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Whole-cortex mapping of common genetic
influences on depression and a social
deficits dimension
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Abstract
Social processes are associated with depression, particularly understanding and responding to others, deficits in which
can manifest as callousness/unemotionality (CU). Thus, CU may reflect some of the genetic risk to depression. Further,
this vulnerability likely reflects the neurological substrates of depression, presenting biomarkers to capture genetic
vulnerability of depression severity. However, heritability varies within brain regions, so a high-resolution genetic
perspective is needed. We developed a toolbox that maps genetic and environmental associations between brain and
behavior at high resolution. We used this toolbox to estimate brain areas that are genetically associated with both
depressive symptoms and CU in a sample of 258 same-sex twin pairs from the Colorado Longitudinal Twin Study (LTS).
We then overlapped the two maps to generate coordinates that allow for tests of downstream effects of genes
influencing our clusters. Genetic variance influencing cortical thickness in the right dorsal lateral prefrontal cortex
(DLFPC) sulci and gyri, ventral posterior cingulate cortex (PCC), pre-somatic motor cortex (PreSMA), medial precuneus,
left occipital-temporal junction (OTJ), parietal–temporal junction (PTJ), ventral somatosensory cortex (vSMA), and
medial and lateral precuneus were genetically associated with both depression and CU. Split-half replication found
support for both DLPFC clusters. Meta-analytic term search identified “theory of mind”, “inhibit”, and “pain” as likely
functions. Gene and transcript mapping/enrichment analyses implicated calcium channels. CU reflects genetic
vulnerability to depression that likely involves executive and social functioning in a distributed process across the
cortex. This approach works to unify neuroimaging, neuroinformatics, and genetics to discover pathways to psychiatric
vulnerability.

Introduction
As depression follows a normal distribution of risk

across the population1, relating depression to psycholo-
gical features will better define pathways for addressing
disorder vulnerability2. In particular, disruption in the
ability to process social cues is associated with depressive
symptomology, and can lead to increased deficits in daily
functioning in both patient and subclinical groups3.

Depressed individuals’ symptoms relate to specific facets
of social behavior, namely, reasoning through others
emotions4–6, fitting under the “understanding mental
states” subcategory of the “social dimensions” construct in
the US National Institute of Mental Health Research
Domain Criteria (RDoC) matrix. Many forms of social
response have been associated with depression7, and it is
thought that broad deficits in social functioning may be
influential in categories of severe depression. In particular,
social deficits in theory of mind, the ability to understand
others’ thoughts, are related to poor mentalizing/meta-
cognition, or inability to understand the self. Further,
theory of mind predicts depression diagnosis above and
beyond metacognition in behavioral studies8.
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An inability to understand and respond to others’
emotions due to multiple cognitive deficits may manifest
as callousness/unemotionality (CU8), which has been
suggested as a marker of internalizing disorder symptom
severity9,10. Although typically examined in the context of
externalizing disorders9–11, CU has also been consistently
associated with depression12,13. This association may arise
because, while CU reflects a disregard for others, CU has
been related directly to theory of mind, empathy skills,
and social processing14, including emotional under-
standing in social contexts12. Thus, poor social proces-
sing/CU may be a mechanism that indexes depression
severity15 or sustains depression3. Finally, as CU is related
to multiple forms of empathetic behaviors, including
cognitive and social-emotional responses, it forms an
important first step in exploring the biological overlap
between social processes and depression.
Multiple biological perspectives could advance our

understanding of CU in depression. Family and genetic
studies can estimate the relative importance of genes and
environments across traits. Coinheritance between
depression and CU is likely, as behavior genetics has
established that depression is partially genetic in origin16.
Further, a recent genome-wide association analysis
implicated over 150 genes in depression etiology1, any of
which could relate more specifically to social processing.
However, genes/variants and their downstream mechan-
isms are difficult to scrutinize17.
In contrast to this lack of contextualization and deep

phenotyping in genetic research, brain mapping integrates
onto other areas of biology/psychology (like tran-
scriptomics18 and potential cognitive functions19), thanks
to the specificity gained when using high-resolution brain
maps. Here, we implement an integrative framework in
which we directly map brain areas in which genetic
influences on CU and depression overlap. Specifically, the
goal of the current study is test whether CU captures
some of the genetic vulnerability to depression; and
localize the brain areas contributing to this vulnerability.
These genetically associated brain areas can then be used
with biological and neuro-informatic tools for mapping
across different levels within the RDoC matrix, such as
RNA expression and biological pathway analyses, to
expand understanding of the coinheritance of CU and
depression.

Depression and CU in the brain
Spatial brain mapping studies can localize where beha-

vioral measures are associated with brain morphology. By
overlaying neural correlates of depression with neural
correlates from other measured behaviors, we gain spe-
cificity with respect to areas associated with particular
aspects of depression. While the neuroanatomical corre-
lates of depression and CU have been studied extensively,

this will be the first study examining their anatomical
overlap.
The largest meta-analysis of neuroanatomical differ-

ences in depression to date used region of interest (ROI)
measures of cortical thickness. It found that major
depressive disorder (MDD) was associated with cortical
thinning in the insula, anterior and posterior cingulate,
and temporal gyri:20 areas key in salience21, internal
mentation22, and switching between internal thought and
executive control23. However, this ROI approach does not
consider how subcomponents of large ROIs may differ-
entially relate to more specific facets of psychological
phenomena. A meta-analysis of voxel-based morpho-
metry (VBM) studies, which employed a voxel-wise spatial
resolution, found that MDD was associated with lower
brain volume in specific subregions of the rostral anterior
cingulate cortex and the dorsolateral and dorsomedial
frontal cortex24. And the anterior cingulate cortex shows
differential gene expression and differential task activation
across the ROI25. Thus, whole-brain approaches that
employ a finer degree of spatial resolution are warranted.
With respect to neuroanatomical correlates of CU,

decreases in volume of the rostral and dorsal cingulate
cortex have been observed, overlapping spatially with
regions that have been identified for depression26. Addi-
tionally, the rostral and dorsal anterior cingulate cortex
areas that overlap between CU and depression were also
found to distinguish suicidal cases from controls in
another VBM study27, giving some evidence to support
our hypothesis that CU represents a social severity
dimension of depression and that depression and CU
symptoms should be jointly studied.

This study
The goal of this study is to capture the dimension of

depression that overlaps with CU and validate this
approach by integrating results from across the imaging
genetics literature through one analytical pipeline. Ima-
ging can act as a conduit to understand the mechanisms
of genetic effects but also transcriptomics, cognition, and
behavior. Mapping genetic association with behavior
across the brain enables us to explore multiple levels of
biological analysis simultaneously and look for con-
vergence across them to validate theories of behavior.
Using structural magnetic resonance imaging (MRI)

data from 258 young adult twin pairs, we asked, where are
the genes influencing the vulnerability to social deficits
and depression influencing brain morphology? Do these
morphological differences overlap? And, can we map a
specific pattern and use this pattern to speculate further
on mechanisms? To answer these questions, we used the
methodology pictured in Fig. 1 (a tutorial for this
approach can be found on our github: https://github.com/
AlexHatoum/Wild-Card-Toolbox). In step 1, we
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estimated the genetic and environmental association
between depression and CU to evaluate the relative
importance of shared inherited vulnerability. In step 2, we
developed a toolbox that creates genetic and environ-
mental brain maps for each trait. Rather than map stan-
dard beta coefficients (i.e., clusters associated with

phenotypic variability), our procedure maps effect sizes
for genetic and environmental variances (i.e., clusters
associated with our traits via a genetic or environmental
etiology), creating brain maps of genetic association
between cortical thickness and the two behavioral traits.
We estimate areas that represent the genetic vulnerability
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Ques�on: Are there clusters of gene�c 
predic�on for each scale? Ques�on: Do the gene�c clusters overlap?

Ques�on: What is the e�ological associa�on between each vertex and each 
behavior?

Method: Vertex-wise bivariate Cholesky decomposi�on for each behavioral scale

Method: Con�guous cluster analysis Method: Overlay gene�c clusters  for both scales

Ques�on: What is the spa�al overlap 
of our analyses and func�on?

Method: (1) Neurosynth meta-analysis 
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Fig. 1 Five steps for whole-cortex mapping by genetic association and follow-up using informatic tools. a Additive genetic (A), Common
environmental (C) and non-shared Environmental (E) Cholesky decomposition is used to find the etiological association of each vertex with each
behavioral scale. Multiplication of standardized paths labeled 11 and 12 represents the phenotypic correlations predicted by additive genetic
(bivariate heritability) and non-shared environmental (bivariate environmentality) influences, respectively. b Vertices whose associations with
behavior are significant (p < 0.05) and are part of a contiguous cluster of larger than 20 mm (cluster-extent correction) are estimated across the cortex
surface separately by each trait and separately for A and E components. This procedure recovered four categories of clusters: additive genetic clusters
influencing CESD, additive genetic clusters influencing ICU, non-shared environmental clusters influencing CESD, and non-shared environmental
clusters influencing ICU. c Areas that represent significant conjunction of genetic association are created by overlaying the genetic clusters from
CESD and ICU after cluster-extent correction. d The coordinates for overlap were transformed in MNI space and were used to map onto the Yeo 7
functional connectivity patterns and conduct meta-analytic term searches of likely associated functions. e Genes associated with depression in a large
genome-wide association study were extracted from Neurosynth-gene/Allen Brain Atlas dataset to examine the expression of each of those genes in
our clusters
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to CU and depression by overlaying the clusters from the
separate depression and CU genetic maps onto one map.
Finally, by integrating these brain maps with neuroinfor-
matic tools in step 3, we can begin to characterize likely
functions and specific molecular mechanisms of the genes
influencing CU and depression, which is impossible in a
standard biometrical design. Specifically, in step 3, we
used MNI coordinates to align our genetically associated
clusters with a meta-analytic database of effects across
multiple Functional Magnetic Resonance Imaging (fMRI)
and transcriptomic studies. By using the spatial coordi-
nates, we can further investigate our hypothesis about the
overlap by comparing our coarser genetically derived
phenotypes to results from studies using more specific
cognitive functions. Thus, our main analysis is the gen-
eration of genetically influenced brain map for depression
and CU, and our follow-up analyses explore likely effects
of this genetic variance implicated by this map by using
high-resolution brain coordinates.
We conduct this analysis in a general population sample

to include subsyndromal levels of depression and CU
within a large enough sample to find patterns of coher-
itability between brain and phenotype. We chose high-
resolution brain mapping because prior literature in
neuroimaging genetics suggests vertex-wise approaches
will more appropriately capture the individual differences
patterns of genetic effects. In particular, common brain
atlases used in anatomical research were derived agnos-
tically to genes influencing individual differences and do
not capture the specificity of the architecture of genetic
effects on behavioral traits, as has been shown for
language-related brain areas28. Further, past work has
shown there are differences in the genetic variance
structure within and between commonly utilized ROIs;
thus, measuring genetic variability in ROIs vs. vertices
leads to relative differences in genetic variance effects
between regions being overestimated29 and more fine-
grained metrics, such as voxel or vertex measures, are
preferable to ROI approaches for making comparisons
across the cortex for individual differences genetics29.
Notably for this study, it is these genetic individual dif-
ferences patterns that are implicated in the mechanisms
of psychopathology, requiring high-resolution coordinates
to specify accurately. Finally, using high-resolution ana-
lysis and Montreal Neurological Institute coordinates
(MNI) coordinates allows for integration with functional
and transcriptomics literature more broadly.

Methods and materials
Sample
Participants were 258 same-sex twin pairs (225 com-

plete, 120 monozygotic (MZ), and 115 dizygotic (DZ), 132
female pairs and 93 male pairs; singletons were used in

calculating the mean and variance), aged 28–31 years
(M= 28.7, SD= 0.6), recruited from the Colorado Long-
itudinal Twin Study (LTS). Twin pairs who had com-
pleted an ongoing neuroimaging study of neural
substrates of executive functions and psychopathology
and whose imaging data passed quality control were
included. More about the sample can be found in the
online methods.

Structural MRI scan
Images were acquired on a Siemens Prisma and Trio 3

Tesla MRI scanner with 32-channel parallel imaging
located at the University of Colorado Boulder. The total
scanning session lasted 1 h 25min; the current analyses
focus on gray matter structure, obtained with a high-
resolution T1-weighted Magnetization Prepared Gradient
Echo sequence in 224 sagittal slices, with a repetition time
(TR)= 2400ms, echo time (TE)= 2.01 ms, flip angle= 8°,
field of view (FoV)= 256 mm, and voxel size of 0.8 mm3.

Behavioral assessment
On the day of the scan, participants completed the

Center for Epidemiological Studies-Depression (CESD)
scale, a 20-item Likert scale assessing the frequency of
past-week depression symptoms30. We chose this mea-
sure because tendencies toward an emotional vulner-
ability should manifest itself in higher frequency of
depression, we wanted to include subsyndromal levels of
depression, and this measure has shown reasonable sta-
bility across 10 years of longitudinal data31.
Prior to the scanning session, participants completed an

online questionnaire battery that included the Inventory
of Callous and Unemotional traits (ICU)13, a 24-item
Likert questionnaire with three subscales: callousness
(e.g., The feelings of others are unimportant to me),
uncaring (e.g., I do things to make others feel good, reverse
coded), and unemotional (e.g., I do not show my emotions
to others). We used this scale as a measure of CU because
it has been used to define clinical subtypes of conduct
disorder in the past13, the ICU total score relates to social
and emotional processing12, and, though the factor
structure changes in adulthood, the scale retains a high
internal consistency and predicts social, emotional, and
depressive behaviors in individuals similar in age to our
sample13. We conducted all analyses with the ICU total
scale, which is more reliable and normally distributed
than the subscales, which were all highly intercorrelated
(see Supplemental Table S1).
For the CESD and ICU, the dependent variable was the

average item rating provided that at least 80% of the items
were answered, multiplied by the number of items. To
improve normality, both scales were square-root trans-
formed (see Supplemental Table S1).
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Data analysis
All cortical thickness estimates were processed using a

standard Freesurfer pipeline32 (full description in online
methods). Each vertex and psychopathology measure was
residualized on brain mean thickness and sex prior to
model estimation.
Behavioral genetic ACE models decompose phenotypic

variance into three sources: Additive genetic (A; the sum of a
large number of genetic variants), Common environmental
(C; environmental influences that lead siblings to correlate),
and non-shared Environmental (E; environmental influences
that lead siblings to not correlate). Because MZ twins share
all their genes, their additive genetic influences correlate 1.0;
DZ twins share on average half their genes identical by
descent, so their additive genetic influences correlate 0.5. By
definition, C effects correlate 1.0 and E effects correlate 0.0
for both types of twins.
To examine the genetic and environmental covariance

between the psychopathology measures and brain mea-
sures, the standard ACE model for a single variable can be
extended to multivariate analyses. To ensure that the
estimated component covariance matrices are positive
definite, they are expressed as the product of a lower
triangular matrix and its transpose (Fig. 1a). This is the
Cholesky decomposition33, which decomposes the phe-
notypic covariance between two measures into that
explained by genes and environments. The genetic cor-
relation (rG) of the two phenotypes equals (a11 × a12)/
√(a112 × (a122+ a22)).

Depression and CU coinheritance
To examine the etiological overlap between depression

and CU, we started by estimating their phenotypic overlap
through a partial correlation analyses (accounting for sex
and mean cortical thickness). We used a series of structural
models to show that our association is specific to our
measure of depressive symptom frequency and CU, rather
than a broad psychiatric vulnerability (Supplemental Fig. S1).
Finally, we used a standard bivariate Cholesky decomposi-
tion to estimate the relative contribution of genes and
environment to the overlap between the measures.

Discovery procedure for brain maps
The analysis plan is shown in Fig. 1. For each vertex, we

estimated a separate Cholesky decomposition with the
first variable being the vertex and the second being the
CESD or ICU scale. We noticed substantial C variance
across some areas of the cortex (Supplemental Fig. S2), so
we specified our Cholesky decompositions with a freed C
path loading on the vertex but set the C cross path and
specific C loading on the psychopathology variable to be
zero, as there were no C effects on the CESD or ICU
measures. We then computed the parameter representing
the bivariate heritability, the phenotypic correlation

predicted by the overlap in genetic influences (standar-
dized a11 × a12), at each vertex and projected it to a
surface map in Freeview34 to create whole-cortex heat
maps of genetic effects on the brain-behavior association.
From the generated whole-cortex map, we estimated
clusters above significance for CESD and ICU, respec-
tively, and then overlaid the CESD and ICU clusters.
To determine significant clusters for each disorder, we

(1) estimated a chi-square difference test p-value for each
Cholesky bivariate cross path, and (2) used vertex-wise
cluster extent p-value correction of values below (0.05)
significance at a window of twice the original smoothing
kernel (i.e. cluster extent threshold= 20 mm). We chose
this procedure partially due to its practicality in integra-
tion with genetic estimates and to estimate clusters that
were contiguous for follow-up analyses.

Split-half replication
To explore the replicability of our approach, we split

our sample into halves by families (so that twin pairs
would be kept together) by random draw (sample 1, n=
132 pairs; sample 2, n= 126 pairs) and ran the full ana-
lyses separately in each sample. In each half of the sample
we used a conjunction minimum alpha of 0.05 (ref. 35) and
cluster-extent correction of 20 mm to define significant
clusters. We then overlaid the clusters from (1) the full
sample analysis, (2) the analysis in sample 1, and (3)
analysis in sample 2. Because the full sample was more
conservative than either half, we used the criterion of
significant overlap in all three analyses as our standard,
i.e., a cluster must have been independently associated
below the split-half criteria in both half-samples and by a
more conservative threshold with the full sample for us to
have high confidence in its effect.

Transcripts, cell types, and functions associated with our
genetic clusters
Using MNI coordinates, we examined the overlap of our

clusters with other sources of data: (1) the Allen brain
atlas transcriptomic atlas and genome-wide association
study (GWAS) results from the Psychiatric Genomics
Consortium depression mega-analyses of 480,359 indivi-
duals1, (2) Neurosynth meta-analytical database of func-
tional activation across over 10,000 fMRI studies19, and
the (3) Yeo 7-network parcellation36.
With the Allen brain atlas, we took the list of associated

genes from the psychiatric genomics consortium MDD
GWAS gene-burden results1 and used Allen brain atlas
through Neurosynth gene37 by downloading each gene
image, renormalizing it across the cortex with FMRIB
Software Library (FSL38) and visualizing its expression.
We excluded genes from the major histocompatibility
complex, as these associations may be spurious due to
long-range linkage disequilibrium, and any genes not
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obtained through RNA arrays in the Allen brain atlas,
leaving us with 100 genes. We put the expression values
by each region in one matrix with k-means clustering. We
used the elbow method (Supplemental Fig. S3) to see how
many genetic clusters were recovered from our analyses.
We then put the gene list of each cluster through the
Reactome39 pathway analysis database, using False Dis-
covery Rate (FDR) to account for multiple comparisons.
With Neurosynth, we entered our clusters from the

discovery sample into Neurosynth decoder to obtain
“terms” that were most associated with functional acti-
vation across studies, as determined by a meta-analytic
naïve Bayes classifier across over 10 000 fMRI studies19.
This analysis finds which of our coordinates most overlap
with those found in the literature and which terms (fMRI
patterns, tasks, or studied behaviors) are associated with
those studies. We then identified which of these terms
most commonly appeared across clusters (after filtering
out non-specific brain terms). Finally, we overlaid the
coordinate of our clusters on the seven resting-state
networks from the Yeo parcellation36 to identify to which
networks the clusters belonged.

Results
Is CU genetically correlated with depressive symptoms?
We began by estimating the phenotypic, genetic, and

environmental overlap between depressive symptom fre-
quency, measured by the CESD, and CU, measured by the
ICU. Figure 2 shows the AE Cholesky decomposition.
Based on the best fitting models for each univariate trait,
C paths were not estimated (see Supplemental Table S2
for full model comparisons for each trait). Their genetic
correlation (rG) was 0.40 (p < 0.001, see Supplemental
Table S3 for genetic correlations between CESD and the
ICU callous, uncaring, and unemotional subscales). The
environmental correlation (rE) was not significantly

greater than zero (rE= 0.04, p= 0.500). We concluded
that the correlation between CU and depressive symp-
toms was due almost entirely to genetic covariance.

Where are CU/depressive symptom genetic influences
related to brain morphology?
We created a map of areas where cortical thickness

genetically correlated with CESD and ICU scores. We
then overlaid the clusters from the two maps to discover
regions that showed conjunction for genetic prediction.
As shown in Fig. 3 and Table 1, we found that genetic

influences on thicker cortex in the right dorsal lateral
prefrontal cortex (DLFPC) sulci, the right pre-somatic
motor cortex (PreSMA), left medial and lateral precuneus,
occipital-temporal junction (OTJ), and temporoparietal
junction (TPJ) were associated with both traits (i.e., these
areas showed positive genetic associations above sig-
nificance with both measures). We found genetic influ-
ences on thinner cortex in the right ventral posterior
cingulate cortex (PCC), right medial precuneus, right
DLPFC gyrus, and left ventral somatosensory cortex in
the pathophysiology of both traits. Finally, split-half
replication gave support for both right DLPFC areas in
the same direction as discovered in the full sample
(Supplemental Fig. S4). Comparison to phenotypic maps
(Supplemental Fig. S5) showed that overlay regions dis-
covered would have been qualitatively different without
the genetic approach, as phenotypic areas did not overlap
substantially with our genetic areas.
Our method also creates an environmental association

map. If genetic and environmental association are in the
same direction, it is consistent with an explanation of
causality40, though not sufficient to establish a causal
relationship. Environmental associations were not con-
sistently in the same direction of effect as the genetic
clusters (see Supplemental Fig. S6). Thus, from the

CESD-R Total 
ICU

A E A E

.60* .80* .25* .04 .58* .78*

rG= .39*
rE= .05
Pheno r= .18* 

Fig. 2 Additive genetic (A) and non-shared Environmental (E) Cholesky decomposition of the relationship between the Center for
Epidemiological Studies Depression scale (CESD) and the Inventory of Callous and Unemotional traits (ICU). Numbers on arrows are
standardized path estimates. Each task was residualized on sex and mean thickness prior to analysis. Genetic (rG), environmental (rE), and phenotypic
(pheno r) correlations are shown to the right of the path model. The model fit acceptably, χ2(20)= 30.264, p= 0.070, RMSEA= 0.059, TLI= 0.905, CFI
= 0.842. *p < 0.05, determined by χ2 difference tests. Dotted line indicates p > 0.05
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environmental map analysis and the bivariate Cholesky
decomposition of ICU and CESD, we concluded that the
areas in Fig. 3 are likely biomarkers that reflect genetic
vulnerability to CU and CESD and implicate a shared
genetic liability.

What genetic pathways are implicated?
We used follow-up analyses to gain insight into

potential mechanisms involved in this genetic vulner-
ability. Results of clustering of Psychiatric Genomics
Consortium depression-related genes are shown in

C

A B

Media

Lateral

Le� Right

Negative Genetic 
Association =

Positive Genetic Association =

Fig. 3 Neural associations with the Center for Epidemiological Studies Depression scale (CESD) and Inventory of Callous and Unemotional
traits (ICU). a Depicts whole-cortex heat maps of the genetic association of each vertex with each behavioral measure as bivariate heritability.
b Depicts p-values for genetic association between each vertex and each behavioral scale below cluster-corrected significance (p < 0.05). Lateral
views are on top and medial views below. These analyses correspond to those outlined by Fig. 1b. c Depicts overlap areas for our genetic clusters.
These genetic clusters coordinates were used in all future analyses
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Supplemental Fig. S7. We found three clusters: over-
expressed, mixed expression, and underexpressed (genes
listed in axis of Supplemental Fig. S7). The overexpressed
cluster showed significant enrichment for genes in
“Depolarization of the Presynaptic Terminal Triggers the
Opening of Calcium Channels_Homo sapiens_R-HSA-
112308” pathway (FDR corrected p= .03). No other
pathways were significant after FDR correction.

What likely cognitive/behavioral pathways are involved?
To identify likely cognitive/behavioral mechanisms

reflecting this vulnerability, we conducted a meta-analytic
term search using Neurosynth. Supplemental Tables S4
and S5 show the 25 most positively associated function
terms from Neurosynth for each genetic overlap cluster
from the full sample (in some cases, fewer than 25 terms
were positively associated). The top repeated behavioral
terms were “Theory of Mind”, “inhibit”, and “pain” across
all regions (using a wildcard* for different forms of the
same word and spelling out acronyms).
We projected our genetic derived clusters onto the Yeo

7-network parcellation, a popular, low-dimensionality
parcellation derived from a clustering analysis of resting
state data from 1000 participants36. Supplemental Table
S6 reports the results of this analyses. The default network
was the most common network (4 areas); all but one
positively associated cluster from our genetic analysis fell
in this network, in line with past research that implicated

default network functions to depression41. All but two
areas (8 of 10 positively and negatively associated areas)
fell in networks with higher-level cognitive functions (i.e.,
default mode, ventral and dorsal attention, and frontal
networks).

Discussion
By directly estimating brain areas genetically associated

with depression and CU, we found (1) the association
between CU and depressive symptoms was entirely
genetic in origin. (2) Genetic influences on thicker cortex
in right DLFPC sulci, the right PreSMA, left medial and
lateral precuneus, OTJ, and TPJ were associated with both
traits, and genetic influences on thinner cortex in the right
ventral PCC, right medial precuneus, right DLPFC gyrus,
and left somatosensory cortex were associated with both
traits. (3) Likely molecular pathways are influencing cal-
cium channel depolarization. (4) Likely associated beha-
viors are “theory of mind”, “inhibit”, and “pain.” (5) Likely
neural functions as determined by connectivity are asso-
ciated with default-mode and higher-level cognitive sys-
tems. Figure 4 links our results across different methods
to the RDoC social dimensions matrix. We discuss the
implications of these findings below.

Advantages of brain mapping approach
We are the first to directly estimate the cortical pattern

that represents genetic vulnerability to a psychiatric dis-
order. Importantly, this approach is not limited to known
associations42. Further, our approach allows for expansion
of hypotheses in genetic association studies by integrating
MRI atlas-based approaches to contextualize the genetic
association patterns and implicate molecular pathways
and brain functions.
In this case, we focused on the vulnerability for CU in

depression, chosen due to its importance in depression
severity43 and integration with RDoC domains2. Reas-
suringly, this approach converges on several areas pre-
viously associated with depression and social processing
literature20,24, which means past neuroimaging studies of
these behaviors may be driven by genetics. However,
cortical thickness associations with depression in the
temporoparietal and temporo-occipital junctions, key
social processing areas, were novel. Finally, we identified
likely mechanisms for follow-up analyses using Bayesian
meta-analysis, such as theory of mind and inhibition, that
are likely targets for behavioral intervention.
This vulnerability reflects an expanded cognitive net-

work. The association could be explained by both theory
of mind (in line with our hypothesis) and inhibition, a trait
that we did not hypothesize initially, but that is thought to
be related to theory of mind44. The association with
theory of mind helps validate these results in line with our
hypothesis as it implicates a cognitive social process, while

Table 1 Cluster coordinates for overlay clusters in
millimeter space

Cluster COG X COG Y COG Z Number of

vertices

L-Lateral Precuneus −14 −67 57 6

L-Medial Precuneus −6.54 −42.3 43.6 38

L-Occipital Junction −46.1 −72.8 14.7 138

L-Temporal Junction −57.7 −49.1 29.9 191

L-ventral SMA −60.8 −16.7 23.9 73

R-DLPFC* 23.5 32.6 35.2 61

R-Lateral Frontal* 23 16.4 57.2 21

R-PCC 4.87 −13 30.6 42

R-Posterior Precuneus 5.48 −59 31.1 99

R-PreSMA 11.1 12.6 43.6 28

Note. Cluster coordinates for each of the overlay clusters discovered in our
analysis. Coordinates for the Center Of Gravity (COG) of the peak activation are
given in mm space for X, Y and Z coordinates and size was determined based on
the number of vertices in each cluster. The name of each area was determined
by entering the coordinates into Neurosynth and using the top gyri/sulci name
R right hemisphere and L left hemisphere, DLPFC dorsal lateral prefrontal cortex,
PCC posterior cingulate cortex, SMA somatamotor area
*Clusters that replicated in the sample split-half replication
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the association with inhibition leads us to believe this may
be a more top-down mechanism. Spatially, we found
clusters specific to the posterior ventral cingulate cortex
and DLFPC, which show broad connectivity patterns
(functional and anatomical) between limbic/emotional
systems and the association cortex44–46. Further, almost
all clusters were in higher-order cognitive systems.

Limitations
There are limitations to our approach. First, the sample

is matched on age (at around age 28). While this protects
against both linear and non-linear confounding by age,
results may not generalize to younger or older ages.
Second, we did not examine moderation by sex. However,
although sex interaction may be a factor in genetic
depressive symptomology, there is still a genetic correla-
tion between males and females16. Finally, informatic
analyses focused on overlap based on spatial coordinates.
We did not directly measure the overlap between mea-
sures of expression, function, and neuro-anatomy, so we
do not know whether these analyses are directly tapping
the same underlying variability. Of course, this would be
impossible for transcription (in humans) and would
require complex multi-mediation patterns for relating
functional coordinates and anatomy.

Conclusion
We directly mapped genetic vulnerability to CU and

depressive symptoms on the brain. We found common
genetic variance in CU and depressive symptoms was
associated with higher-order cognitive areas and functions.

As the genetic vulnerability to psychiatric disorders is dis-
covered, the use of high-resolution cortical methods will be
invaluable in contextualizing the patterns of genetic effects.
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