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ON ALMOST ASYMPTOTICALLY LACUNARY STATISTICAL

EQUIVALENCE OF SEQUENCES OF SETS

U�UR ULUSU

Abstract. In this paper we study the concepts of Wijsman almost asymptoti-
cally statistical equivalent, Wijsman almost asymptotically lacunary statistical
equivalent and Wijsman strongly almost asymptotically lacunary equivalent
sequences of sets and investigate the relationship between them.

1. Introduction and Background

The concept of convergence of a sequence of real numbers has been extended to
statistical convergence independently by Fast [6] and Schoenberg [16].

De�nition 1.1. (Fridy, [7]) The sequence x = (xk) is said to be statistically
convergent to the number L if for every ε > 0,

lim
n

1

n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

(denoted by st− limxk = L).

The concept of convergence of sequences of numbers has been extended by several
authors to convergence of sequences of sets. The one of these such extensions
considered in this paper is the concept of Wijsman convergence (see, [2, 4, 12, 17,
19]).

Let (X, ρ) be a metric space. For any point x ∈ X and any non-empty subset A
of X, we de�ne the distance from x to A by

d(x,A) = inf
a∈A

ρ(x,A).

De�nition 1.2. (Baronti & Papini, [2]) Let (X, ρ) be a metric space. For any
non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman
convergent to A if

lim
k→∞

d(x,Ak) = d(x,A)

for each x ∈ X. In this case we write W − limAk = A.
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Let (X, ρ) a metric space. For any non-empty closed subsets Ak of X, the
sequence {Ak} is said to be bounded if supk d(x,Ak) < ∞ for each x ∈ X.

Nuray and Rhoades [12] extended the notion of convergence of set sequences to
statistical convergence, and gave some basic theorems. Also the concept of almost
statistical convergence for sequences of sets was given by Nuray and Rhoades in
[12].

De�nition 1.3. (Nuray & Rhoades, [12]) Let (X, ρ) be a metric space. For any
non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman
statistical convergent to A if {d(x,Ak)} is statistically convergent to d(x,A); that
is, for ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak)− d(x,A)| ≥ ε}| = 0.

De�nition 1.4. (Nuray & Rhoades, [12]) Let (X, ρ) be a metric space. For any
non-empty closed subsets A,Ak ⊆ X, we say that the sequence {Ak} is Wijsman
almost statistical convergent to A if for ε > 0 and for each x ∈ X,

lim
n→∞

1

n
|{k ≤ n : |d(x,Ak+i)− d(x,A)| ≥ ε}| = 0,

uniformly in i.

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such
that k0 = 0 and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the
intervals determined by θ will be denoted by Ir = (kr−1, kr], and ratio kr

kr−1
will be

abbreviated by qr.

Ulusu and Nuray [17] de�ned the Wijsman lacunary statistical convergence of
sequences of sets, and considered its relation with Wijsman statistical convergence,
which was de�ned by Nuray and Rhoades. Also, the concept of Wijsman lacunary
almost statistical convergence and Wijsman lacunary strongly almost convergence
were given by Ulusu and Nuray in [17].

De�nition 1.5. (Ulusu & Nuray, [17]) Let (X, ρ) a metric space and θ = {kr}
be a lacunary sequence. For any non-empty closed subsets A,Ak ⊆ X, we say that
the sequence {Ak} is Wijsman lacunary statistical convergent to A if {d(x,Ak)} is
lacunary statistically convergent to d(x,A); that is, for ε > 0 and for each x ∈ X,

lim
r

1

hr
| {k ∈ Ir : |d(x,Ak)− d(x,A)| ≥ ε} | = 0.

In this case we write Sθ − limW = A or Ak → A(WSθ).

De�nition 1.6. (Ulusu and Nuray, [17]) Let (X, ρ) a metric space and θ = {kr}
be a lacunary sequence. For any non-empty closed subsets A,Ak ⊆ X, we say that
the sequence {Ak} is Wijsman lacunary almost statistical convergent to A if for
each ε > 0 and for each x ∈ X,

lim
r→∞

1

hr
| {k ∈ Ir : |d(x,Ak+i)− d(x,A)| ≥ ε} | = 0,

uniformly in i.
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De�nition 1.7. (Ulusu and Nuray, [17]) Let (X, ρ) a metric space and θ = {kr}
be a lacunary sequence. For any non-empty closed subsets A,Ak ⊆ X, we say that
the sequence {Ak} is Wijsman lacunary strongly almost convergent to A if for each
x ∈ X,

lim
r→∞

1

hr

∑
k∈Ir

|d(x,Ak+i)− d(x,A)| = 0,

uniformly in i.

Marouf [11] presented de�nitions for asymptotically equivalent sequences and
asymptotic regular matrices. Patterson [13] de�ned asymptotically statistical equiv-
alent sequences by using the de�nition of statistical convergence.

De�nition 1.8. (Marouf, [11]) Two nonnegative sequences x = (xk) and y = (yk)
are said to be asymptotically equivalent if

lim
k

xk

yk
= 1,

(denoted by x ∼ y).

De�nition 1.9. (Patterson, [13]) Two nonnegative sequences x = (xk) and y =
(yk) are said to be asymptotically statistical equivalent of multiple L provided that
for every ε > 0,

lim
n

1

n

{
the number of k < n :

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}
= 0,

(denoted by x
SL∼ y), and simply asymptotically statistical equivalent if L = 1.

Patterson and Sava³ [14] extended the de�nitions presented in [13] to lacunary
sequences. In addition to these de�nitions, natural inclusion theorems were pre-
sented.

De�nition 1.10. (Patterson and Sava³, [14]) Let θ = {kr} be a lacunary sequence,
two nonnegative sequences [x] and [y] are said to be asymptotically lacunary statis-
tical equivalent of multiple L provided that for every ε > 0,

lim
r

1

hr

∣∣∣∣{k ∈ Ir :

∣∣∣∣xk

yk
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

(denoted by x
SL
θ∼ y) and simply asymptotically lacunary statistical equivalent if

L = 1. Furthermore, let SL
θ denote the set of x and y such that x

SL
θ∼ y.

De�nition 1.11. (Patterson and Sava³, [14]) Let θ = {kr} be a lacunary sequence,
two number sequences x = (xk) and y = (yk) are said to be strong asymptotically
lacunary equivalent of multiple L provided that,

lim
r

1

hr

∑
k∈Ir

∣∣∣∣xk

yk
− L

∣∣∣∣ = 0,

(denoted by x
NL

θ∼ y) and strong simply asymptotically lacunary equivalent if L = 1.

In addition, let NL
θ denote the set of x and y such that x

NL
θ∼ y.
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Ulusu and Nuray [18] extended the de�nitions presented in [14] to sequences
of sets in the Wijsman sense. In addition to these de�nitions, natural inclusion
theorems are presented.

De�nition 1.12. (Ulusu & Nuray, [18]) Let (X, ρ) be a metric space. For any
non-empty closed subsets Ak, Bk ⊆ X such that d(x,Ak) > 0 and d(x,Bk) > 0 for
each x ∈ X. We say that the sequences {Ak} and {Bk}are Wijsman asymptotically
statistical equivalent of multiple L if for every ε > 0 and for each x ∈ X,

lim
n

1

n

∣∣∣∣{k ≤ n :

∣∣∣∣d(x,Ak)

d(x,Bk)
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

(denoted by {Ak}
WSL∼ {Bk}) and simply Wijsman asymptotically statistical equiv-

alent if L = 1.

De�nition 1.13. (Ulusu & Nuray,[18]) Let (X, ρ) be a metric space and θ be
a lacunary sequence. For any non-empty closed subsets Ak, Bk ⊆ X such that
d(x,Ak) > 0 and d(x,Bk) > 0 for each x ∈ X. We say that the sequences {Ak}
and {Bk} are Wijsman asymptotically lacunary statistical equivalent of multiple L
if for every ε > 0 and each x ∈ X,

lim
r

1

hr

∣∣∣∣{k ∈ Ir :

∣∣∣∣d(x,Ak)

d(x,Bk)
− L

∣∣∣∣ ≥ ε

}∣∣∣∣ = 0,

(denoted by {Ak}
WSL

θ∼ {Bk}) and simply Wijsman asymptotically lacunary statis-
tical equivalent if L = 1.

2. Main Results

In this section we shall give some new de�nitions and new theorems.

De�nition 2.1. Let (X, ρ) be a metric space. For any non-empty closed subsets
Ak, Bk ⊆ X. We say that the sequences {Ak} and {Bk} are Wijsman almost
asymptotically statistical equivalent of multiple L if for every ε > 0 and for each
x ∈ X,

lim
n

1

n
|{k ≤ n : |d(x;Ak+i, Bk+i)− L| ≥ ε}| = 0,

uniformly in i where

d(x;Ak, Bk) =


d(x,Ak)

d(x,Bk)
, x ̸∈ Ak ∪Bk

L , x ∈ Ak ∪Bk.

In this case we write {Ak}
(ŴS)

L∼ {Bk} and simply Wijsman almost asymptotically

statistical equivalent if L = 1. Furthermore, let
(
ŴS

)
L
denote the set of {Ak} and

{Bk} such that {Ak}
(ŴS)

L∼ {Bk}.

Example 2.2. Consider the following sequences;

Ak =

{
{(x, y) : x2 + y2 − 2kx = 0} , if k is a square integer,
{(1, 1)} , otherwise.
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and

Bk =

{
{(x, y) : x2 + y2 + 2kx = 0} , if k is a square integer,
{(1, 1)} , otherwise.

Since

lim
n

1

n
|{k ≤ n : |d(x;Ak+i, Bk+i)− 1| ≥ ε}| = 0,

uniformly in i, the sequences {Ak} and {Bk} is Wijsman almost asymptotically

statistical equivalent. That is {Ak}
(ŴS)

1∼ {Bk}.

De�nition 2.3. Let (X, ρ) be a metric space and θ be a lacunary sequence. For
any non-empty closed subsets Ak, Bk ⊆ X. We say that the sequences {Ak} and
{Bk} are Wijsman almost asymptotically lacunary statistical equivalent of multiple
L if for every ε > 0 and for each x ∈ X,

lim
r

1

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}| = 0,

uniformly in i. In this case we write {Ak}
(ŴSθ)

L∼ {Bk} and simply Wijsman almost

asymptotically lacunary statistical equivalent if L = 1. In addition, let
(
ŴSθ

)
L

denote the set of {Ak} and {Bk} such that {Ak}

(
ŴSθ

)
L∼ {Bk}.

Example 2.4. Consider the following sequences;

Ak :=


{
(x, y) ∈ R2 : (x+ 1)

2
+ y2 =

1

k

}
,

if kr−1 < k < kr−1 + [
√
hr] and

k is a square integer,
{(0, 0)} , otherwise.

and

Bk :=


{
(x, y) ∈ R2 : (x− 1)

2
+ y2 =

1

k

}
,

if kr−1 < k < kr−1 + [
√
hr] and

k is a square integer,
{(0, 0)} , otherwise.

Since

lim
r

1

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− 1| ≥ ε}| = 0,

uniformly in i, the sequences {Ak} and {Bk} is Wijsman almost asymptotically

lacunary statistical equivalent. That is {Ak}
(ŴSθ)

1∼ {Bk}.

De�nition 2.5. Let (X, ρ) be a metric space and θ be a lacunary sequence. For
any non-empty closed subsets Ak, Bk ⊆ X. We say that the sequences {Ak} and
{Bk} are Wijsman strongly almost asymptotically lacunary equivalent of multiple
L if for each x ∈ X,

lim
r

1

hr

∑
k∈Ir

|d(x;Ak+i, Bk+i)− L| = 0,

uniformly in i. In this case we write {Ak}
[ŴNθ]

L∼ {Bk} and simply Wijsman

strongly almost asymptotically lacunary equivalent if L = 1. In addition, let
(
ŴNθ

)
L

denote the set of {Ak} and {Bk} such that {Ak}

(
ŴNθ

)
L∼ {Bk}.
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Example 2.6. Consider the following sequences;

Ak :=


{
(x, y) ∈ R2 :

(x+
√
k)2

k
+

y2

2k
= 1

}
, if kr−1 < k < kr−1 + [

√
hr]

{(1, 1)} , otherwise.

and

Bk :=


{
(x, y) ∈ R2 :

(x−
√
k)2

k
+

y2

2k
= 1

}
, if kr−1 < k < kr−1 + [

√
hr]

{(1, 1)} , otherwise.

Since

lim
r

1

hr

∑
k∈Ir

|d(x;Ak+i, Bk+i)− 1| = 0,

uniformly in i, the sequences {Ak} and {Bk} is Wijsman strongly almost asymp-

totically lacunary equivalent. That is {Ak}
[ŴNθ]

1∼ {Bk}.

Theorem 2.7. Let (X, ρ) be a metric space, θ = {kr} be a lacunary sequence and
Ak, Bk be non-empty closed subsets of X;

(i) (a) {Ak}
[ŴNθ]

L∼ {Bk} ⇒ {Ak}
(ŴSθ)

L∼ {Bk},

(b)
[
ŴNθ

]
L
is a proper subset of

(
ŴSθ

)
L
;

(ii) d (x,Ak) = O (d(x,Bk)) and {Ak}
(ŴSθ)

L∼ {Bk} ⇒ {Ak}
[ŴNθ]

L∼ {Bk}.

Proof. (i)− (a). Let ε > 0 and {Ak}
[WN ]Lθ∼ {Bk}. For each x ∈ X, we can write∑

k∈Ir

|d(x;Ak+i, Bk+i)− L| ≥
∑
k∈Ir

|d(x;Ak+i,Bk+i)−L|≥ε

|d(x;Ak+i, Bk+i)− L|

≥ ε · |{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

uniformly in i which yields the result.

(i) − (b). Suppose that
[
ŴNθ

]
L
⊂

(
ŴSθ

)
L
. Let {Ak} and {Bk} be following

sequences;

Ak =

{
{k} , if kr−1 < k ≤ kr−1 +

[√
hr

]
r = 1, 2, · · ·

{0} , otherwise.

and

Bk = {0} for all k.

Note that {Ak} is not bounded. For every ε > 0 and for each x ∈ X, we have

1

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− 1| ≥ ε}| ≤

[√
hr

]
hr

→ 0, as r → ∞,

uniformly in i, that is, {Ak}
(ŴSθ)

1∼ {Bk}. On the other hand, there exists x in X
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1

hr

∑
k∈Ir

|d(x;Ak+i, Bk+i)− L| ̸→ 0, as r → ∞,

uniformly in i. Hence {Ak}
[ŴNθ]

L

̸∼ {Bk}.

(ii) Suppose that d (x,Ak) = O (d(x,Bk)) and {Ak}
(ŴSθ)

L∼ {Bk}. Then we can
assume that

|d(x;Ak+i, Bk+i)− L| ≤ M

for each x ∈ X, for all k and uniformly in i.
Given ε > 0 and for each x ∈ X, we get

1

hr

∑
k∈Ir

|d(x;Ak+i, Bk+i)− L| =
1

hr

∑
k∈Ir

|d(x;Ak+i,Bk+i)−L|≥ε

|d(x;Ak+i, Bk+i)− L|

+
1

hr

∑
k∈Ir

|d(x;Ak+i,Bk+i)−L|<ε

|d(x;Ak+i, Bk+i)− L|

≤ M

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|+ ε,

uniformly in i. Therefore {Ak}
[ŴNθ]

L∼ {Bk}. �

Lemma 2.8. Suppose that for given ε1 > 0 and every ε > 0 there exist i0 and j0
such that

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| < ε1,

for each x ∈ X, for all j ≥ j0 and i ≥ i0, then {Ak}
(ŴS)

L∼ {Bk}.

Proof. Let ε1 > 0 be given. For every ε > 0 and for each x ∈ X, choose j′0 and i0
such that

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| < ε1

2
,

for all j ≥ j′0 and i ≥ i0. It is enough to prove that there exists j′′0 such that

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| < ε1, (2.1)

for each x ∈ X, for j ≥ j′′0 and 0 ≤ i ≤ i0. If we let j0 = max{j′0, j′′0 }, (2.1) will be
true for j > j0 and for all i. Once i0 has been chosen, i0 is �xed, so

|{0 ≤ k ≤ i0 − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| = M,
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for each x ∈ X. Now, taking 0 ≤ i ≤ i0, and j > i0, for each x ∈ X we have

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≤ 1

j
|{0 ≤ k ≤ i0 − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

+ |{i0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≤ M

j
+

1

j
|{i0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≤ M

j
+

ε1
2
.

Thus, for j su�ciently large and for each x ∈ X

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| ≤ M

j
+

ε1
2

< ε1,

uniformly in i which gives (2.1) and this step concludes the proof. �

Theorem 2.9. For every lacunary sequence θ = {kr},
(
ŴSθ

)
L
=

(
ŴS

)
L
.

Proof. Let {Ak} ∈
(
ŴSθ

)
L
, then from De�nition (2.3) assures us that, given

ε1 > 0 there exist ε > 0, ∃r0 and L such that

1

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}| < ε1,

for each x ∈ X, for r ≥ r0 and i = kr−1 + 1 + v where v ≥ 0.
Let j ≥ hr and write j = m · hr + t where 0 ≤ t ≤ hr and m is an integer.

Since j ≥ hr and m ≥ 0, we obtain the following, for each x ∈ X,

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≤ 1

j
|{0 ≤ k ≤ (m+ 1)hr − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

=
1

j

m∑
n=0

|{n · hr ≤ k ≤ (n+ 1)hr − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≤ (m+ 1)

j
hr · ε1

≤ 2m · hr · ε1
j

for m ≥ 1,

uniformly in i.

For
hr

j
≤ 1, since

m · hr

j
≤ 1 we have, for each x ∈ X,

1

j
|{0 ≤ k ≤ j − 1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}| ≤ 2ε1,
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uniformly in i. Then, Lemma 2.8 implies(
ŴSθ

)
L
⊆

(
ŴS

)
L
.

It is also clear that (
ŴS

)
L
⊆

(
ŴSθ

)
L

for every lacunay sequence θ. Hence, we have the result. �

Theorem 2.10. Let (X, ρ) be a metric space and Ak, Bk be non-empty closed
subsets of X. If θ = {kr} be a lacunary sequence with lim infr qr > 1, then

{Ak}
(ŴS)

L∼ {Bk} ⇒ {Ak}
(ŴSθ)

L∼ {Bk}.

Proof. Suppose �rst that lim infr qr > 1, then there exists a λ > 0 such that
qr ≥ 1 + λ for su�ciently large r, which implies that

λ

1 + λ
≤ hr

kr
.

If {Ak}
(ŴS)

L∼ {Bk}, then for every ε > 0, for each x ∈ X and for su�ciently large
r, we have

1

kr
|{k ≤ kr : |d(x;Ak+i, Bk+i)− L| ≥ ε}| ≥ 1

kr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

≥ λ

1 + λ
.

(
1

hr
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

)
,

uniformly in i. This completes the proof. �

Theorem 2.11. Let (X, ρ) be a metric space and Ak, Bk be non-empty closed
subsets of X. If θ = {kr} be a lacunary sequence with lim supr qr < ∞, then

{Ak}
(ŴSθ)

L∼ {Bk} ⇒ {Ak}
(ŴS)

L∼ {Bk}.

Proof. Let θ = {kr} be a lacunary sequence with lim supr qr < ∞. Then there is

an M > 0 such that qr < M for all r ≥ 1. Let {Ak}
(ŴSθ)

L∼ {Bk}, and ε1 > 0.
There exists R > 0 and ε > 0 such that for every j ≥ R and for each x ∈ X,

Aj =
1

hj
|{k ∈ Ij : |d(x;Ak+i, Bk+i)− L| ≥ ε}| < ε1,

uniformly in i. We can also �nd H > 0 such that Aj < H for all j = 1, 2, ... . Now
let t be any integer with satisfying kr−1 < t ≤ kr, where r > R. Then we can write,



EJMAA-2014/2(2) ON ALMOST ASYMP. LACUNARY STATIS. EQUIVALENCE OF 65

for each x ∈ X,

1

t
|{k ≤ t : |d(x;Ak+i, Bk+i)− L| ≥ ε}| ≤ 1

kr−1
|{k ≤ kr : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

=
1

kr−1
{|{k ∈ I1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|}

+
1

kr−1
{|{k ∈ I2 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|}

+ · · ·+ 1

kr−1
{|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|}

=
k1

kr−1 · k1
|{k ∈ I1 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

+
k2 − k1

kr−1(k2 − k1)
|{k ∈ I2 : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

+ · · ·+ kR − kR−1

kr−1(kR − kR−1)
|{k ∈ IR : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

+ · · ·+ kr − kr−1

kr−1(kr − kr−1)
|{k ∈ Ir : |d(x;Ak+i, Bk+i)− L| ≥ ε}|

=
k1

kr−1
A1 +

k2 − k1
kr−1

A2 + · · ·+ kR − kR−1

kr−1
AR

+
kR+1 − kR

kr−1
AR+1 + · · ·+ kr − kr−1

kr−1
Ar

≤
{
supj≥1 Aj

} kR
kr−1

+
{
supj≥R Aj

} kr − kR
kr−1

≤ H
kR
kr−1

+ εM,

uniformly in i. This completes the proof. �

Combining Theorem (2.10) and (2.11) we have following Theorem.

Theorem 2.12. Let (X, ρ) be a metric space and Ak, Bk be non-empty closed
subsets of X. If θ = {kr} be a lacunary sequence with 1 < lim infr qr ≤ lim supr qr <
∞, then

{Ak}
(ŴSθ)

L∼ {Bk} ⇔ {Ak}
(ŴS)

L∼ {Bk}.
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