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Abstract: We propose and implement a network virtualization architecture for open optical
(partially) disaggregated networks, based on a device hypervisor and OpenConfig and

OpenROADM data models, in support of 5G network slicing over interconnected NFVI-PoPs.
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1. Introduction

Network slicing has been considered a major selling point of 5G networks as initially proposed by the NGMN [1], to
deal within the heterogeneous requirements of services offered to a multiplicity of vertical industries, in terms of
e.g., latency, bandwidth, security, or resiliency. A network slice is macroscopically defined as logical network of
interconnected functions and resources, supported over a shared infrastructure, generalizing and unifying previous
concepts such as virtual private networks (which become mechanisms by which slicing is deployed and enforced).
The relationship between slicing and the underlying transport network is still a topic of research: for slicing
approaches based on the NFV framework across multiple interconnected NFVI-PoP (Fig.1), the transport network
needs to become a resource under the orchestrating system. Second, it is expected that the virtualization of the
transport network itself [2], defined as the partitioning and composition of the underlying physical optical
infrastructure to create co-existing optical virtual networks (OVN) provides isolation: an OVN underlies and
provides connectivity to component functions of a network slice (NS).

In this paper, we consider the virtualization of an open transport network, with the aim of supporting the
aforementioned NFV-based slicing (Fig.1), and assuming a partial disaggregation model. We cover devices modeled
as OpenConfig terminal devices/Optical Platforms [3] or OpenROADM devices [4] with their component Degrees
(DEG) and Shared Risk Groups (SRG, OpenROADM naming for the add/drop component). As main contributions:
1) we propose and implement a virtualization/slicing architecture based on an OVN manager, which instantiates and
controls the lifetime of the OVNs and a per-device hypervisor entity, which partitions a device according to its
standardized device data model, into multiple virtualized devices (e.g., VROADMS). It ensures isolation and acts as
a (restricted) NETCONF/YANG proxy to the physical device, so a per-OVN dedicated controller can control the
OVN independently. 2) We extend the ONOS SDN controller with OpenConfig and OpenROADM device drivers
and applications exporting a TAPI North Bound Interface (NBI). 3) We demonstrate the provisioning of a Network
Media Channel (NMC) across the OVN.

Allocated
Slices (NS)

‘ I . [ 1 [ 1

‘ I e | — [ !

NFV y
[ Line
VNFM(s) [ & 2
= . Chentj o] il
7 um //// WAN Infrastructure Manager (WIM) Port DEG
/7 % OpenConfig OpenROADM
¥ Terminal Device
Device o
3 (]
VoN
LAYER sre— |
INFRASTRUCTURE DEG
LAYER ]
j [ ine DEG DEG &l
A L o
g [ — [oed
NFVI-PoP Glere ] L 3 &)
-3

0OpenROADM

OpenConfi
Terminal Device DE
Device o
1 0
[sect—L{1

Physical Network Infrastructure (Partially Disaggregated Optical Network)

@

Fig. 1 Supporting Network Slice (NS) over multiple NFV Infrastructure Points-of-Presence interconnected by a virtualized Disaggregated Optical
Transport Network (left). Logical view of Virtual Optical Disaggregated Networks over a shared infrastructure (right).

2. Disaggregated Network and Slicing Model

Our reference network is aligned with the ODTN project phase II [5], and corresponds to a partially disaggregated
network [6]. Generally, virtualizing an optical network can be performed using a combination of a given device
support (that is, hardware support) and/or the use of a virtualization layer (commonly referred to as hypervisor) that



extends or emulates such support. This, in turn, can be done directly at the device level or at the SDN controller
level. Examples of the latter are the ONF SDN architecture or ACTN [7]. In any case, there are multiple degrees of
freedom in defining an OV N/partitioning the devices: assigning a device’s degrees (DEG) and SRGs, assigning the
internal and external ports as well as internal and physical links and partitioning the usable spectrum. Fig 2 shows a
potential partition of a sample OpenROADM device into 2 logical ROADMs.

OpenROADM
Openf Opentonom 53] Spentcrol

DEGL
| Explink — =
DEGL oeg s BOLKIZ ¢ tinir3 DEG3 DEGL pecuffis L Botnks 1B |
Diink11 Diink11
I~ oIk @»i, | =l
" oG AR
DUink22
Explink21 Alink22
TR BT, ALAKIT Lkl
[l [~ ) | ~d
b = ‘ % =

| ANN"4d" 4
mog | @

Fig. 2. Sample OpenROADM device with 3 DEG and 2 SRGs (left); A potential partitions resulting in two virtual ROADMS: 2 DEG, 1 SRG
(center), and 1 DEG, 1 SRG (left).

A key element of our architecture is the hypervisor (Fig.3), which is responsible for coordinating access to the
underling physical device agent, so each virtual device only sees and operates on a partial (restricted) view of the
data model configuration and operational datastore. The hypervisor behaves as multiple NETCONF agents (one per
OVN), as defined by the partition. When a new OVN has to be created the OVN manager is used to create the
VvROADMs/partitions, configuring the hypervisors and allocating a new SDN controller instance, configured to
connect to the virtual devices. During the lifetime of the OVN, such SDN instance can provide end-to-end
connectivity upon request between (virtualized) transceivers.
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data model (right). The vVROADM manager can request a partition and the hypervisor allocates a container to run the virtual device agent (right).
3. In-Slice Service Provisioning

During the lifetime of the OVN, the manager provides the OVN SDN controller with the credentials of the (virtual)
devices, so NETCONF sessions are established and the devices’ capabilities discovered (tunability and switching
capabilities). NMC are set up upon request between two terminal devices, using either native ONOS API or a
standard such as TAPI [8], in which terminal devices client ports are mapped to Service Interface Points (SIPs). This
triggers a routing and spectrum assignment process that finds the k-shortest path between the devices and performs
first fit spectrum allocation. For the Terminal Device, a logical channel association is instantiated within the device
between a client (transceiver) port and an optical channel component bound to the line port of the device. For each
of the OpenROADM devices across the path, a ROADM internal connection is requested: OTS and OMS (optical
transport and optical multiplex) interfaces are created within each degree (if not existing) and supporting Media
Channel and NMC interfaces are created, followed by the creation of a roadm-connection object (Fig.4, right).
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Fi ig. 4. ONOS GUI showing the NSFNet OpenConﬁg/OpenROADM topology (left); Sequence of operations to create a connection (right)
4. Experimental Demonstration

For the experimental evaluation, we consider an NSFNet topology with 14 OpenROADM devices (emulating the
physical infrastructure, see Fig.4), with 42 links. A partition/OVN is defined selecting 10 nodes and a subset of the
OpenROADM degrees, resulting on a sub-graph of the original topology. Virtual agents are allocated in Docker
containers in such a way that devices in the same OVN belong to the same IP subnet. A TAPI request is sent to the
OVN SDN controller for the NMC. The experiment is triggered by posting a RESTConf Remote Procedure Call
(RPC) requesting a TAPI connectivity service (Fig.5, left). The NMC is set up in O(100)ms, by exchanging multiple
edit-config messages with the agents. Fig 5 shows the Wireshark capture of NETCONF/SSH (center) and the 1/O
plot of traffic in pps (rlght) Hardware delays are not taken into account, which would increase the overall latency.
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Fig. 5. Wireshark capture of TAPI NBI Connectivity Request (left) and of NETCONF/SSH exchanges between controller and agents (center);

5. Conclusions

We have demonstrated the virtualization of an open and disaggregated optical network, along with the
provisioning of network media channels within a given OVN instance, relying on device hypervisors and standard
data models. The implemented extensions to ONOS SDN controller for OpenConfig or OpenROADM can be used
regardless of the infrastructure is real or virtual. The PoC demonstrates the setup of a connection / optical
connectivity intent — not taking account hardware delays —, largely satisfying the target values and demonstrating the
feasibility of a model driven SDN control for a partially disaggregated network.
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