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discriminare tra modelli copula rivali

Laura Deldossi, Silvia Angela Osmetti, Chiara Tommasi

Abstract The problem of model discrimination has prompted a great amount of

research over last years. According to the specific characteristics of the rival models

(nested, non-nested, linear or not) different optimum criteria have been proposed

to select design points with the aim to discriminate between rival models. Ds-, T-

and KL-criteria are the most known. Up to our knowledge, in the literature there is

not any study to evaluate the performance of these discrimination criteria. In this

work, via a simulation study and focusing on rival copula models, we analyze the

performance of the KL-optimum design applying the likelihood ratio test for non-

nested models.

Abstract Nel corso degli ultimi anni il problema di discriminare tra modelli rivali

ha prodotto una grande quantità di ricerche. A seconda della tipologia di modelli

rivali (annidati, non annidati, lineari o non lineari), diversi criteri sono stati pro-

posti con l’obiettivo di selezionare il disegno ottimo per la discriminazione. Tra i

più noti ricordiamo i criteri Ds-, T- e KL-. Per quanto ci consta, in letteratura non

esistono studi relativi alla valutazione della loro effettiva capacità discriminatoria.

In questo lavoro, attraverso uno studio di simulazione in cui abbiamo applicato il

test del rapporto di verosimiglianza per modelli non annidati, abbiamo analizzato

le prestazioni del disegno KL-ottimo per discriminare tra modelli bivariati la cui

struttura di dipendenza è descritta attraverso una funzione copula.
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Università degli studi di Milano, Via Conservatorio 7 - Milano, e-mail: chiara.tommasi@unimi.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIR Universita degli studi di Milano

https://core.ac.uk/display/275696004?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Laura Deldossi, Silvia Angela Osmetti, Chiara Tommasi

1 Introduction

A major limitation associated with the design of an experiment is that the optimality

of a design depends on a priori true model that is not known in advance. Actually,

very often, the experimenter has not just one but several possible models for describ-

ing a phenomenon. Thus, his/her first goal is to collect data in order to discriminate

among rival models. The problem of model discrimination has prompted a great

amount of research over last years. To discriminate between nested models (linear

or not) [1] propose the Ds-criterion where the models are embedded in a more gen-

eral one and the design aims at estimating the additional parameters as precisely

as possible. A criterion to obtain optimal designs for discriminating between two

homoscedastic models for normally distributed observations is T-optimality, which

was introduced by [2]. A criterion based on the popular Kullback-Leibler (KL) dis-

tance is proposed by [6] for any non-normal assumption.

About discrimination between copula models, [9] apply the Ds-criterion which

can be used only for nested models; for this reason, they need to introduce the mix-

ture copula model (which includes the rival copulae as special cases). In this paper,

instead, we consider the KL-optimality criterion proposed by [6] which compares

directly the competing models without using any other auxiliary reference model.

Specifically, we consider a bivariate model with two possible dependence structures:

Clayton and Gumbel copulae (the competing models). Since, up to our knowledge,

there are no studies to evaluate the performance of a discrimination criterion, in this

work we analyze the performance of the KL-optimum design through a simulation

study where we apply a version of Cox’s test. For comparison purposes, we also

describe the performance of the Uniform design, which is very often adopted in real

case studies.

The paper is organized as follows. In Section 2 the bivariate copula model is

introduced and the main definitions are given. The KL-optimality criterion is intro-

duced in Section 3. Section 4 concerns the simulation study to evaluate the perfor-

mance of the KL-optimum design.

2 Bivariate Copula-Based Model

Let (Y1,Y2) be a bivariate response variable with marginal distributions FY1
(y1;α)

and FY2
(y2;β ), which depend on the unknown parameter vectors α and β , respec-

tively. If there is an association between Y1 and Y2, it is necessary to define a joint

model for (Y1,Y2).

A bivariate copula is a function C : I2 → I, with I2 = [0,1]× [0,1] and I = [0,1],
that, with an appropriate extension of the domain in R2, satisfies all the properties

of a cumulative distribution function (cdf). In particular, it is the cdf of a bivariate

random variable (U1,U2), with uniform marginal distributions in [0,1]:

C(u1,u2;θC) = P(U1 ≤ u1,U2 ≤ u2;θC), 0≤ u1 ≤ 1 0≤ u2 ≤ 1, (1)
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where θC ∈ΘC is a parameter measuring the dependence between U1 and U2.

The importance of copulae in statistical modelling stems from Sklar’s theorem

[7], which states that a joint distribution can be expressed in terms of marginal dis-

tributions and a function C(·, ·;θC) that binds them together. In more detail, ac-

cording to Sklar’s theorem, if FY1,Y2
(y1,y2;δ ,θC) is the joint cdf of (Y1,Y2), where

δ = (α,β ), then there exists a copula function C : I2 → I such that

FY1,Y2
(y1,y2;δ ,θC) =C

{
FY1

(y1;α),FY2
(y2;β );θC

}
, y1,y2 ∈ IR. (2)

If FY1
(y1;α) and FY2

(y2;β ) are continuous functions then the copula C(·, ·;θC) is

unique. Conversely, if C(·, ·;θC) is a copula function and FY1
(y1;α) and FY2

(y2;β )
are marginal cdfs, then FY1,Y2

(y1,y2;δ ,θC) given in (2) is a joint cdf.

From (2) we have that a copula captures the dependence structure between the

marginal probabilities. This idea allows researchers to consider marginal distribu-

tions and the dependence between them as two separate but related issues. For each

copula there exists a relationship between the parameter θC and Kendall’s τ coeffi-

cient (see [7] pp. 158-170) and between θC and the lower and upper tail dependence

parameters λl and λu (which measure the association in the tails of the joint distri-

bution; see [7] pp. 214-216). Several bivariate copulae have been proposed in the

literature (see for instance [7]). In this paper we consider only Clayton and Gumbel

copulae, which are recalled in Table 1. Both these copulae allow only for positive

association between variables (τ ≥ 0) but they exhibit strong left and strong right

tail dependence, respectively.

3 KL-Optimality Criterion

An approximate design ξ is a discrete probability measure on a compact exper-

imental domain X ; ξ (x) represents (at least approximatively) the proportion of

observations to be taken at the experimental condition x. An optimal design maxi-

mizes a concave functional of ξ , which is called optimality criterion and reflects an

inferential goal.

Let (Cl,G) denote Clayton and Gumbel copulae, respectively and let (θCl ,θG)
be the corresponding dependence parameters. From now on, we assume that nom-

inal values for δ , θCl and θG are available; hence, we compute locally optimum

designs. In order to discriminate between the two rival copulae, we propose to use

Table 1 Copula functions and related association parameters

Copula C(u1,u2;θ) θ ∈Θ τ = τ(θ)

Clayton (u−θ
1 +u−θ

2 −1)−1/θ θ ∈ (0,∞) τ = θ/(θ +2)

Gumbel exp
(
−
[
{− ln(u1)}

θ +{− ln(u2)}
θ
]1/θ

)
θ ∈ [1,∞) τ = 1−1/θ
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the following geometric mean of KL-efficiencies:

ΦKL(ξ ;δ,θCl ,θG) =
{

EffG,Cl(ξ ;θCl)
}γ
·
{

EffCl,G(ξ ;θG)
}1−γ

0≤ γ ≤ 1,

where γ is a suitably chosen weight which balances the belief in the two competing

copulae;

Effi, j(ξ ;θ j) =
Ii, j(ξ ;θ j)

Ii, j(ξ ∗i, j;θ j)
, ξ ∗i j = argmax

ξ
Ii, j(ξ ;θ j), i, j =Cl,G (3)

and

Ii, j(ξ ;θ j) = inf
θi

∑
x∈X

I { f j
y1y2

(x;δ ,θ j), f i
y1y2

(x;δ ,θi)} ξ (x), (4)

is the KL-criterion proposed by [6]. Here I { f
j

y1y2
(x;δ ,θ j), f i

y1y2
(x;δ ,θi)} denotes

the Kullback-Leibler divergence between the true density function f
j

y1y2
(x;δ ,θ j)

and the rival one f i
y1y2

(x;δ ,θi), with i, j =Cl,G.

4 Evaluation of the performance of the KL-optimum design: an

example with bivariate binary logistic model

In order to assess the ability of the KL-optimum design to discriminate between two

competing copula models we employ a version of Cox’s test (see [3] and [4]).

Given δ , τ and a design ξ , let (y1i,y2i) for i = 1,2, ...n be a sample of outcomes

from one of the two rival models. For a specific Scenario δ and for a specific value

of Kendall’s τ coefficient, we generate M samples of size n, at a design ξ . Then,

we check how many times the likelihood ratio test provides an evidence in favour of

each model. Following [8] we have to test both the following systems of hypotheses:

A)

{
HCl : FCl = { f Cl

y1y2
(x;δ ,θCl), θCl ∈ΘCl}

HG : FG = { f G
y1y2

(x;δ ,θG), θG ∈ΘG}

B)

{
HG : FG = { f G

y1y2
(x;δ ,θG), θG ∈ΘG}

HCl : FCl = { f Cl
y1y2

(x;δ ,θCl), θCl ∈ΘCl}

From now on, we omit the argument x and δ for ease of notation. As test statistics,

we consider the log-likelihood ratios:

TClG = LCl(θ̂Cl)−LG(θ̂G) and TGCl = LG(θ̂G)−LCl(θ̂Cl), (5)

where LCl(θCl) and LG(θG) are the log-likelihood functions under HCl and HG, re-

spectively, and θ̂Cl and θ̂G are the corresponding maximum likelihood estimators.

Let pClG and pGCl be the p-values of TClG and TGCl , respectively. Whenever

pClG > pGCl (or pGCl > pClG) we accept Clayton (or Gumbel) model.
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In the case of non-nested models the log-likelihood ratio is not (asymptotically)

distributed as a Chi-squared random variable (see for instance [4, 8]). Hence, we

implement a Monte Carlo procedure to approximate the sample distribution of TClG

and TGCl and to compute the corresponding p-values, p̂ClG and p̂GCl under HCl and

HG, respectively. Differently, [3, 4] proposed the asymptotic distribution of the log-

likelihood ratio suitably standardized.

Consider now an example in dose finding study. Let (Y1,Y2) be a binary response

variable where both Y1 and Y2 take values in {0,1} (1 denotes occurrence and 0

denotes no occurrence). We consider (see [5]) the following logistic models for the

marginal success probabilities of efficacy and toxicity:

π1(x;α) = P(Y1 = 1|x;α) =
eα0+α1x+α2x2

1+ eα0+α1x+α2x2
, α = (α0,α1,α2),

π2(x;β ) = P(Y2 = 1|x;β ) =
eβ0+β1x

1+ eβ0+β1x
, β = (β0,β1),

where x ∈X = [−1,1] denotes the standardized dose of a drug.

If C(·, ·;θC) is a copula function which models the dependence between π1(x;α)
and π2(x;β ), then the joint probability of (Y1,Y2) at the dose x is

pC
11(x;δ ,θC) = P(Y1 = 1,Y2 = 1|x;δ ,θC) =C

{
π1(x;α),π2(x;β );θC

}
. (6)

Given δ = (1,1.5,−3,2.5,5) and τ = 0.8, we perform two Monte Carlo simulations,

based on the generation of M = 5000 samples of size n from model (6) using (in the

data generating model) the Clayton copula with θCl = 8 and the Gumbel copula

with θG = 5, respectively (θCl = 8 and θG = 5 correspond to the same value of the

association parameter τ = 0.8). The doses and the proportions of observations to be

taken at each dose are given by the KL-optimum design, which is reported in the

first column of Table 2.

Table 2 KL-optimal design ξKL for (θCl ;θG) = (8;5) and Uniform design ξUni f

ξKL ξUni f{
−0.793 −0.050

0.470 0.530

} {
−1 −0.5 0 0.5 1

0.2 0.2 0.2 0.2 0.2

}

We apply the likelihood test and compute the Monte Carlo p-values of TGCl and

TClG: pm
ClG and pm

ClG for m = 1, . . . ,M. We calculate the percentages of correct selec-

tion of the true model, i.e. the percentage of times that pm
ClG > pm

GCl for m= 1, . . . ,M,

when the data are generated from the Clayton copula, and the percentage of times

that pm
GCl > pm

ClG for m = 1, . . . ,M, when the data are generated from the Gumbel

copula. The results are reported in the third and the fourth columns of Table 3.

We can observe that using the KL-optimum design the percentage of correct deci-

sion is around 72% from n = 100 and it exceed 90% from n = 500. Furthermore,

the percentage of wrong decision decreases substantially as n increases. Taking into
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Table 3 Monte Carlo simulation of the likelihood ratio test (M = 5000): data generated from

Clayton and Gumbel copulae for τ = 0.8 at the KL-optimum design ξKL (columns 3-4) and at the

Uniform design ξUni f (columns 5-6)

ξKL ξUni f

n Test decision
True copula model (%) True copula model (%)

Clayton Gumbel Clayton Gumbel

100 Correct decision 72 71.88 60.54 32.64

Wrong decision 28 28.12 39.46 67.36

200 Correct decision 82.28 84.04 67.50 43.12

Wrong decision 17.72 15.96 32.50 56.88

500 Correct decision 95.56 95.4 81.20 63.38

Wrong decision 4.44 4.6 18.80 36.62

1000 Correct decision 99.5 99.2 92.84 81.14

Wrong decision 0.5 0.8 7.16 18.86

account that the competing models differ only for the tail dependence, the obtained

results are excellent. Finally, for comparison purposes, we analyze the performance

of the Uniform design defined in the second column of Table 2. The corresponding

percentages of correct decision and wrong decision are listed in the fifth and sixth

columns of Table 3. We can observe that the percentage of correct selections ob-

tained with the KL-optimum design is substantially better than those corresponding

to the uniform design, especially for n < 500.
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6. López-Fidalgo, L.J., Tommasi, C., Trandafir, P.C.: An optimal experimental design criterion

for discriminating between non-Normal models. Journal of the Royal Statistical Society B

69(2), 231–242 (2007)

7. Nelsen, R.B., An Introduction to Copulas. Springer, New York (2006)

8. Pesaran, H. and Weeks, M.: Non-nested Hypothesis Testing: An Overview. In: A Companion

to Theoretical Econometrics,BH Baltagi (eds), 279–309 (2001).

9. Perrone, E. and Müller, W.G.: Optimal designs for copula models. Statistics, 50, 917–929,

(2016)


