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Abstract

In the last decade, mobile devices have spread rapidly, becoming more and more part of our
everyday lives; this is due to their feature-richness, mobility, and affordable price. At the
time of writing, Android is the leader of the market among operating systems, with a share
of 76% and two and a half billion active Android devices around the world (Cut19). Given
that such small devices contain a massive amount of our private and sensitive information,
the economic interests in the mobile ecosystem skyrocketed. For this reason, not only
legitimate apps running on mobile environments have increased dramatically, but also
malicious apps have also been on a steady rise. On the one hand, developers of mobile
operating systems learned from security mistakes of the past, and they made significant
strides in blocking those threats right from the start. On the other hand, these high-security
levels did not deter attackers. In this thesis, I present my research contribution about the
most meaningful attack and defense scenarios in the userland of the modern Android
operating system. I have emphasized “userland” because attack and defense solutions
presented in this thesis are executing in the userspace of the operating system, due to the
fact that Android is slightly different from traditional operating systems.

After the necessary technical background, I show my solution, RmPerm, in order to enable
Android users to better protect their privacy by selectively removing permissions from
any app on any Android version. This operation does not require any modification to
the underlying operating system because we repack the original application. Then, using
again repackaging, I have developed Obfuscapk; it is a black-box obfuscation tool that
can work with every Android app and offers a free solution with advanced state of the
art obfuscation techniques — especially the ones used by malware authors. Subsequently, I
present a machine learning-based technique that focuses on the identification of malware in
resource-constrained devices such as Android smartphones. This technique has a very low
resource footprint and does not rely on resources outside the protected device. Afterward, I
show how it is possible to mount a phishing attack — the historically preferred attack vector
— by exploiting two recent Android features, initially introduced in the name of convenience.
Although a technical solution to this problem certainly exists, it is not solvable from a single
entity, and there is the need for a push from the entire community. But sometimes, even
though there exists a solution to a well-known vulnerability, developers do not take proper



precautions. In the end, I discuss the Frame Confusion vulnerability; it is often present in
hybrid apps, and it was discovered some years ago, but I show how it is still widespread.
I proposed a methodology, implemented in the FCDroid tool, for systematically detecting
the Frame Confusion vulnerability in hybrid Android apps. The results of an extensive
analysis carried out through FCDroid on a set of the most downloaded apps from the Google
Play Store prove that 6.63% (i.e., 1637/24675) of hybrid apps are potentially vulnerable to
Frame Confusion. The impact of such results on the Android users’ community is estimated
in 250.000.000 installations of vulnerable apps.
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Chapter 1

Introduction

The role of mobile devices in our lives has been exponentially increasing in the last decade.
The advent of the Android operating system has fostered the development of an open
ecosystem of developers eager to grasp the opportunities offered by the widespread adop-
tion of smartphones. Nowadays the landscape of mobile devices is mostly divided be-
tween Android and iOS, with a market share of 76% and 22% respectively in the July of
2019 (Stal9b). The reason behind this success is due to the fact that Android is general
purpose and can be freely adopted and customized by device manufacturers. As expected,
such pervasive spread of Android-based smartphones had a significant impact on the num-
ber of applications (hereafter, apps) developed for Android. At the time of writing, the set
of available apps on the Google Play Store has reached 2.7M (stal9a), thereby supporting
almost every activity of both personal and professional users. Unleashing the smartphone
application market was beneficial for end-users as they can now choose among a large vari-
ety of apps, but while most of these applications have legal and fair behaviors, some of them
hit the media for being quite useful in affecting the user’s security and privacy (SFK'10).
As a consequence, the spread of malicious apps rose, and it is still exponentially increasing.

In this thesis, I present my research contribution about the most meaningful attack and
defense scenarios in the userland of the modern Android operating system. It is essential to
point out that attackers or defenders presented in this thesis are executing in the userland
(userspace), not in kerneland (kernel space), because it emphasizes their intrinsic limited
capabilities. The userland is the memory area where application software runs, while the
kerneland is strictly reserved for running a privileged operating system kernel. Moreover,
the userland of Android is slightly different from traditional operating systems. The An-
droid platform takes advantage of the Linux user-based protection to identify and isolate
app resources from each other and protects apps and the system from malicious apps. To
do this, Android assigns a unique user ID (UID) to each Android application and runs it
in its own process. In general, Android implements the principle of least privilege so that



each app, by default, has access only to the components that it requires and nothing more.
This creates a very secure environment in which an app cannot access parts of the system
for which it does not hold the corresponding permission, while there are few controlled
ways for an app to share data with other apps and to access system services. A central
design point of the Android security architecture is that no app, by default, has permission
to perform any operations. An app must explicitly publicize the permissions it requires,
for example, reading or writing the user’s private data (such as contacts or emails), reading
or writing another app’s files, performing network access, keeping the device awake, and so
on. However, Chapter 2 discusses in detail all the necessary background about the topics
presented in the rest of the thesis.

The rest of the thesis is structured as follows: in Chapter 3, we' propose a defensive
approach that allows users to selectively remove permissions from apps before installing
them, without any change to the underlying OS, i.e., fully in userland. Prior to Android 6,
users can install an app only by accepting all its requested permissions, while newer Android
versions allow users to grant/deny groups of permissions dynamically. Since some of them
impact users’ privacy, we argue that users should be granted control at the granularity of
the single permission, not just an entire group. Besides, some apps do not work until the
user grants a specific permission: sometimes it is a legitimate request (e.g., it is reasonable
that a photo editing app needs to access your storage), while in other cases it is an attempt
to violate the privacy of the user (e.g., when a single-player video-game requests the access
to your contact list). We developed RmPerm, an open-source tool, that implements our
methodology, and we present the viability of our approach via an empirical assessment
carried out on 81K apps, showing that, in the worst case, up to 86% of the apps can execute
without crashing when none of the requested privacy-related permissions are granted.

Then, given the technical background introduced in the previous chapter about applica-
tion rewriting, Chapter 4 moves on a very current topic for the Android app ecosystem:
obfuscation. We present Obfuscapk, an open-source automatic obfuscation tool for An-
droid apps that works in a black-box fashion (i.e., it does not need the app source code).
Obfuscapk is the result of an in-depth study about state-of-the-art obfuscation techniques.
It is impossible to define if obfuscation is an attack or defense technique because it is
also considered as a double-edged sword by the security community because both software
developers and malware authors frequently use obfuscation. Thereafter, we explore the
evolution of Android obfuscation using a real-world implementation, then we discuss an
actual use-case for Obfuscapk, and an empirical assessment on the reliability of the tool
on a set of 1000 “most downloaded” APKs from the Google Play Store. Obfuscapk aims
at becoming a useful tool for the research community on mobile security with its modular
architecture that could be straightforwardly extended to support new techniques. Using

'Since my findings are the result of a joint work with other people, I use the first person plural in the
rest of this thesis.
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it as a black-box obfuscation tool allows users to obfuscate apps and malware samples
for several aims, like building or attacking a machine learning model, improving program
analysis techniques w.r.t. obfuscation transformations, just to cite a few.

Deceiving automated code analysis, especially malware detection analysis, is one of the
aims of obfuscation. As previously explained, the current Android architecture limits the
efficacy and the applicability of anti-malware techniques because both attacker and de-
fender face each other in userland. In fact, Android antivirus apps run in userland like
normal apps. For this reason, given a target app, existing antivirus solutions can just per-
form static analysis (signature checks mainly) on the device, and upload the app to their
remote server for an extensive privileged analysis (usually using an emulator with the root
permission) at a later stage (RCJ13). This approach requires an internet connection, and it
often does not react quickly enough. In Chapter 5, we propose BadDroids, a mobile appli-
cation leveraging machine learning techniques for detecting malware on mobile —resource
constrained— devices. BadDroids runs in background and transparently analyzes the ap-
plications as soon as they are installed, i.e., before infecting the device. BadDroids relies
on static analysis techniques and features provided by the Android OS to build up sound
and complete models of Android apps in terms of permissions and API invocations. It uses
ad-hoc supervised classification techniques to allow resource-efficient malware detection.
Resource-constrained systems are becoming more and more common as users migrate from
PCs to mobile devices and as IoT systems enter the mainstream. At the same time, it is
not acceptable to reduce the level of security; hence, it is necessary to accommodate the
required security into the system-imposed resource constraints. By exploiting the intrinsic
nature of data, it has been possible to implement a state-of-the-art data-driven model that
provides deep insights on the detection problem and can be efficiently executed directly on
the device itself as it requires a minimal computational effort. Besides its limited resource
footprint, BadDroids is exceptionally effective: an extensive experimental evaluation shows
that it outperforms the currently available solutions in terms of accuracy, which is around
99%.

In Chapter 6, we switch from defense to offense, and we show how two of modern Android
features introduced in the name of convenience (mobile password managers and Instant
Apps), can be abused to make phishing attacks that are significantly more practical than
existing ones. We have studied the leading password managers for mobile, and we uncov-
ered several design issues that leave them open to attacks. For example, we show it is
possible to trick password managers into auto-suggesting credentials associated with ar-
bitrary attacker-chosen websites. We then show how an attacker can abuse the recently
introduced Instant Apps technology to allow a remote attacker to gain full UI control and,
by abusing password managers, to implement an end-to-end phishing attack requiring only
few user’s clicks. We also found that mobile password managers are vulnerable to “hidden
fields” attacks, which makes these attacks even more practical and problematic. We con-
clude the chapter switching back to the defensive side, by proposing a new secure-by-design
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API that avoids common errors, and we show that the secure implementation of autofill
functionality will require a community-wide effort.

In the end, Chapter 7 deals with Frame Confusion, which is a vulnerability affecting hy-
brid applications (web applications in the native browser), which allow circumventing the
isolation granted by the Same-Origin Policy. The detection of such vulnerability is still
carried out manually by application developers, but the process is error-prone and often
underestimated. In this chapter, we propose a sound and complete methodology to detect
the Frame Confusion on Android as well as FCDroid, a publicly-released tool that imple-
ments such methodology and allows to detect the Frame Confusion in hybrid applications,
automatically. We also discuss an empirical assessment carried out on a set of 50K appli-
cations using FCDroid, which revealed that a lot of hybrid applications suffer from Frame
Confusion. Finally, we show how to exploit Frame Confusion on a news application to
steal the user’s credentials.

Publications.

The research presented in this dissertation produced peer-reviewed papers accepted to
conferences and journals. In what follows, I report the complete list of published works:

S. Aonzo, G. Lagorio, A. Merlo. “RmPerm: a Tool for Android Permissions Remouval”,
in Proc. of the 14th International Conference on Security and Cryptography (SECRYPT
2017), Madrid, Spain. (ALM17)

S. Aonzo, A. Merlo, M. Migliardi, L. Oneto, F. Palmieri. “ Low-Resource Footprint, Data-
driven Malware Detection on Android”’, IEEE Trans. on Sustainable Computing, Vol. PP,
no. 99, pp. 1-1, DOI: 10.1109/TSUSC.2017.2774184. (AMM*17)

S. Aonzo, A. Merlo, G. Tavella, Y. Fratantonio. “Phishing Attacks on Modern Android”,
in Proc. of the 25th ACM Conference on Computer and Communications Security (CCS
2018), Toronto, Canada. (AMTF18)

D. Caputo, L. Verderame, S. Aonzo, A. Merlo. “Droids in Disarray: Detecting Frame
Confusion in Hybrid Android Apps”, in IFIP Annual Conference on Data and Applications
Security and Privacy (DBSec 2019) (pp. 121-139). Springer, Cham. (CVAM19)

While the paper:

S. Aonzo, G.C. Georgiu, L. Verderame, A. Merlo. “Obfuscapk: an open-source black-box
obfuscation tool for Android apps”

is currently under review at SoftwareX journal.

12



Chapter 2

Technical Background

System Apps

Dialer Email Calendar Camera

Java API Framework
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Activity Location Package Notification

View System Resource Telephony Window
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Figure 2.1: The Android software stack.
Android is an open-source, Linux-based software stack (as shown in Figure 2.1) created

for a wide array of devices and form factors. Even though Android is built on top of
the Linux kernel, it is slightly different from a regular kernel of a desktop machine or a
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non-Android embedded device. The differences are due to a set of new features called
“Androidisms” (Elel4). Some of the main Androidisms are the Low Memory Killer Dae-
mon (lmkd), wake-locks (integrated as part of wakeup sources support in the mainline
Linux kernel), anonymous shared memory (ashmem), Paranoid Networking, and Binder.
For example, Binder implements IPC and an associated security mechanism, and Paranoid
Networking restricts access to network sockets to applications that hold specific permis-
sions. Android is a modern and sophisticated operating system; the purpose of this chapter
is to give the necessary background to the reader about the topics that will be discussed in
the rest of the thesis. However, this chapter just introduces the general technical concepts,
while the following chapters have their dedicated section to its specific ones.

2.1 Application PacKages (APK)

Android applications are distributed and installed in the form of application package (APK)
files. The APK format is an extension of the Java JAR format, which in turn, is an
extension of the popular ZIP file format.

Listing 2.1 shows the contents of a typical APK file after it has been extracted.

Listing 2.1: Contents of a typical APK file

apk/
|-— AndroidManifest.xml
|-— classes.dex
|-— resources.arsc
|-— assets/
|-— lib/
| |-— armeabi/
| | \—-— libapp.so
| \—-— armeabi-v7a/
| \—— libapp.so
|~— META-INF/
| |-— CERT.RSA
| |-— CERT.SF
| \—— MANIFEST.MF
\—— res/

|-— anim/

|-— color/

|-— drawable/

|-— layout/

|-— menu/

|-— raw/

\—— xml/
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Basically, APK files are archive files that include both application code and resources, as
well as the application manifest file AndroidManifest.xml (line 2). The manifest file de-
clares the application’s package name, version, components, permissions, and other meta-
data. The classes.dex (line 3) file contains the executable code of the application in
the DEX bytecode format, organized in classes and methods. The resources.arsc (line
4) packages all of the application’s compiled resources such as strings and styles. The
assets (line 5) directory is used to bundle raw asset files with the application, such as
fonts or music files. Applications that take advantage of native libraries via Java Native
Interface (JNI) contain a 1ib (line 6) directory, with subdirectories for each supported
platform architecture (lines 7-10). Resources that are directly referenced from Android
code, either directly using the android.content.res.Resources class or indirectly via
higher-level APIs, are stored in the res (lines 15) directory, with separate directories for
each resource type (animations, images, menu definitions, etc.). Like JAR files, APK files
also contain a META-INF directory (line 11). The APK must contain precisely the entries
listed in MANIFEST.MF (line 14) and where all entries must be signed by the same set of
signers. Then the CERT.SF (line 13) contains the list of all files along with their SHA-1
digest and the CERT.RSA contains the signed contents of the CERT.SF file along with the
certificate chain of the public key used for signing the contents. The protection chain is
thus CERT.RSA — CERT.SF — MANIFEST.MF — contents of each integrity-protected
JAR entry.

2.2 APK Signing

Signing an APK allows verifying its integrity and authenticity. Before executing any third-
party program, the user wants to be sure that it has not been tampered with (integrity)
and that it was created by the entity that it claims to come from (authenticity). These
features are usually implemented by a digital signature scheme, which guarantees that
only the entity owning the signing key can produce a valid code signature. The signature
verification process verifies both that the code has not been tampered with and that the
signature was produced with the expected key. Nevertheless, one problem that code signing
does not solve directly is whether the code signer (software publisher) can be trusted. The
usual way to establish trust is to require that the code signer holds a digital certificate
and attaches it to the signed code. The verifiers decide whether to trust the certificate
based on a trust model (such as PKI or web of trust) or on a case-by-case basis. Because
Android code signing is based on Java JAR signing, it uses public-key cryptography and
X.509 certificates like many code signing schemes, and usually, code signing certificates
must be issued by a CA that the platform trusts. While there are many CAs that issue
code signing certificates, it can be quite challenging to obtain a certificate that is trusted
by all targeted devices. Android solves this problem quite simply: it does not care about
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the contents or signer of the signing certificate. Thus there is no need to have it issued by a
CA, and virtually all code signing certificates used in Android are self-signed. Additionally,
the developer does not need to assert her identity in any way: she can use pretty much
anything as the subject name of the certificate. The Google Play Store does have a few
checks to weed out some common names, but not the Android OS itself. This lack implies
that on Android the authenticity of the developer is not ensured!

2.3 Installation and Repackaging

There are several ways to install Android applications. Usually, end-users use an applica-
tion store client, such as the Google Play Store, Amazon Appstore, Aptoide, Tencent My
App, just to cite a few. However, it is also possible to do it directly on the device by open-
ing a downloaded APK file (this method is commonly referred to as “sideloading” an app),
or from a connected computer using the Android Debug Bridge (adb) command-line tool.
Since the Google Play Store is the official Android store, there is a security restriction that
blocks installing applications outside the Google Play Store. For these reasons, in order
to install apps hosted outside the Play Store or sideloaded, users need to enable a security
option called Unknown sources manually (off by default).

The package name of an Android app, defined in the AndroidManifest.xml, is a developer-
specified string that acts as the primary app identifier, thus uniquely identifying an app on
the device. While it is commonly believed that package names are analogous to web domain
names for mobile apps, they are very different for what concerns security guarantees. The
only constraint is that the package name needs to be unique i) across the apps published on
the Play Store (on some markets as well) and ii) across the apps installed on a given device.
No other security guarantees are provided. It is worth to emphasize that, even if some
Android markets use the package name as a unique identifier, there are no guarantees that
two apps with the same package name on two different markets are the same. The phishing
attack presented in Chapter 6 abuse the fact that the package name is also attacker-
controlled.

During the installation phase, if the package manager (the system component in charge
of the APK management) detects that there is another app with the same package name
installed on the device, it manages this operation like an update. However, the updates of
applications are only allowed when the updated APK is signed with the same key of the
previous one; therefore, the system “trusts” an APK on its first install. From that moment,
another installation of an APK with the same package name is considered an update.

Combining all the above-described peculiarities of the Android operating system leads to
an open problem: the APK repackaging (ZWZJ12; ZZG+13). APK are zip files, and their
files can be extracted, modified and repackaged — breaking their signature. However, the
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repackaged APK can be re-signed with a new certificate. Despite the fact that certificates
are self-signed, everybody can be a developer on Android markets and being able to sign
apps for publications. Therefore, it is easy for malware authors to modify legitimate apps
injecting their malicious code (if needed, changing the package name), repackaging, and
redistribute them. Moreover, modifying the embedded advertising client ID or replacing
it with new advertising libraries, an attacker can make profits through apps developed by
others (GSC"13). Nowadays repackaging is one of the primary attack vectors to distribute
malware through markets and siphon advertising revenue from original developers. Conse-
quently, there is a lot of research effort to detect repackaged Android applications (ZZJN12;
SLQ"14; ZHZ" 14). Given that, repackaged apps are often protected by obfuscation or
hardening systems.

In Chapter 3, we exploit app repackaging in order to create an unprivileged variant of the
same application, while in Chapter 4 we have developed a framework to obfuscate Android
apps (repacking the original one) in order to study the effects of such code transformations.

2.4 The permission-API mapping

The main security mechanisms in Android are the app sandbox and the usage of permis-
sions. Android executes each app in a sandboxed environment, built by taking advantage
of the multi-user nature of the Linux Kernel. In a nutshell, upon installation, each app
gets assigned a Linux User ID (UID), and whenever the app executes, it runs in its own
userspace. The aim of sandboxing is to improve the separation among apps by leverag-
ing the isolation granted natively by the Linux Kernel to different system users. Beyond
sandboxing, Android requires that each app declares, in the AndroidManifest.xml, its
resource requirements as a set of permissions upon installation. Without loss of precision,
permissions can be seen as strings that denote the possibility for an app to require specific
functionalities offered by the operating system. For example, the RECEIVE_SMS perission
allows an application to receive SMS messages. Some basic permissions are automati-
cally granted at install time and never revoked. Other permissions, defined as dangerous
(DAN), handle the privacy of the user (i.e., they allow the app to profile the user by ac-
cessing his contacts, messages and call logs, as well as activate camera and audio recording
or access the user’s position) and they have to be granted/denied at runtime by the user
himself. Such permissions are divided into 11 groups (Gool9) that represent the granular-
ity at which they may be granted/denied: ACTIVITY_RECOGNITION, CALENDAR, CALL_LQG,
CAMERA, CONTACTS, LOCATION, MICROPHONE, PHONE, SENSORS, SMS, STORAGE. When a dan-
gerous permission is requested for the first time, the user is prompted to grant/deny the
corresponding permission group to the app, automatically granting all the dangerous per-
missions in the corresponding group. This choice allows limiting the number of permission
requests at runtime (that can be annoying for the user), at the cost of a more coarse-grained
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control over dangerous permissions. It is also worth noticing that once a group of danger-
ous permissions is granted, it is never revoked by the system; however, the user can remove
a permission from an app by explicitly modifying the app settings. We argue that Android
should also offer an advanced management of permission, allowing fine-grained control. In
Chapter 3, we propose a userland solution to this problem that works in userland.

An app can obtain a system functionality by invoking a specific Android API (AAPI from
now on) from the Java API Framework (Figure 2.1). The set of AAPI invocations can be
mostly inferred from the app code (i.e., the executable app code in DEX format) through
static analysis techniques. An AAPI invocation may require specific permissions, so an
AAPI is adequately executed if the app has been granted the corresponding dangerous
permissions. Google does not provide an official mapping between AAPI methods and
permissions, but some works have empirically inferred this mapping (AZHL12; BBD'16).
An example of the correspondence between AAPIs and permissions is the following: the
class android.net.wifi.WifiManager provides the AAPI method isWifiEnabled() that
returns true or false whether the Wi-Fi interface is enabled or disabled and needs the
permission android.permission.ACCESS_WIFI_STATE to check the state of the Wi-Fi.

Since a mapping (albeit potentially incomplete) exists (BBD"16), checking both the re-
quested permissions and the AAPI invocations could appear redundant, as considering the
AAPI invocation inferred through static analysis could suffice. Unfortunately, the infer-
ence of the AAPI set by static analysis alone may be incomplete, in fact, an app could also
leverage advanced Java mechanisms such as Reflection (REF) and Java Native Interface
(JNI) to execute code that is not directly identifiable in the bytecode (i.e., it is impossible
to infer all the specific invocations through static analysis alone). However, an AAPT invo-
cation, especially a dangerous one, can still require some permissions to execute correctly
when invoked at runtime.
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Chapter 3

Defend the Privacy by Removing
Permissions

3.1 Introduction

Apps are the main attack vector for Android devices; therefore, they should require the
minimum set of permissions to work properly, while satisfying the least privilege principle
to reduce the attack surface. However, apps are generally over-privileged (FCH"11) since
developers tend to require more permissions than necessary to reduce the probability that
their app crashes. Furthermore, it is worth noticing that some permissions are particularly
important for the privacy of the user, like, for instance, those that allow apps to profile
the user by accessing her contacts, messages and call logs. These permissions are called
dangerous by the Android documentation, and we argue that users should be granted
more control over them.

Android versions prior to 6, that have still an adoption of 25% (and19), grant a very coarse-
grained control over permissions, i.e., the user cannot remove permissions from apps, and
should grant all permissions requested by any app in order to install it. Newer versions
(i.e., 6 and later) support dynamic management of groups of permissions, but they do
not allow the user to grant/deny single permissions. To overcome these limitations, we
put forward an approach allowing users to selectively remove permissions from apps that
does not require any modification to the underlying operating system and is compatible
with all Android versions. A key strength of our approach is that, when a user decides
to remove certain permissions from an app, we can guarantee, by design, that no Java
nor any native code could ever exploit such permissions, no matter what. The worst case
scenario is a crash of the less-privileged app, but not a privacy leak. We have implemented
our methodology in a tool, RmPerm (rmpl7), that we use to extensively assess the viability
of the approach on a set of 81,000 apps.
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RmPerm is an open-source project implemented in Java, and consists of a console appli-
cation and a library. In this respect, we also implemented an Android app, ApkMuzzle
(apkl7), using RmPerm as external library. We argue that releasing a tool like RmPerm
as open-source is a liability, as any tool that repackages apps can subtly add malicious
code. By releasing RmPerm as open source we grant anyone the possibility to verify its
behavior, by inspecting the source code.

The rest of the chapter is organized as follows. Section 3.2 describes our methodology for
permission removal, while Section 3.3 assesses its viability and performance. Section 3.4
sets our proposal within the current state-of-the-art. Finally, Section 3.5 concludes and
points out some future work.

3.2 A Methodology for Permission Removal

A quite direct way to remove a set of permissions P = {py,...,p,} from an app A is
simply to modify its manifest, contained in the APK of A, obtaining A'. This action has
two consequences:

1. the digital signature s, for the APK of A, cannot be reused for A' since its manifest,
and so the resulting APK, differs from the original;

2. A' may crash due to unexpected exceptions, thrown by the invocation of some API
method that needs some permission p; to run. Indeed, prior to Android 6, an app
asking for the set of permissions P gets installed only if the user grants the whole set
P, so apps could assume to be granted all asked permissions.

Since the signature s has been produced using an unknown secret key, we have no choice
but to sign A’ with another (secret) key. The only user visible effect is that Android will
consider A and A' two different apps; however, since they have the same name, only one
of them can be installed at any time. We do not consider this a problem; in some sense
they are different: A'is probably safer than A! To avoid that A' crashes because of an
unexpected exception, due to a missing permission p, we carry out a customization to all
invocations of API methods that need the permission p. This, in turn, means that we
need a mapping between permissions and the API methods that require such permissions.
Surprisingly, this mapping is not provided by the official documentation. However, we
were able to obtain the mapping from the Androguard Project (and17), which is based on
PScout (AZHL12).
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Listing 3.1: Example of method redirection

@CustomMethodClass
public class CustomMethods {
@MethodPermission(
permission="android.permission.INTERNET",
defClass="java.net.URL")
public static InputStream openStream(URL u)
{ return new FakeInputStream(); }

Q@AuxiliaryClass
public static class FakeInputStream
extends InputStream {
@0verride
public int read() throws IOException
{ return 0; %}

Using Dexlib2 (dex17) we have implemented RmPerm, a tool to redirect selected API
method invocations to our own alternative irnplementautions.1 Custom methods typically
just return some fake data to the app, to let it proceed. Consider, for instance, the
method execute, declared in org.apache.http.impl.client.DefaultHttpClient: it needs
the INTERNET permission and returns a org.apache.http.HttpResponse; in this case, we
cannot just remove the invocation or return a null reference, because that would likely
make the app crash. In such cases we must mock a ‘reasonable” return value. In the
general case, when we want to redirect the invocation for an instance method m of class C,
with the signature T,, m(T},...,T,), we define a new static method T, m(C,T},...,T,),
defined in a class X that we add to the APK. The first parameter, of type C, plays the
role of the receiver of the corresponding instance method. This kind of setup is similar to
C+# extension methods. Then, we rewrite all the invocations of the form ey.m(ey,...,e,),
where ¢, has static type C, with X.m(eg, e, ... ,en)Q.

To make writing custom replacement methods as easy as possible, our tool reads a DEX
file and searches for classes and methods that are annotated with Java custom annotations,
that we have defined: @CustomMethodClass, @MethodPermission and @AuxiliaryClass. The
annotation @CustomMethodClass simply marks classes that contain replacement methods;
this is simply an optimization to avoid to process each and every method of the input
file. The annotation @MethodPermission(p, defClass) indicates the involved permission

'As an optimization, RmPerm can automatically remove the invocations of void methods, when such
methods do not have an explicit custom replacement.

2Here, to make the explanation simpler, we use a source-like syntax but, of course, we work directly at
DEX bytecode level.
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Figure 3.1: Distribution of dangerous permissions in the dataset.

p and the defining class (in the Android API) defClass. Finally, @AuxiliaryClass marks
the classes that must be copied into the repackaged app, because they are needed by the
custom methods. For instance, Listing 3.1 shows class CustomMethods, which contains a
redirection for method openStream defined in class java.net.URL.

3.3 Experimental Assessment

To assess the effectiveness and efficiency of the proposed methodology, we have carried out
an empirical assessment by executing RmPerm on a dataset of 81,000 APKs randomly
downloaded from three different markets, namely Google Play (70,000 APKs), Aptoide
(5,500 APKs) and Uptodown (5,500 APKs). Since we could not conceivably choose, for
each app of the dataset, a different set of permissions to remove, we have decided to assess
the worst-case scenario, that is, to remove all dangerous permissions from each app A,
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Figure 3.2: Top 24 requested permissions in the dataset. Dangerous permissions are labeled
with the asterisk (*) character.

producing a new app A'; then, we have checked whether the less-privileged app A' could
be installed and execute properly. This process is detailed below.

Dangerous permissions refer to the Android classification (reql7); there currently are 24
dangerous permissions. They are strictly related to the user’s privacy as they allow app to
access storage, camera, GPS coordinates, user’s calendar and contacts, just to cite a few.
We extracted all permissions requested by the apps in our dataset by systematically parsing
the app manifest file, that contains all permissions required by an app. Fig. 3.1 shows the
distribution of dangerous permissions in the dataset. Intuitively, the x-axis shows the 24
permissions ordered accordingly to their frequency on the dataset. The y-axis indicates
the percentage of apps requesting the permission. Fig. 3.2 plots the top 24 permissions
requested by apps in the same way.
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Table 3.1: RmPerm: Performance and size statistics.

#Permissions SizeRatio || Exec. time][s] Test results
AppName original | new | A || APK | DEX || PC | Tablet || Inst. | Monkey
AdobeReader 6 3 3 1.16 1.00 5.70 27.41 v v
CandyCrushSaga 10 8 2 1.08 0.99 6.17 | 30.83 v v
Facebook 48 33 | 15 1.03 0.94 4.04 | 27.73 v v
Instagram 25 17 8 1.19 1.01 7.13 | 30.15 v v
LedFlashLight 9 8 1 1.06 1.00 6.60 27.47 v v
MGuard 35 33 2 0.97 1.00 8.46 | 32.57 X n. a.
Shazam 20 13 7 1.04 1.00 7.25 | 35.49 v X
Skype 45 33 | 12 1.13 1.00 || 11.49 | 44.82 v v
Snapchat 15 7 8 1.07 1.00 5.14 25.17 v v
Spotify 23 19 4 1.11 1.00 8.49 | 35.50 v X
SwiftKey 14 11 3 1.18 1.00 9.62 | 31.90 v X
Telegram 32 21 | 11 1.12 1.00 594 | 23.94 v X
Twitter 31 22 9 1.45 1.00 8.76 | 28.19 v v
Viber 56 41 | 15 1.21 1.00 7.65 | 29.35 v v
Whatsapp 50 38 12 1.45 1.00 7.38 26.95 v X
Average 6.8 49 | 2.1 1.1 1.1 3.9 27.1
Std deviation 5.9 4.4 |24 0.2 3.1 3.3 9.8

3.3.1 Testing RmPerm.

A single automated test, for each app A, runs as follow:

1. RmPerm gets the APK of app A, and builds up a new app A’ that does not require
any dangerous permission.

2. A'is installed on an actual Android device.

3. If this step fails, the original A is installed, in order to verify whether the failure is due
to the modification carried out by RmPerm or it is independent from the permission

removal.

4. If the installation of A" has been successful, its behavior is tested by generating a
stream of 512 pseudo-random user events with Monkey (monl7), seeded by a random
number n. Using different seed values leads to generate distinct sequences of user
events. If A' fails, this can be due either to the removal of permissions or to the

presence of bugs in the original app A.
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5. To ascertain this, we stimulate A with the same stream of events, generated by
seeding Monkey with the same seed n.
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Figure 3.3: Time required to repackage an app

Through previous steps, we can empirically assess whether the removal of dangerous per-
missions through RmPerm leads to failures. We carried out the experimental assessment
on a Dell XPS 9530 (Ubuntu 16.04, Intel i7-4712HQ @ 2.30GHz, 16GB RAM), as well as
on two Asus Z170CG (Android 5.0.2, Intel Atom x3-C3200 @ 900MHz, 1GB RAM) that
we used to install and (automatically) stimulate the apps.

Our results indicate that on 81,000 samples, 2, 358 repackaged apps failed in step 2; that
is, they could not be installed successfully. Among these, 572 failed the step 3 too; this
means that the corresponding original APKs were already broken in some way. There-
fore, we discarded them and we considered a new set, consisting of the original samples
except for the already broken APKs; that is, 81,000 — 572 = 80,428 apps. On this set,
the 98% = 78,642/80, 428 of repackaged apps have been successfully installed. Then, we
stimulated the installed apps according to step 4. Among these, 66,051 were repackaged
and stimulated without crashes, while 14,377 (= 80,428 — 66, 051) failed and required fur-
ther analysis. Therefore, we applied step 5 to such apps obtaining that 3,633 original apps
crashed, thereby proving that the same problems affected the original app, too. For this
reason, we also discarded these APKs. Summing up, the 86% = 66,051/76, 795 of working
apps have been successfully modified, installed and executed properly after removing all
dangerous permissions.
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3.3.2 Discussion on global statistics.

We analyzed the average values for the whole dataset in terms of permission removal, size
of APKs and DEX after repackaging, as well as the time required for the whole process. To
this aim, Table 3.1 summarizes global and some per-app statistics; the database containing
all the data can be freely downloaded (sql17). Regarding permissions, removing dangerous
ones has led to the removal, on average, of 38% of all app permissions, as original apps
have on average 6.8 permissions while repackaged ones have 4.9, with a large standard
deviation value in both cases.

Repackaging phase does not alter the size of the APKs significantly; on average, repackaged
APKs are smaller by a factor of 1.1, with a standard deviation of 0.2. Modified DEX files
are smaller on average, with a factor of 1.1 and a large standard deviation of 3.1. This is
due to the fact that, when removing a set of permissions P, we also remove all invocations
to void API methods, requiring some permission p € P, for which we do not have explicitly
defined a redirection. Furthermore, the size of the original manifest file is decreased, but
the size of DEXs is increased due to the addition of custom classes/methods.

3.3.3 RmPerm performance.

We have measured the time needed to remove all dangerous permissions from an app, in
two different use cases: when RmPerm is running on a PC, and when RmPerm is running
on an Android device. We have measured the running time on all APKs of our sample
set when running on the PC, while we have randomly picked 1,000 apps when RmPerm
was run on the Android device. Indeed, we were only interested to check whether running
RmPerm on an Android device was practical and if the running time was still linear in
the size of the DEX file. Fig. 3.3 shows the performance results: the DEX size, say s, is
generally a sensible parameter for predicting the running time ¢; indeed, as shown by the
fitted curve, t(s) is roughly a linear function. However, there are cases where a relatively
small DEX file is contained in a large APK; for instance, this is the case for apps containing
graphical /multimedia resources, like games. In these cases, the time to copy the resources
from the original APK into the new one may prevail the time needed to process and rewrite
the bytecode. This is the reason for the jitters in both graphs. Results have been positive
in both regards: while obviously slower, running RmPerm on the device requires less than
30 seconds on average, and the times are still linear in the size of the DEX file, even though
the slope is less steep and there is a constant cost, presumably due to the start-up time of
RmPerm on Android.
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3.4 Related Work

As shown by previous work (FGW11; FCH+11) , many Android apps are over-privileged,
that is, they request more permissions than they actually need, thereby making the built-in
permission system rather inadequate to protect the users and their privacy. To address
these concerns, some authors have proposed to enrich the built-in security framework, by
modifying the underlying operating system, and requiring changes to the app sources, in
order to exploit the new features.
One of the top problems related to Android permissions is the fact that, up to Android 6,
the protection offered by the system was an all-or-nothing choice at installation time, when
the user was asked to accept all permissions requested by the app, or to abort the installa-
tion altogether. Moreover, with the current permissions management, if an app requests a
dangerous permission, belonging to a certain permission group, and the user agrees on its
usage, then the user is actually agreeing on accepting all permissions of the same group.
That is, any subsequent update of the app can request, and be silently granted, any other
permission belonging to an accepted group. Clearly, a fine-grained control was needed. For
this reason, many proposals, including ours, tackle the built-in permission system directly.
Apexr (NKZ10) is a policy enforcement framework that allows users to selectively grant
permissions to apps, as well as impose constraints on the usage of resources. This imple-
mentation requires some changes to the Android code base so, while we share a similar
goal, the striking difference is that we require no changes to the underlying system.
Some work addresses privacy concerns directly: AppFence (HHJ +11) retrofits the Android
operating system to protect private data from being exfiltrated, by replacing shadow data,
in place of data that the user wants to keep private, and by blocking network transmissions
that contain data the user marked for on-device use only. MockDroid (BRSS11) modifies
the Android operating system to allow users to mock the app’s accesses to a resources
We use a similar trick to avoid that apps crash due to unexpected exceptions, once
we have removed some of their permissions. However, we repackage apps and leave the
operating system untouched. Finally, TISSA (ZZJF11) is a privacy-mode implementation
in Android. All the above proposals allow running unmodified apps more safely, at the
cost of modifying the underlying Android operating system, which severely hampers the
widespread adoption of these solutions.
Other proposals (XSA12; JMV'12; DSKC12; BGH"13; DC13; RJV'11) bypass the need to
modify the underlying operating system by repackaging arbitrary apps to attach user-level
sandboxing and policy enforcement code. These proposals, like ours, use static analysis
to identify the usage of API methods and instrument the bytecode to control the access
to these invocations. However, with the exception of (JMV+12), discussed below, all of
these do not remove permissions from the manifest of the original app A, when creating
the repackaged app A" thus, the underlying OS process that runs A’ retains all permissions
of the original app A. This means that incomplete/flawed implementations of bytecode
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rewriting can lead to bypassing access control mechanisms, e.g., by using Java reflection
and/or native code (HSD13).

Dr. Android (JMV'12) is a tool that uses bytecode rewriting to replace Android permis-
sions with a specified set of fine-grained versions, that are accessed through a separate
service, called Mr. Hide. In this case bytecode rewriting is adopted for replacing API
calls, used by the original app, with interprocess communication primitives to query Mr.
Hide service. These primitives are rather expensive, so there is a significant slowdown
on API invocations. With our approach, instead, API invocations are “short-circuited” or
removed altogether, making repackaged apps slightly faster than the original.

Finally, Bozify (BBH+15) has introduced a concept of app sandboxing on stock Android,
based on app virtualization and process-based privilege separation. While this approach
eliminates the need to repackage apps, it requires a lot of additional code (about 12 K
lines of Java code, plus 3.5 K LoC of C/C++, according to the chapter), which should be
carefully audited — authors promised to make the source code available, but at the time of
writing, more than a year later, it is still unavailable. On the contrary, our approach simply
requires to customize 57 trivial Java methods. Moreover, Boxify requires the presence of a
fully privileged controller process, called Broker, which is an attractive target for privilege
escalation attacks.

3.5 Concluding Remarks

We have presented a novel approach, and its supporting tool - RmPerm—, to enable Android
users to better protect their privacy by selectively removing permissions from any app, on
any Android version. Then we assessed the effectiveness of our idea on a set of 81,000 real-
world samples. The experimental results have been encouraging; indeed, we have blindly
removed, from these apps, all dangerous permissions obtaining that 86% of these rewritten
apps can be installed and executed without crashing; we could not expect a 100% success-
rate, some apps do need some of the permissions they request. However, the majority
of them can be run equally fine with a strict subset of the permissions they originally
requested. By using RmPerm, users can freely decide where to draw the “privacy line” and
can run virtually any app without disclosing more personal information than they want to.
A limitation of our current implementation is that apps using anti-tampering techniques
can detect that they have been rewritten. However, our experiments indicate that, for
the time being, Android apps very seldom adopt anti-tampering techniques. Another
limitation is that RmPerm currently redirects only “direct” API invocations, that is, we
do not even try to redirect API invocations executed through the use of Java reflection or
native code. We are considering how to extend our approach to intercept those reflective
invocations too; however, this limitation is not severe as it may sound. With our approach,
no Java nor any native code could ever exploit a removed permission, no matter what, since
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involved permission requests are actually removed from the app manifest. As remarked, the
worst case scenario is a crash of the less-privileged app, but not a privacy leak. Android
6 has introduced the possibility of both installing apps without granting all requested
permissions at once, and toggling permissions at a later time. So, the usefulness of RmPerm
could appear as dramatically reduced through the growing adoption of the latest Android
versions, but RmPerm offers a finer grained permission selection, which is unavailable in
the Android user interface. In fact, Android 6 allows the user to only grant/deny groups of
permissions. For instance, because the user-level permission group contacts consists of the
set of permissions READ_CONTACTS, WRITE_CONTACTS and GET_ACCOUNTS, a user cannot grant
an app the ability to read his/her contacts, without granting the ability to write them too.
While, by using RmPerm, such a policy is easily enforceable.
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Chapter 4

The Importance of Obfuscation

4.1 Motivation and significance

Obfuscation is a security through obscurity technique that modifies the code in order to
counteract automatic or manual code analysis. However, it is considered as a double-
edged sword by the security community because both software developers and malware
authors frequently use obfuscation. In fact, on the one hand, obfuscation keeps developers’
competitors away from copying the code and makes it difficult for attackers to alter the
regular flow of the software (e.g., cracking). On the other hand, it also helps malware
authors to circumvent automated code analysis and manual inspection. As an example,
consider a malware sample that is being recognized by anti-virus engines. In this case,
the malware author needs to quickly build a variant of the original malware that could go
undetected. Since creating a variant from scratch is time-consuming, obfuscating the code
of the original malware is often considered a good compromise.

The challenges around obfuscation have attracted many researchers, especially in the field
of mobile apps, given the astonishing growth of such markets. In the mobile world, es-
pecially the one focusing on the Android platform, obfuscation is rather common. Disas-
sembling (or decompiling) and rebuilding an Android app is more straightforward w.r.t.
other binary code, like, e.g., x86 executables. So far, most of the studies on Android app
obfuscation focus on how: i) to build reliable obfuscation techniques (AN14; SLZG14),
ii) obfuscation can be handled by state-of-art code analysis tools (RCJ13), iii) to auto-
matically deobfuscate the code (BRTV16), and iv) developers actually adopt obfuscation
nowadays (DLD"18; WHA™18). The recent research works suggest that many developers
are unable to apply advanced obfuscation techniques and that free off-the-shelf obfusca-
tors support only basic obfuscation or are very difficult to configure. Furthermore, there
are several academic works (WMW"12; AZ13; SSL*13; LL14; ASH"14; BTG"16; IRC"17;
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AMM+17) that take advantage of machine learning techniques for malware detection; how-
ever, only few of them (STDA'17; GHP+15) take into consideration obfuscation in their
models. It is also worth to point out that there is an increasing trend (DMB*17; CLW™18)
on applying adversarial machine learning on mobile, with the aim to study how an attacker
could modify an app in order to evade an existing ML model. However, there exist only
a couple of tools (i.e., ADAM (ZLL12) and AAMO (DPM17)) that allow applying (some)
obfuscation techniques automatically. Unfortunately, both of them were never updated
since the year they were released, ADAM does not implement advanced obfuscation tech-
niques, and the current version of AAMO does not seem to work correctly. To overcome
the limitation of previous tools, we have developed Obfuscapk, a free Python tool that is
able to obfuscate compiled Android apps (i.e., without the need of the source code). Ob-
fuscapk supports advanced obfuscation features (e.g., string encryption and native libraries
encryption), and its modular architecture easily allows to add new obfuscation techniques
by the community. We tested Obfuscapk on 1000 APKs among the most installed apps
from the Google Play Store; our experiments indicate that Obfuscapk automatically gen-
erates obfuscated full working apps in the 83% of the cases. Obfuscapk aims at becoming
a useful tool for both the developers’ and the research communities. On the one hand,
developers can use Obfuscapk in cooperation with ProGuard, which is the default opti-
mizer and obfuscator included in the Android SDK and supported by the official Android
Studio IDE. First, the developer uses the Android SDK with ProGuard to release the
APK, and then she can apply more advanced obfuscation techniques through Obfuscapk.
On the other hand, the research community on mobile security can apply Obfuscapk as a
black-box obfuscation tool to apps and malware samples for several aims, like building or
attacking a machine learning model, improving program analysis techniques w.r.t. obfus-
cation transformations, just to cite a few. Finally, each user can extend the current tool
by adding her own or other obfuscation techniques at state of the art.

4.2 Supported Obfuscation Techniques

In this section, we describe the techniques supported by Obfuscapk, with a specific focus
on their impact on malware detection. There exists a classification (MAC™15; DPM17)
of obfuscation techniques for the Android ecosystem, which divides the techniques in two
main categories: trivial and non-trivial.

The following techniques are the result of an in-depth study about state-of-the-art obfus-
cation techniques for the Android platform.
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4.2.1 'Trivial techniques

Trivial techniques are the simplest ones. They have no real obfuscation effects on the
APK, but they can trick some signature-based anti-malware tools (MAC"15). Obuscapk
implements four existing trivial techniques, namely: Align, Re-sign, Rebuild, and Ran-
domize Manifest.

4.2.1.1 Align and Re-sign

These techniques implement the last mandatory steps for building a working Android APK.
The alignment is done by using zipalign, a specific tool of the Android SDK. The result is
a reorganized application in which the structure of the files is optimized for running on an
Android device. Android requires all APKs to be digitally signed with a certificate before
they can be installed on a device (or updated), so the Re-sing step is the last mandatory
step after applying obfuscation.

4.2.1.2 Rebuild

The bytecode contained in classes.dex file can be disassembled and reassembled to obtain
a different version of the file. Such technique transforms the bytecode without changing
its semantic, in order to preserve the original behavior of the app. This rebuild aims to
fool anti-malware tools that use the signature of classes.dex file.

4.2.1.3 Randomize Manifest

Such technique randomly rearranges the entries in the AndroidManifest.xml, without
modifying the XML tree structure. The goals are twofold: i) change the hash of the
manifest file, and ii) fool the N-gram analysis (SFE10).

4.2.2 Non-trivial techniques

Non-trivial techniques are more complex, but they grant a more profitable gain in terms
of detection rate and robustness (MAC"15). The targets of obfuscation are both bytecode
and resources (XMLs, asset files, and external libraries). Non-trivial obfuscation techniques
can be divided into four subcategories: Renaming, Encryption, Code, and Resources.
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4.2.2.1 Renaming

In software development, the names of identifiers (variable names, function names, and so
forth) should be meaningful to provide good code readability and maintainability. However,
such clear names may leak information about code functionalities. Furthermore, since
the package name uniquely identifies an Android app, its modification amounts to put a
new app in the Android ecosystem. Therefore, the renaming technique substitutes each
identifier with an obscure and meaningless one. While the methods and fields renaming
has no drawbacks, the classes and package name renaming is more complicated because
the AndroidManifest.xml must be updated accordingly.

4.2.2.2 Encryption

An APK file may contain resources that can be requested at run-time by the developer.
Those files can be native libraries or even strings. Such resources can be encrypted and
decrypted at run-time. In this case, the attacker needs another step to find the decryp-
tion key before reading the resources, but there is also an obvious disadvantage: the app
performances get worse because it needs extra calculations when it accesses its resources.
When Obfuscapk starts, it automatically generates a random secret key (32 characters
long, using ASCII letters and digits) that can be used to encrypt:

e LibEncryption. Native libraries;
e AssetEncryption. Asset files (like videos, photos, text files, etc.);
e ResStringEncryption. Strings contained in the strings.xml resource file.

e ConstStringEncryption. Constant strings in the code.

4.2.2.3 Code

This category contains all obfuscation techniques that affect instructions inside the classes.

There exist several techniques that hide the behavior of the application, each of which is
applied to a different aspect of the code.

DebugRemoval. This technique just removes debug meta-data. The removal of debug
information, such as line numbers, types, or method names, reduces the amount of useful

information for the reverse engineering process.

Calllndirection. This technique modifies the control-flow graph (CFG from now on)
without impacting the code semantics; it adds new methods that invoke the original ones.
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For example, an invocation to the method m, will be substituted by a new wrapper method
msy, that, when invoked, it calls the original method m.

Goto. First, given a method, it inserts a goto instruction pointing to the end of the method
and another goto pointing to the instruction after the first goto; it modifies the CFG by
adding two new nodes. Then it randomly re-arrange the code abusing goto instructions.

Reorder. This technique consists of changing the order of basic blocks in the code. When
a branch instruction is found, the condition is inverted (e.g., “branch if lower than”, becomes
“branch if greater or equal than”) and the target basic blocks are reordered accordingly.

ArithmeticBranch. This is the first technique that belongs to the junk code insertion
category, that aims at adding some useless and semantic-preserving instructions to the
code. In this case, the junk code is composed by arithmetic computations and a branch
instruction depending on the result of these computations, crafted in such a way that the
branch is never taken.

Nop. Nop, short for no-operation, is a dedicated instruction that does nothing. This
technique just inserts random nop instructions (i.e., junk code) within every method im-
plementation.

MethodsOverload. It exploits the overloading feature of the Java programming language.
Overloading allows different methods to have the same name, but different signatures where
the signature can differ by the number of input parameters or type of input parameters or
both. Given an already existing method, this technique creates a new void method with
the same name and arguments, but it also adds new random arguments. Then, the body
of the new method is filled with random arithmetic instructions.

4.2.2.4 Invocation by Reflection

The Reflection is a feature of the Java programming language that allows examining or
modifying the run-time behavior of a class during execution. In this context, this feature
is used to invoke methods of a given object.

Reflection. This technique analyzes the existing code looking for method invocations
of the app, ignoring the calls to the Android framework. If it finds an instruction with
a suitable method invocation (i.e., no constructor methods, public visibility, enough free
registers, ... ) such invocation is redirected to a custom method that will invoke the original
method using the Reflection APIs.

AdvancedReflection. This technique is complementary to the previous one because it
works in the same way, but it targets the invocations of dangerous APIs. In order to
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find out if a method belongs to the Android Framework, Obfuscapk refers to the mapping
discovered by Backes et al. (BBD*16).
4.2.3 Summary of techniques by categories

Table 4.1 summarizes the aforementioned techniques implemented in Obfuscapk, grouped
by categories.

Table 4.1: Obfuscapk implemented obfuscators

Category | Obfuscapk obfuscator

Trivial RandomManifest, Rebuild, NewAlignment, NewSignature
Renaming ClassRename, FieldRename, MethodRename
Encryption LibEncrypti.on, ResString.Encryptiog,
AssetEncryption, ConstStringEncryption
ArithmeticBranch, Reorder, CallIndirection,
Code DebugRemoval, Goto, MethodOverload, Nop
Reflection Reflection, AdvancedReflection

4.3 Software description

4.3.1 Software Architecture

Figure 4.1: Obfuscapk Architecture
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Obfuscapk is designed (see Figure 4.1) to be modular and easy to extend, so it is built
on Yapsy, a plugin management system. Consequently, each obfuscator is a plugin that
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inherits from an abstract base class and needs to implement the method obfuscate. When
the tool begins to process an APK, it creates an obfuscation object to store all the
needed information (i.e., the location of the decompiled code) and the internal state of
the operations (i.e., the list of already used obfuscators). Then, the obfuscation object
is passed, as a parameter to the obfuscate method, to all the active plugins/obfuscators
sequentially. The list and the order of the active plugins are specified through command-
line options.

The tool is easily extensible with new obfuscators: it is enough to add the source code imple-
menting the obfuscation technique and the plugin metadata (a <obfuscator-name>.obfuscator
file) in the src/obfuscapk/obfuscators directory. The tool will automatically detect the

new plugin, with no need of further configuration steps.

A limitation of our current implementation is that apps using anti-tampering techniques
can detect that they have been rewritten. However, our experiments indicate that, for the
time being, Android apps very seldom adopt anti-tampering techniques.

4.3.2 Tool Functionalities

The complete set of Obfuscapk functionalities is provided by the following help message:

obfuscapk [-h] -o OBFUSCATOR [-w DIR] [-d OUT_APK]
[-i] [-p] [-k VT_API_KEY]
<APK_FILE>

There are two mandatory parameters: <APK_FILE>, the path (relative or absolute) to the
apk file to obfuscate and the list with the names of the obfuscation techniques to apply
(specified with the -o option). The remaining parameters are optional.

-o the list with the names of the obfuscation techniques (previously described in Sec-
tion 4.2 and summarized in Table 4.1) to apply; e.g., -o Rebuild -o NewSignature
-0 NewAlignment.

-w DIRis used to set the working directory used to store the intermediate files (generated
by apktool). If not specified, a directory named obfuscation_working_dir is cre-
ated in the same directory of the input app. This option can be useful for debugging
purposes.

-d OUT_APK is used to set the path of the destination file, i.e., the apk file generated by
the obfuscation process. If not specified, the final obfuscated file will be saved inside
the working directory. Existing files will be overwritten without any warning.
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-i is a flag for ignoring known third party libraries during the obfuscation. This option
could be useful to improve performances and reduce the risk of errors. The list of
libraries to ignore is obtained from the LiteRadar project (1it17)

-p is a flag for showing progress bars during the obfuscation operations.

-k VT_API_KEY is only needed when using VirusTotal obfuscator, to set the API key(s)
to be used when communicating with Virus Total. It can be set multiple times to
cycle through the API keys during the requests (e.g., -k VT_KEY_1 -k VT_KEY_2).

4.4 Illustrative Example

As an example, we use Obfuscapk to obfuscate an Android malware discovered in early
2019, a Trojan-Banker named CometBot. In this example, we have obfuscated our speci-
men (vtcf) using the different sets of techniques implemented in Obfuscapk (summarized
in Table 4.1). Then, we have uploaded the obfuscated sample to Virus Total (VIR); results
are reported in Table 4.2, ordered by detection ratio.

Table 4.2: Detection ratio of different obfuscated versions

’ Category \ Detection ratio \ Percentage ‘

| Original | 32/568 (vtcf) | 55% |
Trivial 18/58 (vico) 31%
Renaming 16/58 (vted) 28%
Reflection 15/58 (vtee) 26%
Code 8/58 (vtca) 14%
Encryption 0/58 (vtcb) 0%

This example shows how different types of obfuscation influence, more or less, the detection
ratio. In this particular case, the techniques of the Encryption category allowed to build
an undetectable variant. Since an Android APK is an archive that contains several files
and a malicious component might be implemented almost everywhere, it is not possible to
establish which is the most effective subset of techniques a priori, since each technique has
different effects on the files within the APK.

Listing 4.1 shows the command line parameters for obfuscating the CometBot malware
using the Encryption techniques.
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Listing 4.1: Obfuscating Cometbot malware using encryption

obfuscapk \

—o LibEncryption —o ResStringEncryption \

—o0 AssetEncryption —o ConstStringEncryption \
—o Rebuild —o NewAlignment —o NewSignature \
—d encryption.apk cometbot.apk

4.5 Testing the Stability of Obfuscapk

We empirically evaluated the stability of Obfuscapk by obfuscating, using each imple-
mented technique, a dataset of 1000 APKs randomly downloaded from the Google Play
Store, among the top free apps by the number of installations (andb). Then, we have
tested if the modified APK can be still installed and if it runs properly.

A single automated test, for each APK A, executes as follow:

1. Obfuscapk obfuscates A, and builds up a new APK A'.
2. A'is installed on an actual Android device.

3. If this step fails, the original A is installed, in order to verify whether the failure is
due to the modification carried out by Obfuscapk or it is independent.

4. If the installation of A' has been successful, its behavior is tested by generating
a stream of 1024 pseudo-random user events with Monkey (monl7), seeded by a
random number n. Using different seed values leads to generate distinct sequences
of user events. If A' fails, this can be due either to Obfuscapk transformations or to
the presence of bugs in the original app A.

5. To discriminate, we stimulate A with the same stream of events, generated by seeding
Monkey with the same seed n.

Through previous steps, we can empirically assess whether the obfuscation process leads
to failures. We carried out the experimental assessment on a Dell XPS 9530 (Ubuntu
18.04, Intel Core i7-4712HQ @ 2.30GHz, 16GB RAM), as well as on a OnePlus 6 (An-
droid 9, Snapdragon 845 @ 2.8 GHz, 8GB RAM) that we used to obfuscate, install and
(automatically) stimulate the apps.

Our results indicate that on 1000 samples, 47 repackaged apps failed at Step 2; that is, they
could not be installed successfully. Among these, 8 failed at Step 3 too; this means that the
corresponding original APKs were already broken in some way. Therefore, we discarded
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them, and we considered a new set, consisting of the original samples without the broken
APKs; that is, 1000 — 8 = 992 apps. On this set, the 95% (940/992) of repackaged apps
have been successfully installed. Then, we stimulated the installed apps according to 4.
Among these, 817 were repackaged and stimulated without crashes, while 123 = 940 — 817
failed and required further analysis. Therefore, we applied Step 5 to such apps obtaining
that 6 original apps crashed, thereby proving that the same problems affected the original
app, too. For this reason, we also discarded these APKs, reaching a total of 992 — 6 = 986
of working original apps. Summing up, the 83% = 817/986 of working apps have been
successfully obfuscated, installed, and executed properly after the obfuscation process. It
is worth pointing out that Monkey (monl7) is not a comprehensive tool for dynamically
testing Android APK; therefore, such 83% must be considered an upper-bound.
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Chapter 5

Malware Detection Using Permissions
and API invocations

5.1 Introduction

In the field of computing the problem of sustainability may be tackled from several dif-
ferent angles. A first approach takes into account the problem of reducing the resource
consumption of computing centers (LZ11), while a second one is dedicated to the green-
ing of the network infrastructures (BCRR12). At the same time, the need to control the
resource consumption cannot interfere with the need to guarantee the desired levels of
security (MMC15). However, as the number of users relying on mobile devices for their
daily routines increases and IoT systems enter the mainstream, sustainability cannot be
seen only as an effort to reduce the resource footprint of systems that are intrinsically not
constrained, but also as the need to develop new methodologies that allow both perform-
ing traditionally resource hungry activities on resource constrained devices and reduce the
impact of attacks on the energy consumption of the device (CM12)(PRF11)(FCDSP17).
In particular, the problem of providing appropriate security levels without depleting the
resources of devices is of paramount importance. To this aim, in this chapter we focus
on the problem of providing a methodology to detect malicious software on resource con-
strained devices with a very low resource footprint. Furthermore, to prove the efficacy of
our methodology we also provide an actual tool implementing it on the Android operating
system. As the traditional signature-based mechanism cannot cope with the malware evo-
lution, in recent years several efforts have been put forward by the research community to
define new approaches to malware detection. Among others, the most promising ones rely
on data-driven techniques whose aim is to learn how to classify apps into two sets, namely
legal and malware apps, based on the analysis of already classified apps.
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This new approach, however, is usually resource hungry and has some drawbacks that
may limit its actual applicability. The first issue is that data-driven techniques need to
extract meaningful features from the apps that have to be classified. A very rich set of
features may allow building a very precise classification model but it may also overload
the device beyond acceptable usability, thereby preventing the implementation of model
on the device. For this reason, it is necessary to extract a set of features which is large
enough to support the definition of a reliable model, but also small enough to be computed
on the resource constrained device in a sustainable way. Another limitation of this kind
of models arises when the behavior of the program to be classified is evaluated at runtime
(i.e., dynamic analysis). In fact, in such a situation, there is always the risk to recognize
a threat only after the system has been compromised: therefore, this kind of analysis is
generally carried out off-device, in secure sandboxed environments, albeit some proposals
for anomaly detection at runtime on mobile have been recently put forward. When dealing
with the need of on-device analysis, the safest solution is to rely only on features that
may be statically extracted from the program code without the need to execute it (i.e.,
static analysis). Finally, from a data-scientist point of view, there is the need to deal with
the overfitting problem that occurs when the model excessively adapts to the set of apps
on which the model has been trained, without guaranteeing an adequate generalization
performance needed to detect previously unseen apps (i.e., zero-day malware).

In this chapter we present BadDroids, an Android app capable of analyzing apps as soon
as they are installed on the device, thereby allowing to classify an app as legal or malware
before its execution, with a high degree of accuracy and a low resource footprint. We
adopted state-of-the-art data-driven machine learning techniques for building the malware
detection system, in such a way that they can efficiently execute on a resource-constrained
mobile device. In detail, we studied both qualitatively and quantitatively how the model
works and how malware can be detected. Our tests have been performed by merging the
most recently updated malware databases for a total of more than seven thousand malware
samples, and have demonstrated to correctly classify the apps in approximately the 99% of
the cases. The performance of BadDroids suggests that it can be adopted on actual mobile
devices to execute on-the-fly analysis of new apps with a very limited impact on the user
experience.

Structure of the chapter. The rest of the chapter is organized as follows: Section 5.2
discusses some related work, while Section 5.3 presents the data-driven model at the basis
of BadDroids. Section 5.4 discusses the experimental results of BadDroids on the field.
Finally, 5.5 concludes the chapter by discussing some future development of BadDroids.
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5.2 Related work

The aim of this work is to define a new approach to binary classification of malware on
Android through data-driven techniques that take into account as features both the per-
missions required by apps as well as the Android API (AAPI, see Chapter 2) they invoke.
Several examples of data-driven Android malware detection systems exist in literature.
One of the earliest work is KIRIN (EOMO09). It defines a set of security rules describ-
ing potentially dangerous permission patterns. For instance, an app requiring both the
RECEIVE_SMS and the SEND_SMS permissions is considered risky by KIRIN. The approach
has been assessed on a very limited set of apps (i.e., 311), and allowed to recognize 10 apps
violating all inferred security rules. Among them, 5 has been proved to be real malware
through manual code inspection.

Table 5.1: Related work comparison

Paper DroidMat PBMD PUMA TLPD Drebin MDLS PIndroid | BadDroids
Reference (WMW712) | (AZ13) | (SSL¥13) | (LL14) | (ASH'14) | (BTG'16) | (IRCT17)

Year 2012 2013 2013 2014 2014 2016 2017 2017
Sustainability L L H M M L H H
Static features

Req. perm. v’ v’ v’ v’ v’ v’ v’ v’
Used perm. v’ v’ v’
App components v’ v’
Intents v’ v’ v’
API calls* v v’ v’
Inter-Comp Comm. v’
Market desc. v’
String pattern N
Dynamic anal. v’
N°of apps 1738 21684 606 30084 129013 78649 1745 14988

Legal 1500 20548 357 28548 123453 52251 1300 7494

Malware 238 1136 249 1536 5560 26398* 445 7494
Accuracy 97.87 98 78 98.6 94 94 99.8 98.9

Table 5.1 provides a comparison among some of the most influential works that use ML
techniques for malware detection, ordered by year of publication. We defined three labels,
namely L(ow) M(edium) H(igh), describing the sustainability of the approach. The labeling
is based on the resource footprint of the described tool, taking into account how much
computational power is needed for collecting the features and apply the model to them.
We always assume that the model is generated only once, during the training phase, not
on the resource constrained device, hence the cost of the model generation is not used to
evaluate the sustainability of the approach.

DroidMat(WMW™12), PBMD(AZ13) and MDLS(BTG " 16) are considered Low-sustainable
for the following reasons: DroidMat requires to create the Inter-procedural control flow
graph of the app, PBMD uses dynamic analysis, and MDLS downloads and parses the
market description. In this respect, we choose to avoid considering the whole invocation
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chain our work as this would require to statically build a data structure (e.g., a flow graph)
that is expensive in terms of memory and computational power.

TLPD (LL14) and Drebin(ASH"14) are considered Medium-sustainable because for gen-
erating the Used permissions set they must check if every method invocation in the code
requires some permissions.

PUMA(SSL"13), PIndroid(IRC*17) and BadDroids are considered High-sustainable be-
cause they collect the features with a linear analysis of the bytecode and the Android

Manifest file.

Previous works focus on the extraction of the following static features: requested permis-
sions, used permissions, app components, intents, inter-component communication (ICC),
meta data extracted from online market description, string patterns (e.g. URLs, IP ad-
dresses, base64, etc.) and API calls. For the sake of clarification, ours is the only ap-
proach that considers every API, i.e. every method invocation (that cannot be obfus-
cated) given by the language and the Android framework. For example we also consider
the java.lang.String constructor. Usually authors check different subsets of API, of-
ten related to privacy or permissions declared in the manifest, but this selection lacks of
important feature like Reflection and the loading of native code.

We chose a small subset of the most significant features among the ones that were already
being researched extensively in previous publications and we demonstrated that they are
enough for a very good classification. Obviously, other alternatives can be taken into
consideration, but they would require too much memory or computation in order to be
efficiently usable on a mobile device.

None of the cited articles use our set of features but our approach has higher accuracy
with respect to any other chapter in literature except PIndroid(IRC*17). However, the
high level of accuracy granted by Plndroid is calculated on a very reduced dataset of
malware samples. Furthermore, no other work in literature also provides a freely available
app for testing and the whole set of data allowing to replicate and check the presented
statements. Finally, it is worth noting that our testbed is the second biggest malware
dataset (7494) w.r.t. other works. Indeed, only in the MDLS experience presented in
(BTG™16) the authors tested the solution on a dataset of 26398 malware samples.

5.3 The Data Driven Classification Model

For our specific malware classification purposes, we consider the supervised learning frame-
work, with particular reference to the binary classification problem, where an input space
X and an output space ) are available (Vap98). In our case X = {0, 1}d, where each
element of the space represents the presence or the absence of a particular declared per-
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mission or AAPI invocation (as AAPI invocations are retrieved from code through static
analysis we will call them retrieved AAPI), and )V = {£1}, since the possible labels are
legal (+1) or malware (—1). Note that, the same problem can be faced as a novelty
detection task (STCO04). In fact, in real world situations, the number of malware appli-
cations is much lower with respect to the number of legal ones. We made a preliminary
study on the available data by exploiting the most recent tools in the novelty detection
context (SMS*16), but results were not satisfying both in terms of accuracy and also in
terms of resource requirements because of the need for the use of the kernel and a huge
number of legal apps. In the supervised learning framework, the goal is to estimate the
unknown rule g : X — ) which associates a label Y € ) to an element X € X. In
general, 1 can be non-deterministic (Vap98) (i.e.,different apps may have the same sets of
declared permissions and /or retrieved AAPT invocation but different label). A data driven
technique estimates p through a learning algorithm <7, : D, X F — f, characterized by
its set of hyperparameters H, which maps a series of examples of the input/output rela-
tion, contained in a dataset of n samples D,, : {(X;,Y7), -, (X,,Y,)} sampled from pu
(or in other words n different labelled Android apps), into a function f : X — ). The
error that f commits, in approximating p, is measured with reference to a loss function
(: X XYXF —[0,00). In our case, we will make use of the Hard loss function which
counts the number of errors fy(f(X),Y) = [f(X) # Y] € {0,1} (Vap98). The purpose
of any learning procedure is to select the best set of hyperparameters H such that the ex-
pected error L(f) = E,¢(f(X),Y) — which unfortunately is unknown since y is unknown —
is minimum. Obviously, the error that f commits over D,, is optimistically biased since D,
has been used for building f itself. For this reason another set of fresh data, composed of
m samples and called test set T, = {(X7,4}), -+, (X, 4. )}, needs to be exploited. Note
that, X; € X and Y; € Y with i € {1,---,m}, and the association of ¥;' to X/ is again
made based on .

Many different algorithms exist in literature such as the Kernel-based method (STC04),
the Neural Network-based one (Bis95; GBC16; HWL11), the Ensemble Methods (ZM12),
the Bayesian approaches (RWO06b), the Local Methods (CH67), among others. In our case,
we need to keep in mind that the classification model f = @7,(D,,) needs to run on a mobile
device. For this reason we have to exploit a model which requires as little computational
effort as possible (ORA16). In particular, the computational requirements of the training
phase, namely the time needed to build f, are not important since the training phase can
be performed offline. What is instead crucial are the computational requirements needed in
order to compute f(X) since it must be done on the device. In this context Kernel-based
method are usually the best suited choice (AGO™12; ORA16). Other alternatives exist such
as Extreme Learning Machines (TDH16), Deep Neural Networks (S.15), Random Forests
(Bre01), or Gaussian Processes (RW06a) but the forward phase of these methods usually
requires much more memory and computations with respect to our proposal (ORA16).

We use two learning algorithms, one linear and one nonlinear by carefully considering the
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computational requirements of computing f(X). Moreover, we will try to get insight on
the problem of detecting a malware based on declared permissions and retrieved AAPI
invocations by detecting the most important subset of them and their weight (i.e., if the
presence of an invocation or a declared permissions is an indication of malware or not).
Finally, we will show how to tune the hyperparameters of the different algorithms and
how not to simply get a binary answer from f(X) (legal or malware) but also a reliability
estimation of such response.

For what concerns the linear approach, let us define F as the set of all the possible linear
separators in the space X: f(X) =W’ X +b with W € R and b € R (Vap98). Based
on this choice the most intuitive way of choosing W and b is to choose the solution which
minimizes the error over the available data (Vap98):

. 1 - T . .
(W, b) : arg min ;fH(W X; +0,Y;). (5.1)

Unfortunately, the Problem (5.1) has two drawbacks: (i) it is NP-Hard since the loss
function is non-convex (ORA16) and (ii) it is ill-posed and may overfit the available data
and have large expected error (BG12). In order to solve issue (i) it is necessary to ap-
proximate ¢ with one of its convex relaxations. The most suited one is the Hinge loss
function £¢(f(X;),Y;) = max[0,1 = Y;f(X;)] (Vap98), the simplest convex upper bound
of £y, which is also the best choice in this context (RDVC™04). By solving issue (i) we can
also address the issue (ii) since, by exploiting /¢, it is possible to introduce a regularization
term, inspired by the Tikhonov regularization principle (TA77), which allows to derive
a well posed alternative to Problem (5.1). Several regularization terms exists, form the
L1 to the L2 and Lp norms (Tib96; SLS06; ZH05), but in this work we will exploit the
combination of the L1 and the L2 regularization schemes (ZHO05). This choice is made
since, in our case, d >> n and the presence of many declared permissions and retrieved
AAPI invocations are correlated with each other. L1L2 regularization schema, also called
elastic net regularization (ZHO05), is both a regularization and variable selection method.
L1L2 often outperforms the L1, while providing a similar sparsity of representation. In
addition, the L1L2 encourages a grouping effect, where strongly correlated features tend
to be in or out of the model together. L1112 is particularly useful when d > n (as in our
case) and, contrarily to L1, it is a very satisfactory variable selection method when d > n.
Consequently Problem (5.1) can be reformulated as follows:

(W.b)  argmin AW |l5 + (1 = )W Iy (52)

C n
+ = max[0,1 - (;W'X, +b)],

i=1

which is a convex problem than can be solved with many tools developed in recent years
(ZHO5; AGO™13). Note that A € (0,1) is a constant that balances sparsity characteristics
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with feature selection ability (ZH05) while C' € (0, 00) is another constant which balances
the tradeoff between underfitting and overfitting tendency (TA77). The sparsity effect of
the L1 regularizers also allows to reduce the number of Wje(y.... gy # 0 and then to obtain
a model f which can run with reduced computational requirements (ORA16).

The shape of the model f, built by solving Problem (5.2), together with the sparsity effect
of the L1 regularizers and the fact that X = {0, l}d, allows us to derive a simple yet effective
and efficient feature selection and ranking method which also has the ability to infer if a
feature is an indicator of malware or legal (GE03). In fact, if some W} with j € {1,---,d}
are equal to zero the meaning is straightforward: that feature j-th is not meaningful for
distinguishing between legal or malware. If, instead, a particular W; with j € {1,-+-,d} is
different from zero, since X; € {0,1}, and W; > 0 the feature j-th is an indication that the
app is a malware. Analogously, if W; < 0 the feature j-th is an indication that the app is
legal. Finally, the magnitude of W; gives its raw importance.

The limitation of Problem (5.2) is the shape of f which is linear (Vap98). In order to
overcome this limitation, we can define f as a nonlinear function f(X) = W' ®(X) + b
where @ : RY - R” with D > d (since with d features we were not able to find a
good classifier), W € RD, and b € R. Then, we can substitute the new f in Problem
(5.2) and exploit the representer theorem (SHS01) in order to observe that the solution of
Problem (5.2) can be expressed as W = " ;®(X;) with a; € R where i € {1,---,n}.
By substituting these results in Problem (5.2) we obtain the following problem:

(W.b, @) : arg min A[WI[5 + (1= MW, (53)

C n
+ Z max[0,1 — (V,W ®(X,) +b)]
i=1

i=1

Note that, Problem (5.3) suffers from the curse of dimensionality since the size of the
problem depends on D. If D is large it may become intractable. For this reason, if we
exploit the kernel trick (Sch01), and, instead of applying the regularization over W we
equivalently apply the regularization to a;, we obtain the following problem:

() ¢ argmiinAllall? + (1= Nlall (5.4
C n n b
+%Zmax 0,1- YiZajK(Xi,Xj)+ :
i=1 =1

where K (X;, X;) = <I>(X,L~)T<I>(Xj), ® can remain unknown, f(X) =Y, a;K(X;, X) +b,

2
—lx;i - X513/

and the problem is still convex. We opt for a Gaussian Kernel K(X;, X;) = e
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for the reason described in (KL03). Obviously, the feature selection and ranking phase
in this case is not possible but Problem (5.4) still takes into account the computational
requirements of a mobile device. In fact, the L1 regularization allows to reduce the number
of a; with i € {1,---,n} different from zero. The smaller the number of as different from
zero is, the less computational expensive is the computation of f(X).

Another issue that we have to face is how to tune the hyperparameters of the proposed
algorithms (A, C, and o for the nonlinear case) (AGOR12). The values of the hyperparam-
eters deeply affect the performance of the final classification model .«%,(D,,) and for this
reason they must be tuned carefully. Resampling techniques like cross validation (AC10)
and non-parametric bootstrap (ET94) (BOO) are often used by practitioners because they
work well in many situations (AGOR12). Other alternatives exist, which are bases in the
Statistical Learning Theory, which give more insight into the learning process. Examples
of methods in this last category are: the seminal work of the Vapnik-Chervonenkis Dimen-
sion (Vap98), its improvement with the Rademacher Complexity (BM02; BBMO05), the
theory of compression (FW95; LM04), the Algorithmic Stability breakthrough (BE02),
the PAC-Bayes theory (LLST13; GLLF15), and more recently the Differential Privacy
theory (DFH"15a; DFH"15b).

In our specific case the BOO will be exploited since it is the most effective one in cases
like the one described in the chapter, where the cardinality of the sample is reasonable
(AGOR12). BOO relies on a simple idea: the original dataset D,, is resampled many (n,)
times with replacement, to build two independent datasets called training and validation
sets, respectively £; and V;, with o € {1,---,n,}. Note that £, NV, = @. Then, in order
to select the best set of hyperparameters H in the set of possible ones $ = {#H,, Hs, --+} for
the algorithm 7, or, in other words, to perform the model selection phase, the following
procedure needs to be applied:

* | .1 & =Vy o
H ~argg1égn—0;L (4 (L7)), (5.5)

where L°(f) = 1/js] > (xyyes Lu(f(X),Y). Since the data in £} are different with respect

to the ones in Vy, the idea is that %" should be the set of hyperparameters which allows
to achieve a small error on a data set that is independent from the training set. Note that,
in BOO, [ = n and £; must be sampled with replacement from D,,, while V, = D, \ L.

Finally, it is worth underlining that the classifier that we have just proposed gives, as
an output, only the answer legal or malware. In a real world scenario this information
is not enough. What it is important is also the reliability of the models’ answers. For
this reason we exploit the proposal of (P1a99) which is able to take the f(X) (in our case

f(X) = W'X +b for the linear model and f(X) = ¥y yep, 0K (X;, X) + b for the
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nonlinear one) and associates a probability to the choice of the model. In particular:

1

P{f(X)=+1}= [EETeSITE

(5.6)

where v € R and 8 € R are chosen by minimizing the negative log likelihood averaged over
the different V;, which is a cross-entropy error function:

(v.8): afgmm-Z 3 |:<Y+1>10g(1+671f(X)+6) (5.7)

0=1 (X,Y)eVs

] Y+1l ] 1
T3 8 g e fO+B )|

5.4 Empirical Evaluation

We empirically evaluated the proposed data driven model on a set of 14988 APKs, half of
which (i.e., 7494) are malware samples, while the remaining 7494 are legal apps downloaded
from the Google Play Store (GOO). We define the APKs in the latter set as legal as all of
them have been previously analyzed through Virus Total (VIR) without being recognized
as malware by any of its 59 different antivirus engines; therefore, it is reasonable to assume
that they are not malware. The malware APKs have been downloaded from the AndroZoo
dataset that contains officially recognized malware. Each entry in such dataset contains
information about the source app market and the Virus Total scan result. We took into
consideration any APK that has been recognized as malware by at least 30 engines in Virus
Total. As previously pointed out, we considered as features the required permissions, the
AAPI invoked in the app, and a combination of both. Regarding AAPI, we were not
interested in building the chain of invocations in the app that leads to invoke the specific
AAPI as discussed in Section 5.2. On the contrary, we were only interested in determining
whether a specific AAPI is invoked somewhere in the app code, independently from how
or when it is really invoked. Thus, we parsed the AndroidManifest file (i.e., the file that
contains, among others, all the permissions required by the app) to extract the required
permissions, and the DEX files to retrieve the AAPI invocations, thereby building, for each
app A, the set P4 of required permissions, and the set I4, of AAPI invocations.

It is worth pointing out that app developers can define their own custom permissions.
Other apps declaring a custom permission can access to the specific functionality provided
by the app defining it. This often happens for apps developed by the same developer.
Even if there is a known attack (CUSb) (CUSa) that exploits a vulnerability in custom
permission, we disregard them from our analysis because the exploited vulnerability has
been fixed since Android 5, allowing only apps signed with the same signing key to define
the same <permission> element, and the malware in our dataset very rarely use or define
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custom permissions. For these reasons, we considered only the official Android permissions
(ANDa), thereby discarding all custom permissions defined by apps.

Therefore, given ¢ 4,4 as the set of all Android permissions, and an app A, we have that for
each p € P, then p € ¢ 4,4 and P4 € ¢4,4. Regarding the extraction of AAPI invocations,
we adopted dexlib2 (DEX), a library that sequentially analyzes the bytecode and build up
an abstract representation of the code. From this representation, we extracted all the AAPI
invocations. In this respect, it is worth mentioning that we ignore method overloading for
AAPI methods. In a nutshell, method overloading in Java is the possibility to have different
methods in a class having the same name, as long as their arguments list is different. In
our extraction, we consider overloaded AAPI invocations as semantically equivalent. This
means that we consider ¢ € I as the concatenation of the class and the method name even
if there are multiple entries with the same method name in the class.

Experimental Results. We discuss the results achieved by applying the techniques
proposed in Section 5.3 to the problem described in Section 5.2, based on the data described
in Section 5.4.

In particular two approaches have been compared:

e LIN: the linear learning algorithm proposed in Problem (5.2);
e KER: the non linear learning algorithm proposed in Problem (5.4);

For what concerns LIN, we set H = {\,C} and ) = {10_4'0, 107°%, .., 100} X {10_4'07 107°%,
«+, 10} while for KER we set H = {\, C,~} and § = {10*%,107%°, ..., 10°}x{10™*°, 1077,
v, 10°%Y x {207,107, +o+, 10*°} and n, = 10”. For what concerns (v, 3), the best so-
lutﬁion is searched on the following grid {+107%°, +107>?, .-+, 10°} x {+107%", #1077, ...,
10°}.

Moreover, the three scenarios discussed in Sec. 5.4 have been investigated, namely:

e PER: where a classifier is built just based on the features related to the required
permissions (i.e., {P4});

e INV: where a classifier is built just based on the features related to the AAPI invo-
cations (i.e., {I4});

e PERINV: where a classifier is built based both on the features related to the declared
permissions and the ones related to the AAPI invocations.

We split the s = 14988 samples in D,, and 7, such that n + m = s and D,, N 7,, = @ and
n € {750, 1500, 3000, 6000, 12000}. Experiments have been repeated 30 times in order to
obtain statistically relevant results.

In Table 5.2 we reported the ET’"(,Q%H*(Dn)) of LIN and KER for problem PER, INV and
PERINV when varying n. Based on the results reported in Table 5.2, it is possible derive
some observation.
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The first one is that the larger is the training set (the more app we use for training the
model) the more effective the resulting model is. Moreover, in general, the KER is more
powerful than LIN. As expected, the more information we provide to the learning algorithm
the more effective the resulting model will be. In particular, the AAPI invocations have
more predictive power with respect to the permissions and together they have even more
predictive performance. Surprisingly, the difference of the two best performing models, LIN
and KER with PERINV, is not statistically relevant (the two distributions of the errors
cannot be distinguished with a t-test). Therefore, we chose the LIN model that is more
suitable to be deployed on a smartphone device as it requires less computational resources
in comparison to KER.

In Table 5.3 we reported the confusion matrices (in %) of the best performing models,
namely LIN and KER for PERINV when n = 12000. From Table 5.3 it is possible to
observe that the false positive and false negative rate is quite balanced in both models,
thereby indicating that the models have a high quality. Furthermore, for the sake of
completeness we also provided some indexes of performance in Table 5.4.

In Table 5.5 the confusion matrices (in %) of LIN and KER for PERINV and n = 12000
are reported. These matrices take into account also a warning class that represents the
case when an app is classified as malware with a probability between 30% and 70%. In
this case, the decision is left to the user; such alternative allows to remarkably reduce the
number of false positives and false negatives at the expenses of letting the user decide in
critical cases.

In Table 5.6 the Top 20 permissions and AAPI invocations, together with their raw im-
portance (see Section 5.3), of LIN are reported. We consider only LIN as it is the only one
that can provide such information, for PER, INV, and PERINV with n = 12000. From
Table 5.6 it is possible to observe that a small amount of permissions and AAPI invoca-
tions have high importance for predicting the presence of a malware (strongly positive raw
importance). Contrarily, a large amount of them have small importance for predicting the
absence of a malware (weakly negative raw importance). This is reasonable since some
permissions and AAPI invocations are a sort of strong indicator for a malware while the
presence of many other permissions and AAPI invocations show that the app is performing
common legal tasks. This underlines that innocuous permissions and AAPI invocations
have high importance for predicting the absence of a malware with data-driven techniques
while conventional approaches just search for malware behaviors. In general, the analysis
of results suggests that the main goal of malware is to collect as much information as
possible about the user and the phone, as well as getting access to the SMS service (i.e.,
to force the user to subscribe to some payment services).
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Table 5.2: L' (a%y(D,)) of LIN and KER for problem PER, INV and PERINV when

varying n.
PER INV PERINV
! LIN KER LIN KER LIN KER
750 126 +£09 | 11.9+08 || 53+£03 | 54+03 | 51+£02|52+0.2
1500 || 124+08 | 105208 [ 40+03 |41+03]40+£02|4.0x0.2
3000 || 12.3+08 1 109+0.8 ||34+£03|34+£03(29+02]|3.0x0.2
6000 || 12.0+0.8|102+£0.7 | 3.2+02|29+02] 22401 |1.7+£0.2
12000 || 11.7+0.7 | 924£06 || 25+0.1{22+02] 1.1+£0.1|1.0+£0.2

Table 5.3: Confusion matrices (in %) of LIN and KER for PERINV when n = 12000.

Truth
LIN Legal Malware
=
2 Legal 49.4 + 0.1 0.5+0.1
&)
._qa)
£ Malware 0.6 +0.1 495 +0.1
Truth
KER Legal Malware
o
2 Legal 49.5+ 0.2 0.5+0.1
)
;05)
£ Malware 0.5+0.1 495+ 0.2
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Table 5.4: Indexes of performance (in %) of LIN and KER for PERINV when n = 12000.

Index of Performance LIN KER

sensitivity or true positive rate 0.988 £ 0.001 | 0.990 + 0.001
specificity or true negative rate 0.990 £ 0.001 | 0.990 £ 0.001
precision or positive predictive value | 0.990 + 0.001 | 0.990 + 0.001
negative predictive value 0.988 £ 0.001 | 0.988 + 0.001
false negative rate 0.012 £ 0.001 | 0.012 + 0.001
fall-out or false positive rate 0.010 £ 0.001 | 0.010 £ 0.001
false discovery rate 0.010 £ 0.001 | 0.010 £ 0.001
false omission rate 0.012 £ 0.001 | 0.012 + 0.001
accuracy 0.989 £+ 0.001 | 0.990 £ 0.001
F1 score 0.989 £ 0.001 | 0.990 + 0.001
Matthews correlation coefficient 0.978 £ 0.001 | 0.978 £ 0.001
informedness 0.978 £ 0.001 | 0.980 £ 0.001
markedness 0.978 £ 0.001 | 0.978 £ 0.001

Table 5.5: Confusion matrices (in %) of LIN and KER for PERINV when n = 12000 when
the Warning class is introduced (apps classified with probability of being a Malware greater
than 30% and less then 70%).

Truth
LIN Legal Malware
E Legal 49.0 £ 0.1 0.2+0.1
% Warning 0.3+0.1 0.3+0.1
A | Malware 0.3£0.1 49.140.1
Truth
KER Legal Malware
5 Legal 49.1+0.1 0.3%+0.1
% Warning 0.2+£0.1 0.2+0.1
A | Malware 0.3+0.1 49.140.1
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Table 5.6: Top 20 permission and retrieved API invocations of LIN for PER, INV, and
PERINV with n = 12000.

PER

Raw Importance [ Permission

1.00
0.89
—0.80
0.75
0.73
0.61
0.59
0.58
-0.53
-0.51
0.51
0.42
—-0.40
0.39
0.38
-0.38
0.37
-0.37
-0.35
0.33

android.permission.SEND_SMS
android.permission.READ_PHONE_STATE
android.permission.ACCESS_NETWORK_STATE
com.android.launcher.permission.UNINSTALL_SHORTCUT
android.permission.CHANGE_WIFI_STATE
android.permission.READ_SMS
android.permission.WRITE_APN_SETTINGS
android.permission.DELETE_PACKAGES
android.permission.READ_CALL_LOG
android.permission.MODIFY_AUDIO_SETTINGS
android.permission.ACCESS_LOCATION_EXTRA_COMMANDS
android.permission.WRITE_CALENDAR
android.permission.READ_EXTERNAL_STORAGE
com.android.launcher.permission.INSTALL_SHORTCUT
android.permission.READ_LOGS
android.permission.PACKAGE_USAGE_STATS
android.permission.RECEIVE_BOOT_COMPLETED
android.permission.GET_ACCOUNTS
android.permission.DISABLE_KEYGUARD
android.permission.STATUS_BAR

Raw Importance

INV
Retrieved AAPI invocation

1.00
0.56
0.51
0.49
0.45
0.42
0.42
0.39
0.39
0.37
-0.36
0.36
0.36
0.35
-0.35
-0.35
0.35
-0.33
0.32
0.32

android.telephony.SmsManager->getDefault
android.content.BroadcastReceiver-><init>
android.app.admin.DeviceAdminReceiver-><init>
android.telephony.TelephonyManager->getDeviceld
android.telephony.TelephonyManager->getLinelNumber
android.telephony.gsm.SmsManager->getDefault
java.lang.String-><init>
java.io.InputStreamReader-><init>
java.lang.reflect.Field->get
android.app.admin.DevicePolicyManager->isAdminActive
android.content.Context->getPackageName
android.app.Application->attachBaseContext
android.app.ActivityManager->getRunningServices
android.app.PendingIntent->getBroadcast
android.content.Intent-><init>
java.lang.String->format

java.lang.String->valueOf
android.content.Context->getSystemService
android.content.Context->getDir
android.os.Bundle->get

Raw Importance

PERINV
Permission or Retrieved API invocation

1.00
0.46
0.44
0.42
0.40
-0.39
0.37
0.37
0.34
-0.32
0.30
0.28
0.28
-0.28
0.28
0.28
-0.28
0.27
0.27
—0.27

android
android

.permission.SEND_SMS
.telephony.SmsManager->getDefault
android.content.BroadcastReceiver-><init>
android.app.Application->attachBaseContext
android.app.admin.DeviceAdminReceiver-><init>
android.permission.ACCESS_NETWORK_STATE
android.telephony.TelephonyManager->getDeviceld
java.io.InputStreamReader-><init>
android.telephony.TelephonyManager->getLinelNumber
android.content.Context->getPackageName
java.lang.String-><init>

java.lang.String->valueOf
java.lang.reflect.Field->get
java.lang.String>»¥ormat
java.io.FileOutputStream->write
android.app.admin.DevicePolicyManager->isAdminActive
android.content.Context->getSystemService
android.webkit.WebView->setDownloadListener
android.permission.RECEIVE_SMS
java.util.Iterator->next




5.5 Concluding Remarks

We have presented a machine learning-based technique that focuses on the identification
of malware in resource-constrained devices such as Android smartphones. Our technique
has a very low resource footprint and does not rely on resources outside the protected
device. Sustainability in the field of computing must not interfere with security. Hence, it
is crucial that security systems and related measures are designed from the very start to
be sustainable and compatible with the resource constraints of the target platform. This
is important in the perspective of greening computing and networking but is paramount in
the world of mobile devices and IoT, where resources in general and energy, in particular,
represent tough constraints. The technique is at the basis of BadDroids, an Android app
focused on early identification of malware, more in detail, directly at installation time,
without heavily impacting the usability and the battery life of the mobile device. We
adopted a data-driven approach capable of achieving a high level of accuracy in malware
identification based on a set of features easily inferable from apps through static analysis
techniques.

To validate our methodology we have implemented BadDroids (bad17) (see Fig. 5.1), and
we have tested it on almost fifteen thousand different apps half of which were malware
(Fig. 5.2 and Fig. 5.3 show an example of malware and non-malware analysis results).
BadDroids showed an accuracy level equal to 98.9%, more in details 0.6% false positives and
0.5% false negatives. The complete dataset as well as further information on BadDroids
are available at http://baddroids.smartlab.ws. The dataset has been also submitted
to UCI (Lic).

Furthermore, to ensure that the usage of the tool on a mobile device was neither disruptive
to the user experience, nor incompatible with less powerful devices, we tested it on a dated
device, namely an LG Nexus 5. This device was released in 2013, runs Android 6.0.1, has
a Qualcomm MSM8974 Snapdragon 800 CPU running at 2.3GHz, and 2GB of RAM.

We randomly chose 1000 APKs from our dataset and, since BadDroids starts whenever an
app is installed or updated, we have installed them on our device logging the size of the
DEX file and the time needed for the analysis. We obtained that the average DEX file size
is 5539 KiB and the average time for analyzing an APK is 64474 ms.

It is worth noting that the specifications of our test device can be considered comparable
with a mid-range mobile device of the current generation, thus BadDroids does not need a
top-notch device to be actually used and on such a configuration and it requires a minute,
on average, to analyze an app.

While the results in terms of accuracy are remarkable, the time required to perform the
complete analysis is still clearly perceivable by the user, hence, in future work, we need to
optimize the process to a further extent. Moreover, while the feature set adopted in this
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Figure 5.1: BadDroids on the Google Play Store
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Figure 5.2: Clean classification  Figure 5.3: Malware classification

work has shown very good properties in terms of accuracy of the prediction, we need to
verify its resilience to obsolescence and we also need to explore the possibility to adopt
more sophisticated properties of the apps as independent features, like the interaction with
other apps through intents, as well as the usage of Reflection and JNI.
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Chapter 6

From New Features to a Phishing
Attack

6.1 Introduction

Recent reports have shown that more than half worldwide website traffic has been gener-
ated via mobile devices (Stal8). Users take advantage of these devices not only to browse
websites, but also to access social networks and other online services, such as online bank-
ing. Thus, to improve user experience, developers of web services often implement native
Android apps, making mobile devices portals to their associated web backends. For exam-
ple, a vast portion of Facebook accesses in the US is performed via mobile device (Dogl8).
According to these reports, this trend is forecasted to only increase in the future, and users
are going to perform more and more often one of the most basic security-sensitive action:
authenticate to mobile apps backends by inserting their credentials. On the one hand,
this shift towards the mobile world pushed Google and platform developers to design new
technologies and mechanisms to decrease the friction of these user interactions. On the
other hand, unfortunately, the more frequently users will be asked to insert credentials on
their mobile devices, the more attackers will find mobile phishing attacks rewarding.

In this chapter, we take a look at new features introduced in modern versions of Android,
and we show that while they do simplify both users’ and developers’ lives, their weak
design and implementation allow attackers to abuse them, making mobile phishing attacks
significantly more practical than what previously thought.

Mobile password managers. The first aspect we look at is the growing popularity

of mobile password managers. Password managers have been initially developed for the
web, and the security community has long praised their many benefits. For example, they
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Figure 6.1: Android password managers (1a) Dashlane and (1b) Keeper, suggesting Face-
book credentials to a fake malicious app.

provide a practical way for users to use different pseudo-random passwords for each web
service they interact with, thus discouraging the use of simple, easy-to-guess, and shared
passwords across accounts. In fact, the user has a chance to store her credentials and to
associate them to specific websites: when the user later navigates to the same website, the
password manager identifies the website through its domain name, and it then suggests
(and in some cases automatically fills) the right credentials on behalf of the user.

As a way to support the increasing amount of mobile users, password managers are now
also available for mobile devices. Mobile password managers are developed as apps, and
they include advanced sync features, which allow suggesting (and filling) website-related
credentials to their associated apps.

From a technical standpoint, these password manager apps either need to have support
from the Android Framework, or they require modifications to their potential “clients”
(e.g., the Facebook app). In fact, Android apps sandboxing mechanism prevents them to
interact with external apps programmatically. To date, there are three mechanisms that
act as necessary basic blocks to allow for their implementation. The first is the Accessi-
bility Service (Gool8a) (ally, in short): while, in theory, ally is a mechanism to allow
apps to be “accessible” to users with disabilities, it also allows apps to interact with oth-
ers programmatically, and it thus provides the technical capability needed by password
managers to implement their functionality. Since recent works have shown how ally can
be abused (FQCL17; JSC"14; Amil6b; Amil6a; Lool5; Luil6; Venl6), Google has re-
cently implemented the Autofill Framework (Gool8b), a new component of the Android
Framework specifically developed to allow password managers to suggest and autofill cre-
dentials to mobile apps (without the need to rely on ally). The third mechanism is called
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OpenYOLO, a recently-proposed protocol for storing and updating credentials for mobile
apps (Gool7b). This mechanism is developed by Google and Dashlane, and it follows a
different paradigm: it does not affect the Android Framework, but it requires modifications
of each “client” (e.g., Facebook) and “server” app (e.g., the password manager).

In this chapter, we show that all these three mechanisms are affected by design and im-
plementation issues. At the root of the problems is the need to bridge the mobile world
with the web world: given an app with a login form, how can a password manager know
whether this app is the legitimate Facebook app (and it is thus entitled to access Facebook
credentials) or whether this is a malicious app attempting to appear as the legitimate one?
How is it possible to know which app is linked to which domain name? The key design
issue is that all these three mechanisms use the app package name as the main abstrac-
tion to identify an app. Password managers thus need to somehow map package names to
associated websites.

While a technical solution to securely implement such mapping exists, this work shows
that the poor design choices of the underlying mechanisms push to the implementation
of vulnerable solutions. In particular, we have investigated the four leading third-party
mobile password managers app (Keeper (Gool8f), Dashlane (dasl8), LastPass (lasl8),
1Password (1pal8)), as well as Google Smart Lock (GSL) (Gool8d): we have found that
only GSL is securely implemented. Moreover, we have found that Keeper, Dashlane, and
LastPass all implement various (vulnerable) heuristics, each of which misplaces trust in an
app package name or other metadata. The net result is that it is possible for a malicious app
to systematically lure these password managers to leak credentials associated with arbitrary
attacker-chosen websites. To make it worse, we note that these attacks also work for
websites for which an associated mobile app does not exist. These attacks effectively make
mobile phishing more practical: differently than all previous works, the user is not even
asked to type her credentials; the user is just asked to allow password managers to autofill
the credentials on her behalf.

It is interesting to note how, on the web, password managers do not ease phishing attacks,
but quite the opposite. In fact, web password managers check the current website domain
name to determine whether to auto-fill (or auto-suggest) credentials: if the domain name
does not match the expectations, no credentials are suggested. Thus, an attacker that uses
particular Unicode characters to create a facebook.com-looking domain name may fool a
human, but not a password manager: the malicious domain name will be different from the
legitimate one, and the password manager suggestion will not trigger. We thus argue that
the mere fact that a mobile password manager is suggesting credentials associated with
the target website inherently adds legitimacy to the attack, making it even more effective.

Instant Apps. The second modern feature we explore in this chapter is called Instant
Apps. This technology, implemented by Google, allows users to “try” Android apps at
the touch of a click, without the need to fully install the app. Under the hood, the
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system works by asking developers to upload small portions of their Android app, called
Instant Apps, and to associate a URL pattern to it. The developer needs first to prove
that she controls the domain name of the URL pattern. This is carried out through a
multi-step procedure called App Link Verification (Gool8i) which relies on Digital Asset
Links (Gool7a) protocol (it makes possible to associate an app with a website and vice
versa, via verifiable statements). After this deployment step, the user will be able to click
on a link (pointing to the specified URL), and, after a one-time confirmation, the Instant
App is automatically downloaded and executed on the user’s device.

In this chapter, we show that this technology, while indeed a very useful Android feature,
can make phishing attacks more practical. The key observation is that Instant Apps provide
an attacker the ability to gain full control over the device UI, without the need of installing
an app. In a browser-only phishing scenario, the user would have a chance to notice the
green lock and inspect the domain name. However, in an Instant Apps-based attack, the
attacker has full capabilities to deceive the user. For example, an attacker could create
a full-screen Facebook login view (as the real Facebook app would do). As reported in
existing works (CQM14; BCI'15; RZX"15; AP17), users cannot distinguish between these.
As another example, an attacker could simulate the view of a full browser; as the attacker
controls every pixel of the screen, nothing prevents her to show the user a browser-like
view with a spoofed facebook.com domain name and a green lock: once again, this attack
is indistinguishable from a legitimate scenario. As highlighted by several recent works, the
key insight is that the UI on mobile devices cannot be trusted, and Instant Apps provide
a technical way for an attacker to move from a scenario where she does not fully control
it (like a web page somehow constrained by the web browser security mechanisms) to a
scenario where she fully does.

End-to-end attack. The combination of flawed mobile password managers and Instant
Apps allow attackers to develop and mount mobile phishing attacks that are much more
practical than what previously known (CQM14; BCI"15; RZX"15; FQCL17). In fact, we
have found that, although Instant Apps are not “fully installed” apps, 1) password managers
currently do not notice the difference, and that 2) their package name is the same as the
associated full app. This means that the package name of the Instant App is attacker-
controlled, and that it is thus possible to trick password managers to auto-fill credentials
for an attacker-chosen website even without requiring the installation of an additional app.
This allows an attacker to bootstrap an end-to-end phishing attack by luring the victim into
visiting a malicious webpage: such webpage may contain, for example, a fake Facebook-
related functionality. Upon clicking on it, the Instant App mechanism is triggered, the
attacker can spoof a full-screen Facebook login form, at which point the password manager
would offer to automatically fill the credentials on behalf of the victim.

To make things worse, we found that current password managers fill hidden fields as well.
An attacker could thus create a form with a visible username field but a hidden password
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field: while the unsuspecting user thinks she is autofilling only the username, her password
manager will silently leak her password to the attacker.

To the best of our knowledge, the attacks presented in this chapter are the most advanced
and practical phishing attack techniques to date. In fact, all existing approaches assume
a malicious app installed on the user’s device, ask the user to manually insert her creden-
tials (which although not technically problematic, may reduce the attack success rate),
or fall back to web-based phishing attacks (that are noticeable at least from the browser
bar) (CQM14; BCI'15; RZX"15; FQCL17).

A look to the future. The future of these problems does not look encouraging. The
current API has a design that is error-prone and does not force developers to take all
necessary steps to avoid severe vulnerabilities. In this chapter we discuss the design of a new
API, called getVerifiedDomainNames(), that uses domain names as the main abstraction
level (instead of package names, which should not be trusted), and it hides behind a single,
central implementation the necessary logic and security steps to establish that a requesting
app does have authority over the credentials it is requesting. Internally, this new API relies
on an existing technical solution based on Digital Asset Links (Gool7a) verification. This
solution requires websites owners to publish an “assets” file on their website so that an app-
website “link” can be established." This is the same mechanism that Autofill Framework
and OpenYOLO suggest developers to use: the difference is that our API forces them to
use it, instead of leaving them open to implement vulnerable solutions—as they did.

Unfortunately, although we believe that this solution is technically sound, the current
ecosystem is far from being ready. In fact, the App Link Verification requires collaboration
from websites owners, as they would need to upload the appropriate assets file to their
website. To determine the readiness of the ecosystem to this mechanism, we first built a
dataset of 8,821 domain names extracted from the password managers we have analyzed
(given the source of this dataset, these domain names are guaranteed to have at least one
login form, otherwise they would not be relevant to password managers). We then checked
how many websites already link themselves to an app: to our surprise, only 178 of them
currently have an assetlinks.json compatible with the proposed solution, which is around
2%. This means that, to date, password managers developers do not have the necessary
information to securely implement their functionality, even if they wanted to. One may then
wonder how Google Smart Lock, which we found to be secure, implements such mapping.
We found that, although a technical solution exists, this process is not automatic: according
to the official documentation (Gool8e), the last step of the process requires developers to
manually fill a Google Form (Gool8h) to provide the needed information. We conclude
that the adoption of a secure mapping cannot be easily addressed by the single actors
alone, but it requires a community-wide effort, which this work hopes to inspire.

'Such “assets” file needs to be placed at a specific location: https://domain.name/.well-
known/assetlinks.json
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In summary, this chapter provides the following contributions:

e We performed the first security analysis of mobile password managers and the three
core technologies they rely on: ally, Autofill Framework, and OpenYOLO; we have
uncovered design and implementation issues that allow attackers to trick password
managers to leak to malicious apps credentials associated to arbitrary attacker-chosen
websites;

e We show how Instant Apps can be abused to gain full UI control and how they can
be used to lower the bar for stealthy and practical phishing attacks;

e We present an end-to-end phishing attack that abuses password managers and Instant
Apps, and we show that current implementations automatically fill hidden password
fields. We believe this to be the most advanced and practical phishing attack to date;

e We propose a new secure-by-design API that moves the abstraction from package
names to domain names;

e We provide empirical evidence that the current ecosystem is not ready yet to support
secure autofill on mobile devices, and that a community-wide effort is required to
address these issues.

6.2 Android Password Managers

A password manager (PM from now on) is a tool that stores and manages user’s credentials
like usernames and passwords. PMs aim to suggest to the user the right credentials to
insert in login forms, thereby leveraging the same user from the burden of memorizing
their sensitive data.

PMs have been originally conceived for the web domain and mostly implemented as browser
extensions. They work as follows: the first time a user visits a website and inputs creden-
tials in online forms, the PM stores such credentials on its backend and it maintains the
association between the credentials and the domain name. When the user visits the same
domain later on, the PM recognizes and verifies the domain, and it suggests the credentials
to insert in the corresponding login form.

The increasing popularity of mobile apps acting as wrappers of their corresponding websites
(e.g., email providers, online documents, social networks, home banking) has motivated the
development of password managers for mobile devices. These are implemented as mobile
apps, and they have the capability of helping managing and automatically filling user’s
credentials in other apps. Modern PM apps and browser extensions also provide advanced
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sync functionalities between app and website credentials. For example, consider a user
opening for the first time the Facebook app, which requires the users credentials: at this
point, the PM identifies the app, determines which domain name this app is associated to
(i.e., facebook.com), and checks whether it has credentials associated to it; if this is the
case, it auto-suggests them to the user, who can thus authenticate herself with few clicks,
without the need of manually inserting her credentials. Figure 6.1 shows two examples of
password managers auto-suggesting credentials.

From the technical standpoint, filling credentials requires proper mechanisms allowing PMs
to access the Ul of other apps, thereby bypassing the isolation provided by the sandbox. To
this end, modern Android versions offer three mechanisms to support the implementation
of PMs apps: Accessibility Service, Autofill Framework, and OpenYOLO.

Accessibility Service. The Accessibility Service, ally in short, is a framework that
allows third-party apps to be accessible to users with disabilities (Gool8a). An app can
make use of this framework by requesting the BIND_ACCESSIBILITY_SERVICE permission
and by implementing a component that, while in the background, receives callbacks by
the system when “Accessibility Events” are fired. These events are related to some specific
transitions on the user interface, e.g., the focus is changed or a button has been clicked.
This service has also access to relevant contextual information, the most important being
which app the user is currently interacting with. This last information is made available
by means of the package name of the app.

Even if ally has been developed to assist users with disabilities, app developers have
(benignly) abused this framework to implement a variety of different features, one of which
is the implementation of password managers. In particular, PMs rely on ally to determine
which app the user is interacting with and whether there are text fields that could be filled
with stored credentials; if that is the case, the PM then relies once again on ally to
programmatically interact with the target app and automatically fill the credentials fields
on behalf of the user.

Unfortunately, while ally is certainly useful, in the past few years there have been a
number of research works from the industry and academic communities that show how
ally can be abused to perform a number of malicious functionality, from stealing user’s
personal information to the complete compromise of the device (FQCL17; J SC*14; Amil6b;
Amil6a; Lool5; Luil6; Venl6). Due to these threats, Google has developed additional
Android features so that apps do not need to have access to such powerful mechanism to
implement their functionality. Since password managers are some of the most common
and prominent use cases, Google has recently introduced the Autofill Framework.

Autofill Framework. The Autofill Framework (Gool8b) has been introduced in Android
Oreo. This framework offers to password managers apps a technical solution to implement
their core functionality without requiring access to ally. In particular, the Autofill Frame-
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Figure 6.2: Deployment and workflow of OpenYOLO. We note that the interaction between
the client and server is actually implemented via the Intent mechanism.

work allows an app to 1) determine which app the user is interacting with, and 2) fill
credential fields programmatically.

The Autofill framework requires the developer to create an app that implements an Autofill
Service, which allows filling out forms by injecting data directly into the views, such as
the EditText widgets that store the credentials. To use that, the app needs to require the
BIND_AUTOFILL_SERVICE permission. Android Oreo has also introduced some new XML
attributes to assist password managers: importantForAutofill, which specifies whether
the view is autofillable, autofillHints, which is a list of strings that suggests to the
service what data to fill the view with, and autofillType, which tells the Autofill Service
the type of data it expects to receive. Through these attributes, an app implementing an
Autofill service is able to detect, classify, and fill form fields according to their types (e.g.,
username, email address, password). Note that an app that wants to be “compatible” with
the Autofill Framework must use these XML attributes. Note also that only one Autofill
service can be active at the same time (the user can select which one to use through a
dedicated setting menu).

At run-time, when the user opens a supported app with a login form, the password manager
is able to determine which app the user is interacting with (once again, through its package
name) and it can offer the possibility to the user to automatically insert the corresponding
credentials on her behalf.

OpenYOLO. OpenYOLO (YOLO stands for “You Only Login Once”) is a recently de-
veloped protocol, supported by Google partnering with Dashlane, and it is available as
an open-source library (Gool7b). OpenYOLO does not require neither ally nor Autofill
Framework, but it requires to modify each app that wants to support OpenY OLO-based
PMs. This mechanism is constituted by two components: the client and the credential
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provider (the server). The client is a component that needs to be embedded in each app
that wants to support this protocol (e.g., Facebook). The credential provider, instead, is
used within the password manager itself, and it is in charge of providing information to
the password manager about the requester app identity. At run-time, the client seamlessly
interacts with the credential provider (via the Intent mechanism), which, with the cooper-
ation of the password manager, then returns to the client a set of credentials, if available.
The interaction between the two components is depicted in Figure 6.2.

Note that OpenYOLO only helps PMs to interact with the target app. However, the imple-
mentation logic in charge of retrieving the correct credentials is left to the PM developers.
In particular, the OpenYOLO credential provider exposes to the password manager the
package name and the signature of the app requesting credentials. Once again, the PM
is in charge of mapping the given package name to the appropriate domain names and
credentials.

The central role of package names. Independently from which mechanism a password
manager is relying on, the key information to identify which app the user is interacting
with is the app package name. Unfortunately, in all these cases, the developers of the PM
are left with the responsibility of securely mapping package names and domain names. As
we will discuss in the rest of this chapter, this design choice has a severe negative impact
on the security of password managers and of the entire ecosystem. In fact, while mobile
password managers have access to package names (and thus apps), the user’s credentials
they manage are related to websites. And this begs the question: “how do mobile password
managers actually link apps to their respective websites?”

6.3 Web and Mobile Apps Worlds

The three mechanisms discussed in the previous section allow PMs to feed website-related
credentials to the corresponding mobile app counterparts. To work properly, a PM needs
1) to identify the app that requires credentials and 2) to bridge the mobile and the web
worlds. Since all the available mechanisms use apps package names as the main abstraction,
in order to determine the right credentials to suggest, PMs need to somehow define a
mapping between these package names and their corresponding website. We argue that
package names are the wrong abstraction for PMs to work with. This section discusses the
many pitfalls associated with this process, and how it is likely to misplace trust in these
package names.
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6.3.1 The Mapping Problem

PMs have access to package names as the key information to identify apps and to determine
whether to automatically suggest credentials and for which website. Given a package name,
PMs need to bridge the gap between the mobile apps and the web worlds. There is thus
the need of mapping package names to their associated web domain names.

One of the problems is that package names resemble URLs (e.g., the package name of the
official Facebook app is com.facebook.katana), thereby suggesting to inexperienced Android
developers the same level of trustworthiness of the associated domain name, facebook.com.
As we will see later in this chapter, even developers of leading PMs severely misplace trust
in package names, thus affecting the security of PMs and the entire ecosystem by making
mobile phishing attacks more practical. We now discuss the main characteristics of domain
names, package names, and the relation between them.

Domain names are trusted. In the modern web, domain names can be considered as
trusted. With the wide adoption of robust DNS services and HT'TPS, users and developers
can determine whether they are securely visiting a given URL: the browser would verify
the identity of the domain name by means of the PKI and the digital certificates ecosys-
tem. Thus, web PMs do rightfully place trust in domain names. For example, a PM will
automatically suggest Facebook’s credentials whenever the user browses to facebook.com.
Notably, PMs do not suggest Facebook credentials when the user visits a different domain
name.

No authentication of package names. Differently than domain names, there is no
authentication of package names. Anybody can create an app with a given package name,
and it is possible for an attacker to create an app with the same package name of, for
example, the legitimate Facebook app. However, one constraint must always be satisfied:
there cannot be two apps with the same package name published on the Google Play Store
or installed on the same device. In other words, package names act as unique keys. Note
that third-party markets are not as controlled, and it may be possible to publish malicious
apps with package names of legitimate apps. However, depending on the specific victim,
it may be challenging to lure her to install such malicious apps from third-party stores.

No authority on ‘“sub-packages.” In the world of domain names, owners of the exam-
ple.com are in control of sub-domains as well. In the world of package names, instead, this
is not the case: the owner of com.example package name does not have any control over
package names that may appear as “sub-packages.” For example, nothing prevents any-
body to create an app with package name com.example.evil: there is no relation between
them. Thus, the sub-domain trustworthiness of the web world does not hold in the mobile
counterpart. Unfortunately, as we will discuss later in the chapter, this false sense of safety
is a key cause of security issues among PMs.
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The mapping problem. In the vast majority of cases, credentials are associated to
websites, not to mobile apps: in fact, credentials are generally used to authenticate to
a web service backend, not to a mobile app. Thus, given an app package name, PMs
need to answer the question “which website is this package name associated to?”. This
is not a trivial question to answer. To make things worse, PMs developers are left to
implement their own “solution”. Unfortunately, there are many pitfalls in implementing
this mechanism, and we found that even leading PMs opted to rely on heuristics to solve
this problem. It turns out that most of these heuristics are vulnerable, and malicious apps
can trick PMs to leak credentials associated to arbitrary websites.

6.3.2 Attacker Practicality Aspects

From an attacker perspective, there are several aspects that would make a phishing at-
tack more or less practical. In this section, we enumerate some questions related to the
attacker capabilities. We will put them in relation to each vulnerable mapping in the next
subsection.

Q1) Is the mapping vulnerable? The first question is, of course, about whether the
mapping is vulnerable or not. We consider a mapping as vulnerable if an attacker can create
an app that, although not being the legitimate one, can trick PMs into auto-suggesting
credentials associated to a given website.

Q2) Can the legitimate and malicious apps co-exist? One of the most basic attack
vectors is for a malicious app to have the same package name as the legitimate one. Since
no two apps installed on the same device can have the same package name, this implies
that, in this scenario, the legitimate and the malicious app cannot co-exist. This, in turn,
implies that an attacker exploiting this package name-colliding technique would need to
first lure the user to uninstall the legitimate app before the attack can be performed. Of
course, this poses practicality issues. Thus, this question is about: can an attacker bypass
this constraint? In other words, to give an example, can an attacker create a malicious app
that can co-exist with the legitimate Facebook app and that, when opened, would trick
PMs to auto-suggest the legitimate Facebook credentials?

Q3) Can the malicious app be hosted on the Play Store? In the general case, it
is more difficult to lure the user to install an app that is not hosted on the Play Store.
Thus, one relevant question is: is it possible for an attacker to upload her malicious app
to the Play Store? The main constraint for an attacker is that no two apps with the same
package name can be hosted on the Play Store at the same time. In other words, this
question asks whether an attack requires creating an app with the same package name of
an already-existing app on the Play Store. If yes, the only venue for the attacker is to
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Table 6.1: This table systematizes vulnerable mapping implementations and puts them in
relation with attacker practicality aspects.

Q1 1 Q2| Q3 | Q4
Secure mapping
Static one-to-one mapping v v
Static many-to-one mapping |/ v
Crowdsourced mapping VA A A 4
Heuristic-based mapping A A A
No mapping (all credentials suggested) | v | v | V

lure the user to install the malicious app from a third-party market (via the side-loading
process): although this attack is possible, it is less practical.

Q4) Can the attacker generate tailored suggestions? PMs have the capability to
auto-suggest one or more set of credentials. Then, the user can choose one of them and, at
the touch of a click, these credentials are automatically filled in the target app. Now, from
an attacker perspective, the ideal situation would be to able to write a malicious app such
that, for example, the PM would only suggest the credentials of facebook.com (or any other
domain name chosen by the attacker). A less-ideal scenario is a PM where all the credentials
are always suggested: although the user has the possibility to lure her credentials to the
malicious app, this attack would be slightly less practical. Thus, the question is: can the
attacker have fine-grained control over which and how many credentials are suggested?

6.3.3 Vulnerable Mappings

This section systematizes the different possible implementations of the package names —
web domain names mapping. For each of them, we describe how such implementation is
vulnerable, to which attacks, and how practical it is with respect to the questions discussed
above. The insights presented in this section are systematized in Table 6.1.

Secure mapping. The safest way to implement a mapping consists in securely verifying
whether the developers of the current app have authority over a given domain name: if that
is the case, then it is safe to auto-suggest the credentials of such domain name to the current
app. One known solution to achieve this mapping is called Digital Asset Links (Gool7a)
(DAL from now on). From a conceptual point of view, DAL allows for the definition of
authentication domain equivalence classes, and it makes it possible to associate an app
with a website and vice versa, via verifiable statements. This mechanism works by asking
websites owners to publish on their website an “assets” file that contains a list of apps that
can be legitimately associated with it. In this case, each app is identified by its package
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name and by the hash of its legitimate signing key. A third-party can then verify that an
app is indeed legitimately linked to a website by checking whether the “assets” include a
matching package name and the hash of the signing key.

Static one-to-one mapping. Consider a PM with a static one-to-one mapping, which
maps one package name to exactly one domain name, and vice versa. As an example,
consider the legitimate Facebook app, whose package name is com.facebook.katana, which
is usually mapped to the facebook.com domain name. This simple mapping technique is
vulnerable: in fact, Facebook credentials are suggested to any app whose package name
is com.facebook.katana, even if the app is not the legitimate one. It would be possible to
prevent this vulnerability by checking the certificate that signed the target app, and make
sure it is one of the known, trusted one. Unfortunately, maintaining such list of known
trusted certificates is a very challenging task. We consider this a vulnerability, but the
attack is not very practical: in fact, the malicious app cannot co-exist with the legitimate
one.

Static many-to-one mapping. Consider a PM with a mapping that maps n different
package names p;, p,, ..., p, to the same domain name D. This can happen for different
apps belonging to the same companies: while they are all different apps (and thus they
have different package names), they are all associated with the same domain name. This
typology of mapping is problematic because it is frequent that the user would install only
one (or a subset) of these apps. Thus, a malicious app with one of the remaining package
names is able to steal the credentials. This attacker is more practical than the previous
one because it does not require the attacker to lure the user to uninstall the legitimate
app. However, the package names specified in the mapping likely refer to real legitimate
apps on the Play Store. This means that the attacker cannot upload her malicious app on
the Play Store (because package names need to be unique across the store), and the app
needs to be side-loaded.

Crowdsourced mapping. Given the scale of the problem—millions of apps and website
to map one with each other—one possibility to create a comprehensive mapping is by
means of crowdsourcing. Thus, one approach is the following: consider a user who inserts
credentials for a domain D to an app with package name P, and assume that the given
PM did not know about this mapping: in such case, a popup can ask the user whether she
allows such association to be shared with other users, so that everybody can benefit. If
the user allows for it, this new association is sent to the backend, which, depending on the
specific implementation, could immediately make this mapping available to all its users,
or wait until a number of users higher than a threshold report the exact same association.
If an attacker is able to “inject” a new association, then she can mount an attack that is
more practical than the two alternatives above. In fact, she could inject a new mapping
Dattacker — D (Where piiacker 18 an arbitrary attacker-chosen package name): in this way,
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the PM would suggest credentials related to D to the malicious app with p,iecker as package
name. Since the package name is attacker-chosen, the attacker can choose a package name
that does not yet exist, and she can upload the malicious app to the Play Store. Of course,
this malicious app can also co-exist with the legitimate one, given the different package
name.

Heuristic-based mapping. One last way to implement mapping is through heuristics.
For example, one way is to infer which is the appropriate domain name by implementing
heuristics on the package name of the app. One other strategy is to rely on some other
metadata to take such decisions. From a security perspective, this is the most dangerous
scenario. In fact, if such heuristics are implemented in a way that an attacker can game
them, the attacker could create a malicious app that “maps” to an arbitrary attacker-
chosen target. Also, in this case the attacker may be able to avoid constraints related to
the package name of the malicious app, thus avoiding practicality issues.

No mapping. Another alternative for PMs is to not implement any mapping. In this
case, the PM would always suggest all stored credentials associated with all websites.
This option is simpler than all other alternatives, but it is not secure, especially when
compared to what current web-based PMs do. As an example, consider the LastPass
browser extension: in the current version, the extension does not allow a user to insert
her Facebook credentials on a website that does not share the facebook.com domain name.
This is done as a security protection against phishing: even if the domain name graphically
looks like facebook.com (by, for example, using Unicode character, as it would be the case
in advanced phishing attacks), the password will prevent the user to fall for this phishing
attack: mobile PMs that do not implement mappings cannot protect from this threat.
However, if no mapping is implemented and all credentials are suggested, such protection
is not available.

6.4 Case Studies

We performed the security assessment of the top four third-party leading PM apps (i.e.,
Keeper, Dashlane, LastPass, and 1Password), each of which has millions of users around
the world. We have also considered the Google Smart Lock, a service integrated with
Google Play Services, which currently implements, among many other features, a password
manager. In particular, we wanted to study how these PMs address the challenges described
in the previous sections, and we were interested in answering questions such as: how does
the suggestion system work? How do these apps map apps and package names to their
associated websites? Is it possible for a malicious app to trick PMs to provide credentials
for arbitrary websites? How difficult is for an attacker to mount such attacks? Moreover,
as three out of four PMs include the OpenYOLO library, we assessed the reliability of its
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implementation.

This section describes the methodology we adopted and the details for each of the PM we
have analyzed. Our findings, summarized in Table 6.2, are worrisome: three of the third-
party PMs implement a mapping based on various heuristics that an attacker can easily
game. In other words, an attacker can create an app so that the target PM auto-suggests
credentials associated with an arbitrary attacker-chosen domain name. Note that, in such
cases, an attacker can leak credentials even from websites that do not have an associated
mobile app—as long as the attacker can game the auto-suggestion system, the attacker
wins.

Last, it is worth noticing that all third-party PMs support both ally and Autofill Frame-
work (for Android 8+); more precisely, we note that each PMs keep asking for the ally
permission even on Android 8.0 for backward compatibility reasons, as many apps have not
modified their layouts yet to include Autofill XML attributes. We have also noticed that
from the perspective of a user who sees an app being auto-filled, sometimes the steps to get
the credential are slightly different, or there are some graphical differences, between PM
relying on ally or the Autofill Framework. We will discuss them case-by-case; however, we
underline that all attacks that we discuss here works independently from the supporting
technique.

Table 6.2: Summary of findings for Keeper (K), Dashlane (D), LastPass (LP), 1Password
(1P), and Google Smart Lock (GSL).

K|D|LP | 1P | GSL
Secure mapping v
One-to-one mapping I/ 4
Many-to-one mapping v
Crowdsourced mapping v
Heuristic-based mapping | /|
No mapping v
Q1) Vulnerable? IV Y
Q2) Can co-exist on device? v
Q3) Can co-exist on Play Store? | vV |V | V | /
Q4) Targeted suggestion? |V

6.4.1 Methodology

We developed a three-step methodology to investigate the security of each password man-
ager. These analysis steps are performed using reverse engineering assisted by simple static
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analysis (e.g., bytecode decompilation) and dynamic analysis (e.g., bytecode instrumenta-
tion, network analysis, etc.).

Step 1: Package name as app identifier. The first step is to determine whether a
given PM uses the package name of the target app as the only information to auto-suggest
credentials for a given website. This step is done in the following way: (1) Install the
legitimate Facebook app and add the credentials to the PM; (2) Uninstall the Facebook
app; (3) Install a malicious app that has the same package name as the Facebook app
and contains a login form. This app is written so that the only aspect in common with
the legitimate app is the package name, while everything else is intentionally changed; (4)
Check whether the PM auto-suggests the real Facebook credentials.

Although this step is straightforward from the conceptual and technical standpoints, it is
enough to reveal key information: since in our test we change all the aspects except the
package name, if the PM provides the correct credentials, it means that the package name
is the only information used by the PM to identify the requesting app.

Step 2: Mapping extraction. If the first step reveals that the package name is the only
aspect that matters, we then proceed to our second step: we aim at determining which
specific technique the PM uses to map package names to domain names. This step is
performed by a number of black-box tests and by then supporting the findings via manual
reverse engineering of the PM.

Step 3: Exploitation. The last step consists in developing techniques to game the
system and exploit the peculiarities of a given mapping implementation, if vulnerable.
In this scenario, a proof-of-vulnerability consists in an app written so that the PM under
analysis is tricked to provide the credentials of an arbitrary attacker-chosen website. In the
general case, this app will need to have a carefully crafted package name and, at the very
least, a login form. In other cases, it may be required to tweak other additional metadata.

6.4.2 Keeper

The Keeper app is the most downloaded PM with more than ten million users on Play
Store. Keeper supports both ally and Autofill Framework (on Android 8+), but it does
not support OpenYOLO yet. When the user selects a form, it shows an icon with a yellow
lock close to the form. When the user clicks on this icon, if the app is recognized, the
related credentials are suggested (see Figure 6.1b). Otherwise, it asks to create a new
entry.

Keeper also downloads from its backend a configuration file with a list of known websites
(and their names). This file, interestingly, does not contain any reference to known package
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names. In fact, this list is only used to auto-suggest website names when the user manually
inserts a new set of credentials.

Mapping implementation. When the user opens an app that can be auto-filled, Keeper
obtains its package name, through ally or Autofill Framework. Keeper then needs to
determine which website is associated with the current package name. To this aim, Keeper
builds a heuristic-based mapping as follows: it uses the app package name to infer the URL
of the app webpage on the Play Store (e.g., when the user opens the Facebook app, whose
package name is com. facebook. katana, Keeper tries to access the webpage at https: //
play. google. com/store/apps/details?gl=us&id=com. facebook. katana). Then, if
the webpage exists, Keeper parses out the domain name of the URL specified in the “app
developer website field.” This is the domain name that Keeper considers as the rightful
owner, and it then stores the package name — domain name association in its internal
mapping database. Finally, Keeper auto-suggests the credentials associated with this just-
retrieved domain name.

Exploitation. Unfortunately, this mechanism is trivial to exploit for an attacker. In fact,
the app developer URL is not validated by the Play Store and it thus cannot be trusted.
We were able to create an app (with an arbitrary package name) and to publish it on the
Play Store specifying facebook.com as the developer’s website. In this way, when a user
opens our app, the Facebook credentials (and only these credentials) are suggested.

6.4.3 Dashlane

Dashlane has been installed by more than one million users, and it supports ally, Autofill
Framework, and OpenYOLO. When Dashlane uses ally, it shows its icon close to the
form to fill; when the user clicks on it, the app is recognized and Dashlane suggests the
related credentials (see Figure 6.1a); otherwise it asks to create a new entry. Instead, with
the Autofill Framework, it directly shows a window with the suggested credentials or the
launcher for creating a new entry, saving one interaction with the user.

Mapping implementation. Dashlane implements the mapping by means of two layers.
The first one is a hardcoded mapping package — domain names containing 81 entries.
The second layer is a heuristic-based mapping that attempts to infer which domain name
should be associated to a given package name (this layer is used only if the package name
is not contained in the static mapping). Our analysis revealed that such heuristic works
in this way: Dashlane first splits the package name in components separated by the dots
(e.g., the aaa.bbb.ccc is split in the three components aaa, bbb, and ccc). Then, for each
component, it checks whether at least three of its characters are contained in the “website”
field of one (or more) of Dashlane entries. For example, the package name xxx.face.yyy
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triggers an auto-suggestion for facebook.com credentials (as well as anything associated
with facts.com, for example).

Exploitation. The static mapping is rather small and many entries are tied to well-known
apps and websites. However, we noticed that such mapping is many-to-one. Therefore,
there are multiple package names pointing to the same domain name. For example, we
found that both com. etrade.mobilepro. activity and com. etrade. tabletapp point
to www. etrade. com, the official website of the Etrade online banking platform: the two
apps appear to be the smartphone and tablet versions of the same product, respectively.

Consider a user who has installed the smartphone version of the app. An attacker could
then exploit the many-to-one mapping by luring the victim to install a malicious app
having the package name of the tablet version (that the user did not already install): in
this case, the attacker does not need to lure the victim to uninstall the first app (as it
would be the case without the many-to-one mapping). We reported this attack for the
sake of completeness, but we acknowledge it is affected by practicality issues.

However, the second layer of the mapping is severely vulnerable. In fact, it is sufficient to
upload to the Play Store a malicious app whose package name contains three (or more)
letters that overlap with the domain name the attacker wants to target; in this case, the
malicious app will be auto-filled with the credentials of the victim domain. Furthermore,
it is worth noticing that the malicious app can obtain credentials from multiple domains.
For instance, we submitted to the Play Store an app with package name com.lin.uber.face:
when opening this app, Dashlane promptly suggests Linkedin, Uber, and Facebook cre-
dentials.

Regarding OpenYOLO, Dashlane is exploitable exactly as ally/ Autofill Framework, since
the selection of credentials relies on the package name, which is parsed as previously de-
scribed. Therefore, we wrote another malicious app embedding the OpenYOLO client
library and we were able to obtain the credentials.

Interestingly, we have noticed that when Dashlane uses Autofill Framework instead of ally,
it performs some additional checks and it is able to determine that our simple proof-of-
concept attempting to impersonate Facebook cannot be verified. In this case, a warning is
shown to the user. To the best of our understanding, Dashlane employs a hardcoded list
of well-known package name and signature pairs, and it checks our app against it. This
is a promising step forward in the right direction. However, we found that these checks
are easily bypassable. In fact, it is sufficient for a malicious app to mot be compatible
with the Autofill framework (this can be done by not using the new autofill-related XML
attributes), and this will be enough to force Dashlane to rely on ally and the vulnerable
implementation.
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6.4.4 LastPass

LastPass has been installed by more than one million users and it supports ally, Autofill
Framework, and OpenYOLO. With ally, LastPass uses a permanent notification to alert
the user if the currently active app has some form to fill; thus, she has to tap the notification
to show a popup window with her credential; with the Autofill Framework, the user does
not need to tap the notification and she will directly see the pop up window, as in Dashlane.
This underlines that the support to OpenYOLO is still immature. However, the current
implementation allows the user to select credentials and send them to any unidentified
requesting app.

Mapping implementation. LastPass relies on two mappings. The first one is, once
again, heuristic-based, and it works as follows. Given a package name, e.g., aaa.bbb.ccc,
LastPass splits it in components separated by the dots (e.g., aaa, bbb, and ccc), and it
builds a domain name pattern by using the first two in reversed order (e.g., bbb.aaa).
LastPass will then suggest to the user all the credentials associated with domain names
that end such pattern.

In case an entry does not exist, LastPass allows the user to search among her locally stored
credentials and select (in case) one of them, thereby defining a new entry for the mapping,.
As such entries may be useful for other users worldwide, LastPass allows the user to share
them with the community. This sharing step is at the basis of the second mapping, a
crowdsourced mapping. LastPass downloads this global database at the first installation.
At the time of writing, we found 19,273 crowdsourced mapping entries with repeated
package names and domains, mostly many-to-one. For instance, we found a mapping
between package names com.tinder and com.tinderautoliker2 associated to the web domain
tacebook.com: Tinder is a dating app that needs Facebook credentials to authenticate the
user, while TinderAutoLiker is an app available on alternative markets that automates
some actions on Tinder services. It is also worth noting that the crowdsourced mapping
contains errors, like invalid domains, domains with typos, and IP addresses belonging to
local networks.

Exploitation. To exploit the first mapping strategy, the attacker can create an app with
a package name beginning with the reverse of the target domain name. For example, we
created an app with package name com.facebook.evil and we were able to upload it to
the Play Store without problems: when the user opens this app, LastPass automatically
suggests credentials related to facebook.com.

From the conceptual point of view, an attacker could exploit the second mapping as well.
In fact, if the attacker is able to inject an arbitrary association, she can directly indicate
to LastPass that, for example, her own package name should be associated to, say, face-
book.com. For the sake of completeness, we tried to share with LastPass an association
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from one of our package name app to one of our test websites. However, this association
did not become public to all users. We assume that LastPass make these “new” associations
available to all its users only when a number higher than a threshold suggested them. An
attacker could try to create a high number of fake accounts and to automatically share
these fake associations. However, we have opted not to do it for ethical reasons. More-
over, an attacker can already game LastPass suggestion mechanism by exploiting the first

mapping.

6.4.5 1Password

1Password has been installed by more than one million users and it supports ally, Aut-
ofill Framework and OpenYOLOQO. Differently from previously analyzed PMs, 1Password
organizes its entries in categories (e.g., credit card, database, driver license, login, wireless
router, etc.). We focused on the login category. Once the user selects a form, 1Password
behaves differently with respect to the supporting methodology: on Autofill Framework,
it shows a small windows bearing the imprint “Autofill with 1Password”. Clicking on it,
the user must insert the 1Password master password and search through all its previously
saved credentials. With ally, it directly loads the windows for searching among creden-
tials. Albeit 1Password adopts the OpenYOLO library, the implementation contains just
a stub that always returns empty credentials.

Mapping. 1Password does not provide any mapping, but it trivially suggests each stored
credential through a searchable list, delegating the choice to the user. In other words, it is
possible to autofill any requesting app with any stored credential.

Exploitation. The exploitation of 1Password was straightforward and did not require
any further customization of the app. However, this attack is less practical than the other
ones as the attacker does not have fine-grained control over the list of credentials that are
auto-suggested.

6.4.6 Google Smart Lock

Google Smart Lock (GSL) is part of Google Play Services for Android. It was created to
automatically keep the device locked when the user is not around and unlock it when spe-
cific user-defined constraints are met. For instance, the user can choose to have her device
unlocked according to the presence of specific wireless connections, trusted locations, or
when it recognizes the user’s face or voice, or while the user is carrying the device. GSL
has been equipped with the PM originally integrated into the Chrome browser. For this
reason, GSL also offers a password-saving feature, taking advantage of Autofill Frame-
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work (which works just with compatible apps), and a synchronization mechanism with the
Chrome desktop browser.

Mapping. We believe that GSL mapping is securely implemented. However, the burden
of mapping creation is delegated to the developer who has to provide all the necessary
information to Google. In particular, the official documentation describes a multi-step
process (Gool8e). From the technical standpoint, this process is based on Digital Asset
Links (Gool7a), through which an app can be verifiably linked to a website (see Sec-
tion 6.3.3, “Secure mapping”). However, this procedure is not fully automated, and devel-
opers are requested to fill a Google Form manually and to provide a set of information.
We argue that such a process hardly scales, as it is centralized and it requires the man-
ual intervention of the developer. To improve the current approach, Google should push
the Digital Asset Links adoption and verify that it is correctly implemented. Moreover,
we believe that Google would greatly benefit the community if it could make its current
mapping database publicly available.

6.5 Instant Apps for Full UI Control

The attacks presented so far require a malicious app to be installed on the victim’s de-
vice. This section discusses how this prerequisite can be waived by abusing the recently
introduced Instant Apps. This technology, implemented by Google, allows users to “try”
Android apps at the touch of a click, without the need for a full installation.

This mechanism works in several steps. First, the developer builds an Instant App, a small-
but-functional version of her app, and she uploads it to the Play Store. The developer is
also asked to associate a URL pattern to it (pointing to a domain name she controls).
The idea is that when the user browses to a URL satisfying this pattern, the Android
framework starts the process of downloading and running the Instant App associated with
it. Of course, for security reasons, the app developer needs to first prove to Google that she
controls the target domain name. This is carried out through a multi-step procedure called
App Link Verification (Gool8i), which relies on Digital Asset Links (Gool7a) protocol (this
makes possible to associate an app with a website and vice versa, via verifiable statements).

From the developers and users’ usability perspective, Instant Apps is a great feature as
it significantly lowers the friction for a user to test (and possibly fully install) an app.
However, from the security point of view, Instant Apps provide a venue for attackers to
greatly facilitate phishing attacks.

The key observation is that Instant Apps allow an attacker to move from web phishing
to mobile phishing. Nowadays, web phishing is significantly more challenging than mobile
phishing. On the web, the user can clearly see which website she is interacting with: she
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has the chance to check the domain name, whether the connection is done via HT'TPS, and
whether there is a valid SSL certificate. In the mobile world, however, there are no such
indicators. In fact, as previous works have pointed out (CQM14; BCI'15; RZX+15), there
is currently no “green lock” or any space for any trusted indicator: these previous works
have shown that a malicious app spoofing the Facebook Ul can be made indistinguishable
from the legitimate Facebook app—even for a security-savvy user. The key requirement for
these pixel-perfect attacks is the ability to control all the pixels on the screen. A website
cannot achieve that, but an attacker can use Instant Apps to do just that: gain code
execution on the device outside the browser’s JavaScript sandbox and gain the ability to
fully control the Ul (without requesting any permission).

Once the attacker has gained full UI control, there are many possibilities. One first ex-
ample is that the Instant App could resemble the real Facebook app, which can be made
indistinguishable from the legitimate one. A second example would be to resemble the
browser app itself: as the attacker controls every pixel of the screen, nothing prevents her
from showing the user a browser-like view with a spoofed facebook.com domain name and
a green lock. Once again, this attack can be made indistinguishable from a legitimate
scenario.

6.6 Practical Phishing Attacks

4R 24%8 410
@ https . o @ https . m X | : Fake Facebook App
Lorem ipsum dolor sit amet, Lorem ipsum dolor sit amet,
consectetur adipiscing elit, consectetur adipiscing elit,
sed do eiusmod tempor incididunt| | sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. | |utlabore et dolore magna aliqua. LOGIN
Ut enim ad minim veniam, quis Ut enim ad minim veniam, quis Open With
nostrud exercitation ullamco nostrud exercitation ullamco
laboris nisi ut aliquip ex ea laboris nisi ut aliquip ex ea
commodo consequat. commodo consequat. & AutoFill Q x
) ) e facebook.com
&) Like 2 Like 4 Facebook
Open With X

(a) Phishing website (b) IA popup (c) IA loading (d) LastPass is tricked

Figure 6.3: Instant Apps (IA) phishing attack PoC
The password managers flaws and Instant Apps “features” we have highlighted thus far are
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independent of each other. However, we found that for what concerns phishing attacks,
these two technologies are, in fact, complementary. In fact, we have shown that password
managers can be tricked into revealing users’ credentials, but these attacks require a ma-
licious app (with an attacker-chosen package name) to be installed on the victim’s phone:
Instant Apps can be used to do just that.

We have found that Instant Apps, although they are not fully installed apps, do appear as
they were to the Android framework and the components relying on it. The key insight is
that even if the Instant App is not fully installed, the app somehow lives on the Android
device, and its package name, application name, and icon are attacker-controlled (they are,
in fact, the same as its associated full app on the Play Store). To make it worse, password
managers currently do not notice the difference between full and Instant Apps, and they
can thus be tricked to leak credentials even to them.

To make things worse, we have found that current password managers autofill hidden fields
as well. This yet another “feature” that opens the possibility for a stealthy and practical
end-to-end phishing attack, which we describe next.

6.6.1 End-to-end proof-of-concept

Consider a scenario where the user visits a website showing a spoofed Facebook “like” but-
ton, as in Figure 6.3a. Such button links to an attacker-controlled URL that is associated
with her Instant App. Once the user clicks on the like button, the Instant Apps mechanism
is triggered: the popup asking the user confirmation to start the Instant App is shown, as
in Figure 6.3b. This popup shows the application name and the icon, which, however, are
fully attacker-controlled. The reader can see from Figure 6.3b how it is easy to mislead
the user: for this PoC we used “Open With” as the name of the app and a fully white
square as the app’s icon (“showed” on the left of the application name). Upon the user’s
click on the “Open app” button, the Instant App is automatically downloaded, while the
user is shown for few moments (about one second) the view in Figure 6.3c. At this point,
the malicious Instant App is running on the user’s device, as shown in Figure 6.3d. At
this point, since our app was created with a package name following the com.facebook.*
pattern (see Section 6.4.4), LastPass is tricked to automatically suggest the real Facebook
credentials to the user: With a click on the autofill popup, the full credentials are leaked
to the attacker.

We note that our app is a clearly “fake” Facebook app, just for clarity sake and for ethical
and copyright concerns: as this is a “live” PoC (to test the Instant Apps we needed to
publish it to the Play Store), we preferred to avoid having a real spoofed Facebook UL

Practicality considerations.We have shown how the user can be lured to leak her cre-
dentials in just a few clicks. We also note that the click on “Open app” (6.3b) and the
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“Loading” view (6.3c) are only shown the first time. That is, an attacker could make this
attack even more practical by luring the user to approve and download the Instant App
beforehand and for phishing-unrelated, seemingly innocuous reasons, to then make the
transition from “Click to the like button” to “Spoofed Facebook UI” really seamless. We
believe this attack strategy significantly lowers the bar, with respect to all known phishing
attacks on the web and mobile devices: to the best of our knowledge, this is the first attack
that does not assume a malicious app already installed on the phone and that does not
even require the user to insert her credentials. These attacks are strictly more practical

than all currently known mobile phishing works (CQM14; BCI"15; RZX"15; FQCL1T).

6.6.2 Hidden Password Fields

We have carried out further experiments with the aim of assessing whether current mobile
password managers are vulnerable to automatically filling hidden fields. We refer to fields
as hidden if the field is, for one reason or another, not visible to a user. This is relevant
because an attacker could create a form with a username field and a hidden password
field: if the victim uses her password manager to autofill this form, her password will be
silently leaked to the attacker. This is similar to what previous research has attempted
with web-based password managers (Rod13): To the best of our knowledge, we are the first
to show that these attacks work with mobile password managers as well. For this work,
we considered four different techniques to make a password-related EditText seemingly
invisible: 1) transparency, 2) small size, 3) same-color background and foreground, and 4)
the invisible flag.

Transparency. To create a transparent EditText in Android, it is possible to set its alpha
value accordingly (via the setAlpha() API). We note that if the alpha value is set to zero,
both the ally and Autofill Service cannot autofill the EditText because it is not visible
anymore. However, setting an alpha value of 0.01 is enough to keep the field invisible and
make the autofill mechanisms work.

Small size. One other venue to make a field invisible to the human eye is to make it very
small. We found that password managers autofill password fields even if their size is 1dp
X 1dp, independently from whether they are using ally or Autofill Service.

Same-color background and foreground. If the text color is the same of the back-
ground color, the field (and its content) will not be visible. This technique works well with
ally. However, unexpectedly, it is not enough to trick Autofill Service. In fact, upon aut-
ofilling, the Autofill Service would overlay the autofilled fields with a yellow overlay, thus
making the hidden field visible to the user. However, it would be possible for an attacker
to create in-app overlays (which do not require additional permissions) to cover this yellow
overlay, thus making this artifact not visible to the user.
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Invisible flag. It is possible to make a field hidden by setting its visibility to View.INVISIBLE.
We found that ally-based password managers do not autofill these “invisible” fields, but
those ones using Autofill Service do so.

Discussion. We believe these additional techniques make end-to-end phishing attacks even
more practical and problematic. While the unsuspecting user will use password managers
and instant apps to quickly provide her email address or username, her credentials could
be silently leaked to the attacker, with only few clicks. We also note that while some
of the above techniques are not working with both ally and Autofill Service, there is
nothing preventing an attacker to combine these techniques at her will and adapt given
the attack scenario. Finally, we note that these password-stealing attacks are possible only
because current password managers implement a vulnerable mapping algorithm: without
such vulnerability, no credentials can ever be leaked to non-legitimate apps.

6.7 Secure-by-Design API

We believe that the attacks presented in this chapter are due to design problems of the
current mechanisms to support autofill, from ally, to the more recent Autofill Framework
and OpenYOLO. The key design issue is that all these mechanisms use package names
as the main abstraction to work with, thus leaving developers of password managers with
the daunting task of mapping apps to their associated domain names. Given the number
of security issues and misplaced trust assumptions we have identified in leading password
managers, we believe third-party developers should not be asked to implement this critical
step.

The getVerified DomainNames() API. We propose a new API that implements a
secure-by-design mechanism by using domain names as the only abstraction that password
managers need to interact with. Since credentials are created for websites, we argue this is
a better abstraction level. In stark difference concerning existing proposals, this API, called
getVerifiedDomainNames(), would directly provide to password managers a list of domain
names that a given app is legitimately associated to. The API internal implementation
would then be responsible for performing all the needed security checks. We envision
this API to be used following the paradigm of OpenYOLO (as in Figure 6.2). The main
difference is that password managers would directly query for domain names, and not for
package names.

Integration and implementation. The request for auto-filling a form follows several
steps. First, the client sends an Intent to the password manager to request credentials.
Then, the password manager can invoke get VerifiedDomainNames(), passing the received
Intent as argument. At this point, our API performs a number of steps, whose sequence
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Figure 6.4: getVerifiedDomainNames() API sequence diagram

diagram is depicted in Figure 6.4. First, it retrieves the sender’s package name from the
Intent. The package name is used to extract the client’s app signing key. Then, getVer-
ifiedDomainNames() extracts from the client’s manifest file the list of domain names the
app claims to have access to (this list should be specified according to the standard App
Link Verification (Gool8i) and Digital Asset Links (Gool7a) protocols). The API inter-
nally downloads, for each of these domain names, the associated DAL file (assetlinks.json)
and it verifies that the requesting app (package name + hash of the app signing key) is
listed in it. The API includes in its return value to the password manager the list of all
domain names that satisfy such security checks. Given these domain names, the PM can
then safely query its internal database for associated credentials and send them back to
the requesting client.

Avoiding side-channel vulnerabilities. We have noticed that the current OpenYOLO
client implementation opens apps to side channel attacks. In particular, the current im-
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plementation sends a Broadcast Intent to request credentials from the credential provider,
thereby making all other apps aware of such request. A malicious app can use this side-
channel to infer that the user is about to login in a specific account: this information can
be used for the attacker to know when to spawn its spoofed phishing Ul (CQM14; BCI'15;
RZX"15). Even if side channels are not required to mount phishing attacks (AP17), they
do make them easier. For this reason, we argue that the communication between the client
and the credential provider must remain confidential—not only the content, but even the
mere fact that this communication is taking place. To this end, we believe that each client
should have access to a (configurable) list of trusted password managers apps (e.g., Dash-
lane, LastPass, ...), so that explicit intents can be used instead of broadcast intents. This
list could be stored as pairs of package names and hash of signing keys. This is analogous
to what browsers do with trusted certificates.

Practicality of adoption. Independently from the API we propose, we were interested
in determining how ready the ecosystem is in terms of information required to build a
secure app-to-web mapping. Given that the current standard is DAL, we set to analyze
the adoption rate by querying a dataset of domain names for their related assetlinks.json
DAL file. As a dataset, we considered all domain names from all mapping we extracted
from the password managers we have inspected. This list is constituted by 8,821 domain
names. Note that since they are extracted from password managers, we know that these
domain names host at least one page with a login form, thus making them relevant to our
analysis.

To our surprise, only 8% (710/8,821) of them host an associated DAL file, and only 2%
(178/8,821) specify an Android app in accordance with Google documentation (Gool8c).
This low adoption rate is worrisome: password managers would have compatibility prob-
lems in securely implementing their solution even if they were fully aware of the problems
discussed in this chapter. Google Smart Lock has addressed these problems by not relying
on a fully automatic technique (developers need to manually fill a Google form) and by
supporting app-to-web sync only when a secure mapping exists. We argue that the rest
of password managers should follow a similar approach and warn the user about potential
problems when a secure app-to-web association cannot be established.

6.8 Related Work

Phishing is a well-known problem and it has received the attention of the security com-
munity for several years. In the realm of mobile devices, there have been a number of
works focusing on task hijacking (CQM14; RZX"15; FW11), and UI confusion (BCI"15;
AP17). We built on the insights provided by these works and we have shown how features
implemented for convenience can make mobile phishing attacks significantly more practical
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than what previously thought: we do not assume a malicious app is already running on
the victim’s device and, for the first time, the user is not even required to type her creden-
tials. Few works also proposed defense mechanisms for mobile phishing (BCI"15; FCP16),
which are unfortunately not finding adoption due to the invasive framework modifications
they require. Another interesting research direction is the automatic identification of app
widgets that contain user’s sensitive info (NYY"15; HLX"15; AAL*17).

The problem of phishing has also been extensively studied in the browser context (CLT"04;
DTO05; KKO05). In this context, protection mechanisms are usually implemented in forms
of blacklist (Gool8g).

Another class of Ul-related attacks is tapjacking (also called clickjacking). Some works
have shown how an attacker can abuse the overlay system to lure users into unknowingly
perform security-sensitive operations (NS12; WBDJ16; FQCL17). Other works show how
accessibility service can be abused to bypass user interaction and perform Ul-related at-
tacks (FQCL17; JSC"14; Amil6b; Amil6a; Lool5; Luil6; Venl6). These are very powerful
attacks, but they differ from phishing: they are about luring a user to perform a sensitive
operation, while phishing focuses on luring them to leak their credentials.

A few recent works have focused on the security analysis of browser password man-
agers (LHAS14; SJ14b). In those works, the authors conduct a security analysis of popular
web-based password managers, and some of them were found exploitable, allowing an at-
tacker to leak user credentials. The root-causes of the vulnerabilities were ranging from
logic and authorization mistakes to traditional web vulnerabilities like CSRF and XSS.
Our work, instead, focuses on mobile password managers. We also note that we have not
focused on identifying classic implementation bugs, but we aimed at uncovering systemic
design issues.

Silver et al. show several attacks aimed at retrieving passwords from in-browser PMs, by
exploiting their autofill policies (SJ B+14); the most powerful attack they uncovered does
not require any human intervention and it allows to automatically auto-complete password
fields. Several prior works show how combining innocuous visible fields and sensitive invis-
ible fields trigger PMs to autofill, and, consequently, provide sensitive information to the
attacker (dV13; Copl7). This is similar to our experiment with hidden password EditText
widgets.

For what concern the security of Android password managers, the work by Fahl et al. is one
of the few in the area (FHO"13): in this paper, the authors studied 21 popular password
managers and show how password managers would somehow push users to “copy” their
passwords to their clipboard: this has security implications since the device clipboard can
be accessed by any app installed on the user’s device. Interestingly, we note that password
managers using ally or Autofill Service are not affected by these problems: passwords
shared via these “modern” features do not go through the clipboard. However, we have
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shown that even these modern mechanisms are affected by security problems as well.

6.9 Responsible Disclosure

We have responsibly disclosed our findings to the security teams of the password managers
we found vulnerable. We would like to acknowledge their quick and professional handling
of the matter. The affected vendors are in the process of deploying countermeasures.
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Chapter 7

Detecting Frame Confusion in Hybrid
Android Apps

7.1 Introduction

Most of the mobile devices in the market use an Android operating system, whereas a
substantial percentage of mobile devices use the iOS operating system: a market share of
76% and 22% respectively in the July of 2019 (Stal9b). The two operating systems obvi-
ously differ when it comes to software development and operating system architecture. The
diverseness between these two operating systems has a negative impact on the application
development process. Companies incur more cost than what is expected; this is because
companies must rely on the services of different developers to build applications for those
different architectures. The result of this is a high maintenance and development costs.
A promising way to overcome the limitation posed by such multi-platform development
process is a cross-platform framework, which allows to implement an app using a unique
programming language and automatically generate a corresponding Android and iOS ver-
sion. The cross-platform framework has played a critical role in reducing the time and cost
required to build these applications. Cross-platform frameworks, such as Cordova (Corl19),
allow developers to utilize standard web technologies (HTML, CSS and JSJavaScript), for
cross-platform development of hybrid applications applications. Hybrid applications are,
therefore, popular due to the feature that allows them to be used on two different platforms
and work almost similarly to web apps because they are built with HTML and JavaScript
programming languages. Hybrid applications also incorporate standard native features us-
ing a wrapper that is deployed to act as a bridge between the two platforms. The bridge
layer in the hybrid applications allows JavaScript code to access the device capabilities that
would be virtually impossible to obtain from the mobile browser. Through such interfaces,
the developer can use callbacks to grant access to hybrid applications, making them similar
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to the native app. However, from a security standpoint, the interaction between the native
and the web worlds (which rely on different security models and requirements) can expose
hybrid apps to ad-hoc and complex vulnerabilities, like those described in (Hul8; LHD"11;
NLP13; CW14; LWZ"17). Among them, the Frame Confusion vulnerability (LHD"11) in
hybrid apps has been discovered some years ago and it has been fixed on i0S' but not
on Android (neither in the latest version, i.e., Android Pie 9.0). To this regard, we argue
that a lot of hybrid apps still suffer from such vulnerability and that there is still a lack
of i) an extensive analysis of Frame Confusion, ii) a methodology to automatically detect
Frame Confusion in hybrid apps, and iii) a reliable solution to mitigate the problem. The
Frame Confusion vulnerability arises due to the invoking of the native code by JavaScript
through web pages containing at least an iframe element. Such element allows loading
external contents (e.g., advertisements, video and payment systems) from domains which
differ from the domain of the hybrid app. For this reason, any iframe is in charge of
containerizing the rendered sub-page, and should execute content only within the scope of
its own domain, as prescribed by the Same-Origin Policy (SOP). However, in case of web
pages with multiple iframes, the WebView is unable to identify the iframe that invokes
a function in the native code, and thus the result of the invocation is always executed
in the main app page, thereby inducing the confusion problem. Such misbehavior occurs
as the JavaScriptInterface is bound by the OS to the entire WebView element, without
any distinction among the domains (and thus the iframes) that invoke the function calls.
Therefore, the Frame Confusion vulnerability allows to bypass the isolation granted by the
iframe security model and to build a communication channel between web pages belonging
to different domains, (i.e., the main app page and the inner iframes). As a consequence,
such vulnerability can affect the confidentiality and the integrity of hybrid apps: a ma-
licious iframe can, for instance, force the main app to expose private information (like
session cookies or internal app files) or mount sophisticated phishing attacks.

Contribution. In this work, we focus on the Frame Confusion vulnerability on the An-
droid OS.

Our contribution is three-fold.

1. We propose a methodology for systematically detecting the Frame Confusion vulner-
ability in hybrid apps on Android.

2. We present FCDroid, a tool that implements such methodology to automatically
identify hybrid apps on Android that suffer from the Frame Confusion vulnerability.

3. We discuss the results of an extensive analysis carried out through FCDroid on a set
of 50,000 apps downloaded from the Google Play Store.

1https ://cordova.apache.org/docs/en/latest/guide/appdev/security/index.html#
iframes-and-the-callback-id-mechanism
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The experimental results indicate that the 49.35% of the analyzed apps are hybrid, as they
use the WebView component and enable JavaScript execution, while about 6.63% of them
(i.e., 1637 apps) were found to be vulnerable to Frame Confusion for a total of more than
250.000.000 app installations worldwide. To further validate the proposed methodology,
we have manually analyzed some of these vulnerable apps to find out possible attacks ex-
ploiting the Frame Confusion vulnerability. To this regard, we show how to successfully
exploit Frame Confusion in an application that has more than 1M users worldwide, and
how to mount a phishing attack from this vulnerability. The rest of the chapter is orga-
nized as follows: Section 7.2 introduces some technical background on hybrid apps and
the Frame Confusion, while Section 7.3 discusses the detection methodology. Section 7.4
presents FCDroid, while Section 7.5 shows the experimental results. Section 7.6 discusses
the exploitation of the Frame Confusion on an actual news app, and Section 7.7 presents
some related work. Finally, Section 7?7 concludes the chapter.

7.2 The Frame Confusion vulnerability

7.2.1 App typologies

Mobile apps can be divided into three categories: i) native, ii) web, and iii) hybrid apps.

Native apps are developed for a specific mobile platform using particular programming
languages and technologies. IOS apps, for example, are written in Objective-C and Swift,
Android apps in Java or Kotlin. This means that a separate version of the app must
be developed for each platform. Developers cannot reuse any piece of code from another
platform version, as it is written in a completely different programming language. For
this reason, native app development is considered to be the most time-consuming and
most expensive. Native app development is preferred for their high-performance apps and
because they can easily interact with a set of API calls exposed by the mobile OS. On the
other hand, they need to be re-implemented to execute on a different mobile OS. As this is
a complicated and expensive task mostly for small-medium enterprises, there is a growing
trend towards web or hybrid apps in order to lower maintenance and support prices.

Web apps render HTML5 and execute Javascript code within the device browser (which is
a native app). For this reason, they are highly portable and platform-independent, but the
interaction with the underlying OS is limited to the API accessible by the browser itself.
Consequently, they have restricted functionalities and, in general, limited performance.

Hybrid apps are technically web apps packed in a native app container using the Web-
View. Like a web app, it is written in HTML, CSS, and JavaScript. The WebView may
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also allow the interaction between the web and the native part, acting as a bridge be-
tween the web code and the host OS API, thereby allowing to render HTML/CSS content,
execute JavaScript code, and get access to the full OS API. Accordingly, hybrid mobile
apps are cross-platform with the great advantage of is their lower price development. The
downsides, compared to native apps, are their limited performance and their different “look
and feel”.

7.2.2 WebView

On the Android platform, WebView is a subclass of View (an object that is the basic
building block for user interface components), and it is used to display web pages. Us-
ing WebView, Android applications can easily embed a browser and using it not only to
display web contents, but also to interact with web servers. Once a WebView is created,
Android applications can use its loadUrl method to load a web page if given a URL string.
Moreover, WebView provides a mechanism for its JavaScript code to invoke the Java code
of the app. The API used for this purpose is called addJavascriptInterface. Android
applications can register Java objects to WebView through this API, and all the public
methods, with the annotation @JavascriptInterface, in these Java objects can be in-
voked by the JavaScript code from inside WebView. For the sake of precision, the DEX
code is executed, not the Java code, but we refer to the Java code because we are pre-
senting these concepts from the developer point of view. The communication between the
JavaScript and the Java code is handled by the WebView using asynchronous callbacks. In
detail, when some JavaScript code invokes Java code through an interface bounded to the
WebView, it does not wait for the result: instead, when the result is ready, the Java code
outside the WebView invokes a JavaScript callback function, passing the result back to the
web page. This mechanism provides improved app performance and responsiveness, partic-
ularly in the case of long-running operations that would block the Ul. JavaScript interacts
with Java object on a private, background thread of this WebView. Care is therefore
required to maintain thread safety. Because the object is exposed to all the frames, any
frame could obtain the object name and call methods on it. There is no way to tell the
calling frame’s origin from the app side, so the app must not assume that the caller is
trustworthy unless the app can guarantee that no third party content is ever loaded into
the WebView even inside an iframe. This feature allows cross-platform frameworks (e.g.,
Cordova, PhoneGap) to design a set of plugins that can be embedded in apps and offer
platform-specific functionality, such as the API for the file-system or the GPS location.

WebView Security Mechanisms. As the WebView deals with web content that can
include untrusted HTML and JavaScript code, it can suffer from well-known web secu-
rity vulnerabilities such as cross-site scripting (Bhal3; JHY " 14; BYZW17) or file-based
cross-zone scripting (CW14). As countermeasures, the Android OS includes a set of mech-
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anisms aimed at limiting the capability of the WebView to the minimum functionality
required by hybrid apps. By default, the WebView does not execute JavaScript, thus
requiring developers to enable this feature using the setJavascriptEnabled method. Be-
sides, the application can either enable or disable the access of the WebView to specific
resources like files, databases or geolocation (Webl19a) through the WebSettings object.
Since API 17, in order to expose a Java method it must be be explicitly annotated with the
@JavascriptInterface (Jav19) annotation. The aim is to restrict the access to the OS
API, in order to prevent the invocation of any public Java method through code reflection
(Tholb). To further increase the resilience of the WebView component against untrusted
contents, since API level 21 the Android OS implements the WebView as an independent
app, thus offering a centralized update mechanism that relieves the developer from the
burden of manually updating each hybrid app (Web19b). Moreover, since API Level 26,
the WebView renderer executes in a separate process (Webl7). Finally, since Android 8,
the WebView incorporates Google’s Safe Browsing protections to detect and warn users
about potentially dangerous websites. Unfortunately, this option needs to be explicitly
enabled by the developer through a specific tag in the Android Manifest (Web18).

7.2.3 Frame Confusion

In the Android system, interactions with several components of the system are asyn-
chronous and require a callback mechanism to let the initiator know when the task has
completed. Therefore, when the JavaScript code inside WebView initiates such interactions
through the interface bound to WebView, JavaScript code does not wait for the results; in-
stead, when the results are ready, the Java code outside WebView will invoke a JavaScript
function, passing the results to the web page. Let us use DroidGap’s ContactManager in-
terface as an example: after the binded Java object has gathered all the necessary contact
information from the mobile device, it calls processResults, which invokes the JavaScript
function contacts.droidFoundContact, passing the contact information to the web page.
The invocation of the JavaScript function is done through WebView’s loadUrl API, as
shown in Listing 7.1.

Listing 7.1: Example of loadUrl API

public void processResults(Cursor paramCursor){
String result = paramCursor.decode();
String str8 = new StringBuilder().append("javascript:
navigator.contacts.droidFoundContact(...)").
localWebView.loadUrl(str8);

The JavaScript function contacts.droidFoundContact in the example is more like a call-
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back function handler registered by the LivingSocial web page. The use of the asyn-
chronous mode is quite common among Android applications. Unfortunately, if a page has
frames (e.g., iframes), the frame making the invocation may not be the one receiving the
callback. This exciting and unexpected property of WebView becomes a source of attacks.

In a web page with multiple frames, we refer to the main web page as the main frame,
and its embedded frames as child frames. The following example, presented in Listing 7.2,
demonstrates that when a child frame invokes the Java interface bound to the WebView,
the code loaded by loadUrl is executed in the context of the main frame.

Listing 7.2: Example of addJavascriptInterface API

Object obj = new Object(){
@JavascriptInterface
public void showDomain()
{mWebView.loadUrl("javascript:alert(document.domain)");}
s

mWebView.addJavascriptInterface(obj, "demo");

The code above registers a Java object to the WebView as an interface named “demo”,
and within the object, a method “showDomain” is defined. Using loadUrl, this method
immediately calls back to JavaScript to display the domain name of the page. When
we invoke window.demo.showDomain() from a child frame, the pop-up window actually
displays the domain name of the main frame, not the child frame, indicating that the
JavaScript code specified in loadUrl is actually executed in the context of the main frame.
Whether this is an intended feature of WebView or oversight is not clear. As results, the
combination of the addJavascriptInterface and loadUrl APIs creates a channel between
child frames and the main frame, and this channel opens a dangerous Pandora’s box: if
application developers are careless, the channel can become a source of vulnerability, one
that does not exist in the real browsers.

Attack from Child Frame. In this attack, we look at how a malicious web page in a
child frame can attack the main frame. We use the LivingSocial app as an example. This
app loads LivingSocial’s web pages into its WebView (in the main frame), and we assume
that one of their iframes has loaded the attacker’s malicious page. This is not uncommon
because that is exactly how most advertisements are embedded. The main objective of the
attacker is to inject code into the main frame to compromise the integrity of LivingSocial.
Web browsers enforce the Same Origin Policy (SOP) by completely isolating the content of
the main frame and the child frame if they come from different origins. For example, the
Javascript code in the child frame (www.advertisment.com) cannot access the DOM tree
or cookies of the main frame (www.facebook.com). Therefore, even if the content inside
iframe is malicious, it cannot and should not be able to compromise the page in the main
frame. As we have shown earlier, LivingSocial binds CameraLauncher to its WebView.
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In this class, a method called failPicture is intended for the Java code to send an error
message to the web page if the camera fails to operate (Listing 7.3).

Listing 7.3: Example of addJavascriptInterface API

public class CameraLauncher{
@JavascriptInterface
public void failPicture(String paramString){
String str = "javascript:navigator.camera.fail(’";
str += paramString + "’);";
this.mAppView.loadUrl(str);

Unfortunately, since failPicture() is a public method in CameralLauncher, properly an-
notated with @JavascriptInterface, the method is accessible to the JavaScript code
within WebView, from both child and main frames. In other words, JavaScript code in a
child frame can use this interface to display an error message in the main frame, opening
a channel between the child frame and the main frame. At the first look, this channel
may not seem to be a problem, but those who are familiar with the SQL injection attack
should have no problem inserting some malicious JavaScript code in ‘paramString’, like
the following;:

x’); malicious JavaScript code;

As results, the malicious code embedded in paramString will now be executed in the main
frame; it can manipulate the DOM objects of the main frame, access its cookies, and even
worse, send malicious AJAX requests to the web server. This is exactly like the classical
cross-site scripting attack, except that in this case, the code is injected through WebView,
as illustrated in Figure 7.1a.

Attack from Main Frame. In this attack, we look at how a malicious web page in the
main frame can attack the pages in its child frames. We still use the LivingSocial as an
example. We assume that the attacker has successfully tricked the LivingSocial app into
loading his/her malicious page into the main frame of its WebView. Within the malicious
page, LivingSocial’s web page is loaded into a child frame. The attacker can make the
child frame as large as the main frame, effectively hiding the main frame. Suppose that
DroidGap uses tokens to prevent unauthorized JavaScript code from invoking the interfaces
registered to WebView: the code invoking the interfaces must provide a valid token; if not,
the interfaces will just do nothing. An example is given in Listing 7.4.

Listing 7.4: Example of an information-leak channel
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public class Storage{
public void QueryDatabase(SQLStat query, Token token){
if (!this.checkToken(token)) return;
else { /* Do the database query task and return result*/ }

With the above token mechanism, even if the JavaScript code in the malicious main
frame can still access the QueryDatabase interface, its invocation cannot lead to an actual
database query. However, if the call is initiated by the LivingSocial web pages—which
have the valid token—from the child frame, the invocation is legitimate and will lead to a
query. Unfortunately, when the query results are returned to the caller by the app, using
loadUrl, because of the frame confusion problem, the query results are actually passed
to the main frame that belongs to the attacker. This creates an information-leak channel.
Figure 7.1b, taken from (LHD"11), illustrates the attack.

Android Application Android Application

(a) From the child frame (b) From the main frame

Figure 7.1: Exploitation of Frame Confusion

The exploitation of the Frame Confusion vulnerability requires the attacker to affect any
web domain in the main or a child iframes that has access to the JavaScript interfaces.
This condition is achieved through:

e The direct control of a web page. In such a scenario, the attacker can be able either
to take control over an existing web domain or to create an ad-hoc website, e.g., a
malicious advertisement campaign.

e The injection of malicious code in an existing web page. In this case, the attacker can
exploit a weakness in the communication protocol of the hybrid app, e.g., a clear-text
communication or a misconfigured SSL connection, to mount a Man-In-The-Middle
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attack” and inject malicious code in the loaded web pages.

It is worth noticing that the presence of other vulnerabilities in the JavaScript code, e.g.,
the adoption of JavaScript libraries with known vulnerabilities (OWA17) or the presence of
XSS vulnerabilities (SJ14a; BGS11; BYZW17), further boosts the exploiting capabilities
of the attacker.

7.2.4 Mitigations

As described above, the Frame Confusion allows violating the SOP by circumventing the
sandbox of iframes. Unfortunately, despite the recent security mechanisms added in the
WebView component, the Frame Confusion is still unfixed at any Android API level. Still,
the web world offers an extra set of security mechanisms that are able to restrict the
communication among the main frame and the child frames, thus preventing the Frame
Confusion vulnerability, i.e.:

e the iframe sandbox attribute (w318), which enables a set of extra restrictions on any
content hosted by an iframe and, among them, it allows blocking the execution of
JavaScript code. Although effective in principle, this mechanism completely prevents
the execution of any JavaScript code, thus limiting the functionalities of the web page.

e the Content Security Policy (CSP) (Conl6) that allows for the definition of fine-
grained restrictions on the execution of JavaScript code, including the possibility to
define a set of trusted domains that are able to execute JavaScript, in a white-listing
fashion. Although effective against the loading of an undesired web domain, the CSP
cannot prevent the injection of the malicious code in a white-listed domain, thereby
resulting ineffective against the Frame Confusion.

Furthermore, previous security mechanisms are not enabled by default, thus leaving the
burden of their configuration to the developer. All in all, at the current state of the
art, none of the existing security mechanisms are able to effectively prevent the Frame
Confusion.

7.3 A Frame Confusion Detection Methodology

Despite the fact that the state of the art lacks a methodology for the automatic identifica-
tion of the Frame Confusion vulnerability in Android, we have developed an automatic and

2h‘ctps ://www.owasp.org/index.php/Man-in-the-middle_attack
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rigorous analysis flow. To achieve such result, we first define a blueprint of the Frame Con-
fusion vulnerability, and then we build an analysis flow that can detect it automatically,
by exploiting a fruitful combination of static and dynamic analysis techniques.

7.3.1 Vulnerability Blueprint

First of all, we need to select a set of features that enable the vulnerability. To this aim,
we argue that a minimal set of such features is the following:

1. the app requires the INTERNET permission in order to access web domains using a
WebView component;

2. the app uses at least a WebView that is configured to execute JavaScript code;
3. such WebView binds a Java class using the addJavascriptInterface() method;

4. in case of an app targeted to API level 17 or higher, such Java class must contain at
least a method annotated with the @JavascriptInterface

5. the WebView loads at least a web page that contains one or more iframe elements;

6. such a web page does not enforce any mitigation technique among those described in
the previous section.

7.3.2 Detection Algorithm

The Frame Confusion detection methodology can be summarized by the pseudocode listed
in algorithm 1. Given a generic Android app in the APK format, the algorithm begins by
retrieving a list of the Android permissions used by the app (row 1). If the list does not
include the Internet permission, then the app cannot use the WebView component, and
therefore it is marked as not vulnerable (rows 2-4). Otherwise, the algorithm computes
the list of all the invoked methods of the app (row 5) in order to locate the presence of
setJavaScriptEnabled, and addJavascriptInterface APIs.

If a setJavaScriptEnabled invocation (row 9) is recognized, the algorithm further investi-
gates the flag parameter of the call (rows 10-14). A True value indicates that the WebView
enables the execution of JavaScript and thus its object reference is retrieved (row 12) and
included in the list of those that enable JavaScript (row 13).

Instead, the presence of a addJavascriptInterface indicates that a WebView compo-
nent is configured to expose a bridge between Java and JavaScript. If this is the case,
the algorithm extracts i) the WebView object from which the addJavascriptInterface
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Algorithm 1: Frame Confusion Detection

11
12

13
14
15
16
17
18
19
20

21
22
23
24

25
26
27
28
29

30
31
32
33
34

35
36

37

Input : APK Package
Output: vulnerable, notVulnerable

listPermissions = getPermissionFromApk (app);
if "android.permission. INTERNET" not in listPermissions then
‘ return notVulnerable;

methodsList = getAllInvMet (app);
JSWebView = list();
IWebView = list();

foreach method in methodsList do

if method.getName == "setJavaScriptEnabled” then
flagParam = getFlagParam(method);

if flagParam == T'rue then

webViewObj = getInv0bj(method);
JSWebView.add (webViewObj);

else if method.getName == "addJavascriptInterface” then
webViewObj = getInv0bj(method);
interface = getInterfaceObj (method);
if getSDK(app) > 17 then
if containAnnotatedPubMet (linterface) then

| IWebView.add (webViewObj);
else if containPubMet(interface) then

| IWebView.add (webViewObj);

if len (JSWebView) == 0 or len (IWebView) == 0 then
return notVulnerable;
if len (IWebView N JSWebView) == 0 then
‘ return notVulnerable;

resourceFiles = getAl1ResourceApk (app);
dumpWebStat = getStaticUrl (methodsList);
dumpWebDyn = getDynamicUrl (app);

filesToCheck = dumpWebDyn union resourceFiles union dumpWebStat;

vulnerablePages = list();
foreach file in filesToCheck do
if isHTMLfile(file) or isJSfile(file) then
if containIframe(file) then

if not containCSP( file) and not containSandboxAtt(file) then

| vulnerablePages.add (file);

if len (vulnerablePages) > 0 then
‘ return vulnerable;

return notVulnerable;
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method is invoked (row 17), and i) the Java object injected in the JavascriptInterface
(row 18). After that, the algorithm needs to detect if the Java object injected in the inter-
face contains public methods that can potentially be accessed from JavaScript code (rows
19-27). Moreover, in case of apps targeted to API level 17 or above, the public methods
of the object need to be further annotated with the @javascriptinterface tag (rows
19-22). If the injected Java object contains methods accessible from JavaScript, then the
corresponding WebView instance can be added to the list of those that expose potentially
vulnerable interfaces (row 21 or row 25).

Next, if the analysis is not able to find at least a WebView - with JavaScript enabled -
that contains a JavaScript interface with exposed Java methods, then the app is marked
as not vulnerable (rows 29-34). Otherwise, the analysis collects from the Website collector
module all the website pages accessed by the WebView that are i) included in the resources
of the .apk package (row 35), ii) statically invoked by loadURL methods (row 36), and iii)
dynamically reached during the execution of the app (row 37).

After that, the algorithm collects every website that uses at least an iframe element that
loads an external page (either embedded in HTML pages or generated by JavaScript), and
that does not enforce any of the mitigation techniques discussed in the previous section
(rows 40-48). Finally, if the app loads at least one vulnerable website, it is marked as
vulnerable. On the contrary, if the app uses the appropriate security mechanisms or does
not use any iframe is marked as non vulnerable.

7.4 The FCDroid tool

FCDroid® implements the proposed detection methodology to automatically identify the
presence of the Frame Confusion vulnerability in Android apps. In this section, we describe
the implementation of FCDroid and its architecture, emphasizing the underlying tools and
technologies.

7.4.1 Implementation

The Frame Confusion detection methodology poses several challenges in terms of imple-
mentation. Indeed, an automatic detection tool needs to:

1. achieve maximum coverage by detecting all possible app execution paths that may
lead to vulnerability;

3FCDroid is available at https://www.fcdroid.com.
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2. recognize the actual configuration of WebView components, which may dynamically
enable JavaScript or define new interfaces;

3. analyze all the web pages loaded inside some potentially vulnerable WebViews, by
also considering those loaded according to i) the user’s input, and ii) the value of
runtime variables.

To address such challenges, FCDroid uses static and dynamic analysis techniques. Static
analysis can examine all possible execution paths. However, it is not able to predict
variables or resources only available at runtime, for example, user-input or dynamically
loaded code, therefore introducing false positives (i.e., the static analysis detects a defect,
the defect exists, but it is impossible to trigger such malfunction at runtime). On the other
hand, dynamic analysis examines the actual behavior of the app, so when it finds a defect it
is a (desired) true positive. However, it has restricted coverage and it is time-limited, thus
producing potential false negatives (i.e., the dynamic analysis does not detect an existing
defect).

For those reason, FCDroid combines static and dynamic analysis techniques to overcome
the limitations of both techniques and achieve more accurate detection results.

7.4.2 FCDroid Architecture

App Information

2

Permissions List

w s Static Methods Invocation C:r:?l.:r;?on :D
MODULE=// Detector
Resources Files
WebSite
Dumper
Exploitation

Network Traffic "I Checker :>

DYNAMIC >
ANALYSIS
MODULE
" Vulnerable
Libraries

Dynamic Methods Invocation

Resources

Figure 7.2: The FCDroid Architecture.

The FCDroid architecture, depicted in fig. 7.2, is composed by five main building blocks:
the Static Analysis Module (SAM), the Dynamic Analysis Module (DAM), the WebSite
Dumper (WD), the Frame Confusion Detector (FCD), and the Exploitation Checker (EC).
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Static Analysis Module (SAM). The Static Analysis Module relies on Apktool (WT18)
to disassemble the APK and translate the DEX bytecode into Smali (Grul9) language. In
addition to that, SAM brings the resources contained in the app back to their original form,
e.g., from binary compiled XML files into textual XML files. Then, the module extracts
the list of permissions requested by the app and the target Android API level according to
the content of the AndroidManifest.xml file. Finally, the SAM inspects each extracted
Smali file in order to locate all the API method invocations of the WebView component.
In detail, the module detects:

e setJavaScriptEnabled that enables the JavaScript code in a WebView object. If
found, the SAM also extracts the variable containing the boolean flag passed as an
argument;

e addJavascriptInterface, that creates a JavaScript interface object. In this case,
the SAM retrieves the Java class of the injected object and the name assigned to the
interface;

e loadUrl and evaluateJavaScript, that allows the loading of specific URLs or
JavaScript code inside the WebView. In case, the module also extracts the URL
address or the script code, if statically defined;

The collected pieces of information are then sent to the WebSite Dumper and the Frame
Confusion Detector to continue the analysis.

Dynamic Analysis Module (DAM). The Dynamic Analysis Module is in charge of ex-
ecuting the app into a controlled testing environment in order to monitor the stimulation
of the WebView components at runtime. To this aim, it installs the app into an Android
Emulator and stimulates the app automatically, trying to explore its possible execution
states. This allows the DAM to i) monitor the invocations of WebView-related API along
with their execution parameters, and i) intercept all the network traffic generated by the
app. In order to stimulate the app automatically, the DAM relies on DroidBot (LYGC17),
an open-source tool that can automatically explore the app UI and mimic the interaction
with a user. Unlike many existing input generators that rely on static analysis and instru-
mentation of the app to generate inputs, DroidBot works in black-box mode, i.e., it does
not need to know in advance the structure of the app, and it is resilient to obfuscation
techniques. In order to keep track of API invocations, the DAM module provides the
Android emulator with an ApiMonitor module. ApiMonitor, based on the Xposed4 frame-
work, allows the DAM to intercept and collect each method executed by the app during the
analysis, saving its invocation and the value of parameters on a JSON file. Furthermore,

4https ://repo.xposed.info/
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the DAM module intercepts and stores all the network traffic generated by the app using
the HTTP/HTTPs proxy mitmprozy (CHKc ).

WebSite Dumper (WD). The WebSite Dumper module visits and retrieves all the
websites invoked by the WebView components. Given the list of URLs accessed by app
WebView components from the SAM and DAM modules, for each identified URL, the
WebSite Dumper determines whether it refers to a local or a remote resource. In the first
case, it collects and stores the static resource obtained by the app package. In the latter
case, the WD module dumps the content of the remote website by downloading the web
pages recursively, up to a maximum of 3 levels deep, by using the wget tool’. Finally, the
module polishes the results and maintains only HTML and JavaScript files that will be
inspected by both the FCD and the EC module.

Frame Confusion Detector (FCD). The Frame Confusion Detector module implements
the core logic of FCDroid for the detection of the vulnerability. At first, FCD collects from
the SAM the list of permissions of the app and verifies that the app requires the INTERNET
permission. If so, the module analyzes the list of invoked APIs (both those statically
extracted by the SAM module and those evaluated at runtime by the DAM) to verify the
existence of at least a WebView instance that enables JavaScript and exposes a JavaScript
interface. Furthermore, if an exposed interface is found, the FCD parses the class of the
injected Java object to determine the existence of methods that can be accessed from
JavaScript.

Finally, the FCD also needs to detect the amount of potentially-vulnerable webpages. To
this aim, the module collects the websites dumped by the WD and checks whether a page
contains at least an iframe element and does not enforce any mitigation techniques (i.e.,
the Content-Security-Policy meta tag in the HTML header or the sandbox attribute).
At the end of the analysis, the FCD module marks the application as vulnerable or not
vulnerable.

Exploitation Checker (EC). The Exploitation Checker is the module responsible for
the detection of app configurations that can boost the exploitation of the Frame Confusion
Vulnerability. In details, the EC can identify:

e The adoption of unencrypted communication channels, by analyzing the network
traffic generated by the DAM module and by extracting the list of URLs that are
accessed in plain HTTP.

e The presence of buggy/vulnerable Javascript libraries by relying on the RetireJS (Erl19)
tool, which allows obtaining a list of known-to-be-vulnerable JavaScript libraries that
are executed within the WebView.

5https ://www.gnu.org/software/wget/
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e The presence of JavaScript code vulnerable to DOM-XSS attacksG, by including a
customized implementation of JSPrime (Nis13). Such a tool inspects the JavaScript
code in order to detect unsanitized input variables that could allow an attacker to
execute arbitrary JavaScript code in the victim’s WebView.

7.5 Experimental Results

We empirically assessed the reliability of the proposed methodology and its implementation
in FCDroid, by systematically analyzing 50.000 apps ", The aforementioned apps have
been downloaded from the Google Play Store in December 2018, and they were the top
free Android apps ranked by the number of installations and average ratings according
to Androidrank (andb). Our experiments were conducted using an Intel Xeon 3106@1.70
GHz, with 32GB RAM, running Ubuntu 18.04.

Frame Confusion Identification.

FCDroid discovered that 49.35% of apps (i.e., 24675 out of 50000) use at least a WebView
component, thereby highlighting the wide adoption of such component in the Android
ecosystem and the spread of Hybrid apps.

As shown in table 7.1, all the apps with at least one WebView component enable the
execution of JavaScript, while 44.84% also attach (at least) a JavaScript interface, which
contains a Java class with at least one method annotated with @JavascriptInterface.
Therefore such methods can be invoked from the websites loaded inside the apps.
Furthermore, FCDroid inspected all the websites accessed by the hybrid apps obtaining
the results described in table 7.2. In detail, 1.2% (87k/6.7M) of websites contain at least
an iframe element; among those pages, the 27.96% include CPS policies while none of the
visited pages enforces the sandbox attribute. Therefore, such findings indicate that most
of the web pages that use iframe elements are potentially vulnerable to Frame Confusion.
Finally, our analysis identifies that 6.63% (i.e., 1637/24675) of hybrid apps are potentially
vulnerable to Frame Confusion. To estimate the impact of such results on the Android
users’ community, we cross-referenced our findings with the Google Play Store meta-data,
obtaining that the total sum of official installations for vulnerable apps is greater than
250.000.000.

FCDroid reported also the presence of other vulnerabilities in the app configuration that
can make easier the exploitation of the Frame Confusion. As shown in table 7.3, 59.98%
of vulnerable apps access websites using an insecure connection, i.e., plain HTTP, while
27.48% contain code vulnerable to XSS attacks. Finally, 79.96% of vulnerable apps include

6h‘ctps ://www.owasp.org/index.php/DOM_Based_XSS
"The complete list of experimental results is available at https://www.fcdroid.com/results.
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Table 7.1: Statistics on the Frame Confusion blueprint.

Percentage Ratio
Internet Permission 96.45% 48226 [ 50k
Use WebView 49.35% 2467550k

JavaScript Enabled 49.35% 24675/50k
JavaScript Interface 44.84% 22420/50k

Table 7.2: Statistics on the web pages accessed by hybrid apps.

Percentage Ratio
Web pages with iframes 1.2% 87k [6.TM
Web pages with iframes and CSP 27.96% 24108 /87k
Web pages with iframes and sandbox attribute 0% 0/87k

Table 7.3: Statistics on the exploiting conditions of vulnerable apps.

Percentage Ratio
Insecure connections 59.98% 982/1637
XSS vulnerabilities 27.48% 450/1637
Vulnerable JS libraries 79.96% 1309/1637

JavaScript libraries with known security vulnerabilities.

Limitations of FCDroid.

The dynamic analysis is limited to the public surface of the app (i.e., the one that does not
require any user authentication) and executes in a predefined time-frame (i.e., 60 seconds).
Furthermore, the implementation of FCDroid does not detect dynamically-generated iframe
elements, like, i.e., those created at runtime by the JavaScript code.

7.6 From Frame Confusion to a Phishing Attack

In this section we present an attack against the “ YTN News” aupp8 which has been found
vulnerable by FCDroid. At the moment of writing, YTN is available on the Google Play
Store and has more than 1M downloads. We responsibly disclosed our findings to the app
developers in January 2019. In this attack we exploit the a Frame Confusion vulnerability
from a child frame in order to mount a phishing attack.

We manually reverse-engineered the app, and we found that it uses the WebView compo-
nent to load a home page with several iframes. The iframe at the bottom of the web page

8https ://play.google.com/store/apps/details?id=com.estsoft.android.ytn
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loads an advertisement (step 1 in fig. 7.3). Our manual investigation confirms the FCDroid
findings: the WebView uses a cleartext HT'TP connection, JavaScript is enabled, and there
is an interface exposed through the addJavascriptInterface method. The interface ex-
poses different methods that can get some information about the device. One of these
exposed methods is named liveLogin. This method has three parameters of type string;
the first two are converted into integers and used to customize the WebView, while the
last one is passed as a parameter to the loadUrl method without any kind of sanitization.
Therefore, an attacker can easily inject arbitrary JavaScript code or a web page that will
be loaded in the main frame.
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Figure 7.3: YTN News: Flow of the attack.

In order to exploit the vulnerability, the attacker must control an iframe. There are two
approaches to achieve such a result: 1) if the attacker and the mobile device belong to the
same network, the attacker can carry out a Man-in-the-Middle (MitM) attack; otherwise,
2) the attacker can create an ad-hoc advertising campaign. In our use case, we carried out
a MitM attack, and we were able to control the advertisement (steps 2, 3, and 4 in fig. 7.3).
For the sake of precision, since also the WebView uses a cleartext HT'TP connection, the
attacker can also target the main frame; however, in this example, we focused on a child
frame, since we only aim to prove the exploitability of Frame Confusion. Thus, given the
absence of any security mechanisms, we can access the exposed interface and exploit the
Frame Confusion by invoking the 1iveLogin method with a URL pointing to our malicious
web page (step 5 in fig. 7.3) containing a fake Twitter login page.

It is worth pointing out that the WebView is a promising vector attack for phishing, as
there are no GUI components that prompt the actual URL and the transport protocol
(e.g., HTTP/HTTPS), thereby making hard to distinguish between the legitimate Twitter
website and a well-crafted phishing site. In Chapter 6, we have thoroughly discussed how
the lack of graphical components for helping a user to unmask a fake GUI can be easily
abused to mount powerful phishing attacks. As a final remark, this is just one among
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a set of potential exploitation of Frame Confusion under such specific app settings. For
instance, it is possible to download a large file (since the app has the WRITE_EXTERNAL_-
STORAGE permission) or continue to load the same pages within the WebView to carry out
simple Denial-of-Service attacks.

7.7 Related Work

The steady growth of hybrid apps has attracted the attention of both academic and in-
dustrial security research communities. The main approaches for the security analysis of
hybrid apps can be divided into static and dynamic. In static analysis methodologies,
the hybrid app is analyzed according to its source (or binary) code without being exe-
cuted. For instance, Lee at al. proposed HybriDroid (LDR16), a static analysis framework
that examines the inter-communication between the native and the web counterpart of
the app to identify development bugs or potential leaks of sensitive information. Other
works, like (RCK17), (CLJW15), and (YXH"18) propose some detection methodologies for
code injection attacks based on app-instrumentation or machine learning techniques. How-
ever, any of the proposed static analysis techniques suffer from the over-approximation
of the app execution paths which drastically reduce the accuracy due to a high rate of
false positives (LBP"17). On the other hand, dynamic analysis techniques aim at analyz-
ing the security of the app runtime behavior in a controlled environment. The sole work
based on dynamic analysis techniques for hybrid apps is BridgeTaint, proposed by Bai et
al. (BWQ"19). BridgeTaint tracks sensitive data exchanged through the bridge and uses
a cross-language taint mapping method to perform the taint analysis in both domains.
Although dealing with the dynamic monitoring of the bridge between the Java and the
JavaScript worlds, BridgeTaint is only focused on data analysis aimed at the identification
of data leaks. Anyway, none of the approaches mentioned above is either able to identify
the Frame Confusion vulnerability. The work proposed by Luo et al. (LHD11) is the
only research paper that explicitly discusses this vulnerability. Indeed, the authors — who
also coined the term “Frame Confusion” — have also studied the security implications of
the two-way interaction between the native and the web code in hybrid apps. Anyway,
they focus only on detecting the security weaknesses of the WebView component and the
JavaScript interfaces, as well as some statistics on the usage of the WebView API and
JavaScript interfaces. Furthermore, their analysis is manual, and it has been carried out
on a reduced dataset made by only 132 apps.

To the best of our knowledge, our methodology is the first approach allowing us to system-
atically detect the Frame Confusion vulnerability. Furthermore, the adoption of both static
and dynamic analysis techniques allows overcoming the limitations of both approaches.
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Chapter 8

Conclusions

In the last decade, we faced the rising of mobile devices as a fundamental tool in our
everyday life. According to a blog post published in May 2019 of the Android director
Stephanie Cuthbertson, there are more than two and a half billion active Android devices
around the world today (Cutl19). Android and its ecosystem of multi-purpose applications
are pervasive in users’ life and allow them to perform operations that would only be possible
through a bulky Personal Computer. Besides, users heavily rely on them for storing their
most sensitive information. This aspect pushes companies and prowlers to collect such a
golden mine of personal data. Moreover, cyberwar has left the pages of science fiction and
the desks of Pentagon war games to become a reality. It is nowadays clear that the threat
of cyberattacks goes beyond petty vandalism, criminal profiteering, and even espionage
to include the sort of physical-world disruption that was once possible to accomplish only
with military attacks and terroristic sabotage.

I firmly believe that the purpose of academic research is to seek the truth with new verified
knowledge, in order to enhance social development. It is for this reason that in this thesis,
when possible, we have developed free tools to let our community evaluate and use the
result of our methodologies. Furthermore, we have tackled such open-research problems
from both the attacker and the defender points of view. The reason can be briefly explained
by a quote from the military strategist Sun Tzu: “Attack is the secret of defense; defense
is the planning of an attack” (Tzuld).

I conclude my thesis with my personal opinion, developed during the past three years.
I argue that the neediest research areas of Android are the detection and prevention of
malware and app plagiarism (which are often related to each other). The main issues in
the Android ecosystem arise from the fact that the authenticity of the app developer is
not ensured. The web-world is more mature from this point of view, thus providing —
and forcing — a secure mapping (as discussed extensively in Chapter 6) will help not only
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the end-users but also the app markets. Even though this solution is not a silver bullet,
cross-checking the authenticity of a mobile app with a domain/website can only increase
the security levels, helping fighting malware and detecting plagiarized apps.

Security considerations become especially highly important in scenarios where a malicious
process on a mobile device may not just steal private data or inject malicious code, but
can physically affect the user’s safety or security. What policies and mechanisms allow
granting that the information presented to a user is indeed trustworthy? How are the
user’s actions protected to ensure that no malicious app overtakes the controls without
the user’s awareness? These questions need reliable answers: autonomous vehicles, home
automation, smart healthcare, and, in general, future research challenges must develop
security solutions that take into account the environment in which devices operate.

On the other hand, it seems that system developers of modern operating systems learned
from security mistakes of the past, and they made significant strides in blocking those
threats right from the start. Zerodium is a famous American information security com-
pany whose primary business is acquiring premium zero-day vulnerabilities with functional
exploits from security researchers and companies. At the time of writing, in their acquisi-
tion program (Zer19), Android has the highest payout (up to $2,500,000) for a Zero-Click'
full exploit chain with persistence, followed by iOS (up to $2,000,000); instead the high-
est reward for the Desktops/Servers world is a Windows Remote Code Execution (up to
$1,000,000). Those huge rewards for exploiting mobile operating systems are a clear indi-
cation of the economic interests in the mobile ecosystem and how their kerneland is well
defended. It is our duty to invent solutions for secure userland too.

'A Zero-Click technique takes over a device with no interaction from the user.
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