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Abstract. The concepts of Wijsman asymptotically equivalence, Wijsman asymptoti-
cally statistically equivalence, Wijsman asymptotically lacunary equivalence and Wijsman
asymptotically lacunary statistical equivalence for sequences of sets were studied by Ulusu
and Nuray [24]. In this paper, we get analogous results for double sequences of sets.

1. Introduction

Throughout the paper, N denotes the set of all positive integers and R
the set of all real numbers. The concept of convergence of a sequence of real
numbers has been extended to statistical convergence independently by Fast
[7] and Schoenberg [20]. This concept was extended to the double sequences
by Mursaleen and Edely [11]. Cakan and Altay [6] presented multidimensional
analogues of the results presented by Fridy and Orhan [§].

The concept of convergence of sequences of numbers has been extended by
several authors to convergence of sequences of sets (see, [3, 4, 5, 12, 25, 26]).
Nuray and Rhoades [12] extended the notion of convergence of set sequences
to statistical convergence and gave some basic theorems. Ulusu and Nuray
[23] defined the Wijsman lacunary statistical convergence of sequence of sets
and considered its relation with Wiijsman statistical convergence, which was
defined by Nuray and Rhoades. Nuray et. al. [13| studied Wijsman statistical
convergence, Hausdorff statistical convergence and Wijsman statistical Cauchy
double sequences of sets and investigated the relationship between them.
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184 F. Nuray, R. F. Patterson, E. Diindar

Marouf [10] presented definitions for asymptotically equivalent and asymp-
totic regular matrices. Patterson [16] extended these concepts by presenting
an asymptotically statistical equivalent analog of these definitions and natural
regularity conditions for nonnegative summability matrices. Patterson and
Savag [17] extended the definitions presented in [16] to lacunary sequences.

The concepts of Wijsman asymptotically equivalence, Wijsman asymptot-
ically statistically equivalence, Wijsman asymptotically lacunary equivalence
and Wijsman asymptotically lacunary statistical equivalence for sequences of
sets were studied by Ulusu and Nuray [24]. In this paper, we get analogous
results for double sequences of sets.

2. Definitions and notations

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 5, 9, 10,
12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 26]).

Two nonnegative sequences x = (x) and y = (yx) are said to be asymp-

totically equivalent if
lim 2% — 1
k Yk
(denoted by = ~ y).
Let (X, p) be a metric space. For any point x € X and any non-empty

subset A of X, we define the distance from x to A by
d(z,A) = inf p(z,a).
aceA

By a lacunary sequence we mean an increasing integer sequence 6 = {k,}
such that kg = 0 and A, = k. — k,—_1 — o0 as r — o0. Throughout this paper,
the intervals determined by € will be denoted by I, = (k,_1, k.|, and ratio

kfﬁl will be abbreviated by g;.

Throughout the paper, we let § = {k,} be a lacunary sequence and A, Ay,
be any non-empty closed subsets of X.
We say that the sequence {Ay} is Wijsman convergent to A if

lim d(x, Ag) = d(z, A),
k—00

for each x € X. In this case we write W — lim A, = A.
We say that the sequence {A} is Wijsman statistical convergent to A if,
for € > 0 and for each z € X,
1
lim —{k <n:|d(x,Ar) —d(z, A)| > }| = 0.

n—o n

We say that the sequence { Ay} is Wijsman lacunary statistical convergent
to A if {d(x, Ay)} is lacunary statistically convergent to d(z, A); i.e., for e > 0
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Asymptotically lacunary statistical equivalence of double sequences of sets 185

and for each z € X,
1
lim o~ | {k € I, : |d(z, Ay) — d(w, A)| > e}| = 0.

Let us consider non-empty closed subsets Ay, Br € X such that d(z, Ay)
> 0 and d(z, By) > 0 for each z € X. Then, we remember following definitions:

We say that the sequences {Ay} and { By} are asymptotically equivalent
(Wijsman sense) if for each z € X,

A
lim (@, Ar) -1
k d($,Bk)
(denoted by Ay ~ By).

We say that the sequences {Ay} and {By} are asymptotically statistical
equivalent (Wijsman sense) of multiple L if for every e > 0 and for each
re X,

d(l’, Ak)

1
lim—|{k<n:|—=
mn‘{ =" ‘d(x,Bw

—L‘Ze}‘zo

(denoted by {Ak} {Bk}) and simply asymptotically statistical equivalent
(Wijsman sense) if L = 1.

We say that the sequences {A;} and {By} are asymptotically lacunary
equivalent (Wijsman sense) of multiple L if for each z € X,

Z Z'Ak_
hrkldek

(denoted by {Ak} {Bk}) and simply asymptotically lacunary equivalent
(Wijsman sense) if L =1

We say that the sequences {Aj} and {Bj} are strongly asymptotically
lacunary equivalent (Wijsman sense) of multiple L if for each x € X

{L‘ Ak
lim —
1m rkZI m Bk

~1f-0

L
(denoted by {Ay} W 2lo {By}) and simply strongly asymptotically lacunary
equivalent (Wijsman sense) if L = 1.
We say that the sequences {Ax} and {Bj} are asymptotically lacunary
statistical equivalent (Wijsman sense) of multiple L if for every ¢ > 0 and

each x € X,
d(xaAk)
kel,:|————=—L|> =0
{ - ‘d(l‘,Bk) ‘_6}‘

1
lim —
T r
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186 F. Nuray, R. F. Patterson, E. Diindar

(denoted by {Ak} {Bk} ) and simply asymptotically lacunary statistical
equivalent (Wijsman sense) if L = 1.

A double sequence x = (mk]) k,jeN of real numbers is said to be convergent
to L € R in Pringsheim’s sense if for any € > 0, there exists V. € N such that
|zr; — L| < e, whenever k, j > N,. In this case we write

P — lim z3; = L.

7]_)w
The double sequence {Ay;} is Wijsman convergent to A if
P — lim d(z,Ay;) = d(z, A)
k,j—o0

for each z € X.
We say that the double sequence {Ay;} is Wijsman statistically convergent
to A if for each € > 0 and for each x € X,

P— lim —|{k<m]<n |d(x, Ay;) — d(z, A)| > e} = 0.

m,n—o0 Mmn

The double sequence 6 = {(k,, js)} is called double lacunary sequence if
there exist two increasing sequences of integers such that

ko=0, h.=k,—k._1—>0 as r— o0 and
jo =0, hy=ju—ju—1—00 as u— 0.
We use following notations in the sequel:

kru:k'rjua hru:hrBU7 Iru:{(kaj):k"”—1<k§k7‘ and j“—1<-j§ju}’

and ¢, = ,ju .
kr—l Ju—1

We say that the double sequence {Ay;} is Wijsman lacunary statistically
convergent to A, if for each € > 0 and for each x € X,

r

qr =

P— 1

7,U—>00 h

(F;5) € Iru = |d(x, Ayj) — d(z, A)| > e}| = 0.

In this case, we write stz — limyy, Ay; = A.
Let 0 = {(kr, js)} be a double lacunary sequence. The double sequence
{Aj;} is Wijsman strongly lacunary convergent to A if for each z € X,

ki Ju
1
P — lim Z Z |d(~’UaAkj) —d(z,A)] = 0.

’I”U,H(X)
h h“ k=kr_1+1j=ju—1+1

3. Main results

Throughout the paper, we let § = {(k,,js)} be a double lacunary se-
quence and A, Ay;, By; be any non-empty closed subsets of X. We define
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Asymptotically lacunary statistical equivalence of double sequences of sets 187

d(z; Akj, Byj) as follows:

d(x,Akj)

————=, T ¢ Ag; U Byj,
d(z; Ayj, Byj) = 3 d(z, Byj) ! !

L, X € Ak:j U Bkj'

DEFINITION 3.1. We say that the double sequences {Ay;} and {By;} are
Wijsman asymptotically equivalent of multiple L if for each z € X

P — lim d(z; Agj, Bj) = L,

k,j—o0

WL
in this case we write {Ay;} ~ {By;}, and simply Wijsman asymptotically
equivalent if L = 1.

As an example, consider the following double sequences of circles in the
(x,y)-plane:
Apj = {(z,y) e R* 1 2? + y* — 2kx — 2jy = 0}
and
By = {(m,y) e R?: 2 + y? + 2kx + 2jy = O}.
Since
P — lim d(x; Agj, Byj) = 1,

k,j—o0
the double sequences {Ay;} and {By;} are Wijsman asymptotically equivalent.
Wl
Thus, Akj ~ Bkj-

DEFINITION 3.2. We say that the double sequences {Ay;} and {By;} are
Wijsman asymptotically C-equivalent of multiple L if for each x € X

1 m,n
p— lim —— > d(w; Agj, Bry) = L,
k,j=1,1
. . . WGk . . .
in this case we write {Ay;} ~~ {By;}, and simply Wijsman asymptotically
C-equivalent if L = 1.

DEFINITION 3.3. We say that the double sequences {Ay;} and {By;} are
Wijsman strongly asymptotically C-equivalent of multiple L if for each x € X

1 m,n
p— lm — ) 21 1 |d(x; Ayj, Brj — L =0,
J=1,

WaCFE
in this case we write {Ay;} vl {By;}, and simply Wijsman strongly

asymptotically C-equivalent if L = 1.
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188 F. Nuray, R. F. Patterson, E. Diindar

DEFINITION 3.4. We say that the double sequences {Ay;} and {By;} are
Wijsman asymptotically lacunary equivalent of multiple L if for each z € X
) 1

T k€ Ly

WaN}
in this case we write {Ay;} 0 {By;}, and Wijsman asymptotically lacunary

equivalent if L = 1.
DEFINITION 3.5. We say that the double sequences {Ay;} and {By;} are

Wijsman strongly asymptotically lacunary equivalent of multiple L if for each
reX

L
in this case we write {Ay;}  ~ ] {By;}, and Wijsman strongly asymptoti-
cally lacunary equivalent if L = 1.

As an example, consider the following double sequences;

— -\ 2 2 kfrf k ]{37‘7 hr ’
{(fv,y)ERQ:(a“" ”.kj)+y.:1}, TR 1+ V]
Ak] = k] 2]{}] Ju—1<7 <]u_1+[4 /hu]7
{(17 1)}a Otherwise.
and
\ 2 2 k/'rf k k:rf hr ’
{(33,31)61&2:(“ ”.kj)+y.=1}, if Fr1 <k <kt Vi
kj 2kj Ju—1<J < Ju—1+[V ],
By =
{(1,1)}, otherwise.
Since .
Pl oo k Z ‘d(x;Akj,Bkj) _ 1‘ —0,
7]617'u

the double sequences {Ay;} and {By;} are Wijsman strongly asymptotically
WaN}

lacunary equivalent. Thus, {Ay;} ~ {B;}-

THEOREM 3.1. For any double lacunary sequence 0, if

1 <liminf g, <limsupg, < o and 1 < liminfgq, <limsupg, < o0,
r T u u

WyCL . : [WaNg]
then {Ai} " By} if and only if {Agg} " 20 {Big).
Proof. Firstly, we assume that lim inf, ¢, > 1 and liminf, ¢, > 1, then there
exist A, u > 0 such that
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Asymptotically lacunary statistical equivalence of double sequences of sets 189

g- > 1+ Xand g, > 1+ p for all »,u > 1, which implies that
brju _ (L N1+ p)

hehy ~ Ap
L
Let Ay; (W2 By;. We can write
1 1
— > |d(w; Agj, Brj) — Ll = —— > |d(x; Ass, Bis) — L
haha k,j€lry hrha i,s=1,1
1 k'r‘flvjufl
- 7 Z |d(x;Ai5uBis) - L‘
hy b i,s=1,1
. Ky
km( 1 >
= . d(x; Ais, Bis) — L
B \ Erja Z.ﬁ;,l‘ (@ Ao Bis) = L1
. kr—l,ju—l
kr—l]u—l ( 1 >
- 2 - d(x; Ais, Bis) — L| ).
hrhu kT—lJu—l l_zll ‘ ( ' 18) ‘
L
Since Ay; (W2 By, the terms
! ki d(@; Ass, Bis) — L] and  —— krflu( Aso, Bug) — L|
s X5 Agsy Dis) — 11 P €5 Ajsy Dis) —
k,r,ju i’s:l’l 18 18 kriljuil i’S::l’l 18 18

both convergent to 0, and it follows that
1
hyhy,

k,j€lry

. [WaNg] )
that is, Ay;  ~°  Byj. Secondly, we assume that limsup,¢q. < o0 and
limsup,, ¢, < 00, then there exist M, N > 0 such that ¢, < M and ¢, < N,

Wa Nk
for all r,u. Let {Ay;} Walsl {By;} and € > 0. Then we can find R,U > 0
and K > 0 such that

sup Tis <€ and Tis < K forall 4,s =1,2,---,
i>R,s>U
where
1
Tru = 77 Z|d(x;Akj)Bkj) —L|.
hyha, -

If t,v are any integers with k,_1 <t < k. and j,_1 < v < j,, where r > R
and u > U, then we can write
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190 F. Nuray, R. F. Patterson, E. Diindar

1 t,’U 1 kT‘?ju
. Z |d(x; Ais, Bis) — L| < ——— Z |d(z; Ais, Bis) — L
tv i,s=1,1 Kr—1ju-1 is=1,1
1
= <Z |d(w; Ais, Bis) — L| + ) d(; Ais, Bis) — L
r—1Ju—1 T T
11 12
+ > |d(w; Aig, Bis) — L] + > |d(; Aig, Bis) — L] + - -
I21 122
+ > |d(x; Ajs, Bis) — L|>
IT’U.
kij ki(ja — j ko — k1)J
< 7”.1 .T11 + 71(‘72 ; ]1>-7'12 + 7( 2 .1)j1-7'21
kr—l]u—l kr—l]u—l kr—l]u—l
ko — k1)(jo — 4 kr — kr—1)(Ju — ju—
L (k2 = k) (5 ‘71),722+...+( r — kr1) (o — ju I)TRU
k;rfljufl k‘r*l]ufl
ky — kr—1) Gy — Ju—
RS ( T T 1)('.]u Ju 1)7_7%
kr—lju—l
fi B S
< ( sup Tis) RJ.U + ( sup Tis) (kT kR)(]u ]U)
is>11 7 kr_1ju—1 i>R,s>U kr—1ju—1
< Kﬂ +eMN.
kr—l]u—l
Since ky_1,jyu—1 — 0 as t,v — o0, it follows that
1 t,v
- D ld(x; Ais, Bis) — L| — 0
i,s=1,1

1
and consequently {Ay;} W2G7] {By;}. Hence we obtain the desired result. m
DEFINITION 3.6. We say that the double sequences {Ay;} and {Bj;}are
Wijsman asymptotically statistical equivalent of multiple L if for each € > 0
and for each x € X
1
P— lim — {k <m,j < n:|d(z; A, Bry) —L‘ > 5}‘ —0,

m,n—00 Mn

WoSL

in this case we write {Ay} {By}, and simply Wijsman asymptotically

statistical equivalent if L = 1.

As an example, consider the following double sequences of circles in the
(x,y)-plane:

{(x,y) e R? : 22 + y® + kjy = 0}, if k and j are a square integer,
! {(1,1)}, otherwise.
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Asymptotically lacunary statistical equivalence of double sequences of sets 191

and
By = { {(x,y) e R? : 2% + y*> — kjy = 0}, if k and j are a square integer,
{(1,1)}, otherwise.
Since

|
P— lim —{kgm,jgn: d(x;Akj,Bkj)—1‘ze}‘:o,

mn—0 mn
the double sequences {Ay;} and {Bj;} are Wijsman asymptotically statistical
1
equivalent. Thus, {Ay} W25 {By}.

DEFINITION 3.7. We say that the double sequences {Ay;} and {By;} are
Wijsman asymptotically lacunary statistical equivalent of multiple L if for
every € > 0 and each x € X

P lim —— {(k,j)e[ru: d(:c;Akj,Bkj)—L‘zeHzo,

7,U4—>00 h'r hu

WaSk
in this case we write {Ay;} ol {By;}, and simply Wijsman asymptotically
lacunary statistical equivalent if L = 1.

As an example, consider the following double sequences;

krfl <k< krfl + [m]a

Ay e {(w,y)€R2iw2 +y—1)°= klj} if Jum1 < <Ju-1 + [V]
and k is a square integer,
{(0,0)}, otherwise,
and
kr—1 <k <ke—1 + [Vhr],
2. 9 5 1 . . =
By {(w,y)eR et (y+1) =kj}, i Ju1 < <Jur [\/H]
and k is a square integer,
{(0,0)}, otherwise.
Since
P lim hlhu {(k,j) €Ly : ’d(x;Akj,Bkj) - 1) > s}’ —0,

the sequences {Ay;} and {By;} is Wijsman asymptotically lacunary statistical

Wa Sk
equivalent. Thus, {Ay;} X% (B}
WoNE WoSE
THEOREM 3.2. (i) {Akj}[ ie]{B,ﬂ.} implies  {Ag;}  ~° {Buj},

(i1) [WaNf] is a proper subset of WaSj .
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192 F. Nuray, R. F. Patterson, E. Diindar

: [WanNy] .
Proof. (i) Let e >0 and {Ay;} = ~ " {By;}. Then we can write

>, |d(x; Agj, Bgj) — L| = 2 |d(x; Ayj, Bij) — L|
k,jelry k,j€lry
|d(x;Arj,Brj)—L|>e
+ > |d(x; Ay, Brj) — L|
k,j€lry

|d(a; Ay, Brj)—L|<e
> €. [{(k,J) € Ly : |d(z; Akj, Bij) — L| = €}

which yields the result.

(i1) Suppose that [WoNF| < WaSk. Let {Ay;} and {By;} be following
sequences;

g = [ iRy <k S ke [VA, Gt <5 S a4 [V
! {0},  otherwise.

By; = {0} forall k and j. Note that {A4;;} is not bounded. We
have, for every € > 0 and for each z € X,

. 1 .
P— lim ———|{(k,j) € [ru : [d(z; Apj, Bij) — 1] = €}

,u—>00 hrhu

7,U—>00 h,hy

WS}
Thus, {Ay;} ol {By;}. On the other hand,

1
— lim — |d<$,Ak,Bk)—L‘ :+:0
,u—00 hrhu k,;ru J J

P

[WaNg]
Hence {Akj} # {Bk} [

Wa Sk

THEOREM 3.3. d(z,Ay;) = O(d(z,By;)) and {Ag;} ~° {By;} then
[want]
{Ar} - ~" By}
WaSk

Proof. Suppose that d(z, Ay;) = O(d(z, By;)) and {Ag;} ~° {By;}. Then,
we can assume that

‘d(.’L‘, Akj; Bkj) — L‘ < M
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Asymptotically lacunary statistical equivalence of double sequences of sets 193

for each x € X and all k and all j. Given € > 0, we get

1 1
™ Y, ld(a; Ay, Biy) — L] = ™ 2 |d(; Akj, Brj) — L
L k,je[m T k,jEITu
‘d(x;Akj,Bkj)—L|Za
1
+ o > |d(x; Akj, Brj) — L
U k,j€lry
|d(;Ar;,Brj)—L|<e
M .
< Wl H(ka.j) € Ly : |d<$;AkjaBkj) - L‘ > 5}’ t+ée.
[Ny ]

Therefore {Ag;} = ~" " {By;}. =

THEOREM 3.4. If0={(k;,js)} is a double lacunary sequence with liminf, g,
> 1, liminf, g, > 1, then

L
(A} "5 (Bt implies (A} 27 {Byy).
Proof. Suppose first that liminf, ¢, > 1 and liminf, g, > 1, then there exist
A, > 0 such that ¢, > 1+ X and ¢, > 1 + p for all r,u > 1, which implies
that
rju _ (14 X)(1+ )
hehy ~ Ap

L
If {Ay;} Was {By;}, then for every € > 0, for sufficiently large r,u and for
each x € X, we have

1 . .
= Ik < kr, § < ju:ld(z; Agj, Brj) — L| > €}
1 .
> oy {(k,j) € Iy : |d(x; Agj, Bij) — L| > €}
(T+ M) (1+p) 1 .
> . — k Iy o |d(x; Ags, Bri) — L| > )
> v hrhuH( ,J) € |d(x; Akj, Brj) — L| > €}

this completes the proof. =

THEOREM 3.5. If 6={(k,, js)} is a double lacunary sequence with lim sup,. g,
< o0, limsup,, gry, < 0 then
WaSk . . Wa St
{Arj} ~" {Bij}  implies {Ay;} "% {Byj}.
Proof. Assume that limsup, ¢, < o and limsup,, g, < o0, then there exist

WoSE
M, N > 0 such that ¢, < M and ¢, < N, for all r,u. Let {A;} ol {By;}
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194 F. Nuray, R. F. Patterson, E. Diindar

and ¢ > 0. There exists R > 0 such that for every r,s > R

1

hyhg
We can also find H > 0 such that A,; < H for all r,s = 1,2,... . Now let
m,n be any integers satisfying k.—1 < m < k, and j,—1 < n < j,, where
r,s > R. Then we can write

ATS

[{(k,5) € Lns + |d(23 Agj, Byj) — L] > e} < e.

1 .
— {k <m,j <n:|d(z; Agj, Brj) — L| > €}

mn
1 . .
_mHkSkm] <ju:|d(z; Ayj, Bgj)—L| > ¢}|
1 .
:mH(kd)efn:\d(x;Akj,Bkj)—les}l
oo Wk d) & B s fd(e; Ay, Bij) —L| 2 e}
1 .
-I—mH(kJ)EIlQ:|d(x;Akj,Bkj)_L’25}|
1 .
+m’{(k%])e—rmi!d(x;Akj,Bkj)_Lyng
1 .
+m’{(k’])elru:’d(x;AkjaBkj)_L’Zé“H
k1j '
:m|{(k’])e‘[n:|d(x;AkjaBkj)_L|Z€}|
ko—Fk1)j1 .
- _1; _1(k2)_k1)j1 {(k,j) € Io : |d(x; Akj, Bij)—L| > €}
k1(j2—J1)

. N A k,'el:dx;A‘,B'—LZg
kr—1ju-1k1(j2—J1) [{(k, 7)€ hha: |d(w; Arj, Brj) — L] > €}

(k2—k1)(j2—J1)
ker—1ju_1(ka—k1)(j2a—j1)

[{(k,j) € Iz :|d(x; Akj, Brj) — L| > €}

(kr—kr—1)(JrR—Jr-1) )
T ~ — k,j)€lIpp:|d(z; Ag;, Br;)—L| >¢€
krfljufl(kR—k’R_l)(jR_jR_l)H( )€ Irr:|d(x; Ayj, Bij) —L| > €}|

(k;r _k;rfl)(jr_jrfl)
kr—lju—l(kr _kr—l)(jr_jr—l)

H(kaj)elr’r : ‘d(x;Ak:ijkj)_L‘ Z€}|
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Asymptotically lacunary statistical equivalence of double sequences of sets 195

k1j ko—k1)j k1(jo—7 ko—k1)(ja—74
_ A11+( 2 ,1)]1A21+ 1(.72. ]1)A12+( 2 1)(]2 ]1)A22
kr—l]u—l kr—l]u—l kr—l]u—l kr—l]u—l

(kr—kr—1)(jR—Jr-1)

(kr - kr—l)(jr _jr—l) A

+ - ARp+...+ -
k‘rfljufl kaL]u—l T
k] PR
S {Sup Ars}Ri.R-f-{ sup Ars}( r R)(']T ]R)
r,s>1 kr_1ju—1 rs>R kr—1ju—1
kni
<H —BR_ Lo M.N.
kr—1ju—1

This completes the proof. m

Combining Theorem 3.4 and Theorem 3.5, we have

THEOREM 3.6. If 6 = {(k,,js)} is a double lacunary sequence with

then

1]

2]
3]

(4]

5]
(6]

[7]
(8]

(9]
[10]
[11]
[12]

[13]

1 < liminf ¢, < limsupg, < o0 and 1 <liminf g, < limsup g, <
T r u u

WaSE . : :
(A} 7 (B ifand only if {Ai} "X {Biy).
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