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A B S T R A C T

Replacing animal proteins with plant proteins in diets has been demonstrated to have both health and en-
vironmental advantages, driving a debate about the potential of protein-rich crops as dietary replacements for
animal products. However, there is a lack of knowledge on how climate change could influence the potential for
producing protein-rich crops. This study addresses this knowledge gap for the European Union. We analysed 13
protein-rich crops, using the crop suitability model EcoCrop and climate projections for the 2050s, based on 30
Global Circulation Models, under the Representative Concentration Pathway 4.5. The results suggest that current
protein-rich crop distributions reflect climatic suitability. We demonstrate the heterogeneous impacts of climate
change on crop suitability. In general, conditions in northern Europe were modelled to become more favourable
for protein-rich crops, while in southern Europe modelled future climates limit the production of traditional
protein-rich crops commonly grown there, including chickpea and lentil. Model results show an expanded area
of high suitability for quinoa. Our results confirm the need for concerted breeding and research planning stra-
tegies to improve the tolerance of faba bean, lentil, and chickpea to the abiotic stresses that are predicted to
become more common with climate change. At the same time, production in northern Europe can benefit from
experimentation with protein-rich crops predicted to become more suitable there. Production planning and
agricultural policy should consider these likely impacts, to encourage shifts that follow the emerging geographic
patterns of crop suitability, and to support the resilience of protein-rich crop production in regions that may be
negatively impacted by climate change.

1. Introduction

Several analyses have found that global increases in animal pro-
duction and consumption are unsustainable (Tilman and Clark, 2014;
Hallström et al., 2015; Willett et al., 2019). These findings have led
many researchers to indicate the need for long-term dietary shifts and
specifically the replacement of animal products by plant-based products
(e.g.van Dooren et al., 2014; Berners-Lee et al., 2012; Willett et al.,
2019). Harwatt et al. (2017) demonstrate the potential for replacement
of animal proteins with plant proteins in developed countries. These
replacements would offer benefits for human health (Bouvard et al.,
2015; Becerra-Tomás et al., 2017), the environment (Cassidy et al.,
2013; Springmann et al., 2016), and global food security (West et al.,
2014; Erb et al., 2016). Most likely replacement products derive from
protein-rich crops, including legumes and pseudo-cereals (e.g. Erb

et al., 2016; Harwatt et al., 2017). Paradoxically, these crops have ex-
perienced several decades of decline in both production and con-
sumption (Manners, 2018). This decline has been registered in several
world regions, including Europe, and is due to a range of causes, both
agronomic and socio-economic (Voisin et al., 2014; Zander et al.,
2016). However, analyses of data up to the year 2013 indicate nascent
reversals in legume production in some European countries (Manners,
2018). There are indications that the production of protein-rich crops
will increase in the future, such as recent growth in demand, increasing
consumer awareness of the health benefits of dietary transitions, and
the projected long-term high prices of plant proteins (Pilorge and Muel,
2016; Watson et al., 2017; Clément et al., 2018).

Any increase in the production of protein-rich crops would have to
address the challenge of a changing climate. Global average tempera-
ture is estimated to increase by 1.5 °C by 2100 (IPCC, 2014). This will
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have profound effects on crop productivity (Delgado et al., 2011).
Changes in productivity will also lead to changes in crop distributions
(Chaves et al., 2003). Therefore, decision-makers need information
about possible future crop productivity patterns and geographical dis-
tributions to make strategic investments in infrastructure and capacities
to grow, process, and market protein-rich crops. Crop suitability models
can help to assess the impacts of climate change and generate in-
formation useful to policy makers, crop breeders, industry, and other
decision-makers (Zabel et al., 2014; Jarvis et al., 2012; Hyman et al.,
2013; Beebe et al., 2011). To date, large-scale analyses of climate
change impacts have largely concentrated on major crops (maize,
wheat, soybean, and rice) (e.g. Rosenzweig et al., 2014; Challinor et al.,
2014). Protein-rich crops have received less attention. The aim of this
study is to provide a foundation for pro-active planning of European
production of protein-rich crops in the face of climate change.

This investigation has three specific objectives: first, to investigate
the role of climate suitability in explaining contemporary protein-rich
crop distributions across the EU; second, to analyse the potential im-
pacts of future climates on the suitability of protein crops on arable land
within the EU; thirdly, to identify suitable protein-rich crop options for
future investigation and potential cultivation across the EU.

2. Material and methods

2.1. Crops and area

Our analysis uses current climate data (1970–2000) and future cli-
mate scenarios (2050s) across EU-28 countries to examine the current
and future climate suitability for 13 protein-rich legume and pseudo-
cereal crops (Table 1). These crops were selected due to their historic
presence in European agriculture, their importance as human food and
animal feed, and their presence in ongoing agronomic field tests
(Clément et al., 2018). Crop suitability was analysed at national level
(NUTS-1) and subnational level (NUTS-2) for all EU-28 Member States.
NUTS (Nomenclature of Territorial Units for Statistics) are a standardised
definition of census area. Malta was excluded due to its small agri-
cultural area. The analysis was performed only in areas currently re-
cognised as cropland (Ramankutty et al. 2008). Future changes in
cropland area are expected due to climate change (Porfirio et al., 2017)
and other non-climatic drivers (Smith et al., 2010). For simplicity,
cropland area in 2050 is assumed to be the same as in 2000.

2.2. EcoCrop and extension

For the major cereal grain crops, well-developed crop growth
models are available, but similar models are not available for most
protein-rich crops. Therefore, we used the EcoCrop model, which is a
simple, generic model. Specifically, we used the “ecocrop” function
from R package dismo to assess the suitability of an environment for

cultivation of a specified crop (Hijmans et al., 2017). As EcoCrop re-
quires few crop-specific parameters, it can be applied to a wide range of
crops, including those where less detailed ecophysiological information
is available. It has been used in several studies (e.g. Ramirez-Villegas
et al., 2013; Piikki et al., 2017). Vermeulen et al. (2013) demonstrated
that its outputs are largely consistent with those of more complex
models. Therefore, we consider EcoCrop to be an appropriate tool for
developing a coarse understanding of the impacts of climate change on
protein-rich crop suitability in Europe by 2050.

EcoCrop uses geospatial monthly precipitation and temperature
data to assess suitability (FAO, 2016). For each crop, the model re-
trieves from the EcoCrop database the parameters that correspond to its
acceptable temperature range, its acceptable range of total rainfall, and
the length of the crop cycle. EcoCrop does not know (or assume) the
best planting date for a given crop in a given place. Instead, the model
simulates different possible growing seasons and selects the most sui-
table. Each simulated season starts on the first day of the month, one for
each of the 12 months of the year. Each simulated season has the same
length, determined by the corresponding crop-specific parameter in the
EcoCrop database. Then, for each of the 12 simulated seasons, the
model assesses whether the total rainfall and monthly temperature
conditions during this period fall within the acceptable temperature
and rainfall range. This produces 12 suitability values, one for each
possible planting date. From this series, EcoCrop takes the highest value
as crop suitability. This assumes that a farmer would plant during the
most ideal season. This means that a single crop can be suitable in one
area during the winter and in another area during the summer. This
selection of the ideal growing season ignores the possibility of multiple
crop cycles during a single year. In the comparisons between current
and future climate, this approach accounts for potential shifts in
planting dates as an adaptation measure taken by farmers. Suitability
values range from 0 (unsuitable) to 1 (suitable). The EcoCrop model
was run using current climate data to develop a contemporary baseline
and were also run using climate data for the 30 Global Circulation
Models (GCM) selected, under Representative Concentration Pathway
(RCP) 4.5. A more detailed description of the model can be found in
Manners and van Etten (2018) and Online Resource 1.

EcoCrop also permits the inclusion of additional, non-climatic, data,
which potentially improve predictions (Piikki et al., 2017). However,
also for these non-climatic factors, numerical niche ranges need to be
defined (optimal range and absolute limits). A number of soil para-
meters were considered for inclusion in an “extended” (climate and
soil) EcoCrop model: soil texture, soil organic matter, and soil pH. The
EcoCrop database uses categories for both soil texture (light, medium,
heavy) and soil organic matter (low, moderate, high), without defining
the categories numerically (FAO, 2016). This precluded the inclusion of
these parameters in our modelling exercises. Also, soil organic matter is
not stable over time, but impacted by land use, which is difficult to
predict towards 2050 (Cambardella, 2005).

For soil pH, the EcoCrop database provides numerical niche ranges
(FAO, 2016), allowing us to include this parameter in our “extended”
EcoCrop model. Soil pH influences the potential for crop growth
through its influence on water uptake and nutrient availability
(Kemmitt et al., 2006; Ghimire et al., 2017). Legumes are especially
sensitive to soil pH, as it affects rhizobia establishment, plant growth,
and protein and amino acid levels (Rohyadi et al., 2004; Mohammadi
et al., 2012; Bekere et al., 2013; Ferreira et al., 2016). No future soil pH
projections are available; we treated soil pH as static over time. The
parent material is the main driving factor behind large-scale patterns in
soil pH of natural soils, rather than atmospheric deposition or climate
(Augusto et al., 2017). In areas where the soil pH level is outside the
acceptable range, farmers can take corrective measures, such as soil
amendments or increasing soil organic matter, but will incur (oppor-
tunity) costs by doing so. This cost is reflected in a lower suitability
index in our extended version of the EcoCrop model.

Crop suitability, under the extended model, for each cropland pixel

Table 1
List of 13 legume and pseudo-cereals analysed.

Common Name Scientific Name Crop Type

Amaranth Amaranthus ssp. Pseudo-cereal
Andean lupin Lupinus mutabilis Sweet Legume
Blue lupin Lupinus angustifolius L. Legume
Buckwheat Fagopyrum esculentum Moench Pseudo-cereal
Chickpea Cicer arietinum L. Legume
Common bean Phaseolus vulgaris L. Legume
Cow pea Vigna unguiculata ssp. unguiculate (L.) Walp. Legume
Faba bean Vicia faba L. Legume
Lentil Lens culinaris Medik. Legume
Pea Pisum sativum L. Legume
Quinoa Chenopodium quinoa Willd. Pseudo-cereal
Soybean Glycine max (L.) Merr. Legume
White lupin Lupinus albus L. Legume
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was defined as being the minimum value from the climatic and soil
suitability values. A full explanation of the extended model can be
found in Online Resource 1.

2.3. Crop, climate, and soil data

Crop suitability was modelled using climate data for present and
future conditions and soil pH data. We assumed that crop breeding and
varietal change will not result in a change in crop-specific climate
adaptation parameters. This is important for the interpretation of our
results. Some negative effects of climate change may be addressed by
breeding investments.

Current climate data were sourced from WorldClim 2, which con-
tains monthly (minimum, maximum, and mean) temperature and pre-
cipitation values. These monthly values are average levels over the
period 1970–2000 (Fick and Hijmans, 2017). From WorldClim 2, we
used 12 monthly layers of precipitation, minimum and mean tem-
perature data at a resolution of 2.5 arc minutes (∼4.5km² at the
equator). Future climate data (2050s) were taken from the Climate
Change, Agriculture and Food Security (CCAFS) database (Ramirez and
Jarvis, 2008). These data had been previously downscaled, as described
by Ramirez and Jarvis (2010). Twelve monthly data sets were collected
for precipitation, minimum, and mean temperatures at a resolution of
2.5 arc minutes. Data were collected for the 30 available GCMs (Online
Resource 2) under RCP4.5. RCP4.5 was selected as we consider the
scenario behind this pathway (IPCC, 2014) as the most probable and
informative for 2050.

We used soil pH data sourced from the International Soil Reference
and Information Centre (ISRIC) and their SoilGrids platform (Hengl
et al., 2017). Data represent pH at soil depths of 0, 5, 15, and 30 cm at
30 arc seconds. We averaged pH values of the entire soil profile
(0−30 cm) using the raster package (Hijmans et al., 2016) in the R
environment (R Core Team, 2016). We then aggregated the data to 2.5
arc minutes.

All data were cropped to an area from 30 °N to 75 °N and from 15 °W
to 55 °E, covering all EU-28 countries.

2.4. Comparison of modelled suitability with current crop distributions

An important question is whether environmental suitability of
protein-rich crops indeed constrains their current geographic distribu-
tions. We would only expect that future crop distributions are influ-
enced by climate change if there is evidence for environmental con-
straints at present. To test this, we compared the environmental
suitability determined by EcoCrop with agricultural production statis-
tics for each NUTS-2 region (European Commission, 2017). Agro-eco-
logical suitability is only one of many limiting factors, so we expect an
asymmetric relationship between production and suitability. Crops can
be absent in highly suitable areas, but we do not expect them to be
present in highly unsuitable areas. To analyse this type of relationship
we used quantile regression focusing on the highest quantile (0.95) of
production.

We analysed the 5 crops for which sub-national statistical data were
available. We used production area data for the year 2010 for blue
lupin, buckwheat, faba bean, pea, and soybean. The proportional dis-
tribution of each crop, in all NUTS-2 regions, was calculated from the
total production of all protein-rich crops within that region. We used
EcoCrop for the suitability analysis. The modelling exercise assumed
that rainfall was not a limiting factor, to allow for the possibility of
irrigated production. The statistical data do not reveal where the crop is
grown in each NUTS-2 region. The spatial match between the suitability
data (pixels of 2.5 arc minutes) and the production data of NUTS-2
regions (polygons that cover many of these pixels) is not known.
Therefore, we analysed two extreme cases, a pessimistic and an opti-
mistic one. If we are pessimistic, we would expect that the crop is
equally spread over all pixels within each region. Being optimistic, we

would expect that the crop is grown in the pixel(s) with the highest
suitability value in each region. Analysing both cases, we calculated the
mean and maximum EcoCrop suitability values of each NUTS-2 region
and crop combination. Mean suitability refers to the average value of
suitability for a crop across all the pixels within that region, whereas
maximum suitability refers to the maximum suitability value identified
for the same crop across the pixels within the region.

2.5. Analysis of future crop suitability

To analyse future crop suitability and inform decision-makers, we
took two different perspectives. Firstly, we analysed the expected
change in crop suitability. Secondly, we analysed which crop can be
expected to be the most suitable in each area under present and future
conditions (2050s).

In the first analysis, we calculated the percentage change in crop
suitability for the analysed EU-28 countries from the EcoCrop outputs
for the baseline and future climates. Mean values were calculated for
each crop in each country. Aggregated national suitability was defined
from the mean suitability values for all cropland surface pixels within
national boundaries (Ramankutty et al., 2008). This calculation was
replicated for all the 30 GCMs runs of the model. We also identified
whether climatic or soil pH conditions were the limiting factor in future
suitability across the EU-28 analysed countries. The limiting factor was
identified for all cropland surface pixels within national boundaries,
with the modal value taken to define the national limiting factor.

In a second analysis, we identified the best baseline and future crop
options for each cropland surface pixel. For this analysis we assumed
rainfed crop production. By assuming rainfed production, we focused
the analysis on identifying production areas where the crops would not
be competing strongly for scarce water resources. This matches our
main interest, which is to identify crops that have potential as meat
replacements to reduce environmental impacts. In addition, crop irri-
gation in Europe is not expected to expand greatly in the future
(Alexandratos and Bruinsma, 2012). This implies that most expansion
of these crops will be into non-irrigated areas.

To determine which was the most suitable crop, we created a
“stack” of layers in the raster package, with each layer representing a
different crop. We then calculated which layer had the highest suit-
ability value. In defining future ideal crop options, a similar approach
was applied. However, we initially developed a crop suitability layer
that included results from all 30 GCMs. For this, we extracted the mean
suitability value for each land surface pixel from a stack of the 30 GCM
specific crop layers. This was repeated for each crop. These mean
suitability layers were then stacked. Using these mean crop suitability
layers, we repeated the same methodology as for the current ideal op-
tion.

2.6. Sensitivity analysis

In section 2.4 we described one way to assess the validity of the
suitability modelling results, which was to compare with observed va-
lues for current crop distributions. This could only be done for 5 of the
13 crops. Complementing this analysis, we performed a sensitivity
analysis of the EcoCrop model. Previous analyses have shown that the
EcoCrop model has limited sensitivity to parameter changes in other
contexts (Ramirez-Villegas et al., 2013; Manners and van Etten, 2018).
To support the validity of the results, we analysed the sensitivity of
EcoCrop outputs to changes in temperate, precipitation, pH, and crop
cycle length.

We altered the climate and soil adaptation parameter ranges defined
by FAO (2016), varying them downwards and upwards so that the
correct parameter value is probably found within the resulting range
(Table 2). Following Manners and van Etten (2018), we varied the
maximum and minimum temperature parameters by -/+2 °C, altered
the range of precipitation by -/+ 25%, varied the permissible range of
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pH values by -/+ 25%, and changed the crop cycle length by -/+ 30
days. We combined changes to crop cycle length with the other three
parameters, to observe potential interactions. In total, 16 tests of sen-
sitivity were performed (Table 2).

To assess how sensitive suitability is to the changes in Table 2, we
analysed the difference in crop suitability outputs in each EU country
under the baseline parameters (FAO, 2016) with the outputs derived
from the scenarios. Following Manners and van Etten (2018) we cate-
gorised whether suitability increased, decreased, or remained the same
(neutral).

3. Results

3.1. Current geographic distribution and climate suitability of protein-rich
crops

Fig. 1 show the relationship between the agro-ecological suitability
for 5 protein-rich crops and the observed patterns of their share of land
(as a percentage of all protein-rich crops present). To make clear what
pattern would be expected of current protein-rich crop distributions, we
display a dashed line between the origin of the graph (zero production
share and zero suitability) to the right upper corner of the graph
(maximum suitability, top value share) (Fig. 1). If suitability is con-
sidered a limiting factor, most points are expected under this line and a
few above it. If points were not limited by this line at all, it would falsify
our hypothesis that climate suitability, as determined by EcoCrop,
limits observed crop production. We also include quantile regression
lines (red line), derived from regressions of the 95th quantile of crop
distribution and suitability values for each crop. Regression lines are
only plotted if a relationship was found to be significant (p < 0.05).

For all crops the majority of points is below the dashed line,
showing the hypothesised asymmetric relationship between suitability
and production. In most cases crop distribution is far below what may
be expected from its suitability, however. Buckwheat (Fig. 1g and 1 h)
is a particularly good example of this, with production only occurring in
regions with near perfect conditions, with its distribution being far
below what may be expected. This evidences that other factors, beyond
climatic suitability, are important when it comes to protein-rich crop
choice.

Fig. 1 also displays that at the 95th quantile of crop distributions,
climatic suitability is significantly related to distribution for soybean
and faba bean (max and mean suitability), and pea under mean suit-
ability. Other relationships were found to be marginally insignificant at
the 95th quantile of suitability results, but in most cases this is because
crop production occurs only under optimal conditions, limiting the
range of suitability values for the regression analysis.

3.2. Future protein-rich crop suitability

Outputs from the extended EcoCrop model demonstrate that climate
change could have widespread impacts on the suitability of protein-rich
crops across the EU (Fig. 2). Particularly vulnerable to future climates

are the traditionally important legume-producing countries, including
Spain, France, and Italy. Each of these countries will see average suit-
ability changes for common bean (-0.07 to -0.01), faba bean (-0.03 to
-0.01), chickpea (-0.04 to -0.01), and lentil (-0.03 to -0.01). In contrast,
in Denmark, the Netherlands, and the UK, suitability changes are po-
sitive for common bean (+0.02 to +0.08), faba bean (+0.02 to
+0.04), chickpea (+0.02 to +0.07) and lentil (+0.03 to +0.06).
These geographically divergent patterns are similar for crop species like
amaranth, quinoa, and Andean lupin. Full tabulated results are avail-
able in Online Resource 3.

The results of crop suitability changes (Fig. 2) suggest how different
regions of the EU are differentially affected by climate change. The
results also highlight the variation in suitability outputs for each
country under the specific conditions of each of the 30 GCMs. The re-
sults display that suitability will largely increase in northern and central
Europe and decrease in most of the south. Fig. 2 also shows that soil pH
had a limited effect in defining crop suitability. Suitability of quinoa
and blue lupin in Finland and Sweden were found to be mainly limited
by this parameter in 2050 (shown as green fill in the boxes of Fig. 2).
Where climate suitability is no longer the limiting factor, crop suit-
ability is highest on non-acidic soils.

Fig. 3 shows the spatial patterns of future suitability for selected
crops across the EU. These results present average suitability values
from the 30 GCM runs. In 2050, areas identified with high suitability
for protein-rich crops were concentrated within Adriatic countries, al-
pine regions (northern Italy, Slovenia, southern Germany, and Eastern
France), and northwestern Europe. However, in some of these regions
suitability for a number of crops was modelled to decline (e.g. faba bean
and chickpea in Croatia). Further, quinoa and to a lesser extent blue
lupin were found to have high suitability across a range of environ-
ments. High quinoa suitability was observed from the Atlantic coast of
Portugal, to the Eurasian Steppe. In contrast, regions highly suitable for
soybean are almost exclusively concentrated in the Adriatic, while less
suitable areas are seen in southern Germany and Ireland.

Under the baseline conditions (Fig. 4), quinoa was found to be the
most suitable crop across almost 70% of European arable land followed
by: blue lupin (23%), common bean (4%), and white lupin (1%).
However, by 2050 (Fig. 4b) a less diverse cropping structure is ob-
served, suggesting the role of climate change. Quinoa dominates, re-
presenting the most suitable crop in 80% of European arable land, to-
gether with blue lupin (8%), common bean (6%), and white lupin (3%).
Further, multi-crop options were identified, representing a suite of
crops with the same suitability in that pixel.

3.3. Sensitivity analysis

The full results of the sensitivity analyses are found in Table 3. The
table displays how changes in the parameters for each test effect how
suitability responds under present and future conditions. Suitability is
characterised into three categories, increase, neutral, and decrease.
These categories represent changes from present climatic conditions to
future conditions. Table 3 shows how changes to parameters can alter
these categories, with five categories developed to highlight how the
parameter changes can alter suitability, from the baseline to future. The
results display the number of crop country combinations (e.g. “quinoa
suitability in Sweden”) affected by the parameter changes, based on
average national suitability values for each crop.

The results demonstrate that under all tests, the greatest number of
changes to suitability in crop-country combinations (e.g. “quinoa suit-
ability in Sweden”) were seen for the pH-25%+1m test, where 32%
changed, with 31% changing for the Tmin+2C+1m and the
Pre+ 25%−1m tests. Complete changes in suitability outputs (in-
crease to decrease or decrease to increase) represented 21% of all crop-
country combinations in the worst case. The most extreme cases are
shifts from decrease to increase. If parameter values are far from those
in the EcoCrop model, the risk of having a pessimistic model is higher

Table 2
Sensitivity scenarios representing crop parameter changes.

Change in temperature or precipitation Crop Cycle
+1 Month

Crop Cycle
-1 Month

Minimum temperature +2 °C Tmin+2C+1m Tmin+2C−1m
Minimum temperature –2 °C Tmin-2C+1m Tmin-2C−1m
Maximum temperature +2 °C Tmax+2C+1m Tmax+2C−1m
Maximum temperature –2 °C Tmax-2C+1m Tmax-2C−1m
Precipitation +25% Pre+25%+1m Pre+25%−1m
Precipitation –25% Pre-25%+1m Pre-25%−1m
pH+25% pH+25%+1m pH+25%−1m
pH -25% pH-25%+1m pH-25%−1m
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Fig. 1. Relationship between current crop distribution and modelled maximum and mean crop suitability for EU-28 NUTS-2 regions with available data. Quantile
regression lines (red line), derived from the 95th quantile are plotted if crop distribution and climatic suitability relationship was significant (p < 0.05). Dashed line
represents non-statistically supported theoretical expected relationship between distribution and suitability.
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Fig. 2. Changes in suitability from baseline (1970–2000) to future (2050s) climates. Boxes represent results of all 30 GCMs under the RCP4.5 climate scenario. Values
in brackets demonstrate national suitability under the baseline conditions. Box colours represent the limiting factor of suitability for each crop (grey climatic
conditions and green soil conditions).
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Fig. 3. Geographical representation of average future suitability generated from 30 GCMs under RCP4.5. 0 (red) represents unsuitable conditions, and 1 (purple)
suitable conditions. White pixels represent lands not cultivated under the baseline.
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than having an optimistic model.

4. Discussion

We performed two exercises to evaluate if the EcoCrop model can
make meaningful predictions of crop suitability under climate change.
The first exercise showed that suitability determined with EcoCrop
corresponded well with current distribution patterns of 5 protein-rich
crops in Europe. Even though we were not able to do this exercise for all
crops, these results confirm that EcoCrop is able to make a reasonable
representation of important limiting factors that influence the broad
cross-continental pattern of crop environmental adaptation. Secondly,
we performed an analysis to determine the sensitivity of the EcoCrop
model to uncertainty in the crop adaptation parameters of the model.
This sensitivity analysis is important, because we do not know if the
parameters are very precise, as we could not calibrate the parameters of
EcoCrop model with distribution data (cf. Ramirez-Villegas et al.,
2013). The sensitivity analysis shows that at country level, in the worst
case a full reversal of the climate trend occurred for 21% of the crop-
country combinations. The sensitivity is within reasonable limits, even
though it is higher than in a world-wide analysis of a broad range of
major crops (Manners and van Etten, 2018). Therefore, we expect that
the broad trends revealed by our analysis will hold against uncertainty

in crop model specification, but we should not overinterpret the results
for individual crops and subnational units. A remaining source of un-
certainty is climate modelling. Diminishing this uncertainty will rely on
improved climate modelling. Uncertainty will always remain sub-
stantial due to the inherent limits of predictability of climate systems.
Future analyses could address this uncertainty in a more explicit way
through scenario analysis to inform scenario planning (Vervoort et al.,
2010; Vermeulen et al., 2013; Star et al., 2016). A limitation of this
paper is that it focuses on GCM-averages of a single climate scenario.

Our results show that climate suitability is a relevant limiting factor
of crop production that shapes the current geographic distribution of
protein-rich crops in the EU. Other factors will also play a role in de-
termining cropping, but where suitability is low for a given crop, its
production is invariably low as well. The crop production is only high
where crop suitability is also high. This suggests that the EcoCrop
modelling results are relevant. As these suitability values are affected
by climate change, decision-makers should take into account how
changes in suitability will constrain future production of protein-rich
crops, especially where crop distributions push against the envelope of
suitable areas. Our results also highlight that in many regions protein-
rich crops are not included in crop portfolios, despite ideal suitability.
Such findings implicate the impacts of competition in productive en-
vironments for protein-rich crops. In the case of soybean, high

Fig. 4. Suitable protein-rich crop options under baseline and future climates conditions.

Table 3
Sensitivity analysis results. Crop-country suitability changes observed under the conditions of each of the sensitivity scenarios.

Scenario No Change Increase to Decrease Decrease to Increase Neutral to Increase or
Decrease

Increase or Decrease to
Neutral

Crop Country
Combinations

% Crop Country
Combinations

% Crop Country
Combinations

% Crop Country
Combinations

% Crop Country
Combinations

%

Tmin+2C+1m 242 69 7 2 65 19 21 6 16 5
Tmin+2C−1m 271 77 8 2 31 9 14 4 27 8
Tmin-2C+1m 277 79 17 5 29 8 19 5 9 3
Tmin-2C−1m 270 77 34 10 12 3 13 4 22 6
Tmax+2C+1m 275 78 8 2 36 10 20 6 12 3
Tmax+2C−1m 300 85 12 3 8 2 12 3 19 5
Tmax-2C+1m 276 79 15 4 29 8 20 6 11 3
Tmax-2C−1m 291 83 19 5 6 2 13 4 22 6
Pre+25%+1m 266 76 4 1 38 11 14 4 29 8
Pre+25%−1m 242 69 13 4 24 7 15 4 57 16
Pre-25%+1m 246 70 23 7 50 14 26 7 6 2
Pre-25%−1m 263 75 31 9 17 5 28 8 12 3
pH+25%+1m 266 76 17 5 29 8 21 6 18 5
pH+25%−1m 272 77 32 9 8 2 12 3 27 8
pH-25%+1m 237 68 7 2 61 17 22 6 24 7
pH-25%−1m 257 73 18 5 31 9 14 4 31 9
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suitability across regions of southern Europe was not associated with
high production. In many cases pea was produced in these regions,
despite identical suitability, with similar patterns seen for faba bean
and lupin. This may suggest the influence of other, non-climatic, drivers
in crop-choice in these regions. These results highlight that such com-
petition and the diversity of cropping options may be beneficial as
climates increasingly change. Farmers could increasingly shift cropping
choices to crops better adapted to new climatic conditions (Seo and
Mendelsohn, 2008).

The outputs of this work have demonstrated that climate change has
a divergent impact on protein-rich crops, which is also true for
European agriculture in general (Zabel et al., 2014). Some countries
benefit while others incur losses. The overall pattern of our findings
follows that described by Salon et al. (2011). Cool-weather legume
species (faba bean, lentil, lupins, pea, and chickpea) are particularly
sensitive to abiotic stresses intensified by climate change, while warm-
weather legumes (cow pea and soybean) are less affected. The suit-
ability of cool-weather species declines in southern parts of Europe and
increases in northern parts. In the north, climate change was found to
represent an opportunity for many protein-rich crops. The results also
demonstrate the striking potential of quinoa and certain lupin species in
many regions. With this finding we confirm and expand the findings of
some crop-specific studies (Ruiz et al., 2014; Lucas et al., 2015). There
is much potential for expansion of protein-rich crop production beyond
current crop distributions. For example, there are many opportunities in
Finland, as indicated by Stoddard et al. (2009). Southern Europe will
experience a reduction in the suitability of culturally important species.
This pattern is consistent with previous studies (FAO, 2012; Valverde
et al., 2015; Ramirez-Cabral et al., 2016). For all areas there are old and
new crops that provide protein-rich meat replacement cropping options
for future European agricultural systems.

Geographically differentiated planning, research, and breeding
strategies could assist in taking advantage of the positive changes to
suitability in northern Europe, while addressing the reductions in
southern Europe before they become too extreme. Research realign-
ments may be needed across southern Europe to address the stress-re-
lated sensitivity of certain protein-rich crops. Agricultural research and
development investments could be shifted towards those crops that are
likely to be less vulnerable to climate change in given areas (Manners
and van Etten, 2018). Investments will need to compensate for a lag in
agricultural research for climate adaptation. On the other hand, in-
creased research could take advantage of the largely unrealised po-
tential of many protein-rich species to adapt to more stress-tolerant
varieties, tapping landrace genetic diversity (Daryanto et al., 2015;
Cowling et al., 2017), and the wider gene pool of crop wild relatives
(Kwak and Gepts, 2009; Berger et al., 2012). Breeding could mitigate
the expected distribution shifts by focussing on the specific limiting
factors to develop more stress-tolerant varieties, a strategy that is likely
to have long-term benefits (Considine et al., 2017). Our findings could
be used to encourage policies for promoting climate-proof protein-rich
crops as replacements of animal products in human diets.

5. Conclusions

This analysis found climate suitability to be a relevant limiting
factor of protein-rich crop production, shaping the contemporary geo-
graphic distribution of protein-rich crops across the EU. It has also
provided insights into the potential effects of climate change on these
crops, exhibiting the divergent impacts of climate change across the
continent. Cool-weather legume species were found to be particularly
sensitive to abiotic stresses intensified by climate change, while warm-
weather legumes less so. The suitability of cool-weather species de-
clines in southern parts of Europe and increases in northern parts. In the
north, climate change may represent an opportunity for many protein-
rich crops. There is much potential for expansion of protein-rich crop
production beyond current crop distributions. These findings could be

applied to inform policy-making addressing the impacts of climate
change on protein-rich crops. Geographically differentiated planning,
research, and breeding strategies could assist in addressing these
changes.
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