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Abstract. Deep neural networks are vulnerable to adversarial examples,
i.e., carefully-perturbed inputs aimed to mislead classification. This work
proposes a detection method based on combining non-linear dimensional-
ity reduction and density estimation techniques. Our empirical findings
show that the proposed approach is able to effectively detect adversarial
examples crafted by non-adaptive attackers, i.e., not specifically tuned to
bypass the detection method. Given our promising results, we plan to
extend our analysis to adaptive attackers in future work.

1 Introduction

Deep neural networks (DNNs) reach state-of-the-art performances in a wide vari-
ety of pattern recognition tasks. However, similarly to other machine-learning al-
gorithms [I], they are vulnerable to adversarial examples, i.e., carefully-perturbed
input samples that mislead classification [2].

The existence of adversarial examples questions the use of deep learning
solutions in safety-critical contexts, such as autonomous driving and medical
diagnosis. Despite several approaches have been proposed to protect a classifier
from adversarial examples, many of them turned out to be ineffective in front
of adaptive attacks that exploit knowledge of the defense mechanism [3, [4]. Ac-
cording to [5], we can categorize defense mechanisms that remain effective also
against adaptive attackers into two main groups. The first ones include robust
optimization techniques that can be exploited to reduce input sensitivity (or
to increase the input margin) of the classifier; for example, adversarial train-
ing obtains a smoother decision function by retraining the model on adversarial
samples generated against it. This requires, however, generating the attacks and
re-training the classifier on them, which is very computationally demanding for
large models such as state-of-the-art convolutional neural networks, and it does
not provide any performance guarantee for adversarial samples crafted via a dif-
ferent attack algorithm. The second line of effective defenses includes explicit
detection and rejection strategies for adversarial samples.

In recent years, different rejection-based countermeasures have been pro-
posed. In [6] it is proposed to distinguish natural samples from adversarial ones
exploiting a Kernel Density Estimator on the embeddings obtained from the last
hidden layer of the neural network. The idea of a layer-wise detector has been
pushed forward in [7] by providing multiple “detector” subnetworks placed at



different layers of the classifier which is intended to protect. Each subnetwork
is trained to perform a binary classification task of distinguishing genuine data
from samples containing adversarial perturbations. Such multilayer detectors
have been showed to achieve relevant results in protecting against static adver-
saries, i.e. those who only have access to the classification network but not to the
detector, and to significantly hardener the task of producing adversarial samples
for dynamic adversaries, i.e. in which also the detector gradient is used by the
attacker to craft adversarial samples.

In this paper, we build on the core concepts of [6] [7] by implementing a mul-
tilayer adversarial example detector based on t-SNE [§], a powerful manifold-
learning technique mainly used for nonlinear dimensionality reduction. Our
preliminary results are encouraging, showing that we can successfully detect
adversarial examples crafted by non-adaptive attack algorithms. For this rea-
son, we plan to further investigate and strengthen our method against adaptive
attacks in the near future.

2 Detection of Adversarial Examples using t-SNE

High-dimensional data, such as images, are believed to lie in a low dimensional
manifold embedded in a high dimensional space. In [2] it is speculated that
adversarial examples come from “pockets” in the data manifold caused by the
high non-linearity of deep networks. The adversarial inputs contained in such
pockets occur with very low-probability which prevents them to be used during
training and testing. Yet, these pockets are dense and so an adversarial example
can be found near every test case but lies out-of-manifold.

In this paper, we support the so-called, manifold hypothesis by empirically
demonstrating that is it possible to detect adversarial samples exploiting a non-
linear dimensionality reduction method such as t-SNE to separate in- and out-
of-manifold samples.

Mostly used for data visualization, t-SNE maps high-dimensional data into
low-dimensional spaces while maintaining the relative distances between sam-
ples. As such, we used this technique to investigate the separability of natural
and adversarial samples in the projected space. As shown in Fig[l] when the
t-SNE projection is learned from a population of samples made of neural acti-
vations at a certain layer [ for both natural and adversarial network inputs then
it can very well separate them into two different clusters.

Detection Procedure. Figure [2| provides a representation of the detector
architecture. Given an already-trained DNN classifier to be protected, we build
on [7] by attaching a Layer Detector (LD) to potentially all classifier layers. Each
LD takes as input h;(z), the internal representation of a given input sample x
extracted by the classifier at layer [ and outputs a vector of probability scores
pi(z) for x to be a natural sample of each of the target classes. The predictions of
each LD form a data series that is fed into the Multilayer Detector (MLD) which
is responsible to capture trends that identify adversarial examples with respect
to natural data. In case of detection of an adversarial attack (Ygetector = 1), the
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Fig. 1: Separability test for the MNIST dataset: if t-SNE projections are learned
from natural samples only, the learned map cannot separate natural from adver-
sarial samples (left). Whereas, if mixing natural and adversarial samples when
learning, the resulting map is able to separate them (right).
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Fig. 2: Detector architecture for a convolutional NN with four monitored layers.

output of the classifier yeigssifier € [0, N] (for N target classes) is overridden by
class N + 1 to indicate that x is an adversarial example.

Attached to a given layer [ in the network architecture, LD; is composed
by a Mapper and an Estimator for each target class. The Mapper of a given
class, exploits the t-SNE algorithm to map samples from the high-dimensional
embedding space in which h;(x) lies, to a small-dimensional one (typically two
or three dimensions) in which natural and adversarial samples for such class
are likely to be separated El In this low dimensional space, a Kernel Density
Estimator (KDE) is fitted on natural samples only, so to learn the distribution
of natural data of a given target class. When a new data sample 2’ is to be
classified and h;(x) is computed, the LD; (at layer ) use each class Mapper to

1Experiments show that the deeper in the classifier architecture is the layer which the LD is
attached to, the better t-SNE is able to discriminate between natural and adversarial samples.



project this new point in a low dimensional space and then uses class Fstimators
to score the probability of 2’ to be of each target class. Intuitively p;(z), the
probability-score vector of LD, for x, represents the likelihood of x being from
one of the target classes at layer .

In order to capture slight input perturbations, as in the case of adversarial
examples, t-SNE has to be fed both with natural and adversarial examples (see
the example in Fig. As such, Mapper training requires crafting adversarial
samples & la Adversarial Training [9]. Adversarial Training provides evidence of
increasing robustness of the classifier with respect to the attack used for craft-
ing training adversarial samples solely, nevertheless, it is widely accepted as the
most reliable countermeasure provided that the attack used for training is general
enough to subsume many different attack algorithms [I0]. The same assump-
tion holds in our mapping algorithm: by crafting minimal-distance adversarial
examples with a powerful attack as [I1] during training, we found Mapper to be
able to separate adversarial samples also from other existing attack algorithms
as Fast Gradient Sign Method (FGSM) [9], Basic Iterative Gradient Sign Method
(BIM) [12] and Projected Gradient Descent (PGD) [10]. A great drawback of
Adversarial Training is that, since adversarial samples are used to regularize
the model during training, they have to be generated at each epoch. This is
very computationally demanding and needs fast algorithms to craft adversarial
samples (e.g., FGSM), which produces sub-optimal solutions for the attacker
optimization problem. Our detector, instead, requires to generate adversarial
samples only once before starting to train, as the very same adversarial samples
are used to train the LDs altogether.

The rationale for treating the output of each LD as a whole comes from
observing the trends of the p scores across layers for natural and adversarial
samples. In Fig. [3] it is reported a comparison between the series of p scores
produced for a given natural example (on the left) and a corresponding adver-
sarial one (on the right). The two data series present significative differences in
trends: as one may expect, in case of natural data the series of p scores across
layers achieve high values for the target class (i.e., above 0.5) consistently (see
Fig. [3|left). Whereas, for adversarial samples, the p scores series for the tar-
get class drops to values slightly above zero, mixing with the data series of the
non-target classes, resulting in misclassification of the sample.

3 Experiments

Experiments assess the detection capabilities of the proposed detector in protect-
ing a convolutional neural network (CNN) of LeNet [I3] type for image recog-
nition on MNIST and CIFAR10 datasets. The accuracy of the classifier on test
data drops from 0.98 for MNIST dataset and from 0.77 for CIFAR10 to ap-
proaching zero when samples are perturbed with adversarial noise. Wrapping
the classifier with our detector allows maintaining high accuracy on slightly per-
turbed samples (i.e. on which the perturbation does not induce the label change)
while detecting adversarially perturbed ones (i.e. in which the label change is
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Fig. 3: Comparison of p scores data series for a natural sample from MNIST
dataset (left) and a corresponding adversarial example (right). Solid line iden-
tifies the p scores data series of the original target label for the input sample,
whereas dashed lines are for other classes.

Fig. 4: Security evaluation curves for classifier and detector on MNIST and
CIFARI10 datasets, respectively. We used solid lines for FGSM attack, dashed
lines for BIM and dotted lines for PGD.

induced). In our experiments, we crafted the adversarial samples needed to fit
the Mappers using Carlini-Wagner attack [II]. Protecting an N class classifier
from adversarial examples is cast as a N + 1 classification problem, where the
N +1 class represents adversarial samples. We measured the increase in robust-
ness against adversarial examples by means of security evaluation curves [14].
Given a classifier to be evaluated, this amounts to testing its accuracy (on y-
axis in the figures) with respect to increasing adversarial perturbations (x-axis).
We performed a security evaluation of the CNN classifier and of our detector
against state-of-the-art adversarial attacks such as FGSM, BIM, and PGD using
Lo norm as distance metrics between samples. In Fig. 4| are reported the se-
curity curves constructed for the classifier the detector respectively for MNIST
and CIFARI10 dataset. It can be noticed that, by exploiting p values trends, our
detector is able to protect the CNN classifier “under attack” by maintaining the
accuracy above 0.8 for MNIST and above 0.7 for CIFAR10, on average.

4 Contributions, Limitations and Future Work

We introduced a new detector for adversarial examples which exploits manifold
learning techniques to identify adversarial samples from natural ones. Our find-
ings provide experimental support to the manifold hypothesis which identifies
adversarial examples as out-of-distribution samples in the neural representation
manifolds. This renews the hope to be able to protect an existing classifier by
wrapping it with a detector that identifies and reject out-of-distribution data.



In future work, we intend to evaluate our detector against adaptive attacks that
also try to bypass the detection method and to compare it with other existing
detection techniques.
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