝐼𝐼)𝜇𝜇Γ|1(𝐼𝐼)+𝜎𝜎Γ|1(𝐼𝐼)𝜇𝜇Γ|0(𝐼𝐼)
𝜎𝜎Γ|0(𝐼𝐼)+𝜎𝜎Γ|1(𝐼𝐼)

. (25) 

Note that 𝐼𝐼 and 𝐼𝐼 represent the worst two-bit-pattern scenarios on the BER when the present bit is “0” and “1,” 

respectively. The analytical decision threshold approximation, 𝜃𝜃
^

, is the intersection of the conditional probability 
density functions for these two worst bit-pattern scenarios. 

SECTION VI. BER and Receiver-Sensitivity Results Under Dynamic Biasing 
As before, we consider an InP-based APD with 200 nm multiplication layer. The transmission rate is 60 Gb/s. 
From the statistical analysis of the gain and buildup time derived in Section II, we calculate all the parameters of 
the model, which are summarized in Table I. Note that the statistics of the stochastic gain, 𝐺𝐺𝑠𝑠, and buildup 
time, 𝑇𝑇𝑠𝑠, are averaged over all possible arrival ages of the incident photon, 𝑠𝑠. 

TABLE I Avalanche Process Statistics of an InP APD 

E[𝐺𝐺𝑠𝑠] 27.46 𝐸𝐸[] 3.689×103 

𝐸𝐸 �
𝐺𝐺𝑠𝑠2

𝑇𝑇𝑠𝑠
  �

 

 

 
2.915×1014 𝑏𝑏 1.580×1011 

𝐴𝐴0 4.402×10-18 𝐶𝐶0 7.482x10-24 
 

 

In order to obtain the Johnson-noise level, we obtained the input noise current density, 𝑖𝑖𝑛𝑛, and 
bandwidth, 𝐵𝐵TIA of the transimpedance amplifiers (TIAs) reported in [16]. The average of 𝑖𝑖𝑛𝑛 for each 
transmission speed was fitted linearly to obtain the average, 𝑖𝑖𝑛𝑛 as a function of transmission speed. The fit 
yielded the equation 𝑖𝑖𝑛𝑛 = 4.81 × 10−10𝑅𝑅𝑏𝑏 + 5.87𝑝𝑝𝑝𝑝/√𝐻𝐻𝐻𝐻. Similarly, by fitting the average of 𝐵𝐵TIA against 
transmission speed, we obtained the average 𝐵𝐵TIA as a function of transmission speed, given by 𝐵𝐵TIA =
0.91𝑅𝑅𝑏𝑏GHz. Using these averaged 𝑖𝑖𝑛𝑛 and 𝐵𝐵TIA values, we were able to obtain the average Johnson-noise 
levels, 𝜎𝜎𝑗𝑗, as a function of transmission speed using the formula 𝜎𝜎𝑗𝑗 = (�𝐵𝐵TIA𝑖𝑖𝑛𝑛2/𝑞𝑞)(1/𝑅𝑅𝑏𝑏). 

As for the benefits of dynamic biasing on the BER, our numerical calculations predict an improvement by a factor 
of 106. For example, as shown in Fig. 7, assuming an average of 600 photons per pulse, our calculations show 
that the BER is 0.2 when using the traditional static biasing scheme at a transmission speed 60 Gb/s, which is 
way beyond the speed of this APD. On the other hand, if we use a dynamic biasing (DC level = 13V, 12 V peak-
to-peak AC component with the sinusoids lagging the bit by 0.73 bit period), then the BER associated with the 
same APD operated at 60 Gb/s can be reduced astonishingly to 10−6. These parameters were chosen, in part, so 
that the static and dynamic biasing schemes are equivalent from the average multiplication gain perspective. 
The average gain in our example is approximately 26 for all the peak-to-peak reverse bias voltages in Fig. 7. With 
that said, it is important to note that the benefit of sinusoidal basing is dependent upon the time offset between 
the optical pulse and the dynamic bias, as Fig. 7 shows. Fortunately, the optimal performance appears to be 
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robust with respect to errors in the offset if such errors occur in the implementation stage of the dynamic 
biasing. For example, an error of ±13% from the optimal phase lagging (between 0.6 and 0.86 bit period) 
guarantees a BER less than 10−5 for the receiver operating under dynamic bias with a 12 V peak-to-peak bias 
swing. 

 

 
Fig. 7. Dependence of the BER of an InP-based APD with 200 nm multiplication width on the time delay 
between the optical piulse and the sinusoidal bias. Different peak-to-peak swings are shown. The average gain in 
all cases is approximately 26. 
 

The BER calculated in Fig. 7 uses the approximated threshold 𝜃𝜃
^

 described earlier. However, the optimal BER can 
be found numerically using the conditional probability density functions of the receiver output. We compared 

the approximated decision threshold 𝜃𝜃
^

 with the numerical optimized BER. The results show that the BER found 

using the approximated decision threshold, 𝜃𝜃
^

, has almost the same performance as the optimized BER in the 

region of interest (when the phase is optimized). It turns out that the approximated threshold, 𝜃𝜃
^

, overestimates 
the BER by an error less than 1% when operating within ±13% from the optimal phase lagging as compared to 
the numerical threshold, 𝜃𝜃.  

We also examined the receiver sensitivity, defined as the minimum optical power (or average number of 
photons per bit) needed to achieve a BER of 10−12. Sensitivity-versus-gain curves were calculated for different 
peak-to-peak bias swings. The results are shown in Fig. 8 for a transmission speed of 60 Gb/s. The key 
observation is that by increasing the peak-to-peak voltage, the optimum sensitivity is reduced dramatically. 
Indeed, our calculations predict a reverse dynamic biasing can improve the receiver sensitivity −20 dBm at an 
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optimal gain of approximately 47 for a 60 Gb/s system when the peak-to-peak voltage is 12 V. Note that, as the 
peak-to-peak voltage increases, the optimal gain increases while providing a lower sensitivity due to the reduced 
avalanched buildup time caused by the dynamic nature of the reverse bias. In addition, we observe that by 
increasing the peak-to-peak voltage, the sensitivity to the optimal-gain values decreases. For instance, at 6 V 
peak-to-peak, the optimal gain region is around 12. However, as we increase the peak-to-peak voltage to 12, the 
receiver sensitivity becomes resilient to the optimal gain. For example, the receiver sensitivity is less than −20 
dBm when the average gain is between 30 and 70. This too is a benefit of the dynamic-biasing scheme, which 
offers substantial increase in the avalanche gain while maintaining a short avalanche buildup time. It is worth to 
mention that this device cannot operate with the conventional (static) reverse bias with such transmission 
speeds. The calculated BER for the static reverse bias at 60 Gb/s was in the range of 10−1 even for large input 
power (sensitivity > 0 dBm). The analysis in this paper ignores the tunneling current caused by the high electric 
field in the multiplication region. However, generalizing the receiver output statistics to include the tunneling 
effects can be carried out in a straightforward fashion using the techniques reported in [16]. Of course, in 
practice, the benefits of the dynamic biased will be reduced when the tunneling current becomes dominant. 

 

 
Fig. 8. Receiver sensitivity versus gain for the dynamically biased 200-nm InP APDs investigated for a 60 Gb/s 
transmission system and for different peak-to-peak voltage swings in the dynamic bias. 

SECTION VII. Conclusion 
We have developed a method to predict the performance of APD-based receivers operating under dynamic 
biasing that is synchronized with the incoming bit stream. To do so, the statistical correlation between the 
stochastic gain the stochastic avalanche buildup time in dynamically biased APDs was determined. We 
incorporated these results with modified point-process analysis that accommodated the dynamic nature of the 
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APD's bias to derive compact expressions for the output of an integrate-and-dump receiver in an OOK direct-
detection system. The results drawn here include the effects of ISI and the dead space. The closed-form 
expressions for APD receiver output operating under dynamic reverse biased can be used to properly select the 
DC level, peak-to-peak value and phase of a dynamic reverse bias to yield the optimal receiver sensitivity. The 
calculations had shown that dynamic biasing operating at the optimal settings improves the receiver 
performance beyond its traditional limits inherited from the notoriously long buildup times of InP APD under 
conventional static biasing. Indeed, our calculations predicted a reverse dynamic biasing can improve the 
receiver sensitivity for InP APDs with 200 nm multiplication region from 0 dBm to −20 dBm at an optimal gain of 
approximately 47 for a 60 Gb/s system when the peak-to-peak voltage is set to 12 V compared to the 
conventional static reverse bias. 
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Appendix Photocurrent Generated by Dynamically Biased APD 
The approach for determining the statistical properties of the photocurrent is based on the mathematical theory 
for filtered point processes [5], [28]. Specially, for the underlying point process, which represents the photon 
stream, we will consider a doubly stochastic Poisson point process, where the stochastic intensity is proportional 
to the instantaneous optical power of the received light at the receiver. 

We examine the statistics of the photocurrent, 𝐶𝐶(𝑡𝑡), produced by a bit-synchronized dynamically biased APD 
generated by a random photoelectron flux with mean 𝜙𝜙. Every photon absorbed that enters the multiplication 
region generates an age-dependent impulse response of electric current of charge 𝑞𝑞𝑞𝑞𝑞𝑞 and time duration 𝑇𝑇𝑠𝑠. 
Therefore, a photon stream incident on an APD results in a stream of electrical impulse-response functions that 
add up together to generate an electric current 𝐶𝐶(𝑡𝑡). Assume that a photo-event (absorption of a photon and 
the creation of an electron-hole pair) generated at time s produces a random impulse response, 𝐼𝐼(𝑡𝑡, 𝑠𝑠). If the 
time axis is divided into incremental time intervals 𝛥𝛥𝛥𝛥, the number of photo-events in one time-interval follows a 
Poisson distribution with a mean 𝜙𝜙𝜙𝜙𝜙𝜙. Thus, for a sufficiently small 𝛥𝛥𝛥𝛥, the Poisson distribution can be 
approximated by a Binomial distribution, where the probability 𝑝𝑝 that a photo-event occurs within an interval 
is 𝑝𝑝 = 𝜙𝜙𝜙𝜙𝜙𝜙. The electric current is written as 𝒞𝒞(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙

Δ𝑡𝑡→0
� 𝑋𝑋𝑠𝑠𝐼𝐼(𝑡𝑡, 𝑠𝑠Δ𝑡𝑡),𝑠𝑠 where 𝑋𝑋𝑠𝑠 has a value 1 with 

probability 𝑝𝑝 and it is 0 otherwise. This sequence represents the existence of a photocurrent at the instant 𝑠𝑠𝑠𝑠𝑠𝑠. 
The random variables, 𝑋𝑋𝑠𝑠, are independent with a mean value ⟨𝑋𝑋𝑠𝑠⟩ = 𝑝𝑝. The mean of the 
product 𝑋𝑋𝑠𝑠𝑋𝑋𝑘𝑘  is 𝑝𝑝 for 𝑠𝑠 = 𝑘𝑘 and 𝑝𝑝2 otherwise. The first and second moments of 𝑝𝑝2 become 

E[𝒞𝒞(𝑡𝑡)] = 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

� 𝑝𝑝𝑝𝑝(𝑡𝑡, 𝑠𝑠Δ𝑡𝑡)𝑠𝑠 ,

E[𝒞𝒞2(𝑡𝑡)] = 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

∑� 𝑝𝑝2E[𝐼𝐼(𝑡𝑡, 𝑠𝑠Δ𝑡𝑡)]E[𝐼𝐼(𝑡𝑡,𝑘𝑘Δ𝑡𝑡)]𝑠𝑠≠𝑘𝑘

+ 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

� 𝑝𝑝E[𝐼𝐼2(𝑡𝑡, 𝑠𝑠Δ𝑡𝑡)]𝑠𝑠 .
 (26)(27) 

By substituting 𝑝𝑝 = 𝜙𝜙𝜙𝜙𝜙𝜙 and taking the limit 𝛥𝛥𝛥𝛥 → 0, the first and second moment of the photocurrent become 

E[𝒞𝒞(𝑡𝑡)] = 𝜙𝜙∫ 𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑 = 𝜙𝜙∞
−∞ ∫ 𝑖𝑖(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

−∞ ,

E[𝒞𝒞2(𝑡𝑡)] = (𝜙𝜙∫  𝑡𝑡
−∞ 𝑖𝑖𝑝𝑝(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑)2 + 𝜙𝜙∫ 𝑖𝑖2(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

−∞ ,
 (28)(29) 

where 𝑖𝑖(𝑡𝑡, 𝑠𝑠) = 𝐸𝐸[𝐼𝐼(𝑡𝑡, 𝑠𝑠)] and 𝑖𝑖2(𝑡𝑡, 𝑠𝑠) = E[𝐼𝐼2(𝑡𝑡, 𝑠𝑠)]. As a result the variance of 𝐶𝐶(𝑡𝑡) can be found as follows: 



𝜎𝜎𝒞𝒞2(𝑡𝑡) = E[𝒞𝒞2(𝑡𝑡)] − E[𝒞𝒞2(𝑡𝑡)]2 = 𝜙𝜙∫ 𝑖𝑖2(𝑡𝑡, 𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
−∞ . (30) 

The calculation of the variance of the photocurrent generated by an APD requires knowledge of the second 
moment of the APD's impulse response, 𝑖𝑖2(𝑡𝑡, 𝑠𝑠). However, calculation of the second-order statistics 
of 𝐼𝐼(𝑡𝑡, 𝑠𝑠) are generally computationally intensive. To overcome this complexity, one approach is to ignore the 
randomness in the shape of the impulse response function. For example, the variance of the photocurrent was 
found in [5] by assuming a deterministic shape proportional for the mean impulse response function. 

Let 𝐼𝐼
^
(𝑡𝑡, 𝑠𝑠) be the simplified impulse response with a deterministic shape such as 𝐼𝐼

^
(𝑡𝑡, 𝑠𝑠) = 𝐺𝐺𝑠𝑠ℎ(𝑡𝑡 − 𝑠𝑠), 

where 𝐺𝐺𝑠𝑠 is the random gain generated by a photoevent at time 𝑠𝑠 and ℎ(𝑡𝑡) is the normalized (with an area 𝑞𝑞) 
function that represents the deterministic shape of the impulse response. Note that the deterministic 

shape 𝐼𝐼
^
(𝑡𝑡, 𝑠𝑠) is similar to the mean impulse response function approximation found in Section IV. 

Substituting 𝐼𝐼
^
(𝑡𝑡, 𝑠𝑠) in (26) and (27), the first and second moment of the photocurrent become 

E[𝒞𝒞(𝑡𝑡)] = 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

�𝑝𝑝E[𝐺𝐺𝑠𝑠]ℎ(𝑡𝑡 − 𝑠𝑠Δ𝑡𝑡)
𝑠𝑠

,

E[𝒞𝒞2(𝑡𝑡)] = 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

∑�𝑝𝑝2E[𝐺𝐺𝑠𝑠]E[𝐺𝐺𝑘𝑘]ℎ(𝑡𝑡 − 𝑠𝑠Δ𝑡𝑡)ℎ(𝑡𝑡 − 𝑘𝑘Δ𝑡𝑡)
𝑠𝑠≠𝑘𝑘

+ 𝑙𝑙𝑙𝑙𝑙𝑙
Δ𝑡𝑡→0

�𝑝𝑝E[𝐺𝐺𝑠𝑠2]ℎ2(𝑡𝑡 − 𝑠𝑠Δ𝑡𝑡)
𝑠𝑠

.

 

As before by taking the limit 𝛥𝛥𝛥𝛥 → 0, the simplified variance of the photocurrent becomes 

𝜎𝜎
^ 2(𝑡𝑡) = 𝜙𝜙E[𝐺𝐺2(𝑡𝑡)] ∗ ℎ2(𝑡𝑡), (31) 

where * represents convolution. 
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