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Abstract

In this thesis we develop a new method for constructing binary preference

orders for given interdependent structures, called characters. We introduce

the preference space, which is a vector space of preference vectors. The

preference vectors correspond to binary preference orders. We show that

the hyperoctahedral group, Z2 o Sn, describes the symmetries of binary

preferences orders and then define an action of Z2 o Sn on our preference

vectors. We find a natural basis for a preference space. These basis vectors

are indexed by subsets of proposals. We show that when completely

separable binary preference vectors are decomposed using this basis, basis

vectors indexed by nontrivial, even sized subsets do not appear in the

decomposition. We then use these basis vectors as building blocks for

preference construction. In particular, we construct preference orders

whose Hasse diagram of separable sets have a tree structure.
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Chapter 1

Introduction

Underlying any choice we make is a preference. When shopping, a decision to purchase

a computer indicates the computer is preferred to the money used to buy it. In a

referendum election, a vote in favor of a proposal indicates that the voter would prefer

the proposal to pass than not pass. Studying such preferences (have or have not, pass

or pass not) at the single proposal/good level is trivial. Aggregating an individual’s

preferences on many goods or proposals produces preference orders on baskets of goods

and election outcomes, respectively; these are immensely complex due to potential

preference interdependence between subsets of goods or proposals. For example, a

voter may only want one proposal to pass only if some other proposal also passes.

Likewise, a consumer may only want good A in their basket of goods if good B is also

present in their basket.

Studying the implications of such interdependences is critical in social choice theory

and for understanding consumer choices. In referendum elections, the existence of

preference interdependence among proposals is called the separability problem and can

lead to election outcomes that are far from optimal [4]. Two examples which have

been studied include the Los Angeles County in 1990 referendum election as well as

the Colorado presidential election ballot in 2004 [4][12]. For vendors, understanding

the interdependences among consumer preferences provides insight as to what goods

are compliments or substitutes. Such information could help vendors significantly

improve their marketing.

1.1 The Separability Problem

In a referendum election, voters communicate their preferences and opinions to policy

makers directly. Based on the results of a referendum election policy makers institute

changes which they believe are desired by voters. However, in the case of a multiple
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proposal referendum, researchers have found that an election can result in a winning

outcome that is relatively undesirable or even the least desired outcome by all voters [9].

These democratic failures were first recognized in the 1990’s. They can result when a

voter or collection of voters perceive connections among a referendum’s proposals. Lacy

and Niou [13] defined a voter’s preferences as nonseparable when these connections

occur. They argue that multiple proposal referendums, “force people to separate their

votes on issues that may be linked in their minds.” Asking a voter to respond to a

proposal or set of proposals without knowing the outcome of the others forces the

voter to make predictions or simply ignore the interdependent structure of the ballot.

This issue is called the separability problem.

One example of the separability problem occurring in the United States and causing

an unsatisfactory election outcome is described in “Voting on Referenda” [4]. Brams

et. al. argue that in 1990 the Los Angeles general election resulted in an undesirable

outcome on three pro-environment proposals due to the nonseparability of voters’

preferences on the proposals. They reason that, “Because all three propositions were

pro-environment and involved the expenditure of substantial funds, there is good

reason to believe that many voters saw them as related.” They show that the winning

outcome on the three proposals was only the fifth most popular outcome out of the

eight possible outcomes. In fact, the winning outcome of YNY1 appeared on only

99,176 ballots, while the outcomes of YYY and NNN appeared on 430,807 and 422,916

ballots respectfully [4].

Example 1.1.1 (Professional Soccer in Dubuque, Iowa2). Due to the increasing

popularity of soccer in Dubuque, the city has become interested in having their own

professional soccer team and possibly a new stadium. They hold a referendum with the

following three proposals:

• Proposal 1: Have a professional women’s soccer team.

• Proposal 2: Have a professional men’s soccer team.

• Proposal 3: Build a new stadium.

The percent of citizens voting for a given outcome is shown in Table 1.1.

1In their paper, outcomes on referendums of n questions can be represented as n-tuples where “Y”
in the nth position represents the passing of the nth proposal and “N” represents its failing.

2This example was created with Jon Hodge and Brea Beals at the 2014 Grand Valley State
University REU [1].
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Outcome Percent of Vote
NNN 26%
NNY 0%
NYN 10%
YNN 10%
YYN 0%
YNY 15%
NYY 15%
YYY 24%

Table 1.1: The table indicates the percentage of voters voting for a specific outcome
on the three proposals in the Dubuque referendum.

While the outcome with the most votes is “no” on all proposals with 26% of the

votes, the winning outcome is determined by counting up votes on all of the proposals

individually. Counting votes by proposal indicates that:

• Proposal 1 fails 49% Yes to 51% No.

• Proposal 2 fails 49% Yes to 51% No.

• Proposal 3 passes 54% Yes to 46% No.

The winning outcome is therefore NNY. This is an interesting result because, as

we can observe in Table 1, this outcome received 0 votes. If policy makers were bound

by the referendum in the previous example they would be forced to construct a new

stadium despite not having a professional team, an expensive and useless result. The

failure of this referendum to produce a desirable result is due to voters’ preferences

being interdependent. The voters in this election likely perceived connections among

the proposals. We can see one connection in Table 1.1. Every voter that voted for the

stadium also voted for one or both of the professional soccer teams; they only wanted

a stadium if there was a team to play in it. This connection indicates that some of

the voters preferences were likely interdependent. This is the source of the separability

problem arising in this case.

1.2 Roadmap

In this thesis, we will explore the separability problem. That is, we will explore

interdependent preferences, or nonseparable preferences. We will begin in Chapter

2 by comparing and contrasting the manners in which economists, mathematicians,

and social choice theorists represent preference orders of individuals. This discussion
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provides a foundational understanding of preference orders and also justifies how we

have chosen to represent individual preferences. After this discussion, we will mathe-

matically define separability, preference independence and preference interdependence.

We will then be able to describe the specific type of interdependence implied by a

preference order. From here, we will be more prepared to discuss the ultimate goal of

this thesis, preference construction.

The hyperoctahedral group and its relationship with separability of binary pref-

erence orderings will be outlined in Chapter 3. We will then find a basis, called the

voter basis, for our preference spaces which is a transformation of the basis found by

Tom Halverson in Appendix A. We will describe the separability of voter basis vectors

then prove an interesting result describing the relationship between the voter basis

and completely separable preference vectors.

In Chapter 4, we will present an algorithm for generating preference orderings with

specific interdependence qualities using one of the bases from Chapter 3. The reliability

of this algorithm will be rigorously proven and the significance of the algorithm will be

compared with previous preference construction methods. Our main contribution is

the ability to create preference orderings whose separable sets have a tree-like structure

with respect to set inclusion.

We conclude this thesis by summarizing the important results and future directions.

The results include Theorem 3.2.17 in and Theorem 4.2.6. Future directions focus

on a counting the class of characters described in Chapter 4, finding other classes

of characters for which preference orders can be created, and furthering results in

constructing completely separable preference vectors.
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Chapter 2

Binary Preference Orders

In this chapter, we define binary relations and the conditions necessary for a binary

relation to be a preference relation. These preference relations serve to mathematically

represent all the possible “rational” preferences an individual could exhibit. We then

describe binary preference matrices, which were created specifically to demonstrate

the preference orders of voters in referendum elections [8]. We show that vectors

within vector spaces, called preference spaces, are also capable of representing the

preference orders of voters in referendum elections and offer some significant advantages

over preference matrices. After proving a few results related to preference spaces,

we mathematically describe preference interdependence through the definition of

separability and the character of a preference order.

2.1 Binary Relations and Preference Matrices

Preference orders are a special class of binary relations so we begin by defining general

binary relations, then discuss the properties which make binary relation a preference

relation. Finally, we show how to produce the preference order for a preference relation.

Definition 2.1.1. A binary relation R over the set A and set B is any subset of

the Cartesian product between A and B. That is R ⊆ A×B.

For a binary relation R ⊆ A×B, if (a, b) ∈ R, we write aRb.

We focus on binary relations that describe individuals’ preferences. Because of this, we

make two assumptions based on rational choice theory: completeness and transitivity.

Definition 2.1.2. If for all (x, y) ∈ A×B either xRy, yRx, or both, then R is said

to be complete.
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Completeness guarantees that every pair of outcomes can be compared. With

respect to preference, this is clearly a valid assumption. With perfect information

about the outcomes, an individual is always able to look at two outcomes and describe

whether they prefer one over the other or are indifferent between the two.

Definition 2.1.3. If for all (x, y), (y, z), (x, z) ∈ R,

xRy and yRz =⇒ xRz

then R is said to be transitive.

If an individual’s preferences were not transitive then they would have “cycles of

unsatisfaction” which could be exploited. Imagine an individual who prefers good

1 to good 2, good 2 to good 3, and good 3 to good 1. If they started with good 1,

they would be willing to pay some amount to swap good 1 for good 2, then pay some

amount to swap good 2 for good 3, then pay some amount to swap good 3 for good 1

again. This would mean that the individual is indifferent to having good 1 and having

good 1 with less money, which is economically irrational.

With these properties, we are now prepared to define our preference relation �.

Definition 2.1.4. Let X be a set of outcomes. The binary relation R ⊆ X × X

is called a preference relation if it is both complete and transitive. We denote a

preference relation as �.

We define two other relations in terms of �. The first is strict preference, �.

If a � b and b 6� a, then a � b; that is a is strictly preferred to b. The second is

indifference. If a � b and b � a, then a ∼ b; that is a is neither preferred to nor more

preferable than b.

Now we can describe preference relations with � and ∼. These are superior in

describing the preference relationship between two goods. In English, a � b, means

that “a is at least as good as b,” but it doesn’t actually say whether or not a is more

preferred than b. With � and ∼ there is no ambiguity since a � b means that a is

more preferred than b and a ∼ b means that there is no difference between a and b

preference-wise.

Preference relations allow us to make rankings or preference orders on all the

possible outcomes.

Example 2.1.5 (Preference Relation to Preference Order). Consider {x1 ∼ x2, x3 �
x1, x3 � x2} = R ⊂ {x1, x2, x3} × {x1, x2, x3}. From this we can write the correspond-

ing ranking, or preference order on the outcomes as follows:

x3 � x1 ∼ x2.
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Preference orders on an entire set of outcomes are only guaranteed by the rationality

conditions. Without completeness, we could not ensure that we could connect all the

outcomes in a preference order. Without transitivity, we might end up with cycles as

we try to rank outcomes in the preference order.

Mathematicians and social choice theorists have used binary preference matrices

to visualize the preferences of an individual. This choice reflects their motivation,

which is the separability problem in referendum elections [8].

In the previous chapter, we considered the outcome of a referendum as a series of

yes/no choices. For example, YNY is an outcome for an election with three ordered

proposals. From here forward, we use 1 to denote a “yes” and a 0 to denote a “no,”

so that this outcome would then be the bitstring 101. Of course, there is a natural

bijection from outcomes on n proposals to subsets of [n], so this outcome could also

be expressed as {1, 3}. We will adhere to the binary notation for an election outcome.

This emphasizes the context in which we are studying the outcome: we obtain a

yes/no choice of every element in [n].

Definition 2.1.6. Let [n] be a referendum election with n proposals. Let

X = {x1x2 · · ·xn | xi ∈ {0, 1}}

be the set of possible outcomes on [n] with a 1 representing an outcome of “passes”

and a 0 representing an outcome of “fails to pass” for a proposal. Let P be a 2n × n
matrix whose rows are a permutations of the elements of X. P is defined as a binary

preference matrix for a voter where the kth row of P corresponds to the kth most

preferred outcome by the voter.

The binary preference order implied by a binary preference matrix is quite clear:

the outcomes appear in the order that the voter prefers.

Example 2.1.7 (Binary Preference Matrix to Binary Preference Order). Let [n] be a

set of three proposals. The following 8 × 3 matrix, P , represents the preferences of

an individual voter on the outcomes of the referendum election [n]. For example, the

preference matrix

P =



1 1 1
0 1 0
0 1 1
1 1 0
0 0 0
0 0 1
1 0 1
1 0 0


7



gives the preference order

(111) � (010) � (011) � (110) � (000) � (001) � (101) � (100).

Binary preference matrices are appealing because they visually communicate

preference orders. However, these matrices do not allow for preference orders with

indifference between two outcomes; the order of the rows gives a complete ordering

of the outcomes (no ties allowed). Additionally, these matrices cannot be used as

meaningful linear transformations. In other words, while a binary preference matrix is

a simple way to express a linear preference order, its use as a mathematical object is

limited.

2.2 The Preference Space P n

In economics, the most common way to represent preference orders is with utility

functions. Given some utility function f(·), an outcome x is preferred to some other

outcome y if and only if f(x) > f(y). We combine this economic thinking with recent

developments in the area of algebraic voting theory. Daughtry et al. define a set of

vectors called a profile space, where the entries of vectors correspond to preference

orders on election outcomes and the value of these entries correspond to the number

of voters with the given preference order [5].1 In short, the vectors in a profile space

represent the aggregation of the preference orders of voters.

Consider a referendum election with n proposals. Let X be the set of all outcomes,

so that |X|= 2n. We introduce a 2n-dimensional vector space P n called the preference

space for X. The entries of vectors in this space are indexed by the election outcomes,

listed in reverse lexicographical order, for example: 11, 10, 01, 00. A preference vector

~p ∈ P n corresponds to the preferences of a single voter. Suppose that this voter has

utility function f : X → Q. For x ∈ X, the xth entry of ~p is f(x).

Our preference space is very different from the profile space of Daughtry et al. They

focus on an election as a whole, while we focus on the individual voter. Furthermore,

our preference space is a vector space. For simplicity, we start off by considering

preference vectors with nonnegative integer entries. Later on, we start using preference

vectors with rational entries.

Definition 2.2.1. Let [n] be a referendum election with n proposals. The preference

space P n is the 2n-dimensional vector space over Q where the entries of vectors are

indexed by the outcomes of this referendum, listed in reverse lexicographical order.
1Note that the vectors in the profile space only have non-negative entries.
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Example 2.2.2. We revisit Example 2.1.7, where we expressed our preferences using

a binary preference matrix. The binary preference order in this example is

(111) � (101) � (000) � (001) � (110) � (011) � (010) � (100).

We assign a unique integer weight 0 ≤ w ≤ 7 to each outcome, where a higher weight

corresponds to stronger preference. The result is the following preference vector, with

the reverse lexicographical indexing system displayed to the right, for convenience:

~p =



7
3
6
0
2
1
4
5



111
110
101
100
011
010
001
000.

Our most preferred outcome is 111, so it received weight 7. Our second choice is 101,

so that entry has weight 6. This ordinal ranking continues, until we reach our least

preferred outcome of 100, and this receives weight 0.

Preference vectors enjoy many advantages over binary preference matrices. For

example, taking a linear combination of preference vectors has a natural interpretation,

whereas a linear combination of binary preference matrices does not make sense. This

vector space structure is the fundamental reason why we can use representation theory

to understand voter preferences.

For a preference vector ~p, we denote the value of the entry indexed by the outcome

x as [x]~p, rather than the more traditional notation ~px. In Example 2.2.2, we have

[110]~p = 3. We opt for this notation to highlight the outcome x rather than the vector

~p.This will be particularly useful when we start constructing a preference vector with

a desired property.

We will consider two types of preference vectors: ordinal preference vectors and

cardinal preference vectors. Ordinal preference vectors only consider the preference

order of outcomes, while cardinal preference vectors consider the utilities associated

with outcomes. Given a preference vector ~p there is always a corresponding preference

order, which is denoted �~p. For the preference vector ~p and any two election outcomes

x and y, we have

x �~p y if and only if [x]~p ≥ [y]~p.

9



Definition 2.2.3. An ordinal preference space in P n is a vector for which the

value of the entry indexed by the ith least preferred outcome is i− 1.

The preference order

(111) � (101) � (000) � (001) � (110) � (011) � (010) � (100)

corresponds to the ordinal preference vector in Example 2.2.2. This example does not

have any indifference (ties between outcomes), but you can create an ordinal preference

vector when there is indifference between outcomes. For example, the preference order

(11) ∼ (00) � (01) ∼ (10)

has ordinal preference vector

~p =


1
0
0
1


11
10
01
00.

Proposition 2.2.4. There exists a bijection between binary preference orders on an

n proposal referendum and ordinal preference vectors in P n.

Proof. The definition of a ordinal preference vector defines the bijective function

between binary preference orders and ordinal preference vectors.

We now turn to cardinal preference vectors, whose values do not have to be drawn

from {0, 1, 2, . . . , n− 1}.

Definition 2.2.5. Let f : X → Q be a utility function, where X is the set of all

outcomes on a referendum election with n proposals. The corresponding cardinal

preference vector ~p ∈ P n is the vector with xth entry [x]~p = f(x).

Cardinal preferences are often used in economics because they allow individuals or

groups to describe how much one outcome is preferred to another. This additional

information can be just as significant as knowing the preference order itself.

Example 2.2.6 (Cardinal Preference Vector). In P 3, the utility function

f(b) =



35 b ∈ {000}
40 b ∈ {110, 101}
75 b ∈ {001, 111, 011}
100 b ∈ {100}
120 b ∈ {010}

10



has corresponding cardinal preference vector

~p =



75
40
40
100
75
120
75
35



111
110
101
100
011
010
001
000

.

This corresponds to the preference order

(010) � (100) � (111) ∼ (011) ∼ (001) � (110) ∼ (101) � (000).

Note that the difference in utility between first- and second-most preferred outcomes

is four times as much as the difference in utility between the least and second least

preferred outcomes.

Given a cardinal preference vector ~p, we use �~p to denote the preference order

induced by ~p. Next, we show that a cardinal preference vector induces an ordinal

preference order. First, we create an equivalence relation on cardinal preference

vectors.

Theorem 2.2.7. Let ~p and ~q be cardinal preference vectors where ~p ∼ ~q, if ~p and ~q

have the same underlying preference order. This relation is an equivalence relation

and the equivalence classes are represented by the set of ordinal preference vectors.

Proof. We check the three conditions for an equivalence relation.

1. Reflexive: Consider an arbitrary cardinal preference vector ~p. The vector ~p has

a unique underlying preference order �~p, so ~p ∼ ~p.

2. Symmetric: Consider two cardinal preference vectors ~p and ~q where ~p ∼ ~q. Since

~p ∼ ~q, both vectors must have the same underlying preference order, so ~q ∼ ~p.

3. Transitive: Consider three cardinal preference vectors ~p, ~q, and ~r where ~p ∼ ~q

and ~q ∼ ~r. Since ~p ∼ ~q, ~p and ~q must have the same unique underlying preference

order, that is, �~p is the same as �~q. Since ~q ∼ ~r, ~q and ~r must have the same

unique underlying preference order, that is, �~q is the same as �~r. Thus �~p is

the same as �~r. Therefore, ~p ∼ ~r.

11



Now for every ordinal preference vector, we could construct a function u : X → Q
so that the resulting cardinal preference vector ~p is identical to the original ordinal

preference vector. There is a natural bijection between ordinal preference vectors and

binary preference orders, so the equivalence classes of ∼ can be represented by the set

of ordinal preference vectors.

As long as we are concerned only with the underlying preference order of preference

vectors, we do not need to worry about the differences between ordinal preferences

or cardinal preferences. This allows us to speak generally about preference vectors

during our analysis.

We end this section with two final observations about ordinal preference vectors

and the equivalence classes of cardinal preference vectors. First, we observe that we

can count the number of ordinal preference vectors.

An ordered set partition of [N ] of size k is an ordered list of disjoint subets

A1, A2, . . . , Ak whose union is the entire set: [N ] = ∪ki=1Ak. The number FN of

ordered set partitions of [N ] into any number of parts is called the Nth Fubini number,

and is also known as the Nth ordered Bell number.

The set of Fubini numbers FN satisfies the recurrence

F0 = 1, FN =
N−1∑
k=0

(
N

k

)
Fk k ≥ 1.

We also have the formula

FN =
n∑
k=0

k!S(N, k) =
N∑
k=0

k∑
j=0

(−1)k−j
(
k

j

)
jn =

1

2

∞∑
m=0

mN

2m
.

We now show that the set of ordinal preference vectors in Pn has size F (2n).

Corollary 2.2.8. For P n, the equivalence classes of ∼, the ordinal preference vectors,

and the binary preference orders on the outcomes are counted by F (2n).

Proof. There is natural bijection between the set of ordinal preference vectors for the

set X of outcomes on an n proposal referendum and the set of ordered partitions

of [2n]. We view each outcome x ∈ X as the (natural) binary representation of the

number b(x) ∈ [2n]. The ith set Si in the ordered partition is

Si = {b(x) | u(x) = i}.
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Finally, we make the following algebraic observation.

Theorem 2.2.9. Equivalence classes of the preference vector ∼ are closed under

addition.

Proof. Consider cardinal preference vectors ~p and ~q, where ~p ∼ ~q and the underlying

preference order is �~p. We show that given two outcomes x and y, the preference

relation between them implied by �~p is the same as that for ~p+ ~q.

• Case 1: x � y. On �~p let x � y. This implies [x]~p > [y]~p and [x]~q > y~q. Thus,

we know [x]~p + [x]~q > [y]~p + [y]~q which guarantees [x]~p + [x]~q > [y]~p+~q. Therefore,

on �~p+~q we have x � y.

• Case 2: y � x Similar to the previous case.

• Case 3: x ∼ y. On �~p let x ∼ y. This implies [x]~p = [y]~p and [x]~q = y~q. Thus,

we know [x]~p + [x]~q = [y]~p + [y]~q which guarantees [x]~p + [x]~q = [y]~p+~q. Therefore,

on �~p+~q we have x ∼ y.

2.3 Separability

Much of the literature in the area of preference interdependence focuses on separability

[3, 9, 11, 10, 13]. Before we introduce separability we define some additional notation.

So far we have represented outcomes as binary strings, but we can also represent

an outcome as the set of passing proposals. For the outcome x, we represent the set

of passing proposals as x̂. For example, in a referendum on five proposals, we have

1̂0110 = {1, 3, 4}.

Later we will combine partial election outcomes on disjoint proposal sets; with this

new notation this becomes easy, x̂ ∪ ŷ = x̂y. More specifically, suppose that we are

considering a referendum election on 8 proposals. Let x be a partial outcome, where

we know the outcomes on the first five proposals, which can denote

x = 01101 ∗ ∗ ∗ .

We define x̂ = {2, 3, 5}, though proposals are excluded for one of two reasons: either

they fail (as is the case for 1 and 4), or the outcome on that election is not specified.

Let y be a partial outcome on the last three proposals:

y = ∗ ∗ ∗ ∗ 101
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so that ŷ = {6, 8}. Note that the supporting sets of x and y are disjoint, so we can

concatenate x and y to obtain

xy = 01101101

in the natural way. Then we have

x̂y = ̂01101101 = {2, 3, 5, 6, 8} = {2, 3, 5} ∪ {6, 8} = x̂ ∪ ŷ.

We are now ready to define separability. A set of proposals S is separable with

respect to a preference order if the knowledge of whether proposals outside of S,

that is [n]− S, pass or fail does not change the voter’s preference on S. That is, an

individual’s preference for S is independent of the individual’s preference outside of S.

Here is the formal definition.

Definition 2.3.1. Consider a referendum with a set of proposals [n] and �[n] be a

preference order on X[n], the set of possible outcomes on [n]. The set S ⊂ [n] is

separable with respect to �[n], provided that for all xS, yS ∈ X[n], we have

(xSu[n]−S) � (ySu[n]−S) for some u[n]−S ∈ X[n]−S

implies

(xSv[n]−S) � (ySv[n]−S) for all v[n]−S ∈ X[n]−S

Recall the soccer stadium referendum example in Chapter 1 with the types of

votes shown in Table 1.1. As we stated before, every voter that was in favor of the

new stadium also voted for one or both of the professional soccer teams. Thinking of

one of these individual voter’s preference order on the outcomes, we would find that

their preference on the stadium proposal was nonseparable. They would change their

vote from “yes” for the stadium to “no” if both team proposals failed.

Definition 2.3.2. A set S is called trivially separable on �[n] if for all xS, yS ∈ XS

and u[n]−S ∈ X[n]−S

(xSu[n]−S) ∼ (ySu[n]−S)

When individuals have trivially separable preferences on a set S of proposals,

they are entirely indifferent between the possible outcomes of the proposals in S.

This means they are actually indifferent between voting and not voting at all on the

proposals in S. Such indifference is the simplest preference order an individual can

have on a set.
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Lemma 2.3.3. Given a referendum on the proposals [n], the empty set ∅ is trivially

separable.

Proof. There are no outcomes on ∅, so (x∅u[n]) ∼ (u[n]) ∼ (y∅u[n]) for all u[n], so the

lemma is vacuously true.

The set [n] is always separable, but typically [n] is not trivially separable.

Lemma 2.3.4. Given a referendum on the proposals [n], the set [n] is separable.

Proof. This is vacuously true because there are no proposals outside of [n] for there

to be alternative outcomes on.

The separability or nonseparability of a given set on an individual’s preference

order provides us with valuable information about how the individual relates the set to

other proposals. By aggregating all the separability and nonseparability information

for a single voter, we have a comprehensive summary of how the voter understands

the referendum in its entirety.

Definition 2.3.5. The collection of all S ⊆ [n] that are separable with respect to a

preference order �[n] is called the character of �[n] and is denoted by char(�[n]).

Example 2.3.6 (Character of a Preference Vector). Consider the following preference

vector in P 3:

~p =



7
5
6
2
3
0
4
1



111
110
101
100
011
010
001
000.

This preference vector has the preference order �~p given by

111 � 101 � 110 � 001 � 011 � 100 � 000 � 010.

To check separability on {1}, we see if the preference order of outcomes on {1} is

consistent regardless of the outcome outside of {1}, that is the outcome on the set

{2, 3}. We have:
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Outcome on {2, 3} Preference order on {1}
−11 1−− � 0−−
−10 1−− � 0−−
−01 1−− � 0−−
−00 1−− � 0−−

The previous table shows that voters with this preference vector would want proposal 1

to pass no matter what the outcome on proposals 2 and 3. Their preference on {1} is

separable. The same is true for {3}.
Now let us check separability on {2}.

Outcome on {1, 3} Preference order on {2}
1− 1 −1− � −0−
1− 0 −1− � −0−
0− 1 −0− � −1−
0− 0 −0− � −1−

Looking at this table, we see that voters with this preference vector would want proposal

2 to pass if and only if proposal 1 also passes. Their preference on {2} is nonseparable.

Let us look at the larger sets. First, for the {1, 2} we have

Outcome on {3} Preference order on {1, 2}
− − 1 11− � 10− � 00− � 01−
−− 0 11− � 10− � 00− � 01−

The outcome on proposal 3 does not influence the preference order on {1, 2}.
Now consider the set {2, 3}. We have

Outcome on {1} Preference order on {2, 3}
1−− −11 � −01 � −10 � −00
0−− −01 � −11 � −00 � −10

The preference order on {2, 3} depends on the outcome on {1}, so the set {2, 3} is

nonseparable. A similar result would be found for {1, 3}.
In conclusion, the set of separable sets for this ~p’s underlying preference order is

char(�~p) = {∅, {1}, {3}, {1, 2}, {1, 2, 3}}.

It is easy to see that for any given preference order we can always determine its

character. But when given some character χ, are we always able to find a preference

order where char(�)? This question was first posed by Hodge and TerHaar. They

defined this quality as admissibility [11].

Definition 2.3.7. For a referendum on the set of proposals [n], the character χ

is called admissible if and only if there exists some preference order, �[n], on the

outcomes with char(�[n]) = χ.
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Hodge and HerHaar [11] prove that closure under intersections is a necessary

condition for admissibility. Additionally, we note that the presence of [n] and the ∅ are

necessary conditions for admissibility. They show that these conditions are sufficient

for n ≤ 3, but not for larger n. When n = 4 there is exactly one character satisfying

these conditions which is inadmissible:

{∅, {1, 2}, {2}, {2, 3}, {3}, {3, 4}, {1, 2, 3, 4}}

Much of Hodge’s work has focused on admissibility and building preference orders

with specific characters. We add to this work by finding a basis for our preferences

spaces that shows promise in allowing us to produce preference orders for given

characters.
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Chapter 3

Finding a Basis

In the last chapter, we defined the preference space P n. In this chapter, we develop a

vector encoding for binary preference orderings on referendum outcomes. This vector

encoding will allow us to apply techniques from linear algebra and representation

theory to construct preference orderings. The key will be to identify the symmetry

group for referendum outcomes: the hyperoctahedral group Z2 o Sn. This group

preserves the interdependence structure of binary preference orderings on referendum

outcomes.

In his honors thesis, Stephen Lee follows the algebraic voting theory approach of

his adviser, Michael Orrison, in illuminating the problem of voting for committees [14].

He describes a specific case of voting for committees, but does not discuss the role of

separability in voting for committees. He constructs a profile space, which structurally

is similar to our preference space P n. Lee creates and decomposes modules using his

profile space and the hyperoctahedral group. We will follow and expand upon Lee’s

approach. Appendix A contains a proof of a conjecture posed in Lee’s thesis (which

was recently proven by Tom Halverson [7]). We connect Halveron’s new representation

theory result to the separability of preference orders.

3.1 The Hyperoctahedral Group Z2 o Sn
The hyperoctahedral group, Z2 o Sn, is the wreath product between the cyclic group

Z2 and the symmetric group, Sn. It is best recognized as the group of symmetries of

the n-dimensional hypercube. Elements of the group are commonly represented as

signed permutations. We will define an action of π ∈ Z2 o Sn on an outcome of an n

proposal referendum. This allows us to define the action of π on v ∈ P n.
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3.1.1 Action of Z2 o Sn on Referendum Outcomes

Let π ∈ Z2 o Sn. Similar to a (regular) permutation, we can represent the signed

permutation π using two-line notation

π =

(
1 2 · · · n
π1 π2 · · · πn

)
where πi ∈ {±1,±2, . . . ,±n}. We can also write a signed permutation using cycle

notation

(α1,1, α1,2, . . . , α1,k1)(α2,1, α2,2, . . . , α2,k2) · · · (α`,1, α`,2, . . . , α`,k`)

where k1 + k2 + · · ·+ k` = n and each αi,j ∈ πi ∈ {±1,±2, . . . ,±n}.
Element i ∈ [n] corresponds to the ith proposal. The hyperoctahedral group has a

natural action on an outcome. The signed permutation π permutes the indices of the

proposal according to the action of the symmetric group. A negative sign changes a

“yes” vote to a “no” vote and a “no” vote to a “yes vote”.

Example 3.1.1 (Action on an Outcome, π ·x). Let x be an outcome for a referendum

with 5 proposals represented by the binary string 10010 and π = (+1, −2, −3)(+4, +5) ∈
Z2 o S5. To determine π · x, we first “flip” the digits in the binary string according the

signs of π. This yields the intermediate outcome 11110. Then we permute the order of

the digits according to the permutation (1, 2, 3)(4, 5), which yields 11101. Therefore,

π · x = (+1, −2, −3)(+4, +5) · 10010 = 11101.

We can extend this action to vectors in P n, as follows

π · ~p = π ·



[1 · · · 11]~p
[1 · · · 10]~p
·
·
·

[0 · · · 01]~p
[0 · · · 00]~p


=



[π−1 · (1 · · · 11)]~p
[π−1 · (1 · · · 10)]~p

·
·
·

[π−1 · (0 · · · 01)]~p
[π−1 · (0 · · · 00)]~p


.

This action can be also extended to binary preference orders corresponding to

referendum outcomes. Consider a binary preference order over all the possible outcomes

for a referendum [n], �P= x(1) � x(2) · · · � x(2
n), where {x(1), x(2), ..., x(2n)} is the set

of outcomes of an n proposal referendum. The action of π on �P is as follows:

π· �P= π · (x(1) � x(2) � · · · � x(2
n)) = π · x(1) � π · x(2) � · · · � π · x(2n).
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Note that in a defined preference order we use only strict preference, �, or indifference,

∼, in a preference order. Here we must use � because we do not know whether a

given relationship is strict preference or indifference.

Lemma 3.1.2. Let �P be a binary preference order corresponding to a referendum

election and x and y be two outcomes. Let π ∈ Z2 o Sn. If x �P y, then π · x �P π · y
for π· �P .

Proof. The result follows immediately from the action of the group.

�P = · · · � x � · · · � y · · ·

π· �P = · · · � π · x � · · · � π · y · · ·

The action of this group corresponds to two intuitive alterations of a referendum.

The first comes from the Z2 aspect of this group, or the sign aspect of the hyperoc-

tahedral group. For proposal i in a referendum, we could negate the statement of

the proposal. If this was done for every outcome where the voter originally preferred

the proposal to pass, they would now rather it fail, and similarly, if they originally

preferred the proposal to fail, they would now want it to pass. Clearly this single

proposal negation does not change any interdependencies between proposals.

The second action comes from the symmetric group Sn, which permutes the order

of the proposals. This reordering does not change how an individual voter ranks

the outcomes of the collections of proposal (though it does change the indices of the

proposals themselves).

We state this invariance of interdependence more formally in the following theorem.

Theorem 3.1.3. Let �P be a binary preference order corresponding to a referendum

election and π ∈ Z2 o Sn. The characters char(�P ) and char(π· �P ) are isomorphic

up to the permutation |π|.

Proof. We will show this result in two pieces. First, we will show that if a set S is

separable on �P , then on π· �P the set W , where W is the collection of proposals

mapped to from S by |π|, is separable. Then we will show that if a set S is non-

separable on �P , then on π· �P the set W is separable.

Case 1: S is separable on �P
Because S is separable we know that given
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(xSu[n]−S) � (ySu[n]−S)

for some u[n]−S ∈ X[n]−S. It must be true that

(xSv[n]−S) � (ySv[n]−S)

for all v[n]−S ∈ X[n]−S.

By Lemma 3.1.2, this implies that for π· �P

π · (xSv[n]−S) � π · (ySv[n]−S)

for all v[n]−S ∈ X[n]−S. Let π · (xSv[n]−S) = (αWυ[n]−W ) and π · (ySv[n]−S) = (βWυ[n]−W )

for all v[n]−S ∈ X[n]−S, υ[n]−W ∈ X[n]−W . We then see the separability of W more

clearly.

Given

π · (xSu[n]−S) = (αWω[n]−W ) � (βWω[n]−W ) = π · (ySu[n]−S)

for some ω[n]−W ∈ X[n]−W

(αWυ[n]−W ) � (βWυ[n]−W )

for all υ[n]−W ∈ X[n]−W . Therefore, W is separable on π �P .

Case 2: S is nonseparable on �P
Because S is nonseparable, we know there must be two outcomes on [n]− S and

two outcomes on S such that

(xSu[n]−S) � (ySu[n]−S)

and

(xSv[n]−S) ≺ (ySv[n]−S).

Using Lemma 3.1.2 yields

π · (xSu[n]−S) = (αWω[n]−W ) � (βWω[n]−W ) = π · (ySu[n]−S)

and

π · (xSu[n]−S) = (αWυ[n]−W ) ≺ (βWυ[n]−W ) = π · (ySu[n]−S)

These two cases are sufficient for proving that the characters char(�P ) and char(π· �P )

are isomorphic up to a permutation.
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This result carries through with preference vectors.

Corollary 3.1.4. Let v be a preference vector in P n and π ∈ Z2 oSn. The characters of

the underlying preference orderings for v and π · v are isomorphic up to a permutation,

the Sn component of π.

Proof. The result follows from Theorem 3.1.3.

While these results seem obvious from our intuition, they are immensely important

as they demonstrate that the action of the hyperoctahedral group preserves the

interdependent structure of a preference ordering corresponding to a referendum

election.

3.2 A Tale of Two Bases

In Appendix A, it is shown that with the field C, the action of Z2 o Sn on our

preferences vectors makes our preference spaces CZ2 o Sn-modules. These modules

capture the symmetries implied by our rational preference assumptions. That is,

the interdependent structure of the preference order implied by a preference vector

is invariant under the group action. In this section we will show that the basis

vectors implied by the submodule decomposition in Appendix A are significant in the

separability of their underlying preference orders. With minimal manipulation, we

transform this basis into a new basis, the vectors of which serve as building blocks for

building preference vectors with specific characters.

3.2.1 The Irreducible Basis

The irreducible submodule decomposition of our CZ2 o Sn-module, P n, in Appendix A

provides us with the basis {uT | T ⊆ [n]} for the space. Let us denote the basis vector

indexed by set T as uT .

Recall that the entries of vectors in P n are indexed by outcomes on [n]. We

describe the structure of uT in terms of the subsets and outcomes of [n]. There is a

natural bijection between subsets of [n] and outcomes on [n]. We could index both

the basis vectors and the entries of vectors by either subsets or outcomes. Our choice

here reflects our desire to ease composition in later proofs.

Irreducible Basis Vector Rule: The entry of uT indexed by the outcome x is

(−1)|x̂∪T |.
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Example 3.2.1 (The Irreducible Basis for P 3). The following table shows the basis

vectors uT for the preference space P 3 from Appendix A.

u{1,2,3} u{1,2} u{1,3} u{1} u{2,3} u{2} u{3} u∅
111 1 1 1 1 1 1 1 1
110 1 −1 1 −1 1 −1 1 −1
101 1 1 −1 −1 1 1 −1 −1
100 1 −1 −1 1 1 −1 −1 1
011 1 1 1 1 −1 −1 −1 −1
010 1 −1 1 −1 −1 1 −1 1
001 1 1 −1 −1 −1 −1 1 1
000 1 −1 −1 1 −1 1 1 −1

This basis has some important qualities. First, as we have already pointed out, the

basis vectors are indexed by subsets of [n]. As we move forward in trying to construct

preference orderings with specific separability structures, or characters, this indexing

will be essential. Second, basis vectors indexed by sets that are the same order span a

submodule of P n. This is a direct result from Appendix A. That is, for the module

P n, the basis vectors indexed by sets of order k span an
(
n
k

)
dimensional submodule.

While we do not use this result directly in the rest of the this paper, we recognize it

could be useful for future analysis. Finally, we can also completely characterize the

separability of the preference orderings underlying the basis vectors. Before we do

this, however, we are going to make a slight alteration to the basis to make it more

manageable.

3.2.2 The Voter Basis

In this section, we define another basis {vT | T ∈ 2[n]} for the preference space P n

that we call the voter basis.

Irreducible Basis Vector Rule: In the voter basis the entry of vA indexed by the

outcome x is 1 if x̂ ∩ T is even and 0 if it is odd.

We have the following bijection between the irreducible basis and the voting basis1:

If T c is odd.

vT =
uT c +~1

2

If T c is even

vT =
−uT c +~1

2

Below, we see an example of this map.

1The vector ~1 is the all ones vector.
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Example 3.2.2 (Voter Basis from Irreducible Basis).

v100 =
−u011 +~1

2
= −1

2
·



1
1
1
1
−1
−1
−1
−1


+

1

2
·



1
1
1
1
1
1
1
1


=



0
0
0
0
1
1
1
1



111
110
101
100
011
010
001
000.

The structural similarities between both bases can be observed by comparing the

following example with Example 3.2.1.

Example 3.2.3 (The Voter Basis for P 3). Here are the eight vectors that make up

the voter basis for P 3 with basis vectors indexed by subset of {1, 2, 3}.

v{1,2,3} v{1,2} v{1,3} v{1} v{2,3} v{2} v{3} v∅
111 0 1 1 0 1 0 0 1
110 1 1 0 0 0 0 1 1
101 1 0 1 0 0 1 0 1
100 0 0 0 0 1 1 1 1
011 1 0 0 1 1 0 0 1
010 0 0 1 1 0 0 1 1
001 0 1 0 1 0 1 0 1
000 1 1 1 1 1 1 1 1

While we typically use the subset labeling scheme for voter basis vectors, we could

also index the basis vectors using outcomes just as we do for the entries. This is shown

below, which reveals the source of some of the symmetries.

v111 v110 v101 v100 v011 v010 v001 v000
111 0 1 1 0 1 0 0 1
110 1 1 0 0 0 0 1 1
101 1 0 1 0 0 1 0 1
100 0 0 0 0 1 1 1 1
011 1 0 0 1 1 0 0 1
010 0 0 1 1 0 0 1 1
001 0 1 0 1 0 1 0 1
000 1 1 1 1 1 1 1 1

The voter basis has the same symmetries as the irreducible basis, while having

many zero entries. We exploit this sparsity in the following chapter.

A more subtle difference between the irreducible basis and the voter basis is the

switch from defining the basis vector rule in terms of unions of sets to intersections of
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sets. Using intersections rather than unions gives consistency in the behavior of the

basis for P n, regardless of the parity of n. It turns out that the “largest union” of

sets is important in the irreducible basis, while the “smallest intersection” of sets is

important in the voter basis. The largest union is [n] while the the smallest intersection

is ∅. Clearly, the parity of the former changes with n, while the parity of the latter is

always even.

This voter basis is our foundation for the construction and analysis of preference

vectors in P n. Before we demonstrate its significance we add a small bit of terminology.

Definition 3.2.4. We say that “the outcome x benefits from vA” when x corre-

sponds to a nonzero entry of vA. We also say “the outcome x is even” if its binary

representation has an even number of 1’s and “the outcome x is odd” if its binary

representation has an even number of 0’s.

In Example 3.2.2, only the outcomes 011, 010, 001, and 000 benefit from v{1}. This

is because 0̂11 ∩ {1}, 0̂10 ∩ {1}, 0̂01 ∩ {1}, and 0̂00 ∩ {1} are all even sets.

We are now prepared to discuss the separability of voter basis vectors.

Theorem 3.2.5. The voter basis vector vA is separable on S if and only if A ⊆ S or

A ∩ S = ∅. That is, char(vA) = {X|A ⊆ X or A ∩X = ∅}.

Proof. This proof is organized according to five types of sets:

1. S where A ⊂ S is separable on vA.

2. S where S = A is separable on vA.

3. S where A ∩ S = ∅ is separable on vA.

4. S where ∅ ⊂ S ⊂ A is nonseparable on vA.

5. S where S ∩ A 6= ∅ and A− S 6= ∅ is nonseparable on vA.

Type 1: vA is separable on S where A ⊂ S.

Let x and y be outcomes, represented as bitstrings of length n. Consider the entries

[x]vA and [y]vA of vA, which we decompose as

[x]vA = [xSu[n]−S]vA = [xAxS−Au[n]−S]vA ,

[y]vA = [ySu[n]−S]vA = [yAyS−Au[n]−S]vA .

We want to determine the preference relation between these outcomes and show that

it is independent of the choice of outcomes on the shared binary digits u[n]−S.
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Case 1: xA and yA are the same parity

If xA and yA are the same parity, then both or neither the outcomes benefit from vA.

This guarantees that

[xSu[n]−S]vA = [ySu[n]−S]vA

for all u[n]−S ∈ X[n]−S.

Case 2: xA and yA are not the same parity

Assume without loss of generality that xA is even yA is odd. This implies that xSu[n]−S

benefits from vA while ySu[n]−S does not. This guarantees that

[xSu[n]−S]vA > [ySu[n]−S]vA

for all u[n]−S ∈ X[n]−S.

These cases together demonstrate that the preference between these outcomes

depends only on the relative parities of xA and yA and not on u[n]−S. Therefore, S

where A ⊂ S is separable on vA.

Type 2: S where S = A is separable on vA.

This is a special case of the previous case where S = A, that is, where S − A = ∅.
Thus, S is separable on vA .

Type 3: S where A ∩ S = ∅ is separable on vA.

Consider the entries [x]vA and [y]vA of vA, which we decompose as

[x]vA = [xSuAu[n]−S−A]vA ,

[y]vA = [ySuAu[n]−S−A]vA .

The outcomes are identical on A. This implies they both benefit from vA or neither of

them do. Therefore,

[ySuAu[n]−S−A]vA = [ySuAu[n]−S−A]vA

for all u[n]−S ∈ X[n]−S which means that S is trivially separable on vA.

Type 4: S where ∅ ⊂ S ⊂ A is nonseparable on vA

Consider the entries [x]vA , [y]vA of vA, which we decompose as

[x]vA = [xSuA−Su[n]−A]vA ,

[y]vA = [ySuA−Su[n]−A]vA .

We focus on outcomes where xS and yS are different parities. Assume without loss of

generality that xS is even and yS is odd.
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Case 1: uA−S is even. If uA−S is even, then xSuA−S is even and ySuA−S is odd.

Therefore, xSuA−Su[n]−A benefits from vA and ySuA−Su[n]−A does not, guaranteeing

that

[xSuA−Su[n]−A]vA > [ySuA−Su[n]−A]vA

Case 2: uA−S is odd. If uA−S is odd, then xSuA−S is odd and ySuA−S is even.

Therefore, xSuA−Su[n]−A does not benefit from vA and ySuA−Su[n]−A does, guaranteeing

that

[xSuA−Su[n]−A]vA < [ySuA−Su[n]−A]vA

Type 5: S where S ∩ A 6= ∅ and A− S 6= ∅ is nonseparable on vA.

Consider the entries [x]vA , [y]vA of vA, which we decompose as

[x]vA = [xS−AxA∩SuA−Su[n]−A−S]vA ,

[y]vA = [yS−AyA∩SuA−Su[n]−A−S]vA .

We focus on outcomes where xA∩S and yA∩S are different parities. Assume without

loss of generality that xA∩S is even and yA∩S is odd.

Case 1: uA−S is even. If uA−S is even, then xA∩SuA−S is even and yA∩SuA−S is

odd. Therefore, xS−AxA∩SuA−Su[n]−A−S benefits from vA and yS−AyA∩SuA−Su[n]−A−S

does not, guaranteeing that

[x]vA > [y]vA

Case 2: uA−S is odd. If uA−S is odd, then xA∩SuA−S is odd and yA∩SuA−S is even.

Therefore, xS−AxA∩SuA−Su[n]−A−S does not benefit from vA and yS−AyA∩SuA−Su[n]−A−S

does benefit from vA, guaranteeing that

[x]vA < [y]vA

Together these cases demonstrate that the preference between these outcomes

depends on uA−S, which means that S where ∅ ⊂ S ⊂ A is nonseparable on vA.

Theorem 5 justifies our choice in basis as well as overall our approach. It is impor-

tant to fully appreciate the manner in which these basis vectors capture separability

with respect to their indexing sets.

Example 3.2.6 (Character of the voting basis vector v{1,2} ∈ P 4.). We consider the

basis element v{1,2} = v1100 in P 4, its underlying preference ordering, and corresponding

character.
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v{1,2} = v1100 =



1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1



1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000.

The underlying preference order of v{1,2} = v1100 is

1111 ∼ 1110 ∼ 1101 ∼ 1100 ∼ 0011 ∼ 0010 ∼ 0001 ∼ 0000

� 1011 ∼ 1010 ∼ 1001 ∼ 1000 ∼ 0111 ∼ 0110 ∼ 0101 ∼ 0100)

and one can check that its character is

char(v1100) = {{3}, {4}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}}.

Reflecting on the previous example and Theorem 3.2.5, we recognize the poten-

tial for these basis vectors to serve as discrete bricks for building specific types of

separability.

3.2.3 Voter Basis Symmetries

Reflecting on Example 3.2.3, we observe that vectors in our voter basis have some

fascinating symmetries. Interestingly, the symmetry that a basis vector possesses

depends on the parity of the indexing set. The preference vector symmetry associated

with basis vectors indexed by odd sets is a folding symmetry2. The preference vector

symmetry associated with basis vectors indexed by even sets is a reflecting symmetry.

Before we define these symmetries, we define the reversing function. The

reversing function takes in a preference vector and outputs a new preference vector

where the values of entries indexed by bitwise complements are swapped.

2A preference vector having folding symmetry is analogous to a binary preference matrix being
bitwise symmetric.
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Definition 3.2.7. The reversing function {rev : P n → P n} for P n is the function

given by applying the element σ = (−1)(−2) · · · (−n) ∈ Z2 o Sn to a preference vector.

In other words,

rev(~p) = (−1)(−2) · · · (−n) · ~p.

In terms of a referendum election, the effect of the reversal function on a preference

vector is to negate every question in the referendum.3 With this function in hand, we

can now describe the folding and reflecting symmetry.

Definition 3.2.8. A preference vector ~p has folding symmetry if

~p+ rev(~p) = av∅ = a~1

for some a ∈ C.

Equivalently, a preference vector ~p has folding symmetry if there exists some a ∈ C
such that for any outcome x, [x]~p + [xc]~p = a where xc denotes the bitwise complement

of x.

Definition 3.2.9. A preference vector ~p has reflecting symmetry if

~p = rev(~p).

Equivalently, a preference vector ~p has reflecting symmetry if for any outcome x,

[x]~p = [xc]~p where xc denotes the bitwise complement of x.

The following proposition describes part of the relationship between folding and

reflecting symmetry.

Proposition 3.2.10. A preference vector ~p has both folding and reflecting symmetry

if and only if there is some c ∈ C for which c~p = v∅ = ~1.

Proof. Let ~p be a vector with both folding and reflecting symmetry. This implies

~p = rev(~p)

and

~p+ rev(~p) = c~1

3Informally, this function simply flips a vector, i.e. the value of the first entry becomes the value
of the last, while the value of the last entry becomes the value of the first.
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for some c ∈ C. We combine these to conclude that

~p+ rev(~p) = c~1

~p+ ~p = c~1

2~p = c~1

2

c
~p = ~1.

The next two propositions tie these symmetries back in with our voter basis.

Proposition 3.2.11. When T is an odd sized set, the vector vT has folding symmetry.

Proof. Consider vT where T ⊂ [n] is odd. Consider some outcome arbitrary outcome x

such that x̂ ⊂ [n]. If |x̂∩ T | is even, then |x̂c ∩ T | is odd because |T | is odd. Similarly,

if |x̂ ∩ T | is odd, then |x̂c ∩ T | is even. This means that for all x, only one of the

outcomes x and xc will benefit from vT . Thus, [x]~p + [xc]~p = 1 for all x. Therefore, vT

has folding symmetry.

Proposition 3.2.12. When T is a set of even size, the vector vT has reflecting

symmetry.

Proof. Consider vT where T ⊂ [n] is even. Consider an outcome x such that x̂ ⊂ [n].

If |x̂ ∩ T | is even, then |x̂c ∩ T | is even because |T | is even. Similarly, if |x̂ ∩ T | is odd,

then |x̂c ∩ T | is odd. This means that for all outcomes x, [x]vT = [xc]vT . Therefore, vT

has reflecting symmetry.

The next three lemmas describe the effect of combining vectors with these symme-

tries.

Lemma 3.2.13. Let ~p and ~q be preference vectors with folding symmetry. The sum

~p+ ~q has folding symmetry.

Proof. Let ~p and ~q be preference vectors with folding symmetry. We have

~p+ ~q = ap~1− rev(~p) + aq~1− rev(~q)

~p+ ~q + rev(~p) + rev(~q) = (ap + aq)~1

(~p+ ~q) + (rev(~p) + rev(~q)) = (ap + aq)~1.

Therefore, the sum (~p+ ~q) has folding symmetry.
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Lemma 3.2.14. Let ~p and ~q be preference vectors with reflecting symmetry. The sum

~p+ ~q has reflecting symmetry.

Proof. Let ~p and ~q be preference vectors with reflecting symmetry. For any outcome

x, we have

[x]~p = [xc]~p and [x]~q = [xc]~q.

This implies

[x](~p+~q) = [xc](~p+~q).

Therefore, the sum ~p+ ~q has reflecting symmetry.

Lemma 3.2.15. Let ~p be a preference vector with folding symmetry and ~q be a

preference vector without folding symmetry. The sum ~p + ~q does not have folding

symmetry.

Proof. Let ~p be a preference vector with folding symmetry and ~q be a preference

vector without folding symmetry. Now AFTOC ~p+ ~q has folding symmetry. We have

(~p+ ~q) + rev(~p+ ~q) = a~1

~p+ ~q + rev(~p) + rev(~q) = a~1

(~p+ rev(~p)) + ~q + rev(~q) = a~1

ap~1 + ~q + rev(~q) = a~1

~q + rev(~q) = (a− ap)~1.

This shows that ~q has folding symmetry, but that contradicts one of our original

conditions so our assumption, that ~p + ~q has folding symmetry, is incorrect. Thus,

v + w does not have folding symmetry.

The previous lemmas allow us to make the following conclusion.

Theorem 3.2.16. When a preference vector with folding symmetry is written as a

linear combination of voter basis vectors, vectors corresponding to nonempty subsets

of even size have a 0 coefficient.

Proof. Consider a preference vector ~p with folding symmetry. We may write ~p as

~p = ~o+ ~e
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where ~o is the projection of ~p onto the space spanned by basis vectors corresponding

to odd sized sets and ~e is the projection of ~p onto the space spanned by basis vectors

corresponding to even sized sets. We know that ~o has folding symmetry because it is

the sum of vectors with folding symmetry. Since ~p has folding symmetry and ~o has

folding symmetry, it must be true that ~e also has folding symmetry. However, ~e is the

sum of vectors with reflecting symmetry, none of which can have folding symmetry

except v∅ = ~1. Now assume that when ~e is written as linear combination of voter basis

vectors corresponding to subsets of even size, there is at least one nonzero coefficient

on a vector other than v∅ = ~1. This means that ~e has reflecting symmetry and does not

have folding symmetry. Thus, the sum ~p = ~o+ ~e cannot have folding symmetry. This,

however, contradicts ~p possessing folding symmetry, so our assumption is incorrect.

Therefore, when ~p is written as a linear combination of voter basis vectors, vectors

corresponding to nonempty subsets of even size must have a coefficient of 0.

A result from previous research is that every completely separable preference matrix

is bitwise symmetric which is the preference matrix equivalent to folding symmetry

for preference vectors [9].4 This leads us to the following corollary.

Corollary 3.2.17. When a completely separable preference vector with distinct entries

(no indifference) is written as a linear combination of voter basis vectors, vectors

corresponding to nonempty subsets of even size have a coefficient of 0.

Proof. A completely separable preference vector with distinct entries has a binary

preference matrix equivalent. All completely separable preference matrices must

be bitwise symmetric. Bitwise symmetry is equivalent to folding symmetry, so all

completely separable preference vectors must have folding symmetry. By Theorem

3.2.16, this guarantees that when a completely separable preference vector with distinct

entries (no indifference) is written as a linear combination of voter basis vectors, vectors

corresponding to nonempty subsets of even size have a coefficient of 0.

In the case of n = 4, there are 14 distinct preference orders that are completely

separable.[11] We transform these into 14 distinct ordinal preference vectors and scale

them by 4 to avoid decimal coefficients. These coefficients are shown in Table 3.1.

The patterns of zeros in these coefficients reveals the significance of Corollary 3.2.17.

Currently, the number of completely separable preference orders for arbitrary n is not

known, but we believe this result is a step towards solving this problem.

4Recall that preference matrices do not allow for indifference.
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~p1 ~p2 ~p3 ~p4 ~p5 ~p6 ~p7 ~p8 ~p9 ~p10 ~p11 ~p12 ~p13 ~p14
v∅ 64 64 64 64 64 64 64 64 64 64 64 64 64 64
v{1} −4 −1 −5 −4 −10 −7 −6 −3 −7 −6 −9 −12 1 −2

v{2} −8 −9 −9 −12 −6 −3 −14 −11 −11 −10 −5 −8 −5 −8

v{3} −16 −17 −17 −20 −20 −17 −18 −15 −15 −14 −15 −18 −15 −18

v{4} −32 −31 −31 −28 −28 −31 −28 −31 −31 −32 −31 −28 −31 −28

v{1,2} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{1,3} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{1,4} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{2,3} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{2,4} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{3,4} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v{1,2,3} 0 3 −1 0 0 3 2 5 1 2 5 2 −5 −8

v{1,2,4} 0 −3 1 0 0 −3 0 −3 1 0 −3 0 7 10

v{1,3,4} 0 −3 1 0 6 3 0 −3 1 0 3 6 −7 −4

v{2,3,4} 0 1 1 4 −2 −5 4 1 1 0 −5 −2 −5 −2

v{1,2,3,4} 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.1: The coefficients with respect to the voting basis for the list of the 14
completely separable preferences when n = 4.
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Chapter 4

Character Construction

For a referendum of n questions there are 2n! preference orders without indifference,

meaning that for even moderately large n, random generation is not an effective

technique for finding a preference order for a given character. Adding to this difficulty

is the fact that for a referendum [n], the probability of a randomly selected preference

order having the character χ = {∅, [n]} approaches 1 as n increases [11]. Methods have

been outlined for systematically creating preference orders for characters possessing

certain properties. One such method is called a preseparable extension. Using this

method, preference orders can be created for admissible characters which include a

set and its compliment. Most recent methods have used hamiltonian paths on labeled

graphs to generate orders on outcomes. These methods include exploring hypercube

graphs and bead graphs[1, 2].1

Figure 4.1: G is a graph labeled with the binary outcomes of a three proposal
referendum. The hamiltonian path shown in G generates the preference matrix P .
From P , char(P )= {∅, {2}, {2, 3}, {1, 2, 3}}.

In this section we demonstrate the potential for our linear algebraic approach

1Interestingly, the symmetry group of the hypercube is the hyperoctahedral group, or Z2 o Sn.
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to add to these techniques. Most notably we prove that any element of a class of

character, called tree characters, can always be created by combining vectors from

the voter basis systematically. We begin by discussing some general results about

vectors in preference spaces. This is followed by defining a class of characters called

tree characters and describing an algorithm for generating a preference vector for any

given tree character. The final section proves our algorithm is correct.

4.1 Construction Techniques with Voter Basis

Here we prove some general results regarding the separability exhibited by preference

vectors. Regardless of what class of characters we are trying to create preference

vectors for, these results are essential.

Proposition 4.1.1 (Disjoint Set Proposition). Consider two entries of a preference

vector ~p in P n where the outcomes corresponding to these entries are the same on

([n]− S), namely

(xSu([n]−S)) and (ySu([n]−S))

Let T ⊂ [n]. Then the outcome (xSu([n]−S)) benefits from vT , where S ∩ T = ∅, if and

only if (ySu([n]−S)) also benefits from vT .

Proof. Assume (xSu([n]−S)) benefits from vT . We have

(xSu([n]−S)) benefits from vT .

⇔ | ̂xSu([n]−S) ∩ T | is even.

⇔ | ̂xSuTu[n]−S−T ∩ T | is even.

⇔ |ûT ∩ T | is even.

⇔ | ̂ySuTu[n]−S−T ∩ T | is even.

⇔ (ySu([n]−S)) benefits from vT .

This result highlights the following rule: if outcomes agree on some subset U , then

vectors indexed by subsets of U will not contribute to preference differences between

the two outcomes. The lemma above is proven with U = [n]− S.

Lemma 4.1.2. Consider the entries of a preference vector ~p where the outcomes

corresponding to these entries are the same on ([n]− S). That is, entries of the form
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(xSu([n]−S)) and (ySu([n]−S)).

Suppose that |x̂S ∩ S| and |ŷS ∩ S| are the same parity. If S ⊂ T then the outcome

(xSu([n]−S)) benefits from vT if and only if (ySu([n]−S)) also benefits from vT .

Proof. Case 1: |x̂S ∩ S| and |ŷS ∩ S| are even.

Assume (xSu([n]−S)) benefits from vT .

(xSu([n]−S)) benefits from vT

⇔ (xSu(T−S)u([n]−T )) benefits from vT .

⇔ | ̂xSu(T−S) ∩ T | is even.

⇔ |x̂S ∩ S|+|û(T−S) ∩ (T − S)| is even.

⇔ |û(T−S) ∩ (T − S)| is even.

⇔ |ŷS ∩ S|+|û(T−S) ∩ (T − S)| is even.

⇔ | ̂ySu(T−S) ∩ T | is even.

⇔ (ySu(T−S)u([n]−T )) benefits from vT .

⇔ (ySu([n]−S)) benefits from vT .

Case 2: |xS ∩ S| and |yS ∩ S| are odd.

Assume (xSu([n]−S)) benefits from vT . We have

(xSu([n]−S)) benefits from vT

⇔ (xSu(T−S)u([n]−T )) benefits from vT .

⇔ | ̂xSu(T−S) ∩ T | is even.

⇔ |x̂S ∩ S|+|û(T−S) ∩ (T − S)| is even.

⇔ |û(T−S) ∩ (T − S)| is odd.

⇔ |ŷS ∩ S|+|û(T−S) ∩ (T − S)| is even.

⇔ | ̂ySu(T−S) ∩ T | is even.

⇔ (ySu(T−S)u([n]−T )) benefits from vT .

⇔ (ySu([n]−S)) benefits from vT .

Lemma 4.1.3. Consider two entries of a preference vector v where the outcomes

corresponding to these entries are the same on ([n]− S), namely
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(xSu([n]−S)) and (ySu([n]−S)).

Suppose that |xS∩S| and |yS∩S| are not the same parity. Then the outcome (xSu([n]−S))

receives the benefit of vT , where S ⊂ T , if and only if (ySu([n]−S)) does not receive the

benefit of vT .

Proof. Without loss of generality, assume |xS∩S| is even and |yS∩S| is odd. (xSu([n]−S))

benefits from vT .

(xSu([n]−S)) benefits from vT .

⇔ (xSu(T−S)u([n]−T )) benefits from vT .

⇔ | ̂xSu(T−S) ∩ T | is even.

⇔ |x̂S ∩ S|+|û(T−S) ∩ (T − S)| is even.

⇔ |û(T−S) ∩ (T − S)| is even.

⇔ |ŷS ∩ S|+|û(T−S) ∩ (T − S)| is odd.

⇔ | ̂ySu(T−S) ∩ T | is odd.

⇔ (ySu(T−S)u([n]−T )) does not benefit from vT .

⇔ (ySu([n]−S)) does not benefit from vT .

The previous two lemmas can be combined to form the following proposition.

Proposition 4.1.4 (Superset Proposition). Consider two entries of a preference

vector v where the outcomes corresponding to these entries are the same on ([n]− S),

namely

(xSu([n]−S)) and (ySu([n]−S)).

If S ⊂ T then exactly one of the two outcomes benefits from vT , where S ⊂ T , if and

only if |xS ∩ S| and |yS ∩ S| are not the same parity

Proof. The result follows immediately the previous two lemmas

The Disjoint Set Proposition and Superset Proposition are reminiscent of the

separability implied by a single basis vector. Recall that the basis vector ~A is trivially

separable on sets disjoint from A and separable on supersets of A. These results will

be used frequently in the following proofs.
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4.2 Tree Characters

Given a collection of sets χ = {∅ = A0, A1, A2, . . . , Am = [n]}, we use set inclusion

to obtain a natural partially ordered set (poset). That is, we have Ai < Aj when

Ai ⊂ Aj. We say that Aj covers Ai when there is no Ak such that Ai < Ak < Aj.

The Hasse diagram of a poset is a graph that describes its structure. Each set in χ

is represented by a vertex. We add an edge between Ai and Aj whenever Aj covers

Ai. Furthermore, the vertex for set Aj is located above all of the sets that it covers.

So Am = [n] is the highest vertex and A0 = ∅ is the lowest vertex.

In this section, we will focus on characters χ such that the Hasse diagram of

χ − {∅} is a tree. We describe how to use our voting basis to create a preference

vector for such a tree character χ.

Definition 4.2.1. A tree character χ is a character such that the Hasse diagram

of χ− {∅} is a tree. In other words, for any A,B ∈ χ, one of the following is true:

A = B,A ( B,A ) B, or A ∩B = ∅.

Example 4.2.2 (Examples and Nonexamples of Tree Characters.). Here are some

examples of tree characters:

{∅, {1}, {3, 4}, {1, 2, 3, 4}, {5}, {5, 6}, {1, 2, 3, 4, 5, 6}},
{∅, {1}, {2}, {3}, {5, 6}, {1, 2, 3, 4, 5, 6}},

{∅, {1, 2, 3}}.

Here is a simple example of a set that is not a tree character:

{∅, {1}, {1, 2}{1, 3}, {1, 2, 3}}.

We visualize these tree characters as rooted trees by omitting the trivially separable

∅. We visualize the first character from Example 4.2.2 in Figure 4.2.

1 2 3 4 5 6 7 8

3 4 5

4 5

4

3

1 2

21

Figure 4.2: The Hasse diagram of a tree character (omitting the ∅).
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As the name suggests, we think of a tree character as a tree structure that is rooted

at [n]. We will take advantage of some terminology from rooted trees.

Definition 4.2.3. Let χ be a tree character. If Aj covers Ai, then Aj is the parent

of Aj and Ai is the child of Aj. The children of Aj are called siblings. We can also

speak of the kth generation of sets, which consists of all sets that are at distance k

from the root. We also refer to ancestors and descendants in the natural way.

As we construct our preference vector for χ, we will also need to keep track of the

elements of [n] that appear in generation k, but do not appear in generation k + 1.

For convenience, we collect these elements into naturally defined sets that we call

ghost children. Figure 4.3 shows the Hasse diagram of the same character as Figure

4.2, but includes the ghost children as well. Note that when we include the ghost

children, every element in the set [n] appears in a leaf of the tree. We refer to a Hasse

diagram that includes sets of ghost children as a haunted Hasse diagram.2

Definition 4.2.4. Let Aj ∈ χ with children Aj1 , . . . Ajk . If ∪iAji 6= Aj, then the

ghost child of Aj is Aj− (∪iAji). In other words, the ghost child of Aj is the relative

complement of the union of its children. The Hasse diagram that also shows the ghost

children is called a haunted Hasse diagram.

1 2 3 4 5 6 7 8

6 7 83 4 5

4 5

54

3

1 2

21

Figure 4.3: The haunted Hasse diagram for a tree character. The ghost sets are shown
with grey background and dashed outlines.

The ghost children come out to play when we want to ensure that certain unions

of siblings are not separable. For example, in Figure 4.3, the children of the set [8] are

{1, 2} and {3, 4, 5}. In order to prevent the set {1, 2, 3, 4, 5} from also being separable,

the ghost child {6, 7, 8} will be used during our vector construction. More precisely,

to break unwanted separability on unions of siblings, we will add a small weight to

each set in a sibling chain, as defined below.

2Be sure to say “haunted Hasse diagram” out loud.
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Definition 4.2.5. Let A ∈ χ with its children listed in some order ψ = (S1, S2, ..., Sk).

If ∪iSk = A (so there is no ghost child of A), then the sibling chain ρ of these

children is

ρ = {S1 ∪ S2, S2 ∪ S3, ..., Sk−1 ∪ Sk}.

If A has a nonempty ghost child G = A− (∪iSi) then the sibling chain ρ also includes

the set Sk ∪G. That is,

ρ = {S1 ∪ S2, S2 ∪ S3, ..., Sk−1 ∪ Sk, Sk ∪G}.

Elements of a sibling chain ρ are called siblinks. A siblink Si ∪ Si+1 is an odd link

if i is odd and an even link if i is even. Likewise the siblink Si ∪G is odd or even

depending on the parity of i.

Siblinks are important for insuring the union of siblings in χ is not separable unless

it is also in χ.

Consider the tree character χ = {∅, A1, A2, ..., [n]}. We construct a vector vχ such

that char(vχ) = χ as follows. Define ai = 2ri where ri is the generation of Ai in χ.

Let ω = {C1, C2, ..., Ch} be the set of all siblinks from the sibling chains that can be

made from χ. Define ci = 1
2n

if Ci is an odd link and ci = − 1
2n

if Ci is an even link.

Our preference vector vχ is given by

vχ = a1vA1 + a2vA2 + · · ·+ a[n]v[n] + c1vC1 + c2vC2 + · · ·+ chvCh . (4.1)

Theorem 4.2.6. The preference vector vχ has character χ. That is, char(v) = χ.

The proof of Theorem 4.2.6 is quite technical, so we prove it via a series of lemmas.

Before providing those details, we give the proof of the theorem itself, referring to the

lemmas that we will prove thereafter. This will help to motivate those lemmas, since

it will be clear how they come together into the main argument.

Proof. Lemma 4.3.4 below shows that the vector v is separable on every element of χ.

Remaining subsets of [n] fall into three categories

• S, where S does not have a fine χ-decomposition. Lemma 4.3.8 below proves

nonseparability for this category

• S, where S has a fine χ-decomposition, but at least two elements of the de-

composition do not have the same parent in χ. Lemma 4.3.11 below proves

nonseparability for this category.
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• S, where S has a fine χ-decomposition, and every element of the decomposition

has the same parent in χ. Lemma 4.3.12 below proves nonseparability for this

category.

In summary, the only elements of χ are separable. Therefore, char(v) = χ.

We take up the proof of the four lemmas in the next subsection. But before that,

we give an example of the preference vector construction described in the theorem.

Example 4.2.7 (Tree character χ to ~pχ.). Consider the tree character

χ = {{1, 2, 3, 4, 5, 6}, {7, 8, 9}, {1}, {2}, {3, 4}, {6}, {7, 8}, {3}, {7} ∅}

with haunted Hasse diagram.

1 2 3 4 5 6 7 8 9

7 8 9

8 9

98

7

1 2 3 4 5 6

5 63 4
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Figure 4.4: The tree character with ghost children shown.

First we add basis vectors indexed by elements of χ. The coefficient of vS is

determined by the generation of S in the haunted Hasse diagram. This gives us the

first part of our vector ~pχ:

1v[9] + 2v[6] + 2v{7,8,9} + 4v{1} + 4v{2} + 4v{3,4} + 4v{7} + 4v{8,9} + 8v{3} + 8v{8}.

Next, we construct the sibling chains. In this case we have five chains:

ρ1 ={{1, 2, 3, 4, 5, 6} ∪ {7, 8, 9}} = {{1, 2, 3, 4, 5, 6, 7, 8, 9}},

ρ2 ={{1} ∪ {2}, {2} ∪ {3, 4}, {3, 4} ∪ {5, 6}} = {{1, 2}, {2, 3, 4}, {3, 4, 5, 6}},

ρ3 ={{7} ∪ {8, 9}} = {{7, 8, 9}},

ρ4 ={{3} ∪ {4}} = {{3, 4}},

ρ5 ={{8} ∪ {9}} = {{8, 9}}.

So the set of all siblinks is

ω = {{1, 2, 3, 4, 5, 6, 7, 8, 9}, {1, 2}, {2, 3, 4}, {3, 4, 5, 6}, {7, 8, 9}, {3, 4}, {8, 9}}.
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Finally we add basis vectors indexed by elements of ω. The coefficients of these basis

vectors is based on whether or not the indexing element is an odd or even siblink. Note

that a sets may appear in both χ and ω. For example, {3, 4} ∈ χ and this set also

appears as the siblink {3} ∪ {4}. We have chosen our coefficients to that we still get

our desired outcome: that is, char(vχ) = χ. The final result is our desired preference

vector:

~pχ =1v[9] + 2v[6] + 2v{7,8,9} + 4v{1} + 4v{2} + 4v{3,4} + 4v{7} + 4v{8,9}

+ 8v{3} + 8v{8} +
1

26
v[9] +

1

26
v{1,2} −

1

26
v{2,3,4} +

1

26
v[6]−[2] +

1

26
v{7,8,9}

+
1

26
v{3,4} +

1

26
v{8,9}

One can check that this vector (which lies in R29) satisfies char(� ~pχ) = χ.

4.3 Proof of Correctness for Constructing Tree Char-

acters

The remainder of this paper is devoted to proving the four lemmas required for the

proof of Theorem 4.2.6. We start with some intermediary lemmas to handle the

various cases.

Before we prove Theorem 4.2.6, we establish a few helpful lemmas.

Lemma 4.3.1. Consider the coefficient al corresponding to the set Al ∈ χ. The

coefficient al is one greater than the sum of all the coefficients corresponding to

supersets of Al ∈ χ. That is, al + 1 =
∑
{s|Al⊂As} as.

Proof. Recall that the structure of our character ensures that when i < j we either

have Aj ⊂ Ai or Aj ∩ Ai = ∅. Let al = 2rl . Consider two arbitrary supersets Ai, Aj

of Al, where i < j. Since their intersection is nonempty, we have Aj ⊂ Ai. More

generally, all the supersets of Al are nested. Therefore, for every natural number

up to rl, there is exactly one superset of Al in generation rl. Thus, the sum of the

coefficients of the supersets of Al is 20 + 21 + 22 + · · ·+ 2rl−l = 2rl − 1 = al − 1.

Lemma 4.3.2. Let c1, c2, . . . , ch be all of the coefficients associated with elements of

the siblinks. Then
∣∣∣∑h

1 ci

∣∣∣ < 1.

Proof. The siblinks of are made from the union of two distinct sets, so singletons

cannot be elements of a sibling chain. Thus, h must be less than than the total number
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of possible subsets of [n], that is h < 2n, so that∣∣∣∣∣
h∑
1

ci

∣∣∣∣∣ ≤
h∑
1

|ci| = h · 1

2n
< 1.

Relative parity of sets plays an important role in our character construction, so we

introduce the following notation. Let A ⊂ B ⊂ [n]. We define

E(A,B) = {S ⊂ B : |S ∩ A| is even}

and

O(A,B) = {S ⊂ B : |S ∩ A| is odd}.

We also define

S(x,A) =
∑

{s:As∈E(x̂A,A)}

as.

This brings us to our next lemma.

Lemma 4.3.3. Consider two distinct entries of v whose outcomes are the same on

([n]− Al), namely (xAlu([n]−Al)) and (yAlu([n]−Al)) where xAl 6= yAl. Then

|S(x,Al)− S(y, Al)|≥ al.

Proof. Note that |S(x,Al) − S(y, Al)|> 0 is an integer. If As ∈ E(x̂Al , Al) then

As ⊂ Al, so that as = 2rs ≥ 2rl = al. Since al divides every term in both S(x,Al) and

S(y, Al), it also divides |S(x,Al)− S(y, Al)|.

4.3.1 Separability on χ

Lemma 4.3.4. The preference vector vχ is separable on every element in χ.

Proof. Consider a set Al ∈ {A1, A2, ..., [n]} and the outcomes

(xAlu([n]−Al)) and (yAlu([n]−Al)).

We claim that:

• If S(x,Al) > S(y, Al) then (xAlu([n]−Al)) > (yAlu([n]−Al)).

• If S(x,Al) = S(y, Al) then (xAlu([n]−Al)) = (yAlu([n]−Al)).

• If S(x,Al) < S(y, Al) then (xAlu([n]−Al)) < (yAlu([n]−Al)).
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Of course, the third case follows from the first by interchanging the roles of x and y.

Case 1: S(x,Al) > S(y, Al).

First, we recognize by Proposition 4.1.1 that (xAlu([n]−Al)) benefits from as, where

As ∩ Al = ∅, if and only if (yAlu([n]−Al)) also does. Let us denote the sum of all such

as that both outcomes benefit from as F.

Now it must be true that

[xAlu([n]−Al)]v ≥ S(x,Al) + F

and that

S(y, Al) + NAl
+ F + C ≥ [yAlu([n]−Al)]v,

where NAl
=
∑
{as|Al⊂As} as is the sum of all the coefficients corresponding to supersets

of Al in χ, and C =
∑h

1 ci, the sum of the coefficients from the sibling chains.

Next, we subtract the upperbound of [yAlu([n]−Al)]v from the lowerbound of

[xAlu([n]−Al)]v.

S(x,Al) + F− (S(x,Al) + NAl
+ F + C) = (S(x,Al)− S(y, Al))

−NAl
−C

≥ al −NAl
−C by Lemma 4.3.3

≥ 1−C by Lemma 4.3.1

> 0 by Lemma 4.3.2

The lowerbound of [xAlu([n]−Al)]v is greater than the upperbound of [yAlu([n]−Al)]v, thus

[xAlu([n]−Al)]v > [yAlu([n]−Al)]v for an arbitrary u([n]−Al). Therefore, for all w([n]−Al) we

have (xAlw([n]−Al)) > (yAlw([n]−Al)). This concludes Case 1.

Case 2: S(x,Al) = S(y, Al).

First, we note that either both outcomes receive the benefit from al or neither do,

or equivalently, |xAl ∩Al| and |yAl ∩Al| are the same parity. If this were not true, then

exactly one of S(x,Al) and S(y, Al) would benefit from al, which would guarantee

S(x,Al) 6= S(y, Al). Indeed, al is the smallest summand in each of these sums, so no

combination of other summands could properly compensate for the small difference.

Let

M(x,Al) =
∑

{as|Al⊂As and |xAl∩As| is even}

as +
∑

{cs|Al⊂Cs and |xAl∩As|is even}

as
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denote the sum of the coefficients corresponding to supersets of Al that (xAlv([n]−Al))

benefits from and let

M(y, Al) =
∑

{as|Al⊂As and |yAl∩As| is even}

as +
∑

{cs|Al⊂Cs and |yAl∩As| is even}

as

denote the sum of the coefficients corresponding to supersets of Al that (yAlv([n]−Al))

benefits from. Because |xAl ∩ Al| and |yAl ∩ Al| are the same parity, we may use

Proposition 4.1.4 to guarantee M(x,Al) = M(y, Al). Considering the same F from

the previous case, the result follows.

[xAlu[n]−Al ]v = S(x,Al) +M(x,Al) + F

= S(y, Al) +M(y, Al) + F

= [yAlu[n]−Al ]v

We have shown for an arbitrary u([n]−Al), that [xAlu([n]−Al)]v = [yAlu([n]−Al)]v.

Therefore, for all w([n]−Al) we have (xAlw([n]−Al)) = (yAlw([n]−Al)). This concludes Case

2.

The combination of Case 1 and Case 2 demonstrate that the relation R does not

depend on u([n]−Al). That is, if for some u([n]−Al), (xAlu([n]−Al))R(yAlu([n]−Al)) then

for all w([n]−Al) (xAlw([n]−Al))R(yAlw([n]−Al)). Therefore, our arbitrarily chosen Al is

separable implying that every set in {A1, A2, ..., [n]} is separable.

4.3.2 Nonseparability Outside of χ

Definition 4.3.5. Consider a set B and a set of sets χ. The set B is χ-constructable

when there exists φ ⊂ χ, such that B = ∪A∈φA. If such a set φ exists, then it called a

χ-construction of B.

Note that any A ∈ χ is χ-constructable, since we can take the trivial construction

set φ = {A}. Any other χ-construction is called nontrivial.

Definition 4.3.6. The subset φ ⊂ χ is a fine χ-construction of B when no element

in φ has a nontrivial χ-construction.

Example 4.3.7 (χ-constructable sets: examples and non-examples). Consider the

tree character

χ = {{1, 2, 3, 4, 5, 6}, {7, 8, 9}, {1}, {2}, {3, 4}, {6}, {7, 8}, {3}, {7} ∅}
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Figure 4.5: The tree character χ

with the following Hasse diagram.

Here are four examples of χ-constructable sets:

{1, 2} = {1} ∪ {2},

{1, 2, 3, 4} = {1} ∪ {2} ∪ {3, 4},

{2, 8, 9} = {2} ∪ {8, 9},

{1, 3, 8, 9} = {1} ∪ {3} ∪ {7, 8, 9}.

Note that the first two sets {1, 2} = {1} ∪ {2} and {1, 2, 3, 4} = {1} ∪ {2} ∪ {3, 4}
are χ-constructed using only siblings in χ. Meanwhile, the sets {2, 8, 9} = {2}∪∪{8, 9}
and {1, 2, 8, 9} = {1} ∪ {3} ∪ {7, 8, 9} are χ-constructed using elements that are not

siblings. The differences between these construction methods will come into play later.

It is also important to recognize that the first three examples are fine χ-constructions.

The fourth example is not a fine χ-construction because the set {7, 8, 9} is χ-constructable,

namely {7, 8, 9} = {7} ∪ {8, 9}.
The following four sets are not χ-constructable

{9}, {1, 2, 4}, {2, 6}, {1, 2, 3, 7, 9}.

We are now ready for our next lemma.

Lemma 4.3.8. Let B be a set which is not χ-constructable. Then the set B is not

separable on ~pχ.

Proof. We will construct two outcomes xB 6= yB on B so that the relation between

x = xBu([n]−B) and y = yBu([n]−B) depends on u([n]−B).

Let

D = ∪Ak⊂BAk.
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This set D ⊂ B is the largest χ-constructable subset of B, so B −D 6= ∅. (Note that

we might have D = ∅. Indeed, the set B = {9} in the Hasse diagram above is one

such B.) Consider the set F of fundamental sets that intersect B−D. Pick a minimal

set Ai ∈ F , meaning that Ai does not contain any other member of F . Observe that

Ai − B 6= ∅ by our choice of D. Let g ∈ Ai ∩ (B −D) and let h ∈ Ai − B. By the

structure of our tree character, if g ∈ Aj for some Aj ∈ χ, then Ai ⊂ Aj.

Now we rewrite our as outcomes

x = xgxB−guhu([n]−B−h),

y = ygyB−guhu([n]−B−h).

We have the freedom to construct x and y. For simplicity, we will take both to be

all-zero on the sets B − g and [n] − B − h, and denote these all-zero outcomes as

z(B−g) and z([n]−B−h). So our outcomes are

x = xgzB−guhz([n]−B−h),

y = ygzB−guhz([n]−B−h).

We take xg = 0 and yg = 1. By Proposition 4.1.1, the outcome x will benefit

from as or cs, where g /∈ Ss or g /∈ Cs if and only if the outcome y also benefits from

as or cs. This implies that any difference between [x]v and [y]v must be caused by

coefficients associated with sets in χ and ω that contain g. Such sets must contain Ai,

and therefore they also contain h.

Since χ is a tree character, the χ-supersets of Ai are nested. Let N(Ai) =∑
{s:Ai(As} as be the sum of the coefficients of proper supersets of Ai in χ. Let

C =
∑h

1 ci be the sum of the coefficients from the sibling chains that contain Ai. We

show that R depends on the parity of uh.

Case 1: uh is 0. We have

x = xgzB−guhz([n]−B−h) is even and x = ygzB−guhz([n]−B−h) is odd

⇒x benefits from aAi and y does not benefit from aAi

⇒[x]v − [y]v

≥ aAi −N(Ai)−C

≥ 1−C Lemma 4.3.1

> 0 Lemma 4.3.2

⇒x > y.
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Case 2: uh is 1. We have

x = xgzB−guhz([n]−B−h) is odd and x = ygzB−guhz([n]−B−h) is even

⇒x does not benefit from aAi and y benefits from aAi

⇒[x]v − [y]v

≤ NS + C− ag
≤ C− 1 Lemma 4.3.1

< 0 Lemma 4.3.2

⇒x < y.

We have shown that the relation between x and y depends on uAh , so the set B is

non-separable on v.

We can now construct an outcome that only benefits from a specified family of

nested subsets.

Theorem 4.3.9. Consider a nesting Al1 ( Al2 ( · · · ( Alr . For any subset of

coefficients {al1 , al2 , . . . , alr}, an outcome on Alr can be constructed that only benefits

from the coefficients in that subset.

Proof. We construct the outcome

x = xAl1xAl2−Al1xAl3−Al2 · · ·xAlr−Alr−1
z([n]−Alr )

where z([n]−Alr ) is all-zero and the rest is determined recursively as follows. Begin with

Al1 . If al1 > 0, then take xAl1 to be odd; otherwise take xAl1 to be even. Next, choose

xAl2−Al1 to be even or odd, depending on both the parity of xAl1 and whether or not

a2 > 0. Continue in this way to create the entire outcome. This construction works

because the sets are nested and Ali − Ali−1
6= ∅.

Example 4.3.10 (Building an outcome on nested sets.). Consider the sets where

[n] = [10]

{1, 2}, {1, 2, 3}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6, 7, 8}.

We have an outcome on [10] which we can write as

x = x{1,2}x{3}x{4,5,6}x{7,8}z{9,10}

If we want the outcome to benefits only from v{1,2} and v[8], we start by making

the outcome x{1,2} even, which means x benefits from v{1,2}. From here we make the
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outcome x{3} odd, guaranteeing x{1,2}x{3} is odd, so x does not benefit from v{1,2,3}.

Now we make the outcome x{4,5,6} even so x{1,2}x{3}x{4,5,6} is odd, so x does not benefit

from v{1,2,3,4,5,6}. Finally, make x{7,8} odd so x{1,2}x{3}x{4,5,6}x{7,8}, implying x benefits

from v{1,2,3,4,5,6,7,8}. One such outcome is

x = 1110001100100

Lemma 4.3.11. Consider a set B ⊂ [n] where φ = {A0 = ∅, A1, A2, · · · , Ak = [n]} is

a fine set decomposition of B with χ, but at least two elements of φ do not have the

same parent in χ. The set B is not separable on ~pχ.

Proof. Denote the set of all children of Ai in χ as C(Ai). Let Al and Ar be two sets

in φ that are not siblings. First, we note that we can ignore the effect of the siblinks.

In total, these change the value by less than one. We will see below that the sets in

χ will create a difference of at least one, so the siblinks do not have a large enough

effect to change the relative values.

Now consider the following two outcomes

x = (e(Al−C(Al))o(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B)),

y = (o(Al−C(Al))e(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B))

where for any set S, eS is even, oS is odd and zS is all-zero. (Take a moment to

recognize that two outcomes with these conditions must exist.) We determine the

u([n]−B) below.

These outcomes can receive the benefit of coefficients associated with elements of

φ = {∅, A1, A2, ..., [n]}. We place these elements in six categories

• Proper subsets of Al. S ⊂ Al

• Proper subsets of Ar. S ⊂ Ar

• Sets disjoint from both Al and Ar. S ∩ (Al ∪ Ar) = ∅

• Supersets of Al ∪ Ar. (Al ∪ Ar) ⊆ S

• Supersets of Al, but not Ar. Al ⊆ S, Ar 6⊆ S

• Supersets of Ar, but not Al. Ar ⊆ S, Al 6⊆ S
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Both x and y benefit from the same descendants of Al and descedants of Ar because

these outcomes agree on C(Al) and C(Ar).

By Proposition 4.1.1, both x and y benefit from the same sets that are disjoint

from (Al ∪ Ar).
It is also true that x has the same parity as y, so by Proposition 4.1.4, x and y

benefit from the same ancestors of (Al ∪ Ar).
So, if there is a preference difference between these outcomes, then it must come

from coefficients associated with sets from the last two categories. We have constructed

our outcomes so that only x benefits from the coefficient of Al, while only y benefits

from the coefficient of Ar.

From here we must make a few notes. First, by Lemma 4.3.1, we recognize that

ar = 1 +
∑

(ai|Ar⊂Ai)

ai

= 1 +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai +
∑

(ai|Ar∪Al⊂Ai)

ai,

and likewise

al = 1 +
∑

(ai|Al⊂Ai)

ai

= 1 +
∑

(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar∪Al⊂Ai)

ai.

We also note that either
∑

(ai|Al⊂Ai and Ar 6⊂Ai) ai or
∑

(ai|Ar⊂Ai and Al 6⊂Ai) ai could be

0, but both at least one of them must be nonzero; if both were 0 then Al and

Ar would have to have the same parent, a contradiction. So let us assume that∑
(ai|Al⊂Ai and Al 6⊂Ai) ai > 0. We have∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai >
∑

(ai|Ar∪Al⊂Ai)

ai

and ∑
(ai|Al⊂Ai and Ar 6⊂Ai)

ai >
∑

(ai|Ar∪Al⊂Ai)

ai

or ∑
(ai|Al⊂Ai and Ar 6⊂Ai)

ai = 0.

Now, use Lemma 4.3.9 to construct two different values for u([n]−B) that change

the preference between the outcomes x and y.
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Case 1: Choose u([n]−B) so that x benefits from all supersets of Al, but

not Ar ({S|Al ⊂ S and Ar 6⊂ S}) and all supersets of Ar, but not Al ({S|Ar ⊂
S and Al 6⊂ S}

Because x benefits from these supersets, y does not as by Proposition 4.1.4.

Therefore, we get the following difference

[x(Al−C(Al))y(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B)]v

− [y(Al−C(Al))x(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B)]v

= al +
∑

(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai − ar

= al +
∑

(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai

−

1 +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai +
∑

(ai|Ar∪Al⊂Ai)

ai


= al +

∑
(ai|Al⊂Ai and Ar 6⊂Ai)

ai −
∑

(ai|Ar∪Al⊂Ai)

ai − 1

≥ 0

This implies either x > y when
∑

(ai|Al⊂Ai and Ar 6⊂Ai) ai 6= 0, or R is x = y when∑
(ai|Al⊂Ai and Ar 6⊂Ai) ai = 0.

Case 2: Choose u([n]−B) so that x benefits from no supersets of Al, but

not Ar ({S|Al ⊂ S and Ar 6⊂ S}) and no supersets of Ar, but not Al ({S|Ar ⊂
S and Al 6⊂ S}

Because x does not benefit from any of these superset, y must benefit from all of

51



them by Proposition 4.1.4. Therefore, we get the following difference

[x(Al−C(Al))y(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B)]v

− [y(Al−C(Al))x(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)u([n]−B)]v

= al −

 ∑
(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai + ar


=

1 +
∑

(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar∪Al⊂Ai)

ai


−

 ∑
(ai|Al⊂Ai and Ar 6⊂Ai)

ai +
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai + ar


= 1 +

∑
(ai|Ar∪Al⊂Ai)

ai −
∑

(ai|Ar⊂Ai and Al 6⊂Ai)

ai − ar

< 0

This implies that x < y.

Conclusion We have shown that there will always exists a pair of outcomes on B for

which the preference between them will change depending on the outcome on u[n]−B.

Thus, B is nonseparable.

Lemma 4.3.12. Consider a set B 6∈ χ where φ is a fine set decomposition of B with

χ and all the elements of φ are siblings in χ. The set B is not separable on the order

implied by v.

Proof. We will construct two outcomes xB 6= yB on B so that the relation between

x = xBu([n]−B) and y = yBu([n]−B) depends on u([n]−B).

We begin by selecting two elements in φ, the set of siblinks, to focus on. All the

elements of φ are siblings so they must have the same parent Ap. We have B ( Ap

because B /∈ χ. Let Q = Ap −B, which includes elements of Ap found in children of

Ap outside of B, including any ghost children of Ap.

Recall that the sibling chain ω is the set of siblinks for the children of Ap. This

sibling chain “connects” all the children and the ghost child of Ap. Therefore, there

must be a siblink made up from the union of two children of Ap such that one child

is in B and one child (or ghost child) is in Q. Let Al ⊂ B and As ⊂ Q. Let Ar be

any other element in φ. This Ar must exist: there is at least one more set from χ

contained in B because B /∈ χ. We denote the set of all children (including ghost

children) of set Ai in χ as C(Ai).
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We construct the following two outcomes:

x =(e(Al−C(Al))o(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)uAsu([n]−B−As))

y =(o(Al−C(Al))e(Ar−C(Ar))zC(Al)zC(Ar)z(B−Al−Ar)uAsu([n]−B−As))

where e(Al−C(Al)) and e(Ar−C(Ar)) are even, o(Al−C(Al)) and o(Ar−C(Ar)) are odd,

and zC(Al) and zC(Ar) are outcomes represented by a string of zeros. Note that

Al−C(Al) 6= ∅ and that Ar−C(Ar) 6= ∅ because they are part of a fine χ-construction

of B Take a moment to recognize that two outcomes with these conditions must exist.

Just as in the proof of the previous lemma, these outcomes benefit from the same

coefficients associated with elements of {∅, A1, A2, ..., [n]} that fall into the following

categories:

• Proper subsets of Al. S ⊂ Al

• Proper subsets of Ar. S ⊂ Ar

• Sets disjoint from both Al and Ar. S ∩ (Al ∪ Ar) = ∅

• Supersets of Al ∪ Ar. (Al ∪ Ar) ⊆ S

Now because Al and Ar have the same parent, there are no elements of χ that fall

into the categories

• Supersets of Al, but not Ar. Al ⊆ S, Ar 6⊆ S

• Supersets of Ar, but not Al. Ar ⊆ S, Al 6⊆ S

except for Al and Ar.

From our choice of outcomes, we know x will benefit from al, but not benefit from

ar. Similarly, y will benefit from ar, but not benefit from al. Now because Al and

Ar have the same parent, they are in the same generation. Therefore, al = ar. This

implies that the sums of the coefficients associated with elements of χ that x and y

benefit from are equal. So any preference difference between these outcomes must

come from coefficients associated with elements of ω.

Due to the structure for sibling chains, there are at most four elements of ω, the

union of sibling chains, which could be supersets of either Al or Ar, but not both.3

(Aα ∪ Al), (Al ∪ Aβ), (Aγ ∪ Ar), (Ar ∪ Aδ)
3The number of such links varies between two and four depending on whether As, Al, and Ar are

the outside components of the outside siblinks and where Al and Ar are in relation to one another
in the sibling chain. Note that the links (Al ∪Aβ) and must exist (Aγ ∪Ar); the other two do not
depending on if Al or Ar are outside components of the outside siblinks.
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The general situation for the parent Ap and its various children is depicted in Figure

4.6. In the cases we handle below, some of these child sets coincide, or are absent.

Ap

GAδArAγAsAβAlAα

Figure 4.6: A parent Ap and its children. The sets Al and Ar are subsets of the
χ-constructable set B, while As is not.

We chose our Al intentionally to guarantee that either Aα = As or Aβ = As.

We use this to split into two cases. Before tackling these two cases, we define some

supporting notation and clarify some assumptions. First, we assume that Al appears

before Ar in the sibling chain; this can be done because if Ar appeared before Al in the

sibling chain then we could simply “flip” the sibling chain by reversing the order we

used to construct it making Al come before Ar without changing structure.4 Now we

also denote the coefficient corresponding to the link (Aa ∪ Ab) as cab. Finally, reacall

that all links have the same magnitude. Furthermore, all even links have a positive

coefficient and all odd links have a negative coefficient. Compactly, we have cab = ±c.
Case 1: Aα = As

When Aα = As there are six distinct sibling chain structures describing the relationship

between the potential links.

1. {· · · (As ∪ Al), (Al ∪ Ar)}

2. {· · · (As ∪ Al), (Al ∪ Ar), (Ar ∪ Aδ) · · ·}

3. {· · · (As ∪ Al), (Al ∪ Aβ), (Aβ ∪ Ar)}

4. {· · · (As ∪ Al), (Al ∪ Aβ), (Aβ ∪ Ar), (Ar ∪ Aδ) · · ·}

5. {· · · (As ∪ Al), (Al ∪ Aβ) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}

6. {· · · (As ∪ Al), (Al ∪ Aβ) · · · (Aγ ∪ Ar)}

In the following subcases, we show that regardless of the sibling chain structure,

we can always construct outcomes which contradict separability on B.

Subcase 1.1: {· · · (As ∪ Al), (Al ∪ Ar)}
4The only change “flipping” the chain could make is making even links into odd links and making

odd links into even links which would change the signs of coefficient. The change of sign does not
matter, however, because if two links had the same sign before the flip they will have the same sign
after. Similarly, if two links had the different signs before the flip they will have different signs after.
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uAs is even uAs is odd
Only x benefits from csl Only y benefits from csl

Neither x nor y benefit form clr Neither x nor y benefit form clr
[x]~p − [y]~p = csl = c [x]~p − [y]~p = −csl = −c

Subcase 1.2: {· · · (As ∪ Al), (Al ∪ Ar), (Ar ∪ Aδ) · · ·} In both our outcomes x and y

we make the outcome on Aδ even, while maintaining agreement between x and y on

this set. 5

uAs is even, u[n]−B−As is all-zero uAs is odd, u[n]−B−As is all-zero
Only x benefits from csl Only y benefits from csl

Neither x nor y benefit form clr Neither x nor y benefit form clr
Only y benefits from crδ Only y benefits from crδ
[x]~p − [y]~p = csl − crδ = 0 [x]~p − [y]~p = −csl − crδ = −2c

Subcase 1.3: {· · · (As ∪ Al), (Al ∪ Aβ), (Aβ ∪ Ar)}
Subcase 1.3.1: Aβ ∈ B
If Aβ ∈ B, then we can swap the roles of Aβ and Ar to get

x =(e(Al−C(Al))o(Aβ−C(Aβ))zC(Al)zC(Aβ)z(B−Al−Aβ)uAsu([n]−B−As))

y =(o(Al−C(Al))e(Aβ−C(Aβ))zC(Al)zC(Aβ)z(B−Al−Aβ)uAsu([n]−B−As))

For which the sibling chain structure is covered by Subcase 1.2.

Subcase 1.3.2: Aβ 6∈ B

uAs is even, uAβ is odd uAs is odd, uAβ is even
Only x benefits from csl Only y benefits from csl
Only y benefits from clβ Only x benefits from clβ
Only x benefits from cβr Only y benefits from cβr

[x]~p − [y]~p = csl + cβr − clβ = 3c [x]~p − [y]~p = clβ − csl − cβr = −3c

Subcase 1.4: {· · · (As ∪ Al), (Al ∪ Aβ), (Aβ ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aβ odd and the outcome

on Aδ even, while maintaining agreement between x and y on these sets.

uAs is even uAs is odd
Only x benefits from csl Only y benefits from csl
Only y benefits from clβ Only y benefits from clβ
Only x benefits from cβr Only x benefits from cβr
Only y benefits from crδ Only y benefits from crδ

[x]~p − [y]~p = csl + cβr − clβ − crδ = 0 [x]~p − [y]~p = cβr − csl − clβ − crδ = −2c

5The outcomes still agree on everything except Al − C(Al) and Ar − C(Ar), so our previous
analysis still holds regardless of whether these sets are in B or [n] − B, which is why we do not
specify where they are unless necessary.
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Subcase 1.5: {· · · (As ∪ Al), (Al ∪ Aβ) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aβ even and the outcome

on Aδ even, while maintaining agreement between x and y on these sets.

uAs is even uAs is odd
Only x benefits from csl Only y benefits from csl
Only x benefits from clβ Only x benefits from clβ
Only y benefits from cβr Only y benefits from cβr
Only y benefits from crδ Only y benefits from crδ

[x]~p − [y]~p = csl + clβ − cβr − crδ = 0 [x]~p − [y]~p = clβ − csl − cβr − crδ = −2c

Subcase 1.6: {· · · (As ∪ Al), (Al ∪ Aβ) · · · (Aγ ∪ Ar)}
Subcase 1.6.1: Aγ ∈ B
If Aγ ∈ B, then we can swap our outcomes x and y for

x =(e(Al−C(Al))o(Aγ−C(Aγ))zC(Al)zC(Aγ)z(B−Al−Aγ)uAsu([n]−B−As))

y =(o(Al−C(Al))e(Aγ−C(Aγ))zC(Al)zC(Aγ)z(B−Al−Aγ)uAsu([n]−B−As))

For which the sibling chain structure will be covered by a previous case, either 1.2,

1.4, or 1.5. The particular case depends on whether Aγ ⊂ B

Subcase 1.6.2: Aγ 6∈ B

In both our outcomes x and y we make the outcome on Aβ even, while maintaining

agreement between x and y on this set.

uAs is even, uAγ is odd uAs is even, uAγ is even
Only x benefits from csl Only x benefits from csl
Only x benefits from clβ Only x benefits from clβ
Only x benefits from cγr Only y benefits from cγr

[x]~p − [y]~p = csl + clβ + cγr = c [x]~p − [y]~p = csl + clβ + cγr = −c

Case 2: Aβ = As

When Aβ = As there are eight distinct sibling chain structures describing the relation-

ship between the potential links.

1. {(Al ∪ As), (As ∪ Ar)}

2. {· · · (Aα ∪ Al), (Al ∪ As), (As ∪ Ar)}

3. {(Al ∪ As), (As ∪ Ar), (Ar ∪ Aδ) · · ·}

4. {· · · (Aα ∪ Al), (Al ∪ As), (As ∪ Ar), (Ar ∪ Aδ) · · ·}

5. {(Al ∪ As) · · · (Aγ ∪ Ar)}
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6. {(Al ∪ As) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}

7. {· · · (Aα ∪ Al), (Al ∪ As) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}

8. {· · · (Aα ∪ Al), (Al ∪ As) · · · (Aγ ∪ Ar)}

In the following subcases, we show that regardless of the sibling chain structure,

we can always construct outcomes which contradict separability on B.

Subcase 2.1: {(Al ∪ As), (As ∪ Ar)}

uAs is even uAs is odd
Only x benefits from cls Only y benefits from cls
Only y benefits from csr Only y benefits from csr

[x]~p − [y]~p = cls − csr = 2c [x]~p − [y]~p = csr − cls = −2c

Subcase 2.2: {· · · (Aα ∪ Al), (Al ∪ As), (As ∪ Ar)}
In both our outcomes x and y we make the outcome on Aα even, while maintaining

agreement between x and y on this set.

uAs is even uAs is odd
Only x benefits from cαl Only x benefits from cαl
Only x benefits from cls Only y benefits from cls
Only y benefits from csr Only x benefits from csr

[x]~p − [y]~p = cαl + cls − csr = c [x]~p − [y]~p = cαl + csr − cls = −3c

Subcase 2.3: {(Al ∪ As), (As ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aδ odd, while maintaining

agreement between x and y on this set.

uAs is even uAs is odd
Only x benefits from cls Only y benefits from cls
Only y benefits from csr Only x benefits from csr
Only x benefits from crδ Only x benefits from crδ

[x]~p − [y]~p = cls + crδ − csr = 3c [x]~p − [y]~p = csr + crδ − cls = −c

Subcase 2.4: {· · · (Aα ∪ Al), (Al ∪ As), (As ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aα even and the outcome

on Aδ even, while maintaining agreement between x and y on these set.

uAs is even uAs is odd
Only x benefits from cαl Only x benefits from cαl
Only x benefits from cls Only y benefits from cls
Only y benefits from csr Only x benefits from csr
Only y benefits from crδ Only y benefits from crδ

[x]~p − [y]~p = cαl + cls − csr − crδ = 0 [x]~p − [y]~p = cαl + csr − cls − crδ = −4c
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Subcase 2.5: {(Al ∪ As) · · · (Aγ ∪ Ar)}

In both our outcomes x and y we make the outcome on Aγ even, while maintaining

agreement between x and y on this set.

uAs is even uAs is odd
Only x benefits from cls Only y benefits from cls
Only y benefits from cγr Only y benefits from cγr

[x]~p − [y]~p = cls − cγr [x]~p − [y]~p = −cls − cγr
If cls = cγr then in the first column the difference is 0 and in the second column

the difference is −2cls. If cls = −cγr then in the first column the difference is 2cls and

in the second column the difference is 0.

Subcase 2.6: {(Al ∪ As) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aα even and the outcome on

Aγ even, while maintaining agreement between x and y on these sets.

uAs is even uAs is odd
Only x benefits from cls Only y benefits from cls
Only y benefits from cγr Only y benefits from cγr
Only y benefits from crδ Only y benefits from crδ

[x]~p − [y]~p = cls − cγr − crδ = c [x]~p − [y]~p = −cls − cγr − crδ = −c

Subcase 2.7: {· · · (Aα ∪ Al), (Al ∪ As) · · · (Aγ ∪ Ar), (Ar ∪ Aδ) · · ·}
In both our outcomes x and y we make the outcome on Aα even, the outcome on Aγ

even, and the outcome on Aδ even while maintaining agreement between x and y on

these sets.

uAs is even uAs is odd
Only x benefits from cαl Only x benefits from cαl
Only x benefits from cls Only y benefits from cls
Only y benefits from cγr Only y benefits from cγr
Only y benefits from crδ Only y benefits from crδ

[x]~p − [y]~p = cαl + cls − cγr − crδ = 0 [x]~p − [y]~p = cαl − cls − cγr − crδ = −2c

Subcase 2.8: {· · · (Aα ∪ Al), (Al ∪ As) · · · (Aγ ∪ Ar)}
Subcase 2.8.1: Aγ ∈ B
If Aγ ∈ B, then we can swap our outcomes x and y for

x =(e(Al−C(Al))o(Aγ−C(Aγ))zC(Al)zC(Aγ)z(B−Al−Aγ)uAsu([n]−B−As))

y =(o(Al−C(Al))e(Aγ−C(Aγ))zC(Al)zC(Aγ)z(B−Al−Aγ)uAsu([n]−B−As))

For which the sibling chain structure will be covered by a previous case.
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Subcase 2.8.2: Aγ 6∈ B
In both our outcomes x and y we make the outcome on Aα even, while maintaining

agreement between x and y on this set.

uAs is even, uAγ is odd uAs is even, uAγ is even
Only x benefits from cαl Only x benefits from cαl
Only x benefits from cls Only x benefits from cls
Only x benefits from cγr Only y benefits from cγr

[x]~p − [y]~p = csl + clβ + cγr = c [x]~p − [y]~p = csl + clβ + cγr = −c
Conclusion

We have shown that we can always construct two outcomes x and y that agree on

B for which the relation between them is depends the outcome on u([n]−B).
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Chapter 5

Conclusion

In this thesis we presented a new method for representing, creating, and understanding

preferences in binary contexts. Central to this method is the voter basis. Our primary

results include Theorem 3.2.17 and Theorem 4.2.6.

Theorem 3.2.17 described how completely separable preference vectors are written

in terms of the voter basis. The finding, that basis vectors indexed by nontrivial, even

subsets have a 0 coefficient is significant and provides insight into the properties of

completely separable preference orders. We hope this will aid researches in determining

the number of such orders for arbitrary n.

Theorem 4.2.6 proves, by construction, that for any tree character, we can always

building a corresponding preference vector. We note that the number of tree characters

grows very quickly with n. Proving that this such a large class of characters is

admissible and that we can systematically create preference vectors for them greatly

justifies our new approach to character construction.

We see this new approach to understanding preference separability as opening many

doors for further analysis. We are eager to pursue many questions. When decomposed

by the voter basis, what other patterns can we find for completely separable preference

vectors? Can we count the number of tree characters for arbitrary n? Can we develop

other algorithms using the voter basis to construct families other than tree characters?

What insight does are approach have on the question on the existence of inadmissible

characters? Additionally, we acknowledge a connection to boolean term orders, what

implications does such a connection imply?
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Glossary

binary preference matrix A matrix describing an individual’s strict preferences

on referendum election outcomes. 7

cardinal preference vector A preference vector where entries are based on utility

of indexing outcomes. 10

character The set of all separable sets for a given preference order. 15

election outcome An outcome corresponding to a referendum with n proposals.

Can be understood as either a binary string or as the set of passing proposals.

Denoted by lowercase letters . 7

Hasse diagram A graph describing the structure of a poset. 38

ordinal preference space A preference vector where only the order of preference is

considered. 10

partial election outcome An outcome corresponding to a subset of proposals from

an n proposal referendum. Can be understood as either a binary string or as

the set of passing proposals. Denoted by lowercase letters with a subscript

corresponding to relevant subset. Disjoint partial election outcomes can be

concatenated to produce larger partial election outcomes, xSu[n]−S . 13

preference order A ranking over a set based on a preference relation. Denoted as

�P or �[ n], where P is the preference relation and [n] is the set of proposals

for a referendum. 6

preference relation A binary relation that is both complete and transitive. 6

preference space A 2n dimensional vector space corresponding to a referendum with

n proposals where entries of vectors are indexed by election outcomes. Denoted

at P n. 8
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separability problem The existence of preference interdependence among proposals

for an individual voter in a referendum election. 1

separable The quality of preference independence between a set and its complement.

14

tree character A character where the corresponding Hass diagram is a tree. 38

trivially separable The quality of preference independence between a set and its

complement where all outcomes on the set are equally preferred. 14
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Appendix A

CZ2 o Sn-Modules

Note: The results of this section we proven by Tom Halverson [7].

The action defined in the previous section makes our preference space P n a

CZ2 o Sn-module.

A.1 Set notation

Throughout this section, let n ∈ Z≥0 and define

[n] = {1, 2, . . . , n} (A.1)

2[n] = the set of all subsets of [n] (A.2)(
[n]

k

)
= the set of all subsets of [n] of order k (A.3)

so that
∣∣2[n]

∣∣ = 2n and
∣∣∣([n]k )∣∣∣ =

(
n
k

)
.

A.2 The hyperoctahedral group G2,n = Z2 o Sn
Let G2,n = Z2 o Sn = Zn2 o Sn be the hyperoctahdral group. It is the wreath product of

Z2 with Sn and, equivalently, the semidirect product of Zn2 with Sn. It is generated by

the symmetric group Sn and the elements t1, . . . , tn which generate Zn2 . These can be

represented as all monomial matrices with nonzero entries chosen from {1,−1}. Then

Sn is the subgroup of all matrices whose nonzero entries are 1, and Zn2 is the subgroup

of diagonal matrices, and ti is the diagonal matrix with −1 in position (i, i) and 1’s in

the other diagonal positions.

Generators and relations G2,n is generated by t1, s1, . . . , sn−1, where si = (i i1),

subject to the relations

s2i = 1, sisj = sjsi, sisi+1si = si+1sisi+1 (t1s1)
4 = 1.
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(need to put in appropriate bounds on subscripts)

Conjugacy classes

A.3 Irreducible CG2,n modules

The irreducible representations of G2,n are indexed by pairs of partitions (λ, µ) with

|λ|+|µ|= n. We let V(λ,µ) denote the irreducible CG2,n module indexed by (λ, µ).

A. Young has given an explicit description of the action of the generators of G2,n on

this module. This representation is known as Young’s seminormal representation (see

for example [15] or [6]). Let Sλ,µ be the set of standard tableaux of shape (λ, µ). More

needs to be said here. The basis of V(λ,µ) is indexed by

V(λ,µ) = C-span{ yt | t ∈ Sλ,µ}

Action of generators: it would be nice to spell it out here.

A.4 One-line CG2,n modules

In the case where the two partitions λ and µ consist of a single part this representation

is especially simple and elegant. Let (λ, µ) = ((k), (n − k)), which we will simply

denote as (k, n− k). In this case, there is a natural bijection between: (i) standard

tableaux of shape (k, n − k); (ii) binary strings of length n with k ones; and (iii)

subsets
(
[n]
k

)
as illustrated here:

( 1 2 3 , 4 5 ) ( 1 2 4 , 3 5 ) ( 1 2 5 , 3 4 ) ( 1 3 4 , 2 5 ) ( 1 3 5 , 2 4 )
11100 11010 11001 10110 10101
{1, 2, 3} {1, 2, 4} {1, 2, 5} {1, 3, 4} {1, 3, 5}

( 1 4 5 , 2 3 ) ( 2 3 4 , 1 5 ) ( 2 3 5 , 1 4 ) ( 2 4 5 , 1 3 ) ( 3 4 5 , 1 2 )
10011 01110 01101 01011 00111
{1, 4, 5} {2, 3, 4} {2, 3, 5} {2, 4, 5} {3, 4, 5}

The symmetric group Sn acts naturally on subsets in
(
[n]
k

)
by permutation of the

elements of the subset. That is, if A = {a1, a2, . . . , ak} ⊆ [n] and σ ∈ Sn, then

σ(A) = {σ(a1), σ(a2), . . . , σ(ak)}. For example if σ = (1 2 5)(3 4) in cycle notation,

then in our three equivalent notations

σ(( 1 2 3 , 4 5 )) = ( 2 4 5 , 1 3 )

σ(11100) = 01011

σ({1, 2, 3}) = {2, 4, 5}
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For 0 ≤ k ≤ n, let

V(k,n−k) = C-span

{
yT | T ∈

(
[n]

k

)}
.

The seminormal action of G2,n on this basis is given as follows. For any basis element

yt of V(k,n−k) with T ∈
(
[n]
k

)
, define

σ · yT = yσ(T ), for σ ∈ Sn,

ti · yT =

{
yT , if i ∈ T ,
−yT , if i 6∈ T ,

for 1 ≤ i ≤ n.
(A.4)

Extend these actions linearly to all of V(k,n−k) and extend them to all of G2,n using

the fact that σ ∈ Sn and ti ∈ Znk generate G2,n. Observe that in both cases of (A.4),

the cardinality of the subset is preserved and so V(k,n−k) is G2,n-invariant. A. Young

proves that this action makes V(k,n−k) a G2,n module and that it is irreducible. That it

is a representation is easy enough; check the relations: s2i = 1, sisj = sjsi, sisi+1si =

si+1sisi+1 and (t1s1)
4 = 1. Irreducibility is done by induction on n and the restriction

from G2,n to G2,n−1.

Note: This can all be done over the field Q for the hyperoctahedral group. But if

we generalize to Gr,n then we will need to use C because the eigenvalues of the ti are

complex.

A.5 The Binomial Representation

Let Wn be the 2n dimensional C-vector space

Wn = C-span
{
wT | T ∈ 2[n]

}
(A.5)

Define an action of G2,n on Wn as follows. For any basis element wT of Wn, with

T ∈ 2[n], define
σ · wT = wσ(t), for σ ∈ Sn,

ti · wT = wti(T ), for 1 ≤ i ≤ n,
(A.6)

where

ti(T ) =

{
T ∪ {i}, if i 6∈ T ,
T \ {i}, if i ∈ T .

(A.7)

The action in (A.6) is extended linearly to all of V(k,n−k) and extended to all of G2,n

using the fact that σ ∈ Sn and ti ∈ Znk generate G2,n.
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Remark A.5.1. A few observations.

1. If T is given in binary string notation then ti “flips” the ith bit, and if T is

given in tableau notation then ti moves i from one tableau to the other.

2. The action of a permutation σ preserves the cardinality of the indexing subset T

but the action of ti either increases or decreases the cardinality of T by 1.

Proposition A.5.2. The action defined in (A.6) makes Wk a CG2,n module.

Proof. We must check the defining relations.

Change basis

Inside of Wk, for each S ∈ 2[n], we define,

uT =
∑
S∈2[n]

sgn(T, S)wS (A.8)

where

sgn(T, S) = (−1)|T∪S|. (A.9)

For example, here is a table of the values of the coefficients sgn(T, S) = (−1)|T∪S| for

n = 3 and using binary string notation for the subsets.

111 110 101 011 100 010 001 000
111 1 1 1 1 1 1 1 1
110 1 −1 1 1 −1 −1 1 −1
101 1 1 −1 1 −1 1 −1 −1
011 1 1 1 −1 1 −1 −1 −1
100 1 −1 −1 1 1 −1 −1 1
010 1 −1 1 −1 −1 1 −1 1
001 1 1 −1 −1 −1 −1 1 1
000 1 −1 −1 −1 1 1 1 −1

Proposition A.5.3. For 0 ≤ k ≤ n and T ∈
(
[n]
k

)
, we have

σ · uT = uσ(T ), for σ ∈ Sn,

ti · uT =

{
uT , if i ∈ T ,
−uT , if i 6∈ T ,

for 1 ≤ i ≤ n.
(A.10)
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Proof. First, observe that for any σ ∈ Sn and any S, T ∈ 2[n] we have sgn(σ(T ), σ(S)) =

sgn(T, S). Thus

σ·uT =
∑
S∈2[n]

sgn(T, S)σ·wS =
∑
S∈2[n]

sgn(T, S)wσ(S) =
∑
S∈2[n]

sgn(σ(T ), σ(S))wσ(S) = uσ(T ),

where the last equality comes from the fact that summing over S is equivalent to

summing over σ(S). Second, observe that if i ∈ T then sgn(T, S) = sgn(T, ti(S)) and

if i 6∈ T then sgn(T, S) = −sgn(T, ti(S)), and these statements hold for all S, T ∈ 2[n].

Thus,

ti · uT =
∑
S∈2[n]

sgn(T, S) ti · wS =
∑
S∈2[n]

sgn(T, S)wti(S) =
∑
S∈2[n]

sgn(T, ti(S))wti(S).

Now if i ∈ T then this sum equals uT and if i 6∈ T then this sum equals −uT . This

uses the fact that summing over S is equivalent to summing over ti(S). (maybe we

should write out both cases).

Now, for each 0 ≤ k ≤ n, define the subspace

W(k,n−k) = C-span

{
uT | T ∈

(
[n]

k

)}
⊆ Wn. (A.11)

Corollary A.5.4. For each 0 ≤ k ≤ n the subspace W(k,n−k) is an irreducible G2,n-

module that is isomorphic to V(k,n−k), the action of G2,n on the basis {uT | T ∈
(
[n]
k

)
}

is exactly Young’s seminormal action (A.10), and Wk decomposes into irreducible

G2,n-modules as

Wk ∼=
n⊕
k=0

W(k,n−k). (A.12)

In particular, for each 0 ≤ k ≤ n the module W(k,n−k) appears as a submodule of Wk

with multiplicity exactly 1.
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