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Abstract: With rapidly ageing populations, the world is experiencing unsustainable healthcare from
chronic diseases such as metabolic, cardiovascular, neurodegenerative, and cancer disorders. Healthy
diet and lifestyle might contribute to prevent these diseases and potentially enhance health outcomes
in patients during and after therapy. Fermented dairy foods (FDFs) found their origin concurrently
with human civilization for increasing milk shelf-life and enhancing sensorial attributes. Although
the probiotic concept has been developed more recently, FDFs, such as milks and yoghurt, have been
unconsciously associated with health-promoting effects since ancient times. These health benefits
rely not only on the occurrence of fermentation-associated live microbes (mainly lactic acid bacteria;
LAB), but also on the pro-health molecules (PHMs) mostly derived from microbial conversion of
food compounds. Therefore, there is a renaissance of interest toward traditional fermented food as
a reservoir of novel microbes producing PHMs, and “hyperfoods” can be tailored to deliver these
healthy molecules to humans. In FDFs, the main PHMs are bioactive peptides (BPs) released from
milk proteins by microbial proteolysis. BPs display a pattern of biofunctions such as anti-hypertensive,
antioxidant, immuno-modulatory, and anti-microbial activities. Here, we summarized the BPs most
frequently encountered in dairy food and their biological activities; we reviewed the main studies
exploring the potential of dairy microbiota to release BPs; and delineated the main effectors of the
proteolytic LAB systems responsible for BPs release.

Keywords: fermented dairy food; bioactive peptides; Lactobacillus; Lactococcus; Streptococcus;
antihypertensive peptides; antioxidant peptides; anti-microbial peptides; anti-diabetic peptides;
proteolytic system

1. Introduction

The promotion of healthy and sustainable diets is one of major actions prioritized in European
research agenda for supporting public health and citizens’ wellbeing. Several evidences proved
that some foods or food ingredients, including living microbial cells contained therein, can enhance
short-term wellbeing and reduce initiation and/or progression of non-diseases and the associated
chronic conditions (e.g., musculoskeletal disorders, cardiovascular diseases and stroke, hypertension,
obesity, type II diabetes mellitus (T2D), cancers, or mental health conditions) [1,2]. In view of the
importance of nutrition in health promotion, academia and the food industry face the new challenge
to tailor novel strategies and products that better contribute to human welfare as well as reducing
the risk of insurgence of specific pathologies [3]. The term “functional food,” was coined in Japan
and the USA in the 1970s, to indicate food products fortified with special constituents that possess
advantageous physiological effects supported in vitro and in vivo [4]. Generally, functional food is
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deprived of some "dangerous" components, such as salt, sugars, and saturated fat levels, and/or is
enriched in probiotic cells and/or pro-health molecules (PHMs). Although functional foods are not
defined legally, scientific literature regarding these products is increasing to demonstrate that they
provide additional benefits beyond the nutrient intake and the hunger satisfaction [5,6]. However,
much more effort should be done yet to identify PHMs and to elucidate their multiple mechanisms of
action in the food–human consortium. This knowledge is essential to design a novel generation of
functional food with the maximally positive health impact, the so-called “hyperfood” (Figure 1) [7].
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to food ecosystems [9]. Today, one-third of the human diet worldwide still consists of fermented 
foods and beverages (generally referred as FF) [10]. In industrializing countries, well-established 
fermentation processes, involving selected starter cultures or microbial consortia, assure safety and 
organoleptic properties highly appreciated by consumers. However, FF produced by indigenous 
microbiota or back-slopping procedure still remains relevant in artisanal segments of the market both 
in Western and in Eastern countries. Association between FF and health dated back from ancient 
Greek, when Hippocrates formulated the concept of “food as medicine”. Fermented dairy food (FDF) 
is a generic term used to define three main types of dairy food matrices obtained through lactic 
fermentation by lactic acid bacteria (LAB): Liquid (fermented milks), semi-solid (yogurt and some 
fresh cheeses), and solid (the majority of cheeses). FDFs have been the paradigm of healthy food since 
Metchnikoff’s studies [11–14] (Figure 1). Recently, randomized controlled trials, prospective cohort 
studies, and meta-analyses supported an inverse relation between consumption of FDFs and 
overweight [15–18] or risk of metabolic syndrome [19,20], cardiovascular disease [21–23], T2D [24–
26], and overall mortality [27]. These data should be considered with caution for at least three reasons: 
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Figure 1. Position of fermented dairy food (FDF) in food consortium and strategies for knowledge-driven
optimization of a novel generation of functional food, called HyperFood 2.0. Abbreviations: FF,
fermented food; FDF, fermented dairy food; BPs, bioactive peptides; PHMs, pro-health molecules.

Food fermentation is generally defined as the microbial conversion of food macro- and
micro-compounds under anaerobic conditions. Since the early phases of civilization, mankind
unconsciously utilized microbes for preserving food and enhancing flavors, aromas, and textures [7,8].
Repetition of these practices over thousands of years lead to the adaptation of microorganisms to
food ecosystems [9]. Today, one-third of the human diet worldwide still consists of fermented
foods and beverages (generally referred as FF) [10]. In industrializing countries, well-established
fermentation processes, involving selected starter cultures or microbial consortia, assure safety and
organoleptic properties highly appreciated by consumers. However, FF produced by indigenous
microbiota or back-slopping procedure still remains relevant in artisanal segments of the market both
in Western and in Eastern countries. Association between FF and health dated back from ancient
Greek, when Hippocrates formulated the concept of “food as medicine”. Fermented dairy food (FDF)
is a generic term used to define three main types of dairy food matrices obtained through lactic
fermentation by lactic acid bacteria (LAB): Liquid (fermented milks), semi-solid (yogurt and some
fresh cheeses), and solid (the majority of cheeses). FDFs have been the paradigm of healthy food
since Metchnikoff’s studies [11–14] (Figure 1). Recently, randomized controlled trials, prospective
cohort studies, and meta-analyses supported an inverse relation between consumption of FDFs and
overweight [15–18] or risk of metabolic syndrome [19,20], cardiovascular disease [21–23], T2D [24–26],
and overall mortality [27]. These data should be considered with caution for at least three reasons:
the variety of dairy products considered can be a confounding element, which biases inter-studies
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comparison; dosage has not been harmonized across different experimental cohorts; and the impact of
other factors, such as gender and age, has not been considered. Nevertheless, these evidences encourage
the uptake of FDF and promote the search for molecular effectors underpinning FDFs-associated
healthy benefits, which, in turn, can drive the translation towards more reliable health benefits for
improved FDF.

In case of FDF, milk itself provides a large number of beneficial compounds. According to
the consensus document published in May 2017 by a panel of 18 experts, these PHMs include
proteins, minerals (calcium, phosphorus, and magnesium), water-soluble vitamins (B12 and riboflavin),
fat-soluble vitamins (A, D, and K2), and specific bioactive lipids [28]. In addition to these nutritional
attributes, fermentation processes provide other promoting healthy effects. FDF delivers specifically
selected or indigenous probiotic microbes into the human intestine, where they may modulate immune
response, enhance epithelial barrier function, or modify indigenous gut microbiota [29,30]. Furthermore,
during lactic fermentation certain potentially “dangerous” compounds are depleted by microbial
conversion, e.g., degradation of allergenic α-lactalbumin and β-lactoglobulin into oligopeptides or
fermentation of lactose into lactic acid [31]. Finally, microbes can release secondary metabolites,
which act as PHMs in human body [32].

Several reviews revised different pro-health aspects of milk and FDF as well as their role as
carrier for probiotics [33–38]. Here, we focused on bioactive peptides (BPs), the most relevant PHMs
released from milk proteins by the action of LAB inhabiting FDF. We summarized the most compelling
evidences on how FDFs are bio-reservoirs of novel BPs-producing LAB and highlighted how their
usage is relevant in developing novel functional food with maximized amount of BPs through an
approach referred to as reverse food engineering.

2. Survey of BPs in FDF

BPs are peculiar protein fragments that modulate various regulatory processes at different levels
in the human body, such as digestive, immune, cardiovascular, endocrine, and nervous systems,
ultimately influencing human health [39,40]. To date, milk caseins are viewed as the most important
source of BPs and products containing milk-derived peptides have an increasing market trend (Table 1).
Although exogenous enzymes or proteolysis during gastro-intestinal (GI) transit can also release BPs,
we only focused on BPs produced by LAB proteolysis.

Numerous BPs are detected in FF and are reported as important agents for different functional
activities such as antioxidative, antihypertensive, antimicrobial, immunomodulatory, opioid,
hypocholesterolemic, mineral binding, and bone mineralization activities.

To attend the above-mentioned effects in vivo, these BPs should reach intact the target site, and thus
remain active after oral ingestion and during GI digestion and absorption [41,42]. This implies resistance
to enzymatic hydrolysis by gastric and intestinal proteases and peptidases laying along the brush border
membrane of the villi. When absorbed, short peptides (usually di- and tripeptides) are transported
across intestinal enterocytes via a specific peptide transport system (PepT1), whereas largest peptides
are likely absorbed by transcellular or paracellular mechanisms or via endocytosis [41,43]. Nonetheless,
there are substantial evidences indicating the absorption of bioactive peptides in humans and animals,
in some cases reaching blood concentrations of few µmolar [41–44]. Since the bioavailability of BPs
is a relevant but often poorly explored point, in this survey we detailed whether there are in vivo
evidences of healthy action for every potential BPs.
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Table 1. Principal milk-derived products containing bioactive peptides (BPs) currently available.

Brand Category Producers Molecules Bioactivities

BioPURE-GMP Whey protein isolate Davisco, USA κ-casein f(106–109) Satiety regulation, anti-carcinogenic,
antimicrobial, anti-thrombotic BPs

BioZate Whey protein isolate Davisco, USA β-lactoglobulin fragments Hypotensive BPs
C12 Peption Ingredients DMV, The Netherlands Casein derived FFVAPFPEVFGK Hypotensive BP

Capolac Ingredients Arla Food, Denmark Casein phosphopeptide Mineral absorption
Casein DP/Peptio Drink Soft milk drink Kracie Pharmaceuticals, Japan Casein derived FFVAPFPEVFGK Hypotensive

CE90CPP Ingredients DMV, The Netherlands Casein phosphopeptide Mineral absorption
PeptoPro Flavored drink DSM Food specialties, The Netherlands Casein phosphopeptide Improves muscle performance

Cysteine peptide Ingredients/hydrolysate DMV, The Netherlands Casein peptides hypotensive BPs
Praventin Capsule DMV, The Netherlands Lactoferrin-enriched whey protein hydrolysate Antimicrobial BPs (reduced skin infection)

Festivo Low-fat cheese MIT Agrifood Research, Finland αS1-casein f(1–6), αS1-casein f(1–7), αS1-casein f(1–9) Hypotensive BPs
Kotsu Kotsu calcium Soft drink Asahi Soft Drink Casein phosphopeptide Mineral absorption

Evolus Fermented milk Valio Ltd. Finland VPP, IPP Hypotensive BPs
Calpis/Ameal S 120 Sour milk Calpis Co Ltd, Japan VPP, IPP Hypotensive BPs

Ameal S Tablet Calpis Co Ltd, Japan VPP, IPP Hypotensive BPs
Immunel Ingredient Wild Co., Germany Milk peptides Anti-inflammatory BPs
Tegricel Ingredient Wild Co., Germany Milk peptides Anti-inflammatory BPs

Lactium/ProDiet F200 Flavored milk drink/capsules Ingredia, France αS1-casein f(91–100) YLGYLEQLLR Stress relief BPs
Vivinal Alpha Ingredient Borculo Domo Ingredients α-lactalbumin-rich whey protein hydrolysate Aids relaxation and sleep

Dermylex Tablet Advitech Inc., Canada Whey protein extract XP-828L Reduces symptoms of psoriasis
Capolac Ingredient Arla Food Ingredients Casein phosphopeptide Mineral absorption

Recaldent Chewing gum Cadbury Enterprises Calcium casein peptone-calcium phosphate Anticariogenic BPs
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2.1. Anti-Hypertensive Peptides Identified in Commercial FDFs

As suggested by the European Society of Cardiology (ESC) working group on cardiovascular
pharmacology and drug therapy, the nutraceutical approach for hypertension management could bring
positive effects for those patients with blood pressure borderline values and may be co-administered
with anti-hypertensive drugs in blood pressure reduction [45,46].

In recent years, scientists have investigated various BPs derived from FDFs, such as fermented
milk, yogurt, and cheese, for their potential anti-hypertensive activity (Table 2) [40,47,48]. Different
mechanisms of action were suggested to describe their anti-hypertensive effects [40,47]. The most
important mechanism by which BPs may decrease blood pressure is through ACE inhibition [49,50].

Table 2. Peptides with in vivo anti-hypertensive activity identified in commercial FDFs.

Peptide Fragment Source In vivo
Model Dose

Systolic
Blood

Pressure
Reduction

References

VPP 1 β-casein
f(84–86)

Fermented milk, cheese,
yogurt

Huma
SHR

3–100
mg/day
5 mg/kg

−3.73 mmHg
−20.1 mmHg [23,51–58]

IPP 1

β-casein
f(74–76)
κ-casein

f(108–110)

Fermented milk, cheese,
yogurt

Human
SHR

3–100
mg/day
5 mg/kg

−3.73 mmHg
−18.3 mmHg [23,51–58]

YP Various fragments in
β-casein, αS1-casein, κ-casein Cheese, yogurt SHR 1 mg/kg −27.4 mmHg [55,59,60]

TKVIP αS2-casein f(198–202) Yogurt SHR 1 mg/kg −9.2 mmHg [55,61]
KVLPVPQ β-casein A2 f(169–175) Cheese, yogurt SHR 2 mg/kg −31.5 mmHg [55,61]
LHLPLP β-casein A2 f(133–138) Cheese, yogurt SHR 3 mg/kg −25.3 mmHg [53–55,62]
RYLGY αS1-casein f(90–94) Cheese SHR 5 mg/kg −25 mmHg [53,54,63,64]

AYFYPEL αS1-casein f(143–149) Cheese SHR 5 mg/kg −20 mmHg [53,54,63]
RYLG αS1-casein f(90–93) Cheese SHR 5 mg/kg −18 mmHg [53,54,64]

RY
Various fragments in
αS1-casein, αS2-casein,

κ-casein
Fermented milk SHR 5 mg/kg −18 mmHg [64,65]

HLPLP β-casein A2 f(134–138) Cheese SHR 7 mg/kg −23.5 mmHg [53,54,66]
LPLP β-casein A2 f(135–138) Yogurt SHR 7 mg/kg −16 mmHg [55,67]
PLP β-casein A2 f(136–138) Cheese SHR 7 mg/kg −21.2 mmHg [59,67]

FP
Various fragments in
β-casein, αS1-casein,

αS2-casein
Cheese, yogurt SHR 8 mg/kg −27 mmHg [55,58,59,68]

LVYPFTGPIPN β-casein caprine
f(58–68) Kefir SHR 10 mg/kg −28 mmHg [66,69]

VRGPFPIIV β-casein
f(201–209) Yogurt SHR 10 mg/kg −16 mmHg [55,62]

KKYNVPQL αS1-casein caprine
f(102–109) Cheese SHR 10 mg/kg −11.5 mmHg [48,58,66]

AVPYPQR β-casein
f(177–183) Kefir SHR 100 mg/kg −10 mmHg [70,71]

RPKHPIKHQ αS1-casein
f(1–9) Cheese SHR n.a. −9.3 mmHg [48,58,72]

TPVVVPPFLQP β-casein
f(80–90) Cheese, yogurt SHR n.a. −8 mmHg [55,59,68]

YPFPGPIPN β-casein A2 f(60–68) Cheese, kefir SHR n.a. −7 mmHg [48,58,72,73]
1 doses and blood pressure effect are referred to the administration of VPP + IPP in human studies.

Additional described mechanisms involve an increase in the production of the vasodilating
endothelial nitric oxide (NO) as well as the inhibition of renin. Furthermore, BPs can also induce
vasodilatation by reducing the activity of the sympathetic system [74].

Among the anti-hypertensive peptides found in FDFs, the lactotripeptides, VPP and IPP, gained
great attention in recent years thanks to their increasingly frequent commercial use in hypotensive
milk-drinks production. Indeed, numerous in vivo studies reported a blood pressure reduction in
mildly hypertensive patients [23,51,75,76]. These lactotripeptides were initially detected in a sample of
Japanese sour milk fermented by Lactobacillus helveticus and Saccharomyces cerevisiae and characterized
for their ACE-inhibitory (ACE-i) activity and hypotensive effect in spontaneously hypertensive
rats [52,77]. Next, VPP and IPP have been found in milk fermented by other LAB such as Lactobacillus
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casei, Lactobacillus delbrueckii, and Lactobacillus rhamnosus as well as in commercial yogurt and several
cheeses at physiological relevant concentrations [53–55,78–82]. It is worth mentioning that VPP and
IPP have been also detected in physiologically relevant amounts after in vitro GI digestion of milk
from different species [83–86].

In vivo effect of IPP and VPP on blood pressure in pre-hypertensive and hypertensive
subjects has been recently described in numerous meta-analysis of randomized clinical trials and
reviews [23,40,51,56]. Two meta-analyses of 18 and 30 placebo-controlled clinical trials found a pooled
effect of lactotripeptides on systolic blood pressure reduction of −3.73 mmHg and −2.95 mmHg,
respectively [23,51]. Sub-group analyses demonstrated that the decrease in systolic blood pressure in
an Asian population was significantly greater (from −5.54 to −6.93 mmHg), compared with a European
population (from −1.28 to −1.36 mmHg) [23,51,56,57]. Interestingly, the effect was more evident in
hypertensive subjects and smaller doses (from 3 to 10 mg/day) had higher blood pressure reduction
than larger dose [23,56,59,87].

Several BPs identified in commercial FDFs have demonstrated in vivo anti-hypertensive activity
in spontaneously hypertensive rats (SHR) (Table 2). YP showed a potent anti-hypertensive activity in
SHR decreasing the systolic blood pressure of −27.4 mmHg with a dosage of 1 mg/kg with respect
to VPP and IPP, which showed a systolic blood pressure decreasing effect in SHR of −20.1 and −18.3
mmHg, respectively, at doses of 5 mg/kg [52,60]. Maeno et al. [61] isolated and identified the peptide
responsible for the anti-hypertensive effect of a casein hydrolysate produced by L. helveticus CP790
proteinase. The purified peptide KVLPVPQ, further isolated in a commercial functional yogurt,
had potent anti-hypertensive effects (−31.5 mmHg) in SHR at a dosage of 2 mg/kg [55,61]. It is
important to underline that both the above described peptides displayed very low in vitro ACE-i
activity, which was about 80–200 times lower than that of the lactotripeptides VPP and IPP (Table 2).
These observations suggest that the assessment of the in vitro ACE-inhibitory activity of a peptide is
not enough to predict or guarantee an in vivo anti-hypertensive effect [88]. This is also supported by
the evidence that some BPs with very high in vitro ACE-i activity failed to exert an anti-hypertensive
effect when administered to SHR [88].

The reasons for this issue could be related to (i) the resistance or susceptibility of the BPs to the
hydrolysis by GI proteases, (ii) their absorption into the blood stream, and (III) different mechanisms
of action other than ACE-inhibition.

Nevertheless, other peptides identified in FDFs, such as LHLPLP, RYLGY, and AYFYPEL, appeared
to be potent ACE inhibitors and able to decrease systolic blood pressure in SHR even more than IPP
and VPP [62,63]. The peptide LHLPLP was found in several cheeses such as Parmigiano Reggiano,
Grana Padano, Cheddar, and Gorgonzola [53,54]. Interestingly, this peptide was easily released during
in vitro GI digestion of Parmigiano Reggiano and Grana Padano cheeses, reaching concentration,
which can show an in vivo effect [53,54]. Indeed, LHLPLP is in vitro hydrolyzed by cellular peptidases
to the pentapeptide HLPLP, which still displayed high anti-hypertensive effect in SHR suggesting that
this peptide is the active form of LHLPLP [66,89]. Similarly, after in vitro GI digestion, 93% of the
peptide RYLGY was hydrolyzed in minor fragments, which showed anti-hypertensive activity in SHR
as high as the intact parent peptide [64].

In addition, numerous ACE-i peptides have been identified in FDFs such as cheeses, yogurt,
fermented milk, and kefir. Even though confirmatory studies in SHR have not yet carried out, some of
these peptides exhibited low or very low IC50 values. For example, the dipeptides IW and WL showed
IC50 values of 0.7 and 10 µmol/L, are bioavailable in humans, and were able to reduce in vivo ACE
activity, appearing to be excellent candidates for further in vivo studies [90]. Furthermore, the ACE-i
β-casein-derived peptides YQEPVLGPVRGPFPIIV and QEPVLGPVRGPFPIIV have been detected in
plasma of human subjects after a cheese-enriched diet [44].

The complete list of ACE-i peptides together with the fermented food sources can be found in the
online Supplementary Materials (Table S1).
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2.2. Antioxidant Peptides Identified in Commercial Fermented Dairy Products

The side effects of oxidation in the body and in foodstuffs is well reported and studied. Excessive
free radicals and other reactive oxygen species may affect the food quality, bringing out a range
of defects such as unacceptable taste and flavor and prejudicing the shelf life [32,91]. In addition,
it has been recognized a relation between age-related diseases and the presence of oxidative damages.
The lipid hydroperoxides and low molecular weight compounds arising from oxidative reactions
are considered the causative factors involved in these diseases. Evidences of significant free radical
mediated injury to several pathological conditions are widely reported in scientific literature, including
neurodegenerative disorders, atherosclerosis, diabetes, inflammatory processes, rheumatoid arthritis,
and cancer [92–100]. The opportunity to reduce oxidative stress in the body through the daily intake of
antioxidants, for example antioxidative peptides, may be of pivotal interest and an attractive strategy
to reduce inflammatory conditions mediated by radical oxygen species (ROS) in the living cells.

Milk and dairies, as widely consumed products, are thoroughly investigated for their physiological
and biochemical functions. They contain a wide range of biologically active compounds in varying
proportions depending on the animal species (i.e., bovine, buffalo, goat, sheep, and camel), matrix
type (i.e., milks, cheeses, fermented milks, and yogurts), and manufactural processes (i.e., mechanical,
heating, and fermentative). This class of active compounds include both hydrophilic and lipophilic
antioxidants such as proteins (specifically casein), small peptides, coenzyme Q10, vitamins (A, C, E,
and D3), carotenoids, some minerals, and elements in trace [101,102]. Cichosz et al. [101] found that milk
antioxidants synergistically worked by forming an antioxidant network, improving the antioxidant
ability of milk, and protecting milk itself and its fat fraction against the oxidation phenomena. Moreover,
these molecules can be involved on important effects on host metabolism and health [32,103].

Recently, current research is focused on food-derived peptides and emerging evidence confirmed
their strong role in the prevention of oxidative damages. Nevertheless, milk products and fermented
milks are recognized as the most common dietary sources of food antioxidants. Indeed, milk protein-
derived BPs gained great interest and began to be regarded as a novel class of antioxidants. In particular,
ripened chesses (Swiss cheese varieties, Cheddar, Manchego, and Gouda), fermented milks, and yogurts
became the subject for numerous studies, which confirmed these products among the major sources of
BPs [80,104–106].

Most of the BPs are encrypted in the caseins sequences [48]. Such small motifs are non-active
when present in the original proteins but can be liberated after the hydrolysis of protein during GI
digestion, microbial fermentation, or enzymatic hydrolysis [39,107]. Parella et al. [108] suggested the
idea that antioxidant peptides might be released after a mild heat treatment of milk during cheese
manufacturing. The complexity of the production process of FDFs lies in the cheese ripening and
proteolysis, identified as the crucial phases for antioxidants formation. In fact, antioxidant peptides are
mostly produced by the action of proteases and peptidases released from both starter and non-starter
LAB [109–112], residual rennet enzymes, and indigenous milk enzymes such as plasmin [113,114].
Caseins are characterized by a high content of H, P, and Y, widely known for their free radical scavenger
activity [115]. Their presence in peptides is a determinant factor in the antioxidant effect [116]. In fact,
free radicals are deactivated by peptides containing hydrophobic and aromatic amino acids (such
as Y, H, P, W) and selected free amino acids (Y and C) [101,117]. In particular, the presence of Y
and W residues in the peptides sequences is considered essential for a significant increase of the
antioxidant effect, because of its strong ability to donate a proton [65,118,119]. Actually, their occurrence
into the sequences of dipeptides is usually recognized as responsible for antioxidant activities [120].
Histidine displays its antioxidant effects by scavenging free radical species, absorbing active oxygen or
through metal ions chelation. Chen et al. [121] described H and P as the most important residues in
peptides isolated from a soybean hydrolysate for their inhibitory effect of lipoprotein peroxidation.
Kitts and Weiler [122] also reported that the presence of a P or an L residue at the N-terminus position
of a HH dipeptide could improve antioxidant activity as well as promote a synergistic effect with
other non-peptide antioxidants. Furthermore, M and C, as efficient sulphur hydrogen donators, are
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particularly active in quenching free radical species [116,123]. Several studies also confirmed how
crucial it is the position of the amino acid residues in the peptide sequence.

The kefir peptides VYPFPGPIPN and QEPVLGPVRGPFPIIV were identified by Eisele et al. [124]
as strong antioxidative peptides and weak ACE inhibitors. Other peptide sequences identified in
commercial dairy products had previously been described as antioxidant BPs (Table 3). Fragments
with the amino acid sequence VKEAMAPK, VLPVPQK, and VPYPQ, obtained from cheddar cheese,
milk fermented with L. rhamnosus, and yogurt, respectively, exhibited antioxidant activity [125–127].
In addition, the β-casein peptide KVLPVPQ detected in sour milk by Hernandez-Ledesma et al. [119]
showed antioxidant activity as occurs with peptide VLPVPQ, previously described by Rival et al. [126].
The octapeptide SKVLPVPQ, isolated and identified in two commercial Spanish fermented milks
produced with L. helveticus and S. cerevisiae, exhibited antioxidant activities [128]. A peptide composed
of nine amino acids KIHPFAQTQ isolated from β-casein of buffalo’s yogurt has proven to be
particularly effective in antioxidant effects [129]. A total of 187 BPs derived from β-casein, αS1-casein,
and αS2-casein were detected in cheeses by Pisanu et al. [130]. Among these, nine displayed a strong
antioxidant activity, originated from the degradation of β-casein, specifically from the fragment f
(194–208), QEPVLGPVRGPFPIL.

Table 3. Peptides with antioxidant and antimicrobial activities identified in commercial fermented
dairy products.

Peptide Fragment Source References

ARHPHPHLSFM • κ-casein f(96–106) Yogurt [55,129]
AVPYPQR * β-casein f(177–183) Kefir [70,126]
AYFYPE • αS1-casein f(143–148) Yogurt, cheese [55,64]

AYFYPEL • αS1-casein f(143–149) Cheese [53,54,64]
EMPFPK � β-casein f(108–113) Yogurt [55]

EVFGKEKVN � αS1-casein f(30–38) Kefir [70,131]
FALPQYLK • αs2-casein f(174–181) Kefir [70,132]

FSDKIAKYIPIQ � κ-casein f(18–29) Yogurt [55]
GPVRGPFPII • β-casein f(199–208) Fermented milk, yogurt [119,127]

HLPLPL • β-casein f(133–138) Yogurt, fermented milk [55,105]
IPIQY • κ-casein f(26–32) Yogurt [127]

IPIQYVL • κ-casein f(26–30) Fermented milk [119]
KAVPYPQ • β-casein f(176–182) Yogurt [127]

KIHPFAQTQ • β-casein f(48–56) Yogurt [133,134]
KVLPVPQ • β-casein f(169–175) Fermented milk [119]

KVLPVPQK • β-casein f(169–176) Fermented milk [105,126]
LQDKIHP • β-casein f(45–51) Yogurt [134]
PYVRYL * αs2-casein f(203–208) Kefir [132]

QEPVLGPVRGPFPII • β-casein f(194–208) Yogurt [127]
QQPVLGPVRGPFPIIV • β-casein f(194–209) Yogurt [127]

RDMPIQ • β-casein f(183–188) Fermented milk [105,134]
RPKHPIK � αS1-casein f(1–7) Cheese [58]

RPKHPIKHQGLPQEVLNENLLRF � αS1-casein f(1–23) Kefir [70]

RY • Various fragments in αS1-casein,
αS2-casein, κ-casein Fermented milk, cheese [53,119]

RYLG • αS1-casein f(90–93) Cheese [53,54,64]
RYLGY • αS1-casein f(90–94) Cheese [53,54,64]

SDIPNPIGSENSE � αS1-casein f(180–192) Kefir [70]
SKVLPVPQ • β-casein f(168–175) Fermented milk drinks [128]

STVATL � κ-casein f(141–146) Yogurt [55]
TVQVTSTAV � κ-casein f(161–169) Yogurt [55]
VKEAMAPK • β-casein f(98–105) Fermented milk, cheese [105,125,126]
VLNENLLR � αS1-casein f(15–22) Kefir [70]

VLPVPQK * β-casein f(170–176) Fermented milk [105,126]
VPYPQ • β-casein f(178–182) Yogurt [127]

VYPFPGPIPN • β-casein A2 f(59–68) Kefir [70,124]
YQEPVLGPVRGPFPI � β-casein f(191–205) Kefir [70]

YQEPVLGPVRGPFPIIV * β-casein f(191–207) Kefir [124]
YVL � κ-casein f(30–32) Yogurt [55]

•means antioxidant peptide; �means antimicrobial peptide; * means antioxidant and antimicrobial peptide.
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In conclusion, FDFs may be a rich source of natural antioxidants, which can be consumed or used as
natural ingredients to develop functional foods that may enhance the biological value and preservation
of food products as well as the healthy conditions of the consumer [122,135–137]. This ability of
peptides to inhibit oxidative phenomena by binding or interacting with radicals and transition metals
could be a boon to boost human health, although in vivo animal studies and human trials confirming
these effects are necessary.

2.3. Anti-microbial Peptides Identified in Commercial Fermented Dairy Products

Another interesting property of milk-derived BPs is related to their antimicrobial effect.
These peptides show different amino acid composition and mechanism of action. For example,
it has been proposed that kappacin form an amphipathic α-helix structure in the space allowing
the formation of an anionic pore, increasing the permeability of the membrane of the bacteria [138].
The antimicrobial αS2-casein-derived peptide VYQHQKAMKPWIQPKTKVIPYVRYL was able to
permeabilize the inner and outer membrane of Escherichia coli and Staphylococcus carnosus by initially
binding lipopolysaccharide or lipotechoic acid, respectively [139].

Most of the antimicrobial peptides originated from commercial FDFs have been identified in
cheeses, yogurt, and kefir (Table 3). The ability of LAB found in fermented dairy products to
generate anti-microbial peptides from milk protein hydrolysis may confer a competitive advantage,
thus reducing the growth and survival of food-borne pathogens [140].

Kunda et al. [55] found five different antimicrobial peptides in a functional commercial
yogurt. Moreover, Dallas et al. [70] identified six antimicrobial peptides released by LAB in
kefir. Among them, LAB population in kefir was able to release the antimicrobial peptide isracidin
(RPKHPIKHQGLPQEVLNENLLRF) corresponding to the αS1-casein fragment 1–23. This peptide was
also identified in Coalho cheese [141] and was able to protect in vivo mice from Listeria monocytogenes,
Streptococcus pyogenes, and Staphylococcus aureus infections [142].

Some of the reported peptides displayed bactericidal activity against both Gram-positive and
Gram-negative bacteria. For example, the peptides YVL and PYVRYL, respectively isolated from
commercial yogurt and kefir, resulted as in vitro growth inhibitors of the Gram-negative pathogenic
bacteria E. coli, Serratia marcescens, as well as the Gram-positive pathogenic bacteria Listeria innocua
and S. carnosus [143,144]. The peptide VLNENLLR (also known as caseicin B) inhibited the growth of
pathogenic bacteria E. coli and Escherichia sakazakii at a concentration of 0.22 mmol/L.

The β-casein-derived anti-microbial peptides YQEPVLGPVRGPFPI and YQEPVLGPVRGPFPIIV
as well as isracidin have been found intact in the GI tract of mini-pig and calf suggesting a possible
in vivo role for these bioactive peptides [145,146]. Indeed, Boutrou et al. [147] found that the
β-casein-derived peptides VLPVPQK and EMPFPK were released in the human jejunal effluent during
GI digestion of milk proteins.

2.4. Anti-diabetic Peptides Identified in Commercial Fermented Dairy Products

As reported by the World Health Organization (WHO), about the 90% of diabetes cases are
ascribed to T2D and, globally, about 15 million people have T2D, a perspective that could double by
2025 [148–150].

Actual pharmacologic treatments for T2D focus on increasing insulin availability, improving
sensitivity to insulin, delaying the absorption of glucose in the GI tract, or stimulating glucose excretion
by urines. Dipeptidyl peptidase IV (DPP-IV) has emerged as a new target for the T2D treatment.
DPP-IV is a serine endopeptidase located in the GI tract, kidneys, and endothelial layer of the vascular
system. It is involved in the regulation of several physiological processes, such as blood glucose
homeostasis [151]. DPP-IV is accountable for the quick degradation and inactivation of incretins such
as glucagon-like peptide 1 (GLP−1) and glucose-dependent insulinotropic polypeptide (GIP) [152].
The incretin system plays a crucial role in the release of insulin from pancreatic β-cells, in response
to high concentrations of blood glucose [150]. DPP-IV inhibitors extend the GLP−1 availability and
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improve glucose tolerance in diabetic patients by enhancing the GLP-1 activities [153,154]. Actually,
natural peptides and food protein hydrolysates, which could act as potential inhibitors of DPP-IV
attracted great interest of the scientific community. Specific peptide sequences, displaying an N-terminal
W and/or P at the second position, demonstrated high effectiveness in inhibiting DPP-IV activity.
Animal studies performed with food protein hydrolysates demonstrated that an assayed in vitro DPP-IV
inhibitory effect is usually correlated to the antidiabetic effects in vivo. Their outcomes also reported
that milk proteins and dairy products are especially rich in DPP-IV inhibitory peptides [155,156].
Uenishi et al. [157] identified 46 peptides derived from β-, αS1-, and αS2-casein in commercial
gouda-type cheese (Table 4).

Table 4. Peptides with in vitro dipeptidyl-peptidase-IV (DPP-IV) inhibitory activity identified in
commercial fermented dairy products 1.

Peptide Fragment Source IC50
µmol/L References

WL α-lactalbumin f(104–105),
α-lactalbumin f(118–119) Yogurt 44 [55]

LPQNIPPL β-casein f(70–77) Cheese 46 [157]
LPQ β-casein f(70–72) Cheese 82 [55]

VPITPTL αs2-casein f(117–123) Cheese 110 [157]
VPITPT αs2-casein f(117–122) Cheese 130 [157]

LPQNIPP β-casein f(70–76) Cheese 160 [157]
GPFPILV β-casein caprine f(201–207) Kefir 163 [69]
FPGPIPN β-casein f(62–68) Cheese 260 [157]

YP Various fragments in β-casein,
αS1-casein, κ-casein Yogurt 658 [55]

YPFPGPIPN β-casein f(60–68) Cheese, kefir 670 [48,58,73,157,158]
PGPIHNS β-casein f(63–69) Cheese 1000 [157]

IPPLTQTPV β-casein f(74–82) Cheese 1300 [157]
PQNIPPL β-casein f(71–77) Cheese 1500 [157]
VPPFIQPE β-casein f(84–91) Cheese 2500 [157]

1 Peptides are classified according to their inhibitory strength; IC50 is defined as the amount of peptides (µmol/L)
that cause the 50% inhibition of the enzymatic activity.

About the half of these peptides had an X–P structure at their N-termini. Among these, 10 have
been tested for their DPP-IV inhibitory effect: VPITPT, LPQNIPP, PQNIPPL, VPITPTL, FPGPIPN,
PGPIHNS, IPPLTQTPV, VPPFIQPE, YPFPGPIPN, and LPQNIPPL. The inhibitory activity, expressed
as IC50 value, of LPQNIPPL (β-CN f70–77) displayed to be the highest recorded effect. These results
suggested that LPQNIPPL was the major DPP-IV-inhibitory peptide in cheese ripened for 12 months
and played a significant role in in the in vivo inhibition of DPP-IV. The IC50 of VPITPTL (β-CN f84–91),
VPITPT (αs2-CN f117–122), LPQNIPP (β-CN f70–76), and FPGPIPN (β-CN f62–68) were 110, 130,
160, and 260 µmol/L, respectively. In contrast, although IPPLTQTPV (β-CN f74–82) and VPPFIQPE
(β-CN f84–91) and PQNIPPL (β-CN f71–77) have the X–P structure, their IC50 values were higher than
1000 µmol/L. YPFPGPIPN, identified in kefir and gouda-type cheese, displayed DPP-IV inhibitory
activity but with high IC50 value (670 µmol/L). Interestingly, its presence at the intestinal level after
consumption of milk and dairy products suggests a high resistance capacity to the GI conditions and
a greater probability to be absorbed and detected at the systemic level, available for further in vivo
activities [48,58,59,157]. Other shorter peptide motifs were detected in yogurt by Kunda et al. [54].
LPQ and WL were the peptides with the highest inhibitory effect on DPP-IV, with IC50 values of about
82 and 44 µmol/L, respectively.

However, the supporting evidences of an in vivo effect of DPP-IV inhibitory peptides in the T2D
treatment are very scarce. The study of dietary peptides-mediated DPP-IV inhibition in humans is still
in an embryonic phase. Food protein hydrolysates with DPP-IV inhibitory properties were mainly
investigated in vitro. Very few studies analyzed serum DPP-IV activity after food administration.
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Scarce results about the DPP-IV activity reduction as a consequence of the consumption of protein-rich
food are obtained [159]. Moreover, clear indication about the bioavailability of food-derived peptides
is limited [160]. Despite that, it is likely that DPP-IV inhibition may be a crucial mechanism in the
reported in vivo antidiabetic effects of intact or hydrolyzed food-proteins.

3. FDF as Source of BPs-Producing LAB

3.1. FDF Microbiota under the Lens of Metagenomics and Genomics

The abundance and diversity of BPs in FDF result from microbiota inhabiting these ecosystems.
The LAB population strongly modulates the content, as well as the spatial diversification and temporal
distribution of BPs through a balance between consumption and production. The most common
LAB responsible for conversion of milk into FDF includes a heterogeneous arena of Gram-positive
non-sporulating species belonging to the genera Lactococcus, Lactobacillus, Streptococcus, Leuconostoc,
and Enterococcus [161]. These species are ubiquitous in several niches and, due to their long safe history
in food production, the majority of them received the generally recognized as safe (GRAS) status by U.S.
Food and Drug Administration (FDA) (http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices)
and the qualified presumption of safety (QPS) approval by EFSA. Thirty-six Lactobacillus species have
currently gained the qualified presumption of safety (QPS) status from EFSA [162]. The microorganisms
involved in initial steps of milk fermentation processes, termed as “dairy starters” or “primary starters”
(SLAB), have the pivotal function to convert lactose into lactic acid, leading to a fast lowering of pH and
redox potential [163]. In cheese-making, SLAB also contribute to flavor development through lactose
and citrate metabolism, lipolysis, and proteolysis with the subsequent catabolism of amino acids [164].
Natural or commercial starters are often limited to a few homofermentative LAB species. The mesophilic
SLAB group comprises Lactococcus lactis ssp. lactis and Lactococcus lactis subsp. cremoris, but undefined
natural starters can also contain strains of Leuconostoc spp. for the ability to ferment citrate [165].
The thermophilic SLAB, including L. helveticus, Streptococcus thermophilus, and L. delbrueckii subsp.
bulgaricus, are most frequently encountered in natural starters for semi-hard and hard cheese-making.
As an exception, kefir grains are complex consortia of yeasts (e.g., Saccharomyces, Candida, Kluyveromyces,
Debaryomyces, and Torulaspora) and bacteria (e.g., Lactobacillus, Lactococcus, Leuconostoc, and Streptococcus)
embedded in a polysaccharide matrix, used as a starter to produce a naturally carbonated, slightly
acidic fermented dairy product [166].

Apart from yogurt that contains the protosymbiotic species St. thermophilus and L. delbrueckii subsp.
bulgaricus, the microbiota of FDFs are often complex bacterial consortia with different species and strains,
which drive the development of regional product qualities, as reviewed by Macori and Cotter [167].
In the case of cheese manufacturing, SLAB usually decrease by autolysis after curd acidification,
whereas sub-dominant adventitious LAB, termed non-starter LAB (NSLAB), remain metabolically
active and become dominant in the ecosystem during cheese ripening. NSLAB are mainly mesophilic
facultatively (L. casei, Lactobacillus paracasei, Lactobacillus plantarum/paraplantarum, Lactobacillus pentosus,
L. rhamnosus, and Lactobacillus curvatus) or obligately (Lactobacillus brevis Lactobacillus fermentum,
Lactobacillus buchneri, and Lactobacillus parabuchneri) heterofementative lactobacilli derived from raw
milk or cheese manufacturing environment and are pivotal in determining cheese flavor and texture.
In some cases, pediococci, such as Pediococcus acidilactici and Pediococcus pentosaceus, enterococci, such
as Enterococcus durans, Enterococcus faecalis and Enterococcus faecium, and also leuconostocs can be found
in NSLAB populations [140].

Recently, metagenomic approaches reveal how FDF, especially cheese, possess
fermentation-associated microbial communities more complex than that expected by culture-dependent
approaches [167–170]. These communities undergo substantial fluctuations in function of time,
space (core vs. surface), and specific combination of abiotic factors (shaping, mixture, salting,
and temperature) [171]. On the other hand, the availability of an increasing number of genomes from
dairy and non-dairy isolates supports how considerable differences exist at inter- and intra-species level,

http://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices
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resulting in highly different niche adaptability and functionalities. This growing body of knowledge
makes it possible to identify or predict functional traits of FDF-associated LAB. Genome analysis showed
that dairy lactobacilli retained more genes involved in sugar transportation, proteolysis, and amino
acid transportation compared to gut lactobacilli, a signal of adaptation to milk environment [172].

3.2. The Renaissance of Interest Towards Artisanal FDF

The market of functional foods is continuously asking for diversification of the range of available
products. To meet this need, there is a growing interest to identify new bio-functional strains.
Genomics and metagenomics evidences support how dairy LAB are not only important for modifying
technological and organoleptic properties of FDF, but also promising candidates for promoting human
health. The great inter and intra-species diversity of microbial consortia in FDF makes these matrices
interesting bio-reservoirs of novel probiotic candidates. Evidences have been accumulating that
FDFs are dietary source of live organisms [37] and that the allochthonous bacteria from FDF can
resist stressful GIT conditions [173]. Despite their transient occurrence in the GI tract, dairy LAB can
nonetheless influence the resident microbiome and exert host-specific health benefits [14]. In addition
to human GIT, potential probiotic candidates have been recently isolated from different kinds of
fermented milks [172–176], cheeses [177–182], and kefir. Even if rigorous guidelines define when
a single microbe or microbial consortia can be properly qualified as probiotic [183], these studies
provided the basis for the development of new functional foods and defined a cohort of strains
which will be in future employed as therapeutic adjuvants for in vivo studies. Recently, Sanders and
coworkers [184] proposed the concept of “shared core benefits” to explain how probiotic benefits
can result from mechanisms conserved within the same taxon, overcoming the idea of strain-specific
probiotic effects. Thus, although the FDF microbes cannot be considered probiotic, many of them
are evolutionarily highly related to probiotic organisms, and they often share the same molecular
mechanisms responsible for health-promoting properties in probiotics [37].

Following a similar trend, FDFs and ripened cheeses, in particular, became relevant sources for
LAB suitable to enrich PHMs in food products thanks to the bacterial fermentative activities [185].
Table 5 summarized the main works, which investigated the capability of LAB isolated from FDF to
produce BPs in novel food matrices.
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Table 5. Main lactic acid bacteria (LAB) strains isolated from FDFs and exploited in developing novel dairy food enriched in BPs.

Species Strain Food Source Novel Dairy Product BPs-mediated Activities References

L. helveticus 130B4 Mongolian camel milk Fermented skim milk ACE-i [186]
s6-HTCH, s10-AVCH, s12-AVCH Mexican Chiapas cheese Fermented milk ACE-i [187]

CM4 1, CP790 1 Japanese sour milk Fermented milk ACE-i [188]
CPN4 1 Japanese sour milk Yogurt ACE-i [60]

H9 1 Traditional Tibetan kurut
(fermented yak milk)

Different kinds of fermented
milk, yogurt ACE-i [189]

141, T105 Polish dairy products Fermented milk
Antioxidative, opioid, stimulating,
hypotensive, immunomodulating,
antibacterial and antithrombotic

[190]

ASCC474, ASCC1188, ASCC1315 Australia dairy products Fermented milk ACE-i, immunomodulatory [191]

DPC4571 Swiss Cheese whey Fermented milk; adjunct in
Cheddar cheese ACE-i [192]

MTCC5463 Indian dairy product Honey- flavored fermented
milk Antihypertensive [193]

LBB BY 21 Yogurt Fermented milk Antimicrobial [194]
ND01 Chinese naturally fermented milk Gouda cheese ACE-i [195]
PR4 Italian cheese Fermented caseinate ACE-i [196]
M92 Spontaneously acidified milk Yogurt ACE-i [197]

L. casei IMAU20411 Chinese Dairy food Fermented milk ACE-i [158]
Zhang Koumiss Cheddar cheese ACE-i [198]
LLG Cheese Fermented whey drink ACE-i [199]

PRA205 Parmigiano Reggiano cheese Fermented skim milk, yogurt ACE-i [80]
ATCC393 Dairy food Fermented milk ACE-i, antioxidant and anticancer [200]

ATCC393 Dairy food Yogurt with St. thermophilus
and L. bulgaricus [201]

L. paracasei in co-culture with Candida Comté cheese Whey drink ACE-i, reduction in α-lactalbumin
and β-lactoglobulin [202]

MTCC 5945 (NS4) Fermented milk Fermented camel milk ACE-i [203]
PTCC 1637 Camel sour milk Fermented camel milk ACE-i and antioxidant [204]

L. plantarum 55 Portuguese raw ewe milk
semisoft cheeses Fermented cow skim milk anti-inflammatory, antihemolytic and

antioxidant [205]

KX881772, KX881779 Camel milk Fermented cow camel milk ACE-i, antiproliferation [206]
KX881772, KX881780 Camel milk Low-fat akawi cheese ACE-i, antioxidant [207]

69 Mongolian fermented cow milk Fermented goat milk ACE-i [208]
LMG18024 Buffalo milk Fermented skim milk ACE-i [209]

BGPV2–45a, BGBUK 2–5, BGGA-8 Homemade cheese Fermented skim milk ACE-i [209]
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Table 5. Cont.

Species Strain Food Source Novel Dairy Product BPs-mediated Activities References

L. delbrueckii
subsp. bulgaricus SS1 Dairy product Fermented milk ACE-i [210]

ACA-DC 87 Greek sheep milk yogurt Greek yogurt and feta cheese ACE-i [211]
b38 Yogurt Fermented milk Antimicrobial [194]

CRL 581 Argentinian hard cheese Fermented milk ACE-i, anti-inflammatory [212]

Lc. lactis subsp.
lactis NRRL B-50571, NRRL B-50572 Cheese Fermented cow milk ACE-i [213]

Q1, Q5 Chihuahua cheese Fermented milk ACE-i [214]
ESI197, M21, P21 Manchego cheese Manchego cheese ACE-i [215]

KX881782 Camel milk Fermented camel milk ACE-i, antiproliferation [206]

Lc. lactis subsp.
cremoris FT4 Dairy product Fermented milk ACE-i [210]

Leu. lactis PTCC1899 Traditional fermented camel milk
(Chal) Fermented milk ACE-i, antioxidant [176,216]

St. thermophilus ACA-DC 835 Greek Cow milk yogurt Greek yogurt and feta cheese ACE-i [211]
LMD-9, PB302, PB385, CNRZ404,

ATE19PB8, Y4, HAD8a, CNRZ1066 Yogurt Fermented cow milk ACE-i, immunomodulating and
antimicrobial [217]

CNRZ445 Cheese Fermented cow milk ACE-i [217]
ATCC19258 Pasteurized milk Fermented cow milk ACE-i [217]

in co-culture with L. delbrueckii
subsp. bulgaricus Yogurt

milk–juice beverage with
fermented sheep milk and

strawberries
ACE-i [218]

L. acidophilus L10 Dairy food Fermented milk ACE-i [219]

NCDC-15 in co-culture with St.
thermophilus NCDC167 Lassi Fermented buffalo milk

ACE-i, immunomodulatory,
antioxidant, opioid and

cytomodulatory
[220]

E. faecalis 2 CECT 5727, CECT 5728, CECT 5826,
CECT 5827 Raw milk Fermented skim milk ACE-i [221]

43 Brazilian artisanal ripened cheese Fermented cow milk nr [222]
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Table 5. Cont.

Species Strain Food Source Novel Dairy Product BPs-mediated Activities References

Kefir grains Lactobacilli and yeast consortium - Fermented cow milk
antihypertensive, antimicrobial,
immunomodulatory, opioid and

anti-oxidative
[70]

Lactobacilli and yeast consortium - Kefir ACE-i, antimicrobial [223]

L. reuteri KX881777 Camel milk Fermented cow camel milk ACE-i, antiproliferation [206]

P. acidilactici 90 Brazilian artisanal ripened cheese Fermented cow milk nr [222]

Undefined LAB
species s6-HTCH, s10-AVCH, s12-AVCH Chiapas cream cheese Fermented milk ACE-i, antioxidant [187]

W. viridescens 111 Brazilian artisanal ripened cheese Fermented cow milk nr [222]
1 Calpis Food Industry Co. Ltd. (Tokyo, Japan) selected cultures; 2 Ent. faecalis is not recommended for the QPS list (EFSA 2016).
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The majority of these works employed a so-called “reverse food engineering” strategy,
which entailed the following three steps: (i) The isolation of LAB from traditional FDFs; (ii) the
screening of LAB for the ability to release BPs; and (iii) the exploitation of the best BPs producer strains
for innovation in dairy food fermentation (Figure 2).
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Figure 2. Overview of reverse food engineering approach. Reverse food engineering exploits fermented
dairy foods (FDFs) as bio-reservoirs of microbes producing BPs and pro-health molecules and performs
multidisciplinary analysis to improve content of BPS and healthy microbes in hyperfood.

L. helveticus exploited in hypotensive drinks such as Evolus (Valio Ltd., Valio, Finland) or sour
milk like Calpis (Calpis Food Industry Co. Ltd., Tokyo, Japan) were isolated for spontaneous fermented
milk or whey [188,224]. L. helveticus strains isolated from Mongolian fermented milks showed different
BPs releasing abilities than L. helveticus strains from Western countries [225]. Brazilian cheeses, such as
Manchego and Coalho cheeses [215], were found to be source of highly proteolytic LAB suitable to
produce drinkable milk fortified in BPs. Similarly, Rutella et al. [80] successfully used BPs-producer
NSLAB L. casei and L. rhamnosus from Parmigiano Reggiano ripened cheese to develop a yogurt
enriched in ACE-i VPP and IPP.

4. LAB Proteolytic System

LAB have a complicated proteolytic apparatus, which is able to hydrolyze milk proteins resulting
in the release of oligopeptides and then free amino acids. The most-studied proteolytic system was
from Lc. lactis and includes three main constituents: a cell-envelope proteinase (CEP), transport
systems for short peptides and amino acids, and a multitude of intracellular peptidases. Milk proteins
are initially hydrolyzed to oligopeptides by CEP. Afterwards, the released peptides are transported
inside the cells by specific transporters including oligopeptide transporters (Opp) and di-tripeptide
transporters (Dpp, DtpP, and DtpT). Finally, peptidases convert these peptides into free amino acids,
which are essential for the growth of LAB [215] (Figure 3A).
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Figure 3. Comparative analysis of proteolytic systems in Lactococcus lactis and Lactobacillus spp.
(A) Main effectors of proteolytic machinery and regulatory systems. (B) Multi-domain structure
of prt proteinases isolated from Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus spp.
Abbreviations: BCAA, branched chain amino acids; Lc, Lactococcus lactis; Lb, Lactobacillus bulgaricus;
M, membrane; CW, cellular wall; S, signal; PP, pro-domain; PR, proteolytic domain; A, A domain;
B, B domain; H, helix domain; W, cell wall domain; AN, anchoring domain. I domain was omitted
for brevity.

Several evidences support that the lactococci and lactobacilli proteolytic systems are comparable
in their components and modes of action in terms of converting milk proteins (primarily caseins)
into oligopeptides and free amino acids. The most proteolytic species L. helveticus is one of the
most nutritionally fastidious LAB, needing 14 exogenous amino acids [226]. This auxotrophy is
counterbalanced by a potent proteolytic system, which fulfils the amino acid requirements of the
L. helveticus cell [227]. Comparative genome analyses support that proteolytic enzymes are highly
variable at inter and intra-species level, mainly for CEP-encoding genes, determining a huge variability
in BPs release among different LAB strains. Therefore, the proteolytic activity of a given strain and
the resulting BP profiles in food matrix finally depend on its CEP and peptidase patterns, on gene
variations, and on the environmental conditions, which modulate proteolytic gene expression [228].
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4.1. Proteases

CEPs are serine proteases belonging to the family of subtilisine, which catalyze the breakdown
of caseins into oligopeptides. Based on the substrate specificity, CEPs were classified in three types:
PI-type CEPs primarily hydrolyze β-casein; PIII-type CEPs are able to degrade all caseins, including
αs1-, κ-, and β-casein; PI/PII-type CEPs hydrolyze both β-casein and, to a lesser extent, αs1-casein [229].
Generally, LAB synthesize CEPs as preproteins of ~2000 residues and, in their final arrangement, they
include seven functional domains (from N to C-terminus): S, PP, PR, A, B, H, and W. Among these,
PP is the pre-pro domain, which includes a typical signal sequence required for secretion, while
PR identified the catalytic protease domain with a small inserted (I) domain, which can modify
the prt-specificity. The A domain has unknown function, while the B domain probably plays a
stabilizing role; the H domain is a helical spacer, whereas the W domain is a hydrophilic cell wall
spacer or attachment domain [230]. Three distinct anchoring mechanisms were noted: A SLAP domain
(S-layer anchoring domain), particularly present in the L. delbrueckii sub-clade, is responsible for the
non-covalent interactions; a LPXTG motif involved in the covalent linkage to peptidoglycan; and a
LPXTG motif-derivative. In some cases, like in L. helveticus, the typical CEP anchoring domain was not
found at C-terminus and the sequences ended just before the typical start of the anchoring domain
motif. Based on the anchoring system and the possibilities of various domain combinations, different
CEPs were characterized in different LAB species, including PrtP from Lc. lactis, L. casei and L. paracasei,
PrtH from L. helveticus, PrtR from L. rhamnosus, PrtS from S. thermophilus, and PrtB by L. delbrueckii
subsp. bulgaricus, as reviewed by Liu et al. [231]. The main features of most relevant CEPs in LAB
species are depicted in Figure 3B.

More recently, comparison of 213 genomes from Lactobacillus species revealed a more extensive
diversity in CEP characteristics, with a total of 60 CEPs identified [232]. Most LAB possess only one
type of CEP, while L. helveticus strains have at least two different prt paralogs, namely PrtH and
PrtH2 [233]. In a survey of prt genes in different L. helveticus strains, Genay et al. [234] revealed that
PrtH2 is almost always present. In some L. helveticus strains, like CNRZ32, prtH3, and prtH4 paralogs
were also present [235]. PrtH1, PrtH2, PrtH3, and PrtH4 were expressed in a strain-dependent manner
by L. helveticus [226]. In addition, L. helveticus, as other LAB species, requires a maturation proteinase
named PrtM for the activation of CEP. In L. helveticus strain CNRZ32 two PrtMs (PrtM1 and PrtM2) have
been identified [236]. Further studies [234,235,237] stated that PrtM is required for the activation of
PrtH and PrtM2 and plays an important function in the activation of further L. helveticus CEP paralogs.

4.2. Transport System and Peptidases

Peptides liberated by the hydrolytic action of CEPs are then imported by several transport
systems within the cells, where they can be further cleaved by intracellular peptidases, releasing
amino acids. Different transport apparatuses are implicated in the internalization of peptides in LAB:
The oligopeptide permease system (Opp), the dipeptide permease system (Dpp), and transporter of
di/tripeptides (DtpT).

The Opp system falls into the superfamily of ATP-binding cassette (ABC) and is able to transport
oligopeptides from 4 up to 35 amino acids [238–240]. Biochemical and genetic characterization of the
Opp system in Lc. lactis revealed that it is composed by five different proteins: The protein OppA that
is responsible for the oligopeptides binding, the integral membrane OppB and OppC proteins, and the
nucleotide-binding OppD and OppF proteins [238,240]. The genes encoding for the Opp system
domains are located upstream the pepO gene, encoding for the endopeptidase PepO [237]. The system
was also genetically characterized in L. delbrueckii subsp. bulgaricus, where an extra homolog gene
oppA2 is present [241]. The Opp system of other LAB was not widely investigated, but Liu et al. [231]
found the genes for the Opp system in several strains of L. acidophilus, L. brevis, L. casei, L. rhamnosus,
L. johnsonii, L. gasseri, and L. helveticus. Most of the sequenced strains possessed more copies of the
oligopeptides-binding protein OppA. Strains belonging to the L. acidophilus group, such as L. acidophilus,
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L. johnsonii, and L. gasseri, possessed the highest number of OppA genes [231]. However, at present,
it is not clear whether all these paralogs are functional.

The DtpT transport system belongs to the family of the PTR (proton motive force-driven peptide
transport system) [242]. DtpT, firstly identified in Lc. lactis, is a transmembrane protein of 12 residues
with the C- and N- terminal facing the cytoplasm and DtpT gene positioned after the pepN gene,
which encode the aminopeptidase PepN. This system shows a higher affinity for hydrophilic and
charged di- and tripeptides [242]. Other LAB, such as L. helveticus, possess a DtpT system with similar
specificity as that found in L. lactis [243]. Finally, Liu et al. [231] found the DtpT gene in several LAB
strains including some species of interest for dairy fermentation such as L. acidophilus, L. brevis, L. casei,
and L. rhamnosus.

Focaud et al. [244] firstly identified in Lc. lactis a third transport system (Dpp) belonging to the ABC
superfamily and with a preference for di- and tripeptides that contained hydrophobic branched-chain
amino acids. The Dpp system is organized as the Opp system with the subunit DppA, which is
responsible, in analogy with OppA, for the binding of di- and tripeptides [245]. In both the systems,
the peptide-binding proteins (DppA and OppA) are fixed to the membrane thorough a modified
cysteine residue at the N-terminal and deliver peptides to their cognate membrane complexes [246].
The Dpp system appeared to be widely distributed among the genomes of Lactobacillus species with
the DppA gene being often present in multiple copies [231].

Following the internalization, numerous cytoplasmic peptidases cooperate to degrade the
casein-derived peptides with different and partly overlapping specificities [236,247]. The LAB
intracellular peptidase can be divided in four groups depending on their specificity: Aminopeptidases
(PepN, PepC, PepA, PepM, PepP, and PepX), endopeptidases (PepE, PepG, PepF, and PepO),
and di/tri-peptidases (PepI, PepL, PepQ, PepR, PepD, PepV, and PepT) (Figure 3A).

Endopeptidases are probably the first enzymes involved in the processing of peptides transported
inside the cells. PepG, PepE, and its paralog PepE2 are cysteine-peptidases, whereas PepF and
PepO have been classified as metallopeptidases [248–252]. At least in L. helveticus, two paralogs
of PepO, named PepO2 and PepO3, with different specificity have been characterized [250,253].
LAB endopeptidases are able to hydrolyze, with different specificity, oligopeptides from 5 to 35 amino
acid residues but they were not able to act on intact caseins [236,247].

Other peptidases able to act on oligopeptides are the aminopeptidases PepN, PepC, PepA, PepM,
and PepP that were characterized in diverse dairy LAB species, such as L. casei, L. helveticus, L. bulgaricus,
and Lc. lactis [236,247,254–257]. The metallopeptidases PepA and PepM have very defined substrate
specificities and are able to remove the N-terminal amino acids N/E and M, respectively. On the
contrary, the metallopeptidase PepN and the cysteine-peptidase PepC have very broad substrate
specificity [236,247]. The metallopeptidase PepP is active on oligopeptides from three to nine amino
acids length and is characterized for their ability to hydrolyze the N-terminal amino acid when the
residue in second position is P [258,259]. An additional aminopeptidase active on oligopeptides of three
to seven amino acids is PepX. PepX activity has been detected in several LAB strains isolated from FDFs
such as L. rhamnosus, L. casei, L. helveticus, L. delbrueckii subsp. bulgaricus, and Lc. lactis [236,247,260,261].
PepX is a prolyl dipeptidyl aminopeptidase able to liberate X-P di peptides from the N-terminus of an
oligopeptides [236,247].

Di- and tripeptides generated by the action of endopeptidases and aminopeptidases are further
cleaved in the individual amino acids by the action of di/tri-peptidases. The tri-peptidase PepT
and the di-peptidases PepD and PepV are characterized for a broad range of substrate specificity
with preference for peptides containing hydrophobic amino acids [236,247,262,263]. They have been
characterized in several LAB strains of paramount importance in dairy fermentation such as L. casei,
L. helveticus, L. delbrueckii subsp. bulgaricus, L. sake, and Lc. lactis [236,247,262,263]. With the exception
of PepL, which releases the amino acid L at the N-terminus from di- and tripeptides, the others
characterized di/tri-peptidases (PepI, PepQ, and PepR) are classified as proline peptidases, each with its
own specificities [264–266]. PepI and PepR are proline aminopeptidase, which release the amino acid
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P from di- and tripeptides and dipeptides, respectively. Instead, PepQ is a proline carboxypeptidase,
which releases the residue P from the C-terminus of a dipeptide. These peptidases are widely
distributed among LAB strains and have been characterized in L. rhamnosus, L. casei, L. helveticus,
L. delbrueckii subsp. bulgaricus, and Lc. lactis.

Comparative genomics studies support that the cytoplasmic peptidases PepN, PepC, and PepX
were commonly found among Lactobacillus, encompassing species of importance in dairy
fermentation [231,267]. Genes encoding for some peptidases, such as PepC, PepE, PepD, and PepO,
were detected as multiple copies in LAB dairy strains, suggesting that these genes could be involved in
adaption to habitats rich in proteins and peptides [231,267].

The heterogeneity in the presence of peptidases is also observed at intra-species level, where
co-specific strains diverge for the type and number of transport system and peptidases. Comparative
analysis of four L. delbrueckii subsp. bulgaricus genomes (ATCC 11842, BAA-365, 2038, and ND02)
showed that the highest number genes encoding proteases, peptidases, and different transport systems
were found in strain ND02. With regard to the strain 2038, two cell surface peptidases PepD4 and
En1A were found as whole genes, suggesting that this strain is characterized by a stronger proteolytic
ability, potentially producing higher amounts of free amino acids than the other strains [231]. All four
sequenced strains are equipped with two complete Opp transport apparatuses, but the number and
arrangement of the substrate binding protein OppA was different. The industrial strain 2038 was
characterized by the highest number of genes encoding the OppA protein [231].

Intracellular peptidases have an important role in cheese maturation. For example, PepX and
PepN are partially accountable for the release of volatile aroma-active molecules from milk proteins
during cheese ripening [268]. Some other peptidases, such as PepE, PepN, and PepO (and its paralogs
PepO2 and PepO3), have been found to hydrolyze the peptide corresponding to the β-casein fragment
193–209, which confers the major bitter taste defect in Gouda and Cheddar cheeses [250,269,270].

Recently, the contribution of L. helveticus intracellular peptidases to the release of the
antihypertensive lactotripeptides IPP and VPP, from the peptides released by the action of PrtP
on β-casein, has been demonstrated. A key enzyme for the processing of VPP and IPP, with high
homology to the endopeptidase PepO, has been identified and characterized in L. helveticus CM4
strain [271]. This endopeptidase can catalyze the hydrolysis of the C-terminal amino acid residues
form the peptides VPPFL and IPPLT, releasing VPP and IPP, respectively. Some other aminopeptidases
such as PepC and PepX may be involved in the N-terminal processing of VPP- and IPP-containing
peptides [272,273]. However, to obtain more detailed information on the processing involved in VPP
and IPP production, it should be of paramount importance to study the release of the lactotripeptides
or precursors in Lactobacillus strains expressing or disrupting each specific peptidase gene.

4.3. Regulation of Proteolytic Systems

Proteolytic genes, especially prt ones, are generally repressed in cells growing in nitrogen
sources-enriched medium. Regulatory mechanisms that modulate the proteolytic machinery have
been well studied in Lc. lactis, where the GTP-binding protein CodY is implicated in the repression
of various genes (prtP/prtM, opp-pepO1, pepD, pepN, pepC, and pepX) of the proteolytic system in
consequence of the availability of branched-chain amino acids (BCAA) [274]. In Lc. lactis CodY also
regulates aminotransferases AraT and BcaT, which play a pivotal role in regulating the intracellular
pool of amino acids [275].

In lactobacilli, no CodY-like proteins were found until now, such that the knowledge about
the regulation of the genes encoding proteinases and peptidases remained scarce. Only recently,
three works partially elucidated the regulatory mechanisms of proteolysis in L. helveticus, L. casei,
and L. delbrueckii subsp. lactis. In L. helveticus CM4, transcriptional negative regulation of the proteolytic
apparatus in response to amino acids is mediated by a BCAA-responsive transcriptional regulator
(BCARR), which reduces the production of antihypertensive peptides by CM4 when amino acids are
available in the surrounding medium [276]. The DNA-binding proteins YebC and PrcR are responsible
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for extracellular peptide-dependent repression of the genes of the proteolytic system in L. delbrueckii
subsp. lactis CRL 581 and L. casei BL23, respectively [228,277] (Figure 3B). Differently from L. helveticus
and Lc. lactis, both these regulators are unresponsive to BCAA. Interestingly, PrcR was found to
negatively regulate the BcaR gene encoding for a protein orthologous to BCARR, suggesting that
PrcR could be the master regulator of a regulatory network responsive to amino acid starvation more
complex than that found in in L. helveticus [228]

5. Conclusions

Collective data from FDF peptidomics and LAB genomics and metagenomics represent important
steps to realize the knowledge-based development of food enriched in BPs. The insights into the
patterns of BPs in FDF and the microbiota responsible for their release enable the exploitation of FDF
as resource for isolating novel potential BP producer strains. At the same time, knowledge on genes
involved in BP release phenotype can drive and shorten the screening of the most interesting proteolytic
candidates, opening the possibilities for development of products with diverse or enhanced BP patterns
and broadens the overall portfolio offered to the final customer. This approach, here referred to as
reverse food engineering (Figure 2), will allow the improvement of knowledge on the strict but still
poorly explored link between diet and health.
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