

Predicting the Performance of CSA Technologies under current and future conditions

Christine Lamanna, Pete Steward, Roeland Kindt, and Todd Rosenstock October 8, 2019, Bali, Indonesia

Conservation Agriculture

Pittelkow et al. 2014

... BUT CONTEXT MATTERS

HOW CAN WE PREDICT WHAT WORKS?

I. GENERATE EVIDENCE

From on-farm experiments...

... to continental data

2. MODEL PERFORMANCE X CONTEXT

Agricultural Data

ERA:

- 10 CSA Practices
- Maize
- Change in Yield
- Suitable > 15% increase in yield

Spatial Data

AFRICLIM:

- Mean Annual Temperature
- Isothermality
- Maximum Temperature
- Mean Annual Precipitation
- Rainfall Seasonality
- Length of Dry Season
- Potential Evapotranspiration

Chance Suitable

3. PREDICT FOR NOVEL CONTEXTS

Map of Uganda from compendium

Northern Uganda is a "data desert" due to decades of conflict, but now hosts more than 1 million refugees who need climate-proofed agriculture

Example suitability maps

PREDICTING FOR NOVEL CONTEXTS

PLANNING FOR CLIMATE CHANGE

PLANNING FOR CLIMATE CHANGE **Crop.Residue Crop.Rotation** Green.Manure Inorganic.Fertilizer Intercropping Mulch **Organic.Fertilizer** Reduced.Tillage Change in Suitablility 0.5 0.0 -0.5 **Tree.Management** Water.Harvesting Change in Technology Suitability 2085 vs. 2000 **RCP 8.5**

CONCLUSION SLIDE

Contact: Christine Lamanna (ICRAF) c.lamanna@cgiar.org