Enabling Network Slicing Across a Disaggregated Optical
Transport Network

Ramon Casellas!, Alessio Giorgetti?, Roberto Morro®, Ricardo Martinez!, Ricard Vilalta', Raiil Mufioz'
!CTTC/CERCA (Spain), ’CNIT/SSSUP (Italy), *TIM (Italy)
ramon.casellas@cttc.es

Abstract: We propose and implement a network virtualization architecture for open optical
(partially) disaggregated networks, based on a device hypervisor and OpenConfig and

OpenROADM data models, in support of 5G network slicing over interconnected NFVI-PoPs.
OCIS codes: (060.4250) Networks;

1. Introduction

Network slicing has been considered a major selling point of 5G networks as initially proposed by the NGMN [1], to
deal within the heterogeneous requirements of services offered to a multiplicity of vertical industries, in terms of
e.g., latency, bandwidth, security, or resiliency. A network slice is macroscopically defined as logical network of
interconnected functions and resources, supported over a shared infrastructure, generalizing and unifying previous
concepts such as virtual private networks (which become mechanisms by which slicing is deployed and enforced).
The relationship between slicing and the underlying transport network is still a topic of research: for slicing
approaches based on the NFV framework across multiple interconnected NFVI-PoP (Fig.1), the transport network
needs to become a resource under the orchestrating system. Second, it is expected that the virtualization of the
transport network itself [2], defined as the partitioning and composition of the underlying physical optical
infrastructure to create co-existing optical virtual networks (OVN) provides isolation: an OVN underlies and
provides connectivity to component functions of a network slice (NS).

In this paper, we consider the virtualization of an open transport network, with the aim of supporting the
aforementioned NFV-based slicing (Fig.1), and assuming a partial disaggregation model. We cover devices modeled
as OpenConfig terminal devices/Optical Platforms [3] or OpenROADM devices [4] with their component Degrees
(DEG) and Shared Risk Groups (SRG, OpenROADM naming for the add/drop component). As main contributions:
1) we propose and implement a virtualization/slicing architecture based on an OVN manager, which instantiates and
controls the lifetime of the OVNs and a per-device hypervisor entity, which partitions a device according to its
standardized device data model, into multiple virtualized devices (e.g., VROADMS). It ensures isolation and acts as
a (restricted) NETCONF/YANG proxy to the physical device, so a per-OVN dedicated controller can control the
OVN independently. 2) We extend the ONOS SDN controller with OpenConfig and OpenROADM device drivers
and applications exporting a TAPI North Bound Interface (NBI). 3) We demonstrate the provisioning of a Network
Media Channel (NMC) across the OVN.

Allocated
Slices (NS)

‘ I . [1 [1

‘ I e | — [!

NFV y
[Line
VNFM(s) [& 2
= . Chentj o] il
7 um //// WAN Infrastructure Manager (WIM) Port DEG
/7 % OpenConfig OpenROADM
¥ Terminal Device
Device o
3 (]
VoN
LAYER sre— |
INFRASTRUCTURE DEG
LAYER]
j [ine DEG DEG &l
A L o
g [— [oed
NFVI-PoP Glere] L 3 &)
-3

0OpenROADM

OpenConfi
Terminal Device DE
Device o
1 0
[sect—L{1

Physical Network Infrastructure (Partially Disaggregated Optical Network)

@

Fig. 1 Supporting Network Slice (NS) over multiple NFV Infrastructure Points-of-Presence interconnected by a virtualized Disaggregated Optical
Transport Network (left). Logical view of Virtual Optical Disaggregated Networks over a shared infrastructure (right).

2. Disaggregated Network and Slicing Model

Our reference network is aligned with the ODTN project phase II [5], and corresponds to a partially disaggregated
network [6]. Generally, virtualizing an optical network can be performed using a combination of a given device
support (that is, hardware support) and/or the use of a virtualization layer (commonly referred to as hypervisor) that

extends or emulates such support. This, in turn, can be done directly at the device level or at the SDN controller
level. Examples of the latter are the ONF SDN architecture or ACTN [7]. In any case, there are multiple degrees of
freedom in defining an OV N/partitioning the devices: assigning a device’s degrees (DEG) and SRGs, assigning the
internal and external ports as well as internal and physical links and partitioning the usable spectrum. Fig 2 shows a
potential partition of a sample OpenROADM device into 2 logical ROADMs.

OpenROADM
Openf Opentonom 53] Spentcrol

DEGL
| Explink — =
DEGL oeg s BOLKIZ ¢ tinir3 DEG3 DEGL pecuffis L Botnks 1B |
Diink11 Diink11
I~ oIk @»i, | =l
" oG AR
DUink22
Explink21 Alink22
TR BT, ALAKIT Lkl
[l [~) | ~d
b = ‘ % =

| ANN"4d" 4
mog | @

Fig. 2. Sample OpenROADM device with 3 DEG and 2 SRGs (left); A potential partitions resulting in two virtual ROADMS: 2 DEG, 1 SRG
(center), and 1 DEG, 1 SRG (left).

A key element of our architecture is the hypervisor (Fig.3), which is responsible for coordinating access to the
underling physical device agent, so each virtual device only sees and operates on a partial (restricted) view of the
data model configuration and operational datastore. The hypervisor behaves as multiple NETCONF agents (one per
OVN), as defined by the partition. When a new OVN has to be created the OVN manager is used to create the
VvROADMs/partitions, configuring the hypervisors and allocating a new SDN controller instance, configured to
connect to the virtual devices. During the lifetime of the OVN, such SDN instance can provide end-to-end
connectivity upon request between (virtualized) transceivers.

og-op adm-dev| Virtu
SDN Control of the b\ ¢ pack
circuit-packs
OVN/Slice (B) Virtualized Infrastructure
SDN Controller

s P2
OVN/slice (A) SDN Agent
SON Controler [ot port? er']‘tml "
DEG N ROADM
SON Agent |)
Netconf Server i Hypervisor
' | Netconf ROADM
Virtual H iE:trol(B) <get> Agent (Physical) }
VROADM <ok VROADM | |
docker Manager | |
I If i | container run Create vRoADM i
OpenROADM Y §<h I ‘m Partitios 1 g
Device e Netconf Serv ello> g
i = Device
a VROADM f @
(=3 docker run CrealevaOADM
container (config/oper) artition %
<hello> ; | i
/ / o
. - -~ i 7N
<edit-config>" . L
s <edit-config> <edit-config:

data model (right). The vVROADM manager can request a partition and the hypervisor allocates a container to run the virtual device agent (right).
3. In-Slice Service Provisioning

During the lifetime of the OVN, the manager provides the OVN SDN controller with the credentials of the (virtual)
devices, so NETCONF sessions are established and the devices’ capabilities discovered (tunability and switching
capabilities). NMC are set up upon request between two terminal devices, using either native ONOS API or a
standard such as TAPI [8], in which terminal devices client ports are mapped to Service Interface Points (SIPs). This
triggers a routing and spectrum assignment process that finds the k-shortest path between the devices and performs
first fit spectrum allocation. For the Terminal Device, a logical channel association is instantiated within the device
between a client (transceiver) port and an optical channel component bound to the line port of the device. For each
of the OpenROADM devices across the path, a ROADM internal connection is requested: OTS and OMS (optical
transport and optical multiplex) interfaces are created within each degree (if not existing) and supporting Media
Channel and NMC interfaces are created, followed by the creation of a roadm-connection object (Fig.4, right).

2 onos x [+ R SR VROADM(1) § N o N
Controller e Spac s |
. stnacame vombincnatzanthasai 0"
14 o a * G © H
b a ® MC in, MC out pc “umsietf:params xmi:ns:netconf-base:1.0"
= Interfaces | \nic in NMC o
"
osca AT .
oeaa- .o
<config rc="urnietf:params xmins netconf-base:1.0">
ot weRx <interface nc:operation="merge">
DEGS-APRX-IIL <name>MC-TTP-DEG1-TTP-RX-190.7</name>
insinetconfbase:1.0" message d="62">
Creation of
Connection
L
¢ nsa"hetp: forg/openroada/d
oA 19 e gy <tumiettparams xminsnetconfbase 1.0
10

[OpenroADM
ltopology __[NSFNET [3node [Snode
Nodes 1 3 5

“Jports 1880 330 52

. internal Links | 1624 288 aso|
26 Physical Links 30 @ 7
el - External Links 42| 6| 10|
1< /mar-srg Circuit Packs 20w 7
[SRGs 14 3 5 —
e SHELE_DEGL/shelf DEGs 5

Fi ig. 4. ONOS GUI showing the NSFNet OpenConﬁg/OpenROADM topology (left); Sequence of operations to create a connection (right)
4. Experimental Demonstration

For the experimental evaluation, we consider an NSFNet topology with 14 OpenROADM devices (emulating the
physical infrastructure, see Fig.4), with 42 links. A partition/OVN is defined selecting 10 nodes and a subset of the
OpenROADM degrees, resulting on a sub-graph of the original topology. Virtual agents are allocated in Docker
containers in such a way that devices in the same OVN belong to the same IP subnet. A TAPI request is sent to the
OVN SDN controller for the NMC. The experiment is triggered by posting a RESTConf Remote Procedure Call
(RPC) requesting a TAPI connectivity service (Fig.5, left). The NMC is set up in O(100)ms, by exchanging multiple
edit-config messages with the agents. Fig 5 shows the Wireshark capture of NETCONF/SSH (center) and the 1/O
plot of traffic in pps (rlght) Hardware delays are not taken into account, which would increase the overall latency.

ppoteseistandby fwe tme s et

e oot ol Lioh e e SiL) e amen
B 'REF‘ (CONT... CONT... HTTP. 2614 POST /onos/restce 30.000170713 ROADM-1 ONOS 114 Server: Encrypte
. 0.163820 CONT... CONT.. HTTP 378 HTTP/1.1 200 OK 40.000177268 ROADM-14 ONOS 114 Server: Encrypte
50.000192497 ROADM-9 oNOS. 114 Server: Encrypte Wireshark]0 Graphs: 0fc2019v2.pcapng
FerocbecaNotation Wemication iton 50.000285379 ONOS ROADH-8 1074 Client: Encrypte
s 76.000428987 ROADH-8 oNos 114 Server: Encrypte
. 8 0.022682839 ROADM-14 ONOS 834 Server: Encrypte
v Menber Key: tapi-connectivity:input 96.022962244 ROADM-14 onos 242 Server: Encrypte g5 \
v Object 10 0.023048491 oNoS ROADM-14 6656188 — 830 [ACK
~ Member Key: end-point 11 6.023303014 ROADM-8 oNos 834 Server: Encrypte U
Cray 126.023331720 ONOS ROADH-5 6653764 830 [ACK
130023524500 ROADM-0 onos 834 Server: Encrypte I
¥ Object 14 6.023524504 ROADM-1 oNoS 834 Server: Encrypte o “
Menber Key: layer-protocol-name 15 6.023553735 onos ROADM-9 6637612 - 830 [ACK f
Hember Key: service-interface-point 166.023553743 ONOS ROADH-1 6647768 - 830 [ACK ‘
Member Key: capacity 170.023762877 ROADM-9 onos 242 Server: Encrypte | | i
lenben Key: stpection 186.023762872 ROADM-1 onos 242Server: Encrypte 75 |
: 196.0236855423 ROADM-8 onos 242 Server: Encrypte | |
Menber Key: role 206.023977334 ONOS ROADH-1 6647702 - B30 [ACK I
Menber Key: protection-role 216024157189 ONOS ROADH-14 1106 Client: Encrypte | | Il
Member Key: local-id 22 0.024168482 ROADM-8 onos 834 Server: Encrypte £ [| ‘
Menber Key: name 230.024188140 ONOS ROADH-8 6653758 - 830 [ACK 3 (f | |
e istrative.state 240.024359952 ONOS ROADN-8 6653748 ~ 830 [ACK § | |
Y strativ 250.024427040 ROADM-14 onos 114 Server: Encrypte ¥ | ! I
Member Key: operational-state 26 0.024929991 ONOS ROADM-1 1026 Client: Encrypte * “ | I
Member Key: lifecycle-state 27 0.025203677 oNoS ROADM-8. 1074 Client: Encrypte s ‘ [‘ ‘ |
~ Object 260.025238084 ROADM-1 onos Hiiserver BEneyte | + | | [i | |
g : 296.025526585 ROADM-8 onos 114 Server: Encrypte | | | |
Member Key: layer-protocol-name 300.026085449 ONOS ROADH-9 66 37562 - 830 [ACK | I || \ | \ | |
Hember Key: service-interface-point 316027250372 ONOS ROADH-O 1074 Client: Encrypte 3 { | ! PR A B | |
Hember Key: capacity 320.031013718 ROADM-9 onos 114 Server: Encrypte ‘ \ I ‘ [\ ‘w I N
Member Key: direction 330.044672792 ROADM-1 onos 834 server: Encrypte | i VN I
Piulndtorts 340.044602038 ONOS ROADH-1 56 47708 830 [ACK ‘ | iR \ 111 ‘
Member Key: protection-role 356.044762205 ROADM-1 onos 242 Server: Encrypte 15 | I | | ISn |
: protect 30.0issizes oNos RoAoH-1 Sea7705 - 8% [ACK ‘ | [| R
Hember Key: local-id 370.045416009 ONOS ROADH-1 1106 Client: Encrypte | [4 [1] | [| |
Menber Key: name 38 0.045631877 ROADM-1 oNoS 114 Server: Encrypte | \ | \ | [N
Member Key: administrative-state 39 0.048232589 Ronom-14 ONOS 834 Server: Encrypte L J) U | | U |
Member Key: operational-state 40 0.048255725 ROADM-14 66 56208 ~ 830 [ACK
Member Kevt Seteoyere statn foosaomsie ROADM-14 onos 242 Server: Encrypte oo o0 o085 oo oo w0 o

Fig. 5. Wireshark capture of TAPI NBI Connectivity Request (left) and of NETCONF/SSH exchanges between controller and agents (center);

5. Conclusions

We have demonstrated the virtualization of an open and disaggregated optical network, along with the
provisioning of network media channels within a given OVN instance, relying on device hypervisors and standard
data models. The implemented extensions to ONOS SDN controller for OpenConfig or OpenROADM can be used
regardless of the infrastructure is real or virtual. The PoC demonstrates the setup of a connection / optical
connectivity intent — not taking account hardware delays —, largely satisfying the target values and demonstrating the
feasibility of a model driven SDN control for a partially disaggregated network.

6. Acknowledgements
Work funded by the EC H2020 project METRO-HAUL (761727) and the Spanish MICINN DESTELLO
(TEC2015-69256-R) and AURORAS (RTI2018-099178-B-100) projects.

7. References
[1] NGMN White Paper on 5G https://www.ngmn.org/5g-white-paper/5g-white-paper.html
R. Vilalta, A. Mayoral, R. Muiloz, R. Martinez, R. Casellas, “Optical Networks Virtualization and Slicing in the 5G era”, OFC2018.

OpenConfig project and data models http://openconfig.net and https:/github.com/openconfig/public/tree/master/release/models
4] The Open ROADM Multi-Source Agreement (MSA) http://www.openroadm.org

(2]
[3]
(4]
[5] The Open Disaggregated Transport Network project, ONF, https://www.opennetworking.org/odtn/
[6]
(7]
(8]

6] E. Riccardi et al, “An Operator view on the Introduction of White Boxes into Optical Networks”, JLT, v36, 115, pp3062-3072, 2018.
R. Casellas et al, “Experimental Validation of the ACTN architecture for flexigrid optical networks w Active Stateful H PCEs”, ICTON2017.
ONF Transport API (TAPI) https://www.opennetworking.org/wp-content/uploads/2017/08/TAPI-2.0-Updates-Overview.pdf

