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Abstract: We prove that if a superposition operator maps a subset of the space of all functions
of n-dimensional bounded Φ-variation in the sense of Riesz, into another such space, and
is uniformly bounded, then the non-linear generator h(x, y) of this operator must be of the
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1. Introduction

Given two (non-empty) sets A and an B, the notation BA will stand for
the set of all functions from A to B. As usual, if M is a normed space, L(M)
denotes the set of all bounded operators on M .

Let A, B and C be non-empty sets. If h : A×C → B is a given function,
X ⊂ CA and Y ⊂ BA are linear spaces then, the nonlinear superposition
(Nemytskij) operator H : X → Y , generated by the function h, is defined as

(Hf)(t) := h(t, f(t)), t ∈ A.

This operator plays a central role in many mathematical fields (e.g. in
the theory of nonlinear integral equations), by its applications to a variety of
nonlinear problems, and has been studied thoroughly. Apart from conditions
for the mere inclusion H(X) ⊂ Y , the boundedness or the continuity of H (cf.
[2]), another important problem has been widely investigated:
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to find conditions on the generating function h in the case in which
(X, dX), (Y, dY ) are also metric spaces and the superposition operator H is
uniformly continuous or satisfies some global or local Lipschitz condition of
the form

dY (H(f1),H(f2)) ≤ αdX(f1, f2), f1, f2 ∈ X,

cf. e.g., [10, 11, 5].
In this paper we will investigate a problem related to this last situation.
Throughout this paper the letter n denotes a positive integer. Let a =

(a1, a2, . . . , an) and b = (b1, b2, . . . , bn) be points in Rn. We will use the nota-
tion a < b to mean that ai < bi for each i = 1, ..., n and accordingly we define
a = b, a ≤ b, a ≥ b and a > b. If a < b, the set J := [a,b] =

n∏
i=1

[ai, bi] will

be called an n-dimensional closed interval.
Given an n-dimensional closed interval J, a metric vector space M and Φ a

φ-function, the space of all functions, defined on J of n-dimensional bounded
Φ-variation will be denoted by BRV n

Φ (J;M). Suppose that N is another
vector metric space, C is a convex subset of M , Ψ is another φ-function and h :
J×C → N is a given function. In this paper we prove that if the superposition
operator H, generated by h, maps the set {f ∈ BRV n

Φ (J; M) : f(J) ⊂ C)} into
BRV n

Ψ (J;N) and is uniformly bounded, in the sense introduced in [12], then
there is a linear operator A ∈ L(M,N) and a function B ∈ NJ such that

h(x, y) = A(x)y +B(x), x ∈ J, y ∈ C.

This is a counterpart of a result of Matkowski proved in [12] for the space
of Lipschitz continuous functions.

2. Functions of bounded n-dimensional Φ-variation

In this section we present the definition and main basic aspects of the
notion of n-dimensional Φ-variation for functions defined on n-dimensional
closed intervals of Rn, that take values on a metric semigroup, as introduced
in [3]. This generalization of the notion of bounded variation for functions of
several variables is inspired in the works of Chistyakov and Talalyan [6, 13].
Here, we also combine the notions of variations given by Vitali ([14]) and later
generalized by Hardy and Krause (cf. [4, 7]).

Definition 2.1. A metric semigroup is a structure (M,d,+) where
(M,+) is an abelian semigroup and d is a translation invariant metric on
M .
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In particular, the triangle inequality implies that, for all u, v, p, q ∈ M ,

d(u, v) ≤ d(p, q) + d(u+ p, v + q), and
d(u+ p, v + q) ≤ d(u, v) + d(p, q). (2.1)

In this paper we will use the following standard notation: N (resp. N0)
denotes the set of all positive integers (resp. non-negative integers) and a
typical point of Rn is denoted as x = (x1, x2, ..., xn) := (xi)n

i=1; but, the
canonical unit vectors of Rn are denoted by ej (j = 1, 2, . . . , n); that is,

ej := (e(j)
r )n

r=1 where, e(j)
r :=

{
0 if r ̸= j
1 if r = j

.

The zero n-tuple (0, 0, . . . , 0) will be denoted by 0, and by 1 we will denote
the n-tuple 1 = (1, 1, . . . , 1).

If α = (α1, α2, ..., αn), with αj ∈ N0, is a n-tuple of non-negative integers
then we call α a multi-index ([1]).

If a,b ∈ Rn we use the notation a < b to mean that xi < yi for each
i = 1, ..., n and similarly are defined a = b, a ≤ b, a ≥ b and a > b. If
a < b, the set [a,b] =

n∏
i=1

[ai, bi] will be called a n-dimensional closed interval.

The euclidean volume of an n-dimensional closed interval will be denoted by
Vol [a,b]; that is, Vol [a,b] =

n∏
i=1

(bi − ai).

In addition, for α = (α1, α2, ..., αn) ∈ Nn
0 and x = (x1, x2, ..., xn) ∈ Rn

we will use the notations

|α| := α1 + α2 + ...+ αn and αx := (α1x1, α2x2, ..., αnxn).

We will denote by N the set of all strictly increasing continuous convex
functions Φ : [0,+∞) → [0,+∞) such that Φ(t) = 0 if and only if t = 0 and
lim

t→∞
Φ(t) = +∞.

N∞ the set of all functions Φ ∈ N , for which the Orlicz condition (also

called ∞1 condition) holds: lim
t→∞

Φ(t)
t

= +∞. Functions from N are often
called φ-functions.

One says that a function Φ ∈ N satisfies a condition ∆2, and writes
Φ ∈ ∆2, if there are constants K > 2 and t0 > 0 such that

Φ(2t) ≤ KΦ(t) for all t ≥ t0. (2.2)
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Now we define two important sets.

E(n) := {θ ∈ Nn
0 : θ ≤ 1 and |θ| is even }

O(n) := {θ ∈ Nn
0 : θ ≤ 1 and |θ| is odd}.

Notice that these sets are related in a one to one fashion; indeed, if θ =
(θ1, ..., θn) ∈ E(n) then we can define θ̃ := (1 − θ1, θ2, . . . , θn) ∈ O(n), and this
operation is clearly invertible.

In what follows M is supposed to be a metric semigroup and [a,b] an
n-dimensional closed interval.

Definition 2.2. ([7, 6, 14]) Given a function f : [a,b] → M , we define
the n-dimensional Vitali difference of f over an n-dimensional closed interval
[x,y] ⊆ [a,b], by

∆n(f, [x,y]) := d
( ∑

θ∈E(n)
f(θ x + (1 − θ)y),

∑
θ∈O(n)

f(θ x + (1 − θ)y)
)
. (2.3)

This difference is also called mixed difference and it is usually associated
to the names of Vitali, Lebesgue, Hardy, Krause, Fréchet and De la Vallée
Poussin ([7, 6, 8]).

Now, in order to define the Φ-variation of a function f : [a,b] → M , we
consider net partitions of [a,b]; that is, partitions of the kind

ξ = ξ1 × ξ2 × ...× ξn with ξi := {t(i)j }ki
j=0, i = 1, . . . , n. (2.4)

where, {ki}n
i=1 ⊂ N and for each i, ξi is a partition of [ai, bi]. The set of

all net partitions of an n-dimensional closed interval [a,b] will be denoted by
π([a,b]).

A point in a net partition ξ is called a node ([13]) and it is of the form

tα := (t(1)
α1 , t

(2)
α2 , t

(3)
α3 , ..., t

(n)
αn

)

where 0 ≤ α = (αi )n
i=1 ≤ κ, with κ := (ki)n

i=1.
For the sake of simplicity in notation, we will simply write ξ = {tα}, to

refer to all the nodes that form a given partition ξ.
A cell of an n-dimensional closed interval [a,b] is an n-dimensional closed

subinterval of the form [tα−1, tα], for 0 < α ≤ κ.
Note that

t0 = (t(1)
0 , t

(2)
0 , ..., t

(n)
0 ) = (a1, a2, ..., an) and

tκ = (t(1)
k1
, t

(2)
k2
, ..., t

(n)
kn

) = (b1, b2, ..., bn).
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Definition 2.3. Let f : [a,b] → M and Φ ∈ N . The Φ-variation, in the
sense of Vitali-Riesz of f is defined as

ρn
Φ(f, [a,b]) := sup

ξ∈π[a,b]
ρn

Φ(f, [a,b], ξ). (2.5)

where

ρn
Φ(f, [a,b], ξ) :=

∑
1≤α≤κ

Φ
(∆n (f, [tα−1, tα])

Vol [tα−1, tα]

)
Vol [tα−1, tα].

We now need to define the truncation of a point, of an n-dimensional closed
interval and of a function, by a given multi-index 0 < η ≤ 1. Notice that in
this case, the entries of a such η are either 0 or 1.

• The truncation of a point x ∈ Rn by a multi-index 0 < η ≤ 1, which
is denoted by x⌊η, is defined as the |η|-tuple that is obtained if we
suppress from x the entries for which the corresponding entries of η are
equal to 0. That is, x⌊η = (xi : i ∈ {1, 2, ..., n}, ηi = 1). For instance, if
x = (x1, x2, x3, x4, x5) and η = (0, 1, 1, 0, 1) then x⌊η = (x2, x3, x5).

• The truncation of an n-dimensional closed interval [a,b] by a multi-
index 0 < η ≤ 1, is defined as [a,b]⌊η := [a⌊η,b⌊η].

• Given a function f : [a,b] → M , a multi-index 0 < η ≤ 1 and a point
z ∈ [a,b], we define fz

η : [a,b]⌊η → M , the truncation of f by la η, by
the formula

fz
η (x⌊η) := f(ηx + (1 − η)z), x ∈ [a,b].

Note that the function fz
η depends only on the |η| variables xi for which

ηi = 1.

Remark 2.4. Given a function f : [a,b] → M and a multi-index η ̸= 0,
then the |η|-dimensional Vitali difference for fa

η (cf. (2.3)), is given by

∆|η|(fa
η , [x,y])

:= d
( ∑

θ∈E(n)
θ≤η

f(η(θx+(1−θ)y)+(1−η)a,
∑

θ∈O(n)
θ≤η

f(η(θx+(1−θ)y)+(1−η)a)
)
.
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Definition 2.5. Let Φ ∈ N and let (M,d,+, ·) be a metric semigroup.
A function f : [a,b] → M is said to be of bounded Φ-variation, in the sense
of Riesz, if the total Φ-variation

TRVΦ(f, [a,b]) :=
∑

0 ̸=η≤1
ρ

|η|
Φ (fa

η , [a,b]⌊η), (2.6)

is finite. The set of all functions f that satisfy TRVΦ(f, [a,b]) < +∞ will be
denoted by RV n

Φ ([a,b];M).

3. The normed space BRV n
Φ ([a,b];M)

So far, our consideration of metric semigroups as targets sets suffices ad-
equately to define a notion of n-dimensional variation; however, as we need
to study a superposition operator problem between linear spaces in which the
presence of this notion is desired, it will be necessary to ask for additional
structure on the target set M . The one that we will considerate is that of
vectorial metric space.

Definition 3.1. By a metric vector space (MVS) we will understand a
topological vector space (M, τ) in which the topology τ is induced by a metric
d that satisfies the following conditions:

1. d is a translation invariant metric.
2. d(αa, αb) ≤ |α| d(a, b) for any α ∈ R and a, b ∈ M.

Note that, in particular, any MVS is a metric semigroup. In what follows
M is supposed to be a MVS and [a,b] an n-dimensional closed interval.

Remark 3.2. It readily follows from 2.1 that given two functions f, g :
[a,b] → M, a multi-index η ̸= 0 and an n-dimensional closed interval [x,y] ⊂
[a,b], then the |η|-dimensional Vitali difference (c.f. (2.3)) of the truncation
(f + g)a

η satisfies the inequality

∆|η|
(
fa

η + ga
η , [x,y]

)
≤ ∆|η|

(
fa

η , [x,y]
)

+ ∆|η|
(
ga

η , [x,y]
)
. (3.1)

Lemma 3.3. The functional TRVΦ(·, [a,b]) is convex.

Proof. The lemma is consequence of (3.1) and of the fact that Φ is a
nondecreasing convex function.



uniformly bounded superposition operators in bv 25

Theorem 3.4. The class RV n
Φ ([a,b]; M) is symmetric and convex.

Proof. That RV n
Φ ([a,b]; M) is symmetric is consequence of property (2)

(since d(−a,−b) ≤ d(a, b)) of Definition 3.1 while convexity follows from
Lemma 3.3.

As a consequence of Theorem 3.4, the linear space generated by the set
RV n

Φ ([a, b]; M) is

{f : [a,b] → M : λf ∈ RV n
Φ ([a,b]; M) for someλ > 0} ,

which, we will call, the space of functions of bounded Φ-variation in the sense
of Vitali-Hardy-Riesz and will denote as BRV n

Φ ([a,b]; M).

Lemma 3.5. The set

Λ := {f ∈ BRV n
Φ ([a,b]; M) : TRVΦ(f, [a,b]) ≤ 1}

is a convex, balanced and absorbent subset of BRV n
Φ ([a,b]; M).

Proof. To prove convexity suppose that f, g ∈ Λ and let α, β be non-
negative real numbers such that α + β = 1. Then TRVΦ(f, [a,b]) ≤ 1,
TRVΦ(g, [a,b]) ≤ 1 and by Lemma 3.3

TRVΦ(αf + βg, [a,b]) ≤ αTRVΦ(f, [a,b]) + βTRVΦ(g, [a,b])
≤ α+ β = 1.

Hence Λ is convex.
On the other hand, from Definition 2.3 it readily follows that if f0 ≡ 0 then

TRVΦ(f0, [a,b]) = 0, thus f0 ∈ Λ and therefore, by virtue of the convexity
property of Λ just proved, Λ is balanced. Finally, the fact that Λ is absorbent
follows from property (2) of Definition 3.1 and the convexity of Φ.

By virtue of Lemma 3.5, the Minkowski Functional of Λ

pΛ(f) := inf
{
t > 0 : TRVΦ

(f
t
, [a,b]

)
≤ 1

}
,

defines a seminorm on BRV n
Φ ([a,b]; M), and therefore

∥f∥ := ∥f∥BRV n
Φ ([a,b];M) := d(f(a), 0) + pΛ(f) (3.2)

defines a norm on BRV n
Φ ([a,b]; M).
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Lemma 3.6. Let f ∈ BRV n
Φ ([a,b]; M),

(i) If ∥f∥ ̸= 0 then TRVΦ(f/∥f∥, [a,b]) ≤ 1;

(ii) if 0 ̸= ∥f∥ ≤ 1 then TRVΦ(f, [a,b]) ≤ ∥f∥.

Proof. (i) From definition 3.2 pΛ(f) ≤ ∥f∥.
If pΛ(f) < ∥f∥ then there is ξ ∈ Λ such that pΛ(f) < ξ ≤ ∥f∥ and

TRVΦ
(f

ξ , [a,b]
)

≤ 1. So, since Λ is absorbent, f
∥f∥ ∈ Λ.

If pΛ(f) = ∥f∥, then there is a sequence tn ∈ Λ such that

tn → ∥f∥ and TRVΦ

(
f

tn
, [a,b]

)
≤ 1.

It follows, by the continuity of the functional TRVΦ (·, [a,b]), that

TRVΦ
( f

∥f∥
, [a,b]

)
≤ 1.

(ii) follows from (i)and the convexity of TRVΦ(·, [a,b]).

Remark 3.7. It follows from Lemma 3.6 (i) that if pΛ(f) ̸= 0 and t > ∥f∥
then t ∈ Λ.

4. Composition operator in the space BRV n
Φ ([a,b]; M)

In this section we state and prove the main results of this paper concerning
the action of a superposition operator between spaces of functions of bounded
n-dimensional Φ-variation. For the sake of clarity of exposition, we will denote
the norm of BRV n

Φ ([a,b]; M) by ∥ · ∥(Φ,M).

Theorem 4.1. Suppose that [a,b] ⊆ Rn is an n-dimensional closed inter-
val, and that Φ, Ψ are φ-functions. Let M and N be linear metric spaces,
C ⊆ M a convex and closed set with non empty interior and let h : [a,b]×C →
N be a continuous function. If the Nemytskij operator H, generated by the
function h, applies the set K = {f ∈ BRV n

Φ ([a,b]; M) : f([a,b]) ⊂ C)} into
BRV n

Ψ ([a,b]; N ) and satisfies the inequality

||H(f1) −H(f2)||(Ψ,N ) ≤ γ
(
||f1 − f2||(Φ,M)

)
f1, f2 ∈ K, (4.1)
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for some function γ : [0,∞) → [0,∞), then there are functions A : [a,b] →
L(M,N ) and B ∈ N [a,b] such that

h(x, u) = A(x)u+B(x), x ∈ [a,b], u ∈ C.

If 0 ∈ C, then B ∈ BRV n
Ψ ([a,b]; N ).

Proof. We will show that h satisfies the Jensen equation in the second
variable.

Indeed, let t1 =
(
t
(i)
1

)n

i=1
and t2 =

(
t
(i)
2

)n

i=1
∈ [a,b], suppose further that

t1 ≤ t2, and define the functions

ηi(t) :=


0 if ai ≤ t ≤ t

(i)
1

t− t
(i)
1

t
(i)
2 − t

(i)
1

if t(i)1 ≤ t ≤ t
(i)
2

1 if t(i)2 ≤ t ≤ bi.

Next, consider y1,y2 ∈ C, y1 ̸= y2 and define

fj(x) := 1
2

[ n∏
i=1

ηi(xi)(y1 − y2) + yj + y2
]
, (4.2)

for j = 1, 2, where x := (x1, x2, ..., xn).
Notice that

f1(x)−f2(x)

= 1
2

[ n∏
i=1

η(xi)(y1 − y2) + y1 + y2 −
n∏

i=1
η(xi)(y1 − y2) − y2 − y2

]
= y1 − y2

2
.

Hence f1 − f2 has zero Φ-variation and

∥f1 − f2∥(Φ,M) = d((f1 − f2)(a), 0) + pφ(f1 − f2)

= d((f1 − f2)(a), 0) = d
(y1 − y2

2
, 0
)

= d
(y1

2
,
y2
2

)
> 0.

Notice further that
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• If x = tα where αi = 2 for i = 1, 2, ..., n then

n∏
i=1

η(t(i)αi
) =

n∏
i=1

t
(i)
αi − t

(i)
1

t
(i)
2 − t

(i)
1

= 1.

• If x = tα with αi ̸= 2 for some 1 ≤ i ≤ n then

n∏
i=1

η(t(i)αi
) =

n∏
i=1

t
(i)
αi − t

(i)
1

t
(i)
2 − t

(i)
1

= 0.

Thus, by (4.2)

• If αi = 2 for i = 1, 2, ..., n then

f1(tα) := 1
2

[ n∏
i=1

η(t(i)αi
)(y1 − y2) + y1 + y2

]
= y1,

and
f2(tα) := 1

2

[ n∏
i=1

η(t(i)αi
)(y1 − y2) + y2 + y2

]
= y1 + y2

2
.

• If αk ̸= 2 for some 1 ≤ k ≤ n then

f1(tα) := 1
2

[y1 + y2] = y1 + y2
2

,

f2(tα) := y2.

Thus, by the definition of H, we have

Hf1(t2) = h(t2, f1(t2)) = h(t2,y1)

Hf2(t2) = h(t2, f2(t2)) = h
(
t2,

y1 + y2
2

)
Hf1(t1) = h(t1, f1(t1)) = h

(
t1,

y1 + y2
2

)
Hf2(t1) = h(t1, f2(t1)) = h(t1,y2),

and, if θ is a non-zero multi-index different from 1

Hf1(θ t1 + (1 − θ)t2) = h
(
θ t1 + (1 − θ)t2,

y1 + y2
2

)
Hf2(θ t1 + (1 − θ)t2) = h(θ t1 + (1 − θ)t2,y2).



uniformly bounded superposition operators in bv 29

On the other hand, for f1, f2 ∈ K we have

||H(f1) − H(f2)||(Ψ,N ) ≤ γ
(
||f1 − f2||(Φ,M)

)
,

thus

pΨ(H(f1) − H(f2)) ≤ ||H(f1) − H(f2)||(Ψ,N ) ≤ γ
(
||f1 − f2||(Φ,M)

)
.

Hence, by Remark 3.7 we have

ρn
Φ

( Hf1 − Hf2
γ(∥f1 − f2∥(Φ,M))

, [a,b]
)

≤ TRVΦ

( Hf1 − Hf2
γ(∥f1 − f2∥(Φ,M))

, [a,b]
)

≤ TRVΦ

( Hf1 − Hf2
∥Hf1 − Hf2∥(Ψ,N )

∥Hf1 − Hf2∥Ψ,N )
γ(∥f1 − f2∥(Φ,M))

, [a,b]
)

(4.3)

≤
∥Hf1 − Hf2∥(Ψ,N )
γ(∥f1 − f2∥(Φ,M))

TRVΦ

( Hf1 − Hf2
∥Hf1 − Hf2∥(Ψ,N )

, [a,b]
)

≤ 1.

Thus

1 ≥ ρn
Φ

( H(f1) − H(f2)
γ(∥f1 − f2∥(Φ,M))

, [a,b]
)

≥ Φ
(∆n

(H(f1) − H(f2), [t1, t2]
γ(∥f1 − f2∥(Φ,M))

)
Vol [t1, t2]

)
Vol [t1, t2],

which implies

Φ−1
( 1

Vol [t1, t2]

)
Vol [t1, t2] ≥ ∆n

(
H(f1) − H(f2), [t1, t2]
γ(∥f1 − f2∥(Φ,M))

)

and

∆n (H(f1) − H(f2), [t1, t2])

≤ Φ−1
( 1

Vol [t1, t2]

)
Vol [t1, t2]γ(∥f1 − f2∥(Φ,M)). (4.4)
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Making t2 → t1 on the left hand side of (4.4) we get

lim
t2→t1

d

(∑
θ≤1

(−1)|θ| (H(f1) − H(f2))(θ t1 + (1 − θ)t2), 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
+ lim

t2→t1

∑
θ≤1
θ ̸=1

(−1)|θ| (H(f1) − H(f2))(θ t1 + (1 − θ)t2), 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
+ lim

t2→t1

∑
θ≤1
θ ̸=1

(−1)|θ| [h(θ t1 + (1 − θ)t2,
y1 + y2

2
)

− h(θ t1 + (1 − θ)t2,y2)
]
, 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
+
∑
θ≤1
θ ̸=1

(−1)|θ| [h(θ t1 + (1 − θ)t1,
y1 + y2

2
)

− h(θ t1 + (1 − θ)t1,y2)
]
, 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
(4.5)

+
∑
θ≤1
θ ̸=1

(−1)|θ| [h(t1,
y1 + y2

2
)

− h(t1,y2)
]
, 0
)
.

Now, the number of n-tuples that contain k 1s, with k > 0, is equal to(n
k

)
= n!

(n− k)!k!
, thus

∑
θ≤1
θ ̸=0

(−1)|θ|
[
h

(
t1,

y1 + y2
2

)
− h(t1,y2)

]

=
[
h

(
t1,

y1 + y2
2

)
− h(t1,y2)

] n∑
k=1

(−1)k
(
n

k

)

=
[
h

(
t1,

y1 + y2
2

)
− h(t1,y2)

]{ n∑
k=0

(−1)k
(
n

k

)
−
(
n

0

)}
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=
[
h

(
t1,

y1 + y2
2

)
− h(t1,y2)

]{
(−1 + 1)n −

(
n

0

)}
=
[
h

(
t1,

y1 + y2
2

)
− h(t1,y2)

]
{−1} .

Hence, substituting this last identity in (4.5) we get

lim
t2→t1

d

(∑
θ≤1

(−1)|θ| (H(f1) − H(f2))(θ t1 + (1 − θ)t2), 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
+
∑
θ≤1
θ ̸=0

(−1)|θ| [h(t1,
y1 + y2

2
)

− h(t1,y2)
]
, 0
)

= d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
− h

(
t1,

y1 + y2
2

)
+ h(t1,y2), 0

)
. (4.6)

On the other hand, the limit as t2 → t1 on the right side of (4.4) is zero,
therefore

d

(
h(t1,y1) − h

(
t1,

y1 + y2
2

)
− h

(
t1,

y1 + y2
2

)
+ h(t1,y2), 0

)
= 0

or equivalently

h(t1,y1) + h(t1,y2)
2

= h
(
t1,

y1 + y2
2

)
.

Thus h(t1, ·) is solution for the Jensen equation in C for t1 ∈ [a,b].
Adapting the classical standard argument (cf. Kuczma [9], see also [12])

we conclude that there exist A(t1) ∈ L(M,N ) and B ∈ N [a.b] such that

h(t1,y) = A(t1)y +B(t1) y ∈ C. (4.7)

Finally, notice that if 0 ∈ C, then taking y = 0 in (4.7), we have h(t,0) =
B(t), for t ∈ [a,b], which implies that B ∈ BRV n

Ψ ([a,b]; N ).

Notice that condition (4.1) is a generalization of the classical Lipschitz con-
dition; indeed, that is the case if, in particular, the function γ is an increasing
linear function.

In [12] J. Matkowski gives the following definition
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Definition 4.2. Let Y and Z be two metric (or normed) spaces. We say
that the map H : Y → Z is uniformly bounded if, for all t > 0 there exists a
real number γ(t) such that for all non empty set B ⊂ Y :

diamB ≤ t =⇒ diamH(B) ≤ γ(t). (4.8)

Corollary 4.3. Suppose that [a,b] ⊆ Rn is an n-dimensional closed
interval, and that Φ, Ψ are φ-functions. Let M and N be linear metric spaces,
C ⊆ M a convex and closed set with non empty interior and let h : [a,b]×C →
N be a continuous function. If the Nemytskij operator H, generated by
the function h, applies the set K = {f ∈ BRV n

Φ ([a,b]; M) : f([a,b]) ⊂ C)}
into BRV n

Ψ ([a,b]; N ) and is uniformly bounded then there are functions A :
[a,b] → L(M,N ) and B ∈ N [a,b] such that

h(x, u) = A(x)u+B(x), x ∈ [a,b], u ∈ C.

If 0 ∈ C, then B ∈ BRV n
Ψ ([a,b]; N ).

Proof. If f1, f2 ∈ K then diam({f1, f2}) = ||f1−f2||Φ. Since H is uniformly
bounded we have

diamH({f1, f2}) = ||H(φ) −H(ψ)||Ψ ≤ γ (||φ− ψ||Φ) ,

and the result readily follows from Theorem 4.1.
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