Non-additive Lie centralizer of strictly upper triangular matrices

Driss Aiat Hadj Ahmed
Centre Régional des Metiers d'Education et de Formation (CRMEF)
Tangier, Morocco
ait_hadj@yahoo.com

Received December 31, 2018
Presented by Consuelo Martínez
Accepted February 4, 2019

Abstract: Let \mathcal{F} be a field of zero characteristic, let $N_{n}(\mathcal{F})$ denote the algebra of $n \times n$ strictly upper triangular matrices with entries in \mathcal{F}, and let $f: N_{n}(\mathcal{F}) \rightarrow N_{n}(\mathcal{F})$ be a non-additive Lie centralizer of $N_{n}(\mathcal{F})$, that is, a map satisfying that $f([X, Y])=[f(X), Y]$ for all $X, Y \in N_{n}(\mathcal{F})$. We prove that $f(X)=\lambda X+\eta(X)$ where $\lambda \in \mathcal{F}$ and η is a map from $N_{n}(\mathcal{F})$ into its center $\mathcal{Z}\left(N_{n}(\mathcal{F})\right)$ satisfying that $\eta([X, Y])=0$ for every X, Y in $N_{n}(\mathcal{F})$.

Key words: Lie centralizer, strictly upper triangular matrices, commuting map.
AMS Subject Class. (2010): 16S50, 15A27,16U80, 15B99, 47B47, 16R60.

1. Introduction

Consider a ring R. An additive mapping $T: R \rightarrow R$ is called a left (respectively right) centralizer if $T(a b)=T(a) b$ (respectively $T(a b)=a T(b)$) for all $a, b \in R$. The map T is called a centralizer if it is a left and a right centralizer. The characterization of centralizers on algebras or rings has been a widely discussed subject in various areas of mathematics.

In 13 Zalar proved the following interesting result: if R is a 2 -torsion free semiprime ring and T is an additive mapping such that $T\left(a^{2}\right)=T(a) a$ (or $T\left(a^{2}\right)=a T(a)$), then T is a centralizer. Vukman [12] considered additive maps satisfying similar conditions, namely $2 T\left(a^{2}\right)=T(a) a+a T(a)$ for any $a \in R$, and showed that if R is a 2 -torsion free semiprime ring then T is also a centralizer. Since then, the centralizers have been intensively investigated by many mathematicians (see, e.g., [3, 4, [5, 6, 8]).

Let R be a ring. An additive map $f: R \rightarrow R$, is called a Lie centralizer of R if

$$
\begin{equation*}
f([x, y])=[f(x), y] \quad \text { for all } x, y \in R, \tag{1.1}
\end{equation*}
$$

where $[x, y]$ is the Lie product of x and y.

Recently, Ghomanjani and Bahmani [9] dealt with the structure of Lie centralizers of trivial extension algebras, whereas Fošner and Jing [7] studied Lie centralizers of triangular rings.

The inspiration of this paper comes from the articles [1, 5, 7] in which the authors deal with the Lie centralizer maps of triangular algebras and rings. In this note we will consider non-additive Lie centralizers on strictly upper triangular matrices over a field of zero characteristic.

Throughout this article, \mathcal{F} is a field of zero characteristic. Let $M_{n}(\mathcal{F})$ and $N_{n}(\mathcal{F})$ denote the algebra of all $n \times n$ matrices and the algebra of all $n \times n$ strictly upper triangular matrices over \mathcal{F}, respectively. We use $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ to represent a diagonal matrix with diagonal $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{i} \in \mathcal{F}$. The set of all $n \times n$ diagonal matrices over \mathcal{F} is denoted by $D_{n}(\mathcal{F})$. Let I_{n} be the identity in $M_{n}(\mathcal{F}), J=\sum_{i=1}^{n-1} E_{i, i+1}$ and $\left\{E_{i j}: 1 \leq i, j \leq n\right\}$ the canonical basis of $M_{n}(\mathcal{F})$, where $E_{i j}$ is the matrix with 1 in the (i, j) position and zeros elsewhere. By $C_{N_{n}(\mathcal{F})}(X)$ we will denote the centralizer of the element X in the $\operatorname{ring} N_{n}(\mathcal{F})$.

The notation $f: N_{n}(\mathcal{F}) \rightarrow N_{n}(\mathcal{F})$ means a non-additive map satisfying $f([X, Y])=[f(X), Y]$ for all $X, Y \in N_{n}(\mathcal{F}$.

Notice that it is easy to check that $\mathcal{Z}\left(N_{n}(\mathcal{F})\right)=\mathcal{F} E_{1 n}$.
The main result in this paper is the following:
Theorem 1.1. Let \mathcal{F} be a field of zero characteristic. If $f: N_{n}(\mathcal{F}) \rightarrow$ $N_{n}(\mathcal{F})$ is a non-additive Lie centralizer then there exists $\lambda \in \mathcal{F}$ and a map $\eta: N_{n}(\mathcal{F}) \rightarrow \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$ satisfying $\eta([X, Y])=0$ for every X, Y in $N_{n}(\mathcal{F})$ such that $f(X)=\lambda X+\eta(X)$ for all X in $N_{n}(\mathcal{F})$.

Notice that the converse is trivially true: every map $f(X)=\lambda X+\eta(X)$ with η satisfying the condition in Theorem 1.1 is a (non-additive) Lie centralizer.

2. Proofs

Let's start with some basic properties of Lie centralizers.
Lemma 2.1. Let f be a non-additive Lie centralizer of $N_{n}(\mathcal{F})$. Then:
(1) $f(0)=0$;
(2) for every $X, Y \in N_{n}(\mathcal{F})$, we have $f([X, Y])=[X, f(Y)]$;
(3) f is a commuting map, i.e., $f(X) X=X f(X)$ for all $X \in N_{n}(\mathcal{F})$.

Proof. To prove (1) it suffices to notice that

$$
f(0)=f([0,0])=[f(0), 0]=0 .
$$

(2) Observe that if $f([X, Y])=[f(X), Y]$, then we have

$$
f(X Y-Y X)=f(X) Y-Y f(X)
$$

Interchanging X and Y in the above identity, we have

$$
f(Y X-X Y)=f(Y) X-X f(Y)
$$

Replacing X with $-X$ in the above relation, we arrive at $f(X Y-Y X)=$ $X f(Y)-f(Y) X$ which can be written as $f([X, Y])=[X, f(Y)]$.

From (1) one also gets (3):

$$
[f(X), X]=f([X, X])=f(0)=0 .
$$

Remark 2.1. Let f be a non-additive Lie centralizer of $N_{n}(\mathcal{F})$ and $X \in$ $C_{N_{n}(\mathcal{F})}(Y)$. Then $f(X) \in C_{N_{n}(\mathcal{F})}(Y)$. Indeed, if $X \in C_{N_{n}(\mathcal{F})}(Y)$, then $[X, Y]=0$ and

$$
0=f(0)=f([X, Y])=[f(X), Y] .
$$

Lemma 2.2. Let f be a non-additive Lie centralizer of $N_{n}(\mathcal{F})$. Then:
(1) $f\left(\sum_{i=1}^{n-1} a_{i} E_{i, i+1}\right)=\sum_{i=1}^{n-1} b_{i} E_{i, i+1}$;
(2) there exists $\lambda \in \mathcal{F}$ such that $f(J)=\lambda J$.

Proof. Let $D_{0}=\sum_{i=1}^{n}(n-i) E_{i, i}$.
(1) Consider $A \in M_{n}(\mathcal{F})$. It is well known that $\left[D_{0}, A\right]=A$ if and only if $A=\sum_{i=1}^{n-1} a_{i} E_{i, i+1}$.

Hence, if $A=\sum_{i=1}^{n-1} a_{i} E_{i, i+1}$, we have $\left[D_{0}, A\right]=A$. Thus $f\left(\left[D_{0}, A\right]\right)=$ $\left[D_{0}, f(A)\right]=f(A)$. Therefore $f(A)=\sum_{i=1}^{n-1} b_{i} E_{i, i+1}$.
(2) As in (1), consider $A=\sum_{i=1}^{n-1} a_{i} E_{i, i+1}$ for some $a_{i} \in \mathcal{F}$. Then $[J, A]=0$ if and only if $A=a J$ for some $a \in \mathcal{F}$.

Indeed, $f(J)=\sum_{i=1}^{n-1} a_{i} E_{i, i+1}$ by (1). Thus, $0=f(0)=f([J, J])=[J, f(J)]$. Hence, there exists $\lambda \in \mathcal{F}$ such that $f(J)=\lambda J$.

We will need the following lemma.

Lemma 2.3. (Lemma 2.1, [14]) Suppose that \mathcal{F} is an arbitrary field. If $G, H \in U T_{n}(\mathcal{F})$ are such that $g_{i, i+1}=h_{i, i+1} \neq 0$ for all $1 \leq i \leq n-1$, then G and H are conjugated in $U T_{n}(\mathcal{F})$.

Here $U T_{n}(\mathcal{F})$ is the multiplicative group of $n \times n$ upper triangular matrices with only 1's in the main diagonal. From the lemma above we obtain the following corollary.

Corollary 2.1. Let \mathcal{F} be a field. For every $A=\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}$, where $a_{i, i+1} \neq 0$ for all $1 \leq i \leq n-1$, there exists $B \in T_{n}(\mathcal{F})$ such that $B^{-1} A B=J$ and $T_{n}(\mathcal{F})$ is the ring of upper triangular matrices.

Proof. Let A be a matrix in $N_{n}(\mathcal{F})$ of the mentioned form. Then $I_{n}+A$ is a unitriangular matrix. Let's notice first that there exists $B_{1} \in D_{n}(\mathcal{F})$ such that $\left(B_{1}^{-1} A B_{1}\right)_{i, i+1}=1$ for all $i \in \mathbb{N}$. We can construct $B_{1} \in D_{n}(\mathcal{F})$ recursively by:

$$
\left(B_{1}\right)_{11}=1, \quad\left(B_{1}\right)_{i+1, i+1}=\left(B_{1}\right)_{i i} \cdot\left(A_{i, i+1}\right)^{-1} \quad \text { for } i \geq 1
$$

Consider the matrix $I_{n}+B_{1}^{-1} A B \in U T_{n}(\mathcal{F})$. The unitriangular matrices $I_{n}+J$ and $I_{n}+B_{1}^{-1} A B$ fulfill the condition in Lemma 2.3. Hence, there exists $B_{2} \in U T_{n}(\mathcal{F})$ such that

$$
I_{n}+J=B_{2}^{-1}\left(I_{n}+B_{1}^{-1} A B_{1}\right) B_{2}
$$

Then $J=B_{2}^{-1}\left(B_{1}^{-1} A B_{1}\right) B_{2}$. Taking $B=B_{1} B_{2} \in T_{n}(\mathcal{F})$, we get $J=B^{-1} A B$ as wanted.

Lemma 2.4. Let $A=\sum_{i<j} a_{i j} E_{i j}$ be a matrix in $N_{n}(\mathcal{F})$ with $a_{i, i+1} \neq 0$ for every $i=1, \ldots, n-1$. Then there exists $\lambda_{A} \in \mathcal{F}$ such that $f(A)=\lambda_{A} A$.

Proof. Since $A=\sum_{1 \leq i<j \leq n} a_{i j} E_{i j}$, where $a_{i, i+1} \neq 0$, there exists $T \in T_{n}(\mathcal{F})$ such that $T A T^{-1}=J$ by the previous corollary. Define $h: N_{n}(\mathcal{F}) \rightarrow N_{n}(\mathcal{F})$ by $h(X)=T f\left(T^{-1} X T\right) T^{-1}$. Then h is a non-additive Lie centralizer. Indeed, for all $A, B \in N_{n}(\mathcal{F})$ we have:

$$
\begin{aligned}
h([A, B]) & =T f\left(T^{-1}[A, B] T\right) T^{-1} \\
& =T f\left(T^{-1}(A B-B A) T\right) T^{-1} \\
& =T f\left(T^{-1} A T T^{-1} B T-T^{-1} B T T^{-1} A T\right) T^{-1} \\
& =T f\left(\left[T^{-1} A T, T^{-1} B T\right]\right) T^{-1} \\
& =T\left[f\left(T^{-1} A T\right), T^{-1} B T\right] T^{-1} \\
& =T\left(f\left(T^{-1} A T\right) T^{-1} B T-T^{-1} B T f\left(T^{-1} A T\right)\right) T^{-1} \\
& =T f\left(T^{-1} A T\right) T^{-1} B-B T f\left(T^{-1} A T\right) T^{-1} \\
& =\left[T f\left(T^{-1} A T\right) T^{-1}, B\right] \\
& =[h(A), B] .
\end{aligned}
$$

Hence, $h(J)=\lambda_{A} J$ by Lemma 2.2. Then

$$
T f(A) T^{-1}=T f\left(T^{-1}\left(T A T^{-1}\right) T\right) T^{-1}=h(J)=\lambda_{A} J=\lambda_{A} T A T^{-1} .
$$

Multiplying the left and right sides by T^{-1} and T respectively yields $f(A)=\lambda_{A} A$.

Now we wish to extend Lemma 2.4 to all elements of $N_{n}(\mathcal{F})$. In order to do this, let's introduce the following set:

$$
\mathcal{S}=\left\{B=\left(b_{i j}\right) \in N_{n}(\mathcal{F}): b_{i, i+1} \neq 0 \quad \forall i=1, \ldots, n-1\right\} .
$$

This set has an important property that is established below.
Lemma 2.5. Let \mathcal{F} be a field. Every element of $N_{n}(\mathcal{F})$ can be written as a sum of at most two elements of \mathcal{S}.

Proof. If $a_{i, i+1} \neq 0$ for all $i=1, \ldots, n-1$, then A belongs to \mathcal{S}, so there is nothing to prove. If A is not in \mathcal{S}, then we can define B_{1} and B_{2} as follows:

$$
\left(B_{1}\right)_{i j}=\left\{\begin{array}{ll}
a_{i, i+1}-b_{i} & \text { if } j=i+1, \\
a_{i j} & \text { if } j>i+1,
\end{array} \quad\left(B_{2}\right)_{i j}= \begin{cases}b_{i} & \text { if } j=i+1, \\
0 & \text { otherwise },\end{cases}\right.
$$

where b_{i} is an element in \mathcal{F} different from $a_{i, i+1}$. It is easy to see that B_{1}, B_{2} are in \mathcal{S}, and $A=B_{1}+B_{2}$, so we wanted.

Lemma 2.6. Let \mathcal{F} be a field. For arbitrary elements A, B of $N_{n}(\mathcal{F})$, there exists $\lambda_{A, B} \in F$ such that

$$
f(A+B)=f(A)+f(B)+\lambda_{A, B} E_{1 n}
$$

Proof. For any A, B, X of $N_{n}(\mathcal{F})$, we have

$$
\begin{aligned}
{[f(A+B), X] } & =f([A+B, X]) \\
& =[A+B, f(X)] \\
& =[A, f(X)]+[B, f(X)] \\
& =[f(A), X]+[f(B), X] \\
& =[f(A)+f(B), X]
\end{aligned}
$$

which implies that $f(A+B)-f(A)-f(B) \in \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$. Thus, there exists $\lambda_{A, B} \in \mathcal{F}$ such that $f(A+B)=f(A)+f(B)+\lambda_{A, B} E_{1 n}$.

Now we can prove the main theorem.
Proof of Theorem 1.1. Let $A, B \in \mathcal{S}$ be two non-commuting elements. By Lemma 2.4, $f(A)=\lambda_{A} A, f(B)=\lambda_{B} B, \lambda_{A}, \lambda_{B} \in \mathcal{F}$.

Since f is a non-additive Lie centralizer, we get,

$$
\begin{aligned}
f([A, B]) & =[f(A), B]=\lambda_{A}[A, B] \\
& =[A, f(B)]=\lambda_{B}[A, B]
\end{aligned}
$$

Then, $[A, B] \neq 0$ implies that $\lambda_{A}=\lambda_{B}$.
If $A, B \in \mathcal{S}$ commute, then we take $C \in \mathcal{S}$ that does not commute neither with A nor with B. As we have just seen, $\lambda_{A}=\lambda_{C}$ and $\lambda_{B}=\lambda_{C}$. So $\lambda_{A}=\lambda_{B}=\lambda$ for arbitrary elements $A, B \in \mathcal{S}$. Given $X \in N_{n}(\mathcal{F})$ we know, by Lemma 2.5, that there exists $A, B \in \mathcal{S}$ such that $X=A+B$ (we can assume that $X \notin S)$. Then $f(X)-f(A)-f(B) \in \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$ by Lemma 2.6 .

That is $f(X)-\lambda_{A} A-\lambda_{B} B=f(X)-\lambda X \in \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$ for $\lambda \in \mathcal{F}$ such that $f(A)=\lambda A$ for each $A \in S$.

We can define $\eta: N_{n}(\mathcal{F}) \rightarrow \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$ such that $\eta(X)=f(X)-\lambda X$, that is, $f(X)=\lambda X+\eta(X)$.

Notice that $\eta(A)=0$ for each $A \in S$. Furthermore, if $X, Y \in N_{n}(\mathcal{F})$, then

$$
\begin{aligned}
f([X, Y]) & =\lambda[X, Y]+\eta([X, Y])=[f(X), Y] \\
& =[\lambda X+\eta(X), Y]=\lambda[X, Y]
\end{aligned}
$$

since $\eta(X) \in \mathcal{Z}\left(N_{n}(\mathcal{F})\right)$.
Consequently, $\eta([X, Y])=0$ and Theorem 1.1 is proved.

Acknowledgements

The author would like to thank the referee for providing useful suggestions which served to improve this paper.

References

[1] J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132-136.
[2] M. Brešar, Centralizing mappings on von Neumann algebra, Proc. Amer. Math. Soc. 111 (1991), 501-510.
[3] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
[4] M. Brešar, Commuting traces of biadditive mappings, commutativitypreserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
[5] W.-S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. (2) 63 (2001), 117-127.
[6] D. Eremita, Commuting traces of upper triangular matrix rings, Aequationes Math. 91 (2017), 563-578.
[7] A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory 4 (2) (2019), 342-350.
[8] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl. 437 (2012), 388-391.
[9] F. Ghomanjani, M.A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2) (2018), 468-471.
[10] T.K. Lee, Derivations and centralizing mappings in prime rings, Taiwanese J. Math. 1 (3) (1997), 333-342.
[11] T.K. Lee, T.C. Lee, Commuting additive mappings in semiprime rings, Bull. Inst. Math. Acad. Sinica 24 (1996), 259-268.
[12] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (3) (1999), 447-456.
[13] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (4) (1991), 609-614.
[14] R. SlOWIK, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), 399-404.
[15] L. Chen, J.H. Zhang, Nonlinear Lie derivations on upper triangular matrices, Linear Multilinear Algebra 56 (2008), 725-730.
[16] D. Aiat Hadj Ahmed, R. Slowik, m-Commuting maps of the rings of infinite triangular and strictly triangular matrices (in preparation).

