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Abstract

Cities typically exhibit higher air temperatures than their rural surroundings, a phenomenon known
as the urban heat island (UHI) effect. Contrasting results are reported as to whether UHI intensity
(UHII) is exacerbated or reduced during hot weather episodes (HWEs). This contrast is investigated
for a four-year period from 2015 to 2018, utilising a set of observational data from high-quality
meteorological stations, as well as from hundreds of crowdsourced citizen weather stations, located in
the urban region of Berlin, Germany. It can be shown that if HWEs, defined here as the ten percent
hottest days or nights during May—September, are identified via daytime conditions, or by night-time
conditions at inner-city sites, then night-time UHII is exacerbated. However, it HWEs are identified
via night-time conditions at rural sites, then night-time UHII is reduced. These differences in UHII
change can be linked with prevalent weather conditions, namely radiation, cloud cover, wind speed,
precipitation, and humidity. This highlights that, beside land cover changes, future changes in weather
conditions due to climate change will control UHIIs, and thus heat-stress hazards in cities.

1. Introduction

During the last few decades, near-surface air temper-
ature (T) as well as heat extremes have increased
worldwide (Alexander et al 2006, Perkins et al 2012,
Russo et al 2014). Hot weather episodes (HWEs)
adversely affect human health, different societal sec-
tors, and ecosystems (Smoyer-Tomic et al 2003, Ciais
et al 2005, Garcia-Herrera et al 2010). Concurrently,
ongoing worldwide urbanization puts more and more
people under risk of being adversely affected by
elevated T, as cities typically show higher T than rural
surroundings, a phenomenon known as the ‘urban
heat island’ (UHI) effect (Oke 1982, Arnfield 2003).
With projected future increase in frequency, duration,
and intensity of heat waves globally (Meehl and
Tebaldi 2004, Fischer and Schir 2010, Russo et al
2014), as well as projected ongoing urbanization
(United Nations 2015), the question whether UHI
intensities (UHIIs) are exacerbated during such epi-
sodes is of high relevance for risk assessment. Beside

influences of size, morphology, and contiguity of
each city onto UHILs, both in air as well as
surface temperatures (Arnfield 2003, Debbage and
Shepherd 2015, Zhou et al 2017), UHIIs are largely
determined by weather conditions, with dry, clear, and
calm conditions favouring large UHIIs (Morris et al
2001, Kim and Baik 2005, Erell and Williamson 2007,
Arndsetal 2017, Beck etal 2018).

At first glance, seemingly contradictory results
concerning effects of heat waves, or more generally,
HWEs, onto UHIIs are reported. While some studies
show increasing UHIIs (Fenner et al 2014, Li et al 2015,
Founda and Santamouris 2017, Ramamurthy and
Bou-Zeid 2017, Zhao et al 2018), others reveal
unchanged or even reduced UHIIs (Zhou and
Shepherd 2010, Scott et al 2018, Rogers et al 2019).
Several reasons have been put forward to explain these
results, mainly relating them to changes in weather
conditions, such as increased radiative input or altered
wind patterns (Li et al 2016, Founda and Santa-
mouris 2017, Sun et al 2017, Scott et al 2018). These in
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turn lead to changes in the urban and rural energy bal-
ance (Li et al 2015, Ramamurthy and Bou-Zeid 2017,
Sun et al 2017, Zhao et al 2018). Since most of these
studies applied different methods to identify the sub-
sequently analysed HWEs, it could be hypothesized
that the contrasting results are at least partly due to the
application of different methods to identify these epi-
sodes. The definition of heat waves, as well as whether
they are identified at an urban or a rural location, can
substantially affect their frequency, duration, and
long-term trends (Fenner et al 2019). Further, it could
be hypothesized that by applying different methods,
both increased and decreased UHIIs during HWEs can
be detected, even for a single city.

One common weak aspect of observational UHI
studies is the use of only one pair of or very few mea-
surement stations, as they might not be representative
for the whole city. A novel approach using low-cost
weather stations or citizen weather stations (CWSs) at
up to several hundreds of sites for one city, located in
various urban settings, has shown great potential and
applicability (Wolters and Brandsma 2012, Schatz and
Kucharik 2015, Fenner et al 2017, Meier et al 2017,
Scott et al 2017). Crowdsourcing of CWS data is an
inexpensive option to collect substantial amounts of
atmospheric data (Muller et al 2015), also enabling
investigations in regions where high-quality data are
missing or sparse.

To shed more light onto the aspect of contrasting
results concerning UHII changes (AUHIIs) during
HWEs, the overarching aim of this study is to system-
atically investigate how the choice of location and time
of day to define HWEs might lead to contrasting
results. Specifically, the hottest days and hottest nights
during May-September during the years 2015-2018
are investigated for the urban region of Berlin,
Germany, and put into contrast to the rest of the days/
nights. This is done by identifying these episodes sepa-
rately in rural and the most densely built-up urban
locations to investigate the influence the location for
identification can have onto results. A data set of a
multitude of high-quality meteorological observations
from reference stations (REFs) as well as quality-con-
trolled crowdsourced data from nearly 2000 CWSs are
utilised. Moreover, it is then analysed how possible
contrasts in AUHIIs are linked to differences in
weather conditions. In view of climate change, it is
important to understand present-day mechanisms for
altered UHIIs, as future climate might change fre-
quency, duration, and intensity of different types of
weather conditions, and thus UHIIs.

2.Data and methods

2.1. Study area and period

This study focuses on the mid-latitude city of Berlin
and surrounding region (Koppen—Geiger classifica-
tion Cfb—humid warm temperate climate, Kottek
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et al 2006). Berlin is Germany’s largest city with nearly
3.5 million inhabitants by the end of 2015, located in
the eastern part of the country (52.52° N, 13.40° E).
The city spreads over an area of 892km’ with
approximately 35km in north—south and 45 km in
east—west direction. The city’s topography is relatively
flat with solitary hills at the edge of the urban
agglomeration. Agricultural lands and forests sur-
round the city. Inner-city areas mostly consist of
compact and open midrise building structures (Local
Climate Zones—LCZs 2 and 5, Stewart and
Oke 2012), surrounding these are mainly open low-
rise detached housing areas (LCZ 6) and forests (LCZ
A) (Fenner et al 2017). The study period covers four
years from 2015 to 2018, analysing the months May—
September.

2.2.Meteorological data and processing

Two sets of near-surface T data were used for the
characterisation of UHIL: data from high-quality
reference stations (REFs) and crowdsourced CWSs
(figure 1). The network of REFs consists of 51 stations
maintained by the German Meteorological Service
(Deutscher Wetterdienst—DWD), the Institute of
Meteorology at Freie Universitit Berlin (FUB), and the
Chair of Climatology at Technische Universitit Berlin
(TUB). T is measured in 2 m above ground level at all
sites, except for three stations (see supplementary
table S1, available online at stacks.iop.org/ERL/14/
124013 /mmedia). DWD data are available as quality-
checked products at hourly resolution (DWD Climate
Data Center 2018). Data at FUB stations are available
at five-minute resolution, at TUB stations at one-
minute resolution. Both were aggregated to hourly
mean values (time stamp at the end of averaging
interval) after quality control (QC). QC of FUB and
TUB data was carried out as in Meier et al (2017) with
additional filters for spikes and persistence. A visual
inspection and removal of remaining implausible
values was performed after automatic QC.

Data from CWSs of the ‘Netatmo’ company
(https://netatmo.com) were collected via the com-
pany’s application programming interface, retrieving
instantaneous values at hourly intervals at all available
stations for each hour during the study period. A full
description of the methods to collect, store, and pro-
cess CWS data can be found in Meier et al (2017).
Deviating from Meier et al (2017), CWS data in this
study were assigned to the nearest full hour. For QC,
the statistically-based methods of ‘CrowdQC v1.2.0°
(Grassmann et al 2018, Napoly et al 2018) were
applied, which are independent of reference T data.
Quality-controlled CWS data at level O1 (see Napoly
etal 2018) were used in all analyses.

Only stations (REFs and CWSs) with >80% valid
hourly data in at least one year (May—September) were
included. Data from all stations were corrected for
height differences to a reference height of 45 m above
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Figure 1. Location of weather stations in the Berlin region during 2015-2018. Stations that are used in the urban heat island intensity
(UHII) analyses are located within High Density Cluster. Data at rural reference locations are used for calculation of each station’s
UHII and identification of rural hot weather episodes (HWEs), data at urban reference locations are used for identification of urban
HWESs. The black line marks the city border of Berlin. Classification of urban clusters based on Global Human Settlement product

‘GHS S-MOD’ (Pesaresi and Freire 2016).

mean sea level with the dry adiabatic lapse rate
(=9.8 x 10°Km™), using elevation data from the
Shuttle Radar Topography Mission version 4.1 (Jarvis
etal 2008), as described in Fenner et al (2017).

For characterization of weather conditions,
meteorological data at seven sites were used (supple-
mentary table S2, supplementary figure S1). These
sites are located throughout the urban region of Berlin
to describe conditions representative for the whole
region. Hourly data of 2 m relative humidity, 2 m sur-
face air pressure, cloud cover fraction, 10 m wind
speed, precipitation, and downwelling shortwave
and longwave radiation were used (supplementary
table S2). For each variable a synthetic time series as
the arithmetic mean across all available sites was calcu-
lated. Specific humidity was calculated per site on the
original temporal resolution of one hour using site-
specific relative humidity, surface air pressure, and T,
and then averaged across all available sites.

2.3. Site selection for UHII analyses
All REFs and CWSs that are located within High
Density Cluster of the Global Human Settlement Layer
product ‘GHS S-MOD’ (Pesaresi and Freire 2016)
were selected (figure 1) to represent climate conditions
of the built-up environment of Berlin. A total of 33
REFs and 1945 CWSs for the investigated four years
were available.

‘Rural’ sites to calculate each site’s UHII (see next
section for definition) were selected based on the

mapping of LCZs as carried out in Fenner et al (2017).
The two available REFs located in LCZ B ‘scattered
trees’ were selected as rural reference locations
(figure 1, supplementary table S1). These two sites
have no buildings in their local-scale surroundings,
LCZ B provides the ‘most rural’ T signal among LCZs
in the region of Berlin (Fenner ef al 2017), and hence
the sites are highly suitable for UHII calculation
(Fenner et al 2014, 2017). A synthetic rural time series
was calculated as the arithmetic mean of the rural sites
if both stations provided valid data, otherwise set to
missing value. This synthetic rural time series was also
used to identify rural HWEs (see section ‘Definition
of HWEs’).

Further, an ‘urban’ synthetic time series was
derived analogously to identify urban HWEs. For this,
all REFs falling into the ‘most urban’ LCZ class 2 ‘com-
pact midrise’ were selected (figure 1, supplementary
table S1) and the arithmetic mean across all sites was
calculated if at least two stations provided valid data.

2.4. Calculation of UHII and its temporal deviations
Firstly, hourly T differences between each station
(REFs and CWSs) and the synthetic rural time series
were calculated, referred to as UHII for each station.
Secondly, UHII for each station was aggregated to
an arithmetic mean value for daytime (13-16h
UTC + 1) and night-time (01-04 h UTC + 1) inter-
vals each day. UHII was analysed separately for day-
time and night-time periods, as it shows a distinct




10P Publishing

Environ. Res. Lett. 14 (2019) 124013

P Letters

(a) REF
n=33 n=33 n=33 n=33 n=33 n=33
10 U=430.0 U=415.
p=0.144 (two-tailed) p=0.098 (two-tailed)
d=-0.31 d=0.

B
L
!

HH
L

NC HWE AUHI
Daytime

NC HWE AUHII
Night-time

are displayed as circles.

Figure 2. UHII and UHII change (AUHII) during normal conditions and rural hot days during 2015-2018, May—September. UHII
quantification using (a) high-quality reference stations (REFs) and (b) citizen weather stations (CWSs) during daytime (13—-16 h
UTC + 1)and night-time (01-04 h UTC + 1). Each box contains temporal mean values of each station, the Mann-Whitney-U test
was applied to determine statistical significance of difference in UHII between normal conditions (NC) and hot weather episodes
(HWE). Effect size of mean differences was determined using Cohen’s d. The number of stations providing valid data is displayed
above each box. Boxes range from st to 3rd quartile, median is denoted as horizontal line, mean as diamond, whiskers indicate

1.5 fold inter quartile range from upper and lower boundary, or the maximum and minimum, respectively. Values outside that range
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diurnal cycle with largest UHIIs at night (Oke 1982,
Chow and Roth 2006, Erell and Williamson 2007,
Fenner et al 2014, Beck et al 2018). A discussion on the
selected time intervals and study period is given in
supplementary Discussion D1. Mean UHII for each
interval at each day was only calculated if at least three
hourly values per interval were available, otherwise set
to missing value. Analogously, mean T during daytime
(Taaytime) and night-time (T igns-sime) intervals for the
synthetic rural and urban time series were calculated.

UHII change (AUHII) during HWEs (see next
section for definition) was derived for each station as
follows. For daytime and night-time UHII, the arith-
metic mean value of UHII during ‘normal’ days, i.e. all
days not identified as HWEs, and the arithmetic mean
of UHII during HWEs was calculated for each station.
Then, each station’s AUHII was calculated as the dif-
ference between mean UHII during HWEs and mean
UHII during normal conditions.

2.5. Definition of HWEs

The 10% hottest days and hottest nights during May—
September were investigated, identified separately
using the synthetic rural and urban reference time
series. These days and nights are referred to as ‘rural
hot days/nights’ and ‘urban hot days/nights’
(n =~ 61), and put into contrast to the rest of the days/
nights, referred to as ‘normal conditions’. The term
‘hot weather episodes’ is used in this study to refer to
these episodes instead of ‘heat waves’, as they may
occur as single days/nights, which are regarded as
being too short to count as a heat wave.

A rural (urban) hot day was identified if a day had
Tayiime > 90th percentile of the probability density
function of Taaysime during the four years (May—Sep-
tember) of the synthetic rural (urban) time series

(thresholds: rural 29.1 °C, urban 29.2 °C). Similarly,
rural (urban) hot nights were identified, but using
Thight-time (thresholds: rural 17.4 °C, urban 20.9 °C).
More details on the choice of this definition is given in
supplementary Discussion D2.

In this study, each day starts at 05 h (UTC + 1) and
ends at 04 h (UTC + 1), hence the night-time interval
covers the last 4 hours of each day. Hot days (identified
via the daytime interval) thus have a night-time interval
following the daytime interval, while hot nights (identi-
fied via the night-time interval) have a preceding day-
time interval before the night-time interval.

2.6. Statistical tests

Statistical significance of AUHII and the difference
in weather conditions was tested applying the
non-parametric Mann-Whitney-U test (Mann and
Whitney 1947). Sample distributions consisted of
mean UHII of each station during HWEs and normal
conditions, respectively (for AUHII), and of the mean
value across all sites per analysed variable (for weather
conditions) during HWEs and normal conditions.
Statistical significance of the test statistic U was
evaluated using a two-sided p-value. Statistical signifi-
cance was set at p < 0.05. Since sample distributions
of REFs and CWSs differ considerably, and hence also
variance between the networks (e.g. figure 2), an effect
size of the mean difference in UHII between normal
conditions and HWEs was calculated for each net-
work. Cohen’s d (Cohen 1988) as a descriptor for effect
size between data sets a and b was calculated:

)]

with m, being the mean of data x (x = a or x = b) for
n, = sample size of x:
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Effect size is described as very small (|d| < 0.2),
small (0.2 < |d| < 0.5), medium (0.5 < |d] < 0.8),
orlarge (|d| > 0.8) (Cohen 1988).

3. Results and discussions

3.1. Effects of hot days onto UHII

Average UHIIs during normal conditions and rural
hot days are displayed in figure 2, showing generally
reduced daytime UHII during hot days. The change in
mean UHII is insignificant for REFs with a small effect
size (—0.18 K, p = 0.144, figure 2(a)), but medium in
size and highly significant for CWSs (—1.02K,
p < 0.001) (figure 2(b)). Half of the REFs exhibit a
negative UHII (sometimes called ‘urban cool island’,
i.e. lower T within the city as compared to its
surroundings), during normal conditions as well as
during hot days (figure 2(a)). Contrastingly, only 13%
of CWSs (=265 stations) show a negative UHII during
normal conditions (figure 2(b)). This contrast is likely
due to differences in station locations between REFs
and CWSs, the latter being located closer to buildings
compared to more open locations of REFs, leading to
higher T being measured (Fenner et al 2017). Negative
UHIIs have previously been reported for Berlin
(Fenner et al 2014) and other cities (e.g. Runnalls and
Qke 2000, Chow and Roth 2006, Fortuniak et al 2006,
Erell and Williamson 2007), as well as even more
negative UHIIs during HWEs (Fenner et al 2014,
Rogers et al 2019). The large spread in UHIIs and
AUHIIs (figure 2) highlights that individual stations
might respond differently to hot weather conditions
due to respective site characteristics (Zhou and
Shepherd 2010, Scott et al 2018), underlining the
benefit of analysing many stations within one city. In
this respect, CWSs complement existing station net-
works in cities, as the large number of CWSs and the
variety of urban settings in which they are located
enables observations of the large spatial heterogeneity
of urban T (Fenner et al 2017).

Contrasting to our results and those found for
other cities (Rogers et al 2019), some studies showed
amplified daytime UHIIs during HWEs (Schatz and
Kucharik 2015, Founda and Santamouris 2017, Zhao
et al 2018). Anthropogenic heat release from air-con-
ditioning (AC) systems into the urban atmosphere
contributes to UHIIs (Ohashi et al 2007, de Munck
et al 2013), and thus, increased heat output of such
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systems during HWEs promotes increased UHIIs
(Schatz and Kucharik 2015, Zhao et al 2018). Note that
in Berlin AC of households is uncommon and that
space heating, which could contribute to increased
UHIIs, is most likely not used during HWEs during
May—September. If an influence of space heating was
present in the data of normal conditions, AUHII
would be even more distinct if the influence of this
heat output was removed. Further, only few sites are
located in commercial areas where AC systems are
more common, hence their influence onto the pre-
sented results is small. Overall, the influence of
anthropogenic heat onto near-surface T is regarded as
marginal for the analysed data in Berlin. Other studies
relate increased daytime UHIIs during HWEs to chan-
ges in wind patterns (Founda and Santamouris 2017,
Ramamurthy and Bou-Zeid 2017), while still others
find that such changes cannot explain altered UHIIs
(Rogers etal 2019).

During night-time of rural hot days, CWSs show a
significant mean increase in UHII of 0.45K
(p < 0.001), while mean AUHII of 0.47 K for REFs is
not significant (p = 0.098) due to the much smaller
sample size (figure 2). This finding highlights, firstly,
good agreement between both station networks, sec-
ondly, the benefit of CWSs in terms of sample size, and
lastly, adds further evidence to existing studies, show-
ing the intensifying effect of hot daytime weather onto
night-time UHIIs (Fenner et al 2014, Li et al 2015,
Schatz and Kucharik 2015, Sun et al 2017, Zhao et al
2018).

As opposed to normal conditions, the analysed
rural hot days are characterized by significantly higher
radiative shortwave and longwave energy input, lower
cloud cover fraction and decreased wind speed during
the day, and overall increased atmospheric humidity
(figure 3, table 1). The precipitation amount and the
days with precipitation are also reduced compared to
normal conditions. Such weather conditions favour
spatial T differences and lead to pronounced night-
time UHIIs (Runnalls and Oke 2000, Morris et al 2001,
Kim and Baik 2005, Erell and Williamson 2007, Arnds
et al 2017, Fenner et al 2017, Beck et al 2018). With
significantly decreased daytime and unchanged night-
time wind speed, increased daytime radiation during
hot days induces more daytime sub-surface heat sto-
rage and subsequent night-time heat release, leading
to positive AUHII (Hamdi et al 2016, Sun et al 2017,
Zhao et al 2018).

As a further consequence of strong daytime radia-
tive forcing during HWEs, turbulent mixing over a
deep planetary boundary layer leads to small differ-
ences between urban and rural T (Bohnenstengel et al
2011, Wouters et al 2013). As a result, the choice of
location to identify hot days has negligible effects
onto results concerning UHII (see supplementary
figure S2). Most of rural and urban hot days (54 out
of 61/62, = 88/87%) are identical (supplementary
figure S3a). Further, threshold temperatures to identify
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Figure 3. Weather conditions during rural hot days and normal conditions during 2015-2018, May—September, (a) downwelling
shortwave radiation (rsd), (b) downwelling longwave radiation (rld), (c) cloud cover fraction (cc), (d) wind speed (ws), (e) precipitation
(prep), (f) specific humidity (hus). Percentiles for shading correspond to the respective probability distribution function during hot
days and normal conditions. Measurement data from seven sites used (see section 2.2, supplementary figure S1, supplementary table
$2), averaged across available sites.

them are similar (rural: 29.1 °C, urban: 29.2 °C), as are
changes in weather conditions (table 1) with no sig-
nificant differences between rural and urban hot days
for any of the analysed weather variables (not shown).

3.2. Effects of hot nights onto UHII
When hot nights are identified at urban locations
(figures 4(a) and (b)), results are similar to those
for hot days: while mean UHII during daytime before
hot nights is unchanged (REF) or significantly
decreased (CWS), UHII

mean night-time is

significantly ~ exacerbated (for REF = 0.57K,
p = 0.05; for CWS = 0.46 K, p < 0.001). Weather
conditions for these urban hot nights are similar to
those for hot days (no significant differences), and thus
conducive for UHI formation at night, i.e. strong
radiative input during the day and significantly
decreased cloud cover fraction, wind speed, and
precipitation (table 1, supplementary figure S4).

In contrast, decreased mean night-time UHII can
also be found. Such results arise when hot nights are
identified at rural locations (figures 4(c) and (d)). REFs
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Table 1. Mean differences (A) in weather conditions between hot weather episodes (HWEs) and normal conditions (NC) during 2015-2018,
May-September. rsd: downwelling shortwave radiation, rld: downwelling longwave radiation, cc: cloud cover fraction, ws: wind speed, hus:
specific humidity, prcp: precipitation. The Mann-Whitney-U test was applied to determine statistical significance (not for precipitation),
significant differences (p < 0.05) are marked as bold numbers. Measurement data at seven sites used (see section 2.2, supplementary figure
S1, supplementary table S2), averaged (sum for precipitation) across hours of daytime (13-16 h UTC + 1) and night-time (01-04 h

UTC + 1)intervals, and across available sites.

Identification location Urban Rural
Hot weather episode Hot days Hot nights Hot days Hot nights
Analysis interval Daytime  Night-time  Daytime  Night-time  Daytime  Night-time Daytime Night-time
Arsd(W m™?) 172.4 — 156.7 — 171.1 — 92.4 —
Arld(W m™?) 36.7 34.4 35.0 38.4 34.2 29.7 35.1 44.0
Acc (octas) —2.1 —0.6 —1.7 —0.5 —2.2 —0.9 —0.6 1.2
Aws(m s~ —0.7 0.2 —0.7 -0.1 —0.7 0.1 0.0 0.6
Ahus (g kgfl) 1.6 2.6 1.9 2.8 1.6 2.4 2.5 3.3
Aprcp (mm), % days —0.3, —0.1, —0.3, —0.1, —0.3, —0.1, 0.1, 0.2,
withprep (HWE/NC)  1.6/22.9  16.1/14.5  4.8/225  17.7/144  3.3/227  11.5/151  11.7/21.7  283/132

and CWSs measure a significant and large effect of
decreased mean night-time UHII of —1.02 K and
—1.28 K(both p < 0.001), respectively. All REFs show
negative night-time AUHII during rural hot nights, as
well as 1943 out of the 1945 CWSs (=99.9%). Daytime
UHIIs preceding rural hot nights show a very small
mean effect compared to normal conditions for REFs
(not significant), while CWSs again display a sig-
nificant reduction in mean UHII of —0.57K
(figures 4(c) and (d)).

Generally, weather conditions during rural hot
nights and preceding daytime are counterproductive
for UHI formation (figure 5, table 1). Though down-
welling radiation is significantly higher than during
normal conditions, cloud cover fraction, wind speed,
and precipitation are increased after midday and sig-
nificantly higher during night-time (table 1). Such
conditions attenuate UHIIs (Morris et al 2001, Kim
and Baik 2005, Erell and Williamson 2007, Arnds et al
2017, Beck et al 2018), explaining negative night-time
AUHIL During nearly one third of rural hot nights
precipitation was recorded, compared to only 13.2%
of days during normal conditions (table 1). Develop-
ing cloud cover during the day, convective precipita-
tion events, and passage of thunderstorms with
precipitation have marked diminishing effects onto
UHIIs (Gedzelman et al 2003, Fortuniak et al 2006).
Besides, atmospheric humidity during rural hot nights
is significantly higher than during hot days (compare
figures 3(f) and 5(f), table 1), which might also con-
tribute to significantly higher downward longwave
radiation during night-time (figure 5(b), table 1) (Sun
et al 2017). Moist conditions contribute to decreased
UHIIs, as rural locations cool less efficiently than
under dry conditions (Scott et al 2018).

Contradictory results of UHIIs during hot nights
are found for Berlin, depending on whether they are
defined based on urban or rural night-time T, since
the occurrence of these episodes is profoundly differ-
ent. Less than half of rural hot nights are preceded by

a hot day (figure 6(a)), while urban hot nights pre-
dominantly follow hot days (70% of the cases,
figure 6(b)). This emphasizes that urban populations
are much more exposed to conditions that are poten-
tially hazardous than rural dwellers: Urban areas are
subject to the hottest night-time conditions following
the hottest daytime conditions, hindering recupera-
tion of the human body at night after hot daytime con-
ditions (Laaidi et al 2012). Night-time UHII is
strongest during these occasions compared to urban
hot days or hot nights alone. For the rural case
(figure 6(a)) strongest night-time UHII is found for
hot days occurring alone, being similar to UHII during
combined urban HWEs (not shown). Combined rural
HWE:s lead to moderate UHII due to negative mean
AUHII during rural hot nights (figures 4(c) and (d)).

3.3. Discussion of the effect of definition of HWEs
Our results highlight that the choice of location to
identify HWEs, as well as time of day, can have
profound effects concerning AUHIIs. Night-time
AUHII during HWEs identified at daytime is insensi-
tive to the choice of location to identify them. This is
consistent across other studies that use daytime or
daily maximum T for HWE identification (Fenner et al
2014, Schatz and Kucharik 2015, Li et al 2015, 2016,
Sunetal 2017, Zhao et al 2018). However, if night-time
or daily minimum temperature is used to identify
HWEs (Scott et al 2018), the choice of location to
identify HWEs is crucial and contrasting results arise
(also found in Scott et al 2018). This effect might also
explain why another study found increased UHIIs for
two out of three investigated cities in Australia (Rogers
et al 2019). For the two cities where night-time UHIIs
were increased, heat waves (defined using daily max-
imum and daily minimum T) were identified at an
urban location, while for the third city an airport site at
the urban fringe was used (Rogers et al 2019).
Similarly, Fenner et al (2019) showed that in Berlin
urban-rural contrasts in heat wave characteristics only
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Figure 4. UHII and UHII change (AUHII) during normal conditions, and (a), (b) urban and (c), (d) rural hot nights. UHII
quantification using (a), (c) high-quality reference stations (REFs) and (b), (d) citizen weather stations (CWSs) during daytime
(13-16 hUTC + 1) and night-time (01-04 h UTC + 1). See figure 2 for further details.
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arise when heat wave definitions applying daily mini-
mum or daily mean T are investigated. These contrasts
could not be found when using heat wave definitions
that apply daily maximum T (Fenner et al 2019). Note
that given the diverse findings in other studies con-
cerning UHIIs during HWEs, our findings might not
be transferable to other regions, as only one mid-lati-
tude city was investigated. However, the impact that
methodological differences can have onto results
underscores the need for studies such as this one to
understand mechanisms behind the observed phe-
nomena. Similar systematic investigations in other
cities of different size and located in different climate
regions would be of high value in this respect.

3.4. Discussion of possible future UHIIs due to
climate change

Since weather conditions have such a strong influence
onto UHIIs, the more general question whether UHIIs
are exacerbated or reduced under future climate could
also be investigated in this respect. Diverse and even
contradictory results for the same region or city are
reported concerning UHIIs under projected climate
change, with most studies showing no or only
moderate change in UHIIs (Chapman et al 2017 and

references therein). Several studies that investigated
projected future UHIIs found that its change, even if
small, is often connected to a change in soil moisture
(McCarthy et al 2010, Oleson 2012, Hamdi et al 2016).
Soil moisture and its link to thermal admittance as well
as to the surface energy balance via evapotranspira-
tion/latent heat flux impacts UHIIs (Runnalls and
Oke 2000, Chow and Roth 2006, Schatz and
Kucharik 2014), also during HWEs (Li et al 2015,
Ramamurthy and Bou-Zeid 2017, Zhao et al 2018).
Soil moisture is also strongly linked to the occurrence,
persistence, and intensity of HWEs (Fischer et al 2007,
Hirschi et al 2010, Lorenz et al 2010, Miralles et al
2014). However, as soil moisture is strongly dependent
on precipitation, and since different general circula-
tion models (GCMs) show large variability in simu-
lated precipitation on a regional level (Hawkins and
Sutton 2011), results concerning UHIIs of regionally
downscaled GCM data are strongly influenced by the
driving GCM (Grossman-Clarke et al 2017). Studies
utilizing an ensemble of GCMs (e.g. Lauwaet et al
2015, Wouters et al 2017) to investigate projected
future UHIIs are thus needed for robust results.

In summary, given the strong impact of weather
conditions onto UHIIs, in combination with the
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modest capabilities of GCMs to simulate clouds
(IPCC 2013), and the fact that projected changes in
soil moisture are not robust in many regions of the
world (IPCC 2013), future UHIIs remain uncertain.
But even if UHIIs remained unaltered or even
decreased in future climate as driven by weather con-
ditions, widespread adaptation measures and reduc-
tion in greenhouse gas emissions are needed to
counteract the impacts of urbanization and global
warming onto local T (Georgescu et al 2013, Sun et al
2016, Wouters et al 2017, Krayenhoff et al 2018).
Moreover, adaptation to extreme heat waves is indis-
pensable, since such events have occurred in the past
and under present-day climate due to the natural
variability of weather and climate (Dole et al 2011).

4. Conclusions

Using an observational data set covering four years in
the urban region of Berlin, UHIIs and weather
conditions during HWEs were investigated. It was
systematically examined how the choice of location
and time of day to determine HWEs can lead to
contrasting results concerning AUHIIL. The choice of
location to identify hot daytime weather is inconse-
quential for AUHII. Contrasting, if HWEs are defined
by night-time conditions, the choice of location to
identify them has profound impact onto results. While
hot urban night-time conditions lead to exacerbated
UHIIs, hot rural night-time conditions are associated
with reduced UHIIs. Known synoptic drivers of UHII
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such as cloud cover, wind speed, and precipitation are
distinctly different between rural and urban hot
nights, thus explaining contrasting AUHIIs.

The results suggest that the choice of study design
can have a determining influence onto results concern-
ing AUHII during HWEs, which also explains some of
the contrasting results found in previous studies. This
study further highlights the differences of AUHIIs
between daytime and night-time, as well as a strong
dependency on weather conditions, which drive
AUHIIs during HWEs. Consequently, studies investi-
gating UHIIs during HWEs need to emphasize these
aspects. In summary, the results clearly underline that
present-day mean UHIIs cannot simply be added to cli-
mate change projections to estimate future urban cli-
mate conditions (Chapman et al 2017). The question if
UHIIs in general and during HWEs might change in the
future is strongly linked to the question if and how
weather conditions might change (Chapman et al 2017),
which will determine future heat-stress hazards in cities.
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