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Abstract 21 

Aim We test hypotheses on the environmental control of elevational richness patterns of sphingid 22 

moths for their global applicability and generality. Specifically, we compare effects of area to climate-23 

related drivers such as primary productivity and temperature, while also considering direct effects of 24 

precipitation. 25 

Major taxa Sphingid moths (Lepidoptera). 26 

Location Eighty-six mountain ranges of the Old World and the Australia/Pacific region, from 27 

Scandinavia and Siberia through the African and Australasian tropics to South Africa and Southern 28 

Australia. 29 

Methods We used a large compilation of point-locality records for 744 species, as well as fine-30 

grained range maps derived from species-distribution modelling of these records, to characterize the 31 

elevational pattern of species richness in 86 custom-delineated mountain regions. For both types of 32 

data we compared the effects of environmental drivers on richness by comparing standardized 33 

coefficients of multivariate models for pooled data after accounting for between-region richness 34 

variation.  35 

Results We observed varying patterns of elevational richness across the research region, with a higher 36 

prevalence of midpeaks in arid regions. We found overwhelming support for area as a main 37 

determinant of richness, modulated by temperature and productivity, whereas we detected no effect of 38 

precipitation.  39 

Main conclusions Area, productivity and temperature are the main environmental predictors 40 

explaining a large proportion of sphingid richness variability. This is consistent not only with other 41 

elevational studies, but also with empirical and theoretical biodiversity research in a non-elevational 42 

context (with the caveat of some unresolved issues in elevational area effects). However, distinct 43 

differences in elevational patterns remain even within the same mountain ranges when comparing 44 



 

 

with other Lepidoptera, i.e.  geometrid moths, which highlights the importance of understanding 45 

higher-clade differentiation in ecological responses, within insects as well as in other groups.  46 

 47 

  48 



 

 

Introduction 49 

Understanding species richness patterns along elevational gradients as an effect of 50 

environmental variation has matured into a major field of biodiversity research during the last decades 51 

(Rahbek, 2005; McCain & Grytnes, 2010; Kessler et al., 2011; Quintero & Jetz, 2018). Across taxa 52 

and biomes, most studies documented either unimodal patterns with highest richness at mid-elevation 53 

(‘midpeaks’), or declining richness with elevation, or a mix of those pattern types (McCain & 54 

Grytnes, 2010). These patterns proved difficult to explain from simple assumptions of environmental 55 

causes, such as the almost universal decline in temperature with elevation. Furthermore, the variation 56 

of patterns found across studies has only rarely been conceptualized into globally applicable 57 

hypotheses of general mechanisms (McCain, 2007a). A multitude of single-gradient studies makes it 58 

challenging to evaluate hypotheses for their generality as methodological, taxonomic and regional 59 

differences contribute to idiosyncratic findings that are hard to reject in a rigorous testing framework. 60 

More informative, spatially replicated studies on the same taxonomic group exist for vertebrates 61 

(McCain, 2007a; 2009; 2010; McCain & Sanders, 2010; Quintero & Jetz, 2018), plants (Kessler et al., 62 

2011) and a few insect taxa (ants: Sanders, 2002; Szewczyk & McCain, 2016; moths: Beck et al., 63 

2017). Such replicated studies are based on compilations of individual datasets, selected for inclusion 64 

after quality vetting. Nevertheless, these data were usually sampled and processed by different 65 

researchers using different methods and protocols, often to address different research questions and 66 

without the intention of inclusion into a replicated meta-study. 67 

Findings from these studies indicate that there is no strong support for a single environmental 68 

driver for the observed richness patterns. However, corresponding with theory and empirical findings 69 

on non-elevational, large-scale richness patterns, climatic factors such as temperature and 70 

precipitation were reported to shape elevational richness patterns of many different taxa (Field et al., 71 

2009). While there is theoretical underpinning of hypothesized direct temperature effects (Rhode, 72 

1992; Brown et al., 2004), precipitation effects presumably act rather indirectly via their effect on 73 

plant productivity (Evans et al., 2005). Furthermore, the variation of available area as a function of 74 

elevation in mountain ranges was considered to have a major effect on richness patterns (i.e., a 75 



 

 

species-area relationship, SAR; Rosenzweig, 1995; Rahbek, 2005; McCain, 2007b). However, just 76 

like declining temperature, monotonically declining area with elevation alone cannot explain the 77 

existence of midpeak richness patterns. Productivity, on the contrary, does exhibit midpeak patterns in 78 

some mountain landscapes, due to aridity at the base of mountains. Productivity has often been 79 

suggested as a possible cause of observed richness patterns, but the lack of fine-scale and reliable 80 

productivity data has prevented direct testing in many empirical studies (McCain 2007a; Phillips et 81 

al., 2008). Here we utilized high-resolution estimates of primary productivity after assessing their 82 

utility at capturing patterns in mountain ecosystems. Furthermore, mechanistic details of the 83 

productivity-richness relationship are unclear; e.g., whether it acts via food and population sizes (the 84 

‘more individuals-hypothesis’; Rosenzweig, 1995; Classen et al., 2015; Storch et al., 2018), or 85 

whether productivity per area, or summed productivity across the entire area of an ecological zone, is 86 

the relevant variable (Storch et al., 2005; Hurlbert & Stegen, 2014). Beck et al. (2017) recently 87 

presented data indicating strong effects of the latter, area-integrated productivity on geometrid moth 88 

richness in elevational richness patterns (see also Jetz & Fine, 2012). The mid-domain effect (MDE), 89 

caused by hard geometric borders along a gradient, has also been proposed as an explanation for 90 

midpeak patterns of richness (Colwell & Hurtt 1994). However, recent studies viewed MDE as a 91 

modulating effect on elevational richness pattern, rather than its primary driver (Dunn et al., 2007; 92 

Colwell et al., 2016; Beck et al., 2017). 93 

Here we present elevational richness patterns for sphingid moths replicated across a large 94 

number of mountain ranges of the Old World and the Australia-Pacific region. This study is unique 95 

not only because it provides new and comprehensive elevational richness data for an insect taxon 96 

across many tropical regions but also because our data are based on the same methodological 97 

approaches for all mountain ranges, rather than being a compilation of local gradient studies, which 98 

reduces unwanted variability in analyses. 99 

We tested, specifically, the effect of elevational area variation against the two most likely 100 

climate-driven environmental effects on richness: net primary productivity (NPP) and annual mean 101 

temperature. Assessing the potential of these variables, fine-scaled NPP data in particular, is 102 



 

 

important for judging whether elevational richness patterns fall within the general mechanisms 103 

shaping biodiversity patterns on earth, or whether they must continue to be considered an ecological 104 

phenomenon outside the norm. We also investigated direct effects of annual precipitation, and those 105 

of area-integrated productivity (sum of NPP within an elevation band). After a first assessment of 106 

univariate correlations with richness (searching for a primary driver) we analyzed effects with 107 

multivariate models after controlling for richness variation between mountain ranges. Contrasting 108 

different types and qualities of richness data, we assure the robustness of our findings. We also 109 

compare sphingid elevational patterns with published data for geometrid moths (Beck et al., 2017) 110 

from the same mountain regions, which may elucidate the impact of phylogenetic histories and 111 

resulting trait variation on such patterns. We provide raw and processed data for future analyses. 112 

 113 

Methods 114 

Sphingid moths 115 

Sphingidae or hawkmoths are a family among the bombycoid Lepidoptera (Kitching & 116 

Cadiou, 2000; Regier et al., 2013). Their large body size, intermediate species richness (globally ca. 117 

1987 species; Kitching et al., 2018), and their attraction to artificial light sources, which provides a 118 

robust means of field collecting, has made them popular among amateur insect collectors and 119 

scientific entomologists for centuries. As a consequence, more information has accumulated about 120 

their life histories, distribution, and phylogeny than for most other insect taxa. Over the recent decade, 121 

they have emerged as a model taxon for investigations into insect macroecology and biogeography for 122 

otherwise data-deficient tropical regions in particular (Ballesteros-Mejia et al., 2017). Many 123 

hawkmoth species have excellent flight capacity and some cover huge areas within their geographic 124 

range, whereas others are geographically restricted endemics (Grünig et al., 2017). Larvae feed on 125 

plant leaves with moderate to low host specificity (i.e., specialization below plant family level is 126 

uncommon), hence plant species distributions are unlikely to be tightly linked to those of hawkmoths 127 

(Beck et al., 2006). 128 



 

 

 129 

Elevational range data 130 

A total of 108 distinct mountain ranges were defined across our research region. These 131 

delineations represent an edited version of data published by Körner et al. (2017; see Appendix S1for 132 

detailed methods and map).  133 

We used two types of sphingid moth distribution data, point records of species from a multi-134 

source compilation, and comprehensive range maps based on species distribution models (SDMs) at 135 

high resolution (Ballesteros-Mejia et al., 2017). Subdividing point-record data further into a ‘lenient’ 136 

and a ‘strict’ selection of mountain ranges (see below for criteria), we had three datasets to repeat our 137 

analyses and compare consistency. 138 

 139 

Point locality data 140 

We compiled georeferenced point locality records for all species of the Old World and 141 

Australia/Pacific from a multitude of sources, including databasing specimen label information in 142 

major natural history museums, private collections, our own field sampling, published literature, and 143 

online sources (including the Global Biodiversity Information Facility, GBIF; www.gbif.org). During 144 

this ca. 20-year endeavor, taxon and locality information was carefully checked and edited whenever 145 

sources seem unreliable. This database is continuously expanded and updated (regarding new records 146 

and nomenclature); we used 2014 data here. Raw data for each species can be browsed and 147 

downloaded at Map of Life (www.mol.org). More details on data compilation and processing are 148 

found in Ballesteros-Mejia et al. (2017). As many original records did not contain elevation 149 

information, we extracted these from a high-resolution digital elevation model (DEM; 30 arcsec ≈ 90 150 

m; Robinson et al., 2014; see also Fattorini, 2014) based on latitude and longitude information. After 151 

excluding data with imprecise coordinates as well as the GBIF records (which in preliminary analyses 152 

were too imprecisely georeferenced), we tested the reliability of extracting elevation data from a DEM 153 

using 26,190 points with original elevation data present, yielding r
2
 = 0.753 in a correlation of original 154 

http://www.gbif.org/
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and extracted DEM elevation data. Acknowledging the trade-off between data quality and amount of 155 

data available for analysis, as well as replicate analyses based on range maps (see below), we judged 156 

this acceptable and utilized ca. 43,000 point records for 744 species located within the above-defined 157 

mountain ranges. 158 

Point records are necessarily undersampled, as not all possible sites have been visited and 159 

thoroughly sampled, so we applied criteria to include only relatively well-sampled mountain ranges in 160 

analyses, resulting in the selection of a high-quality dataset (‘strict’) nested within a lower-quality 161 

dataset (‘lenient’). For the ‘lenient’ selection we required a minimum elevation range of 1500 m in a 162 

mountain range, 60 percent of the elevational gradient had to be sampled, lowest sampling had to be 163 

within 300 m of the mountain base, the mountain range as a whole had to contain a minimum of 10 164 

species, and point-record data had to contain at least half of SDM-model predicted richness. This 165 

resulted in 40 ‘lenient’-selected mountain ranges. For the ‘strict’ selection we required a minimum 166 

elevation range of 2000 m, 70 percent of the gradient had to be sampled, lowest sampling had to be 167 

within 200 m of the mountain base, the mountain range as a whole had to contain a minimum of 10 168 

species, and point-record data had to contain at least 75 percent of SDM-model predicted richness. 169 

This resulted in 19 ‘strict’-selected mountain ranges. See S1 for map, data and method details.  170 

 171 

Range map data 172 

Ballesteros-Mejia et al. (2017) provided range maps for all hawkmoth species in the region at 173 

5 x 5 km resolution. Ranges were estimated using species distribution models (SDMs) informed from 174 

the point locality data compilation described above, as well as 13 climate (e.g., annual temperature 175 

range, precipitation, etc.) and 3 vegetation variables (percentage of trees, herbs and bare ground). 176 

SDM output was then expert-vetted and edited for dispersal limitation. Resulting data was also quality 177 

controlled for predictions on emergent phenomena such as species richness (Ballesteros-Mejia et al., 178 

2017; data at Map of Life, www.mol.org). Range estimates are considered comprehensive and the 179 

entire available elevation gradient was included. However, for inclusion in this study we also 180 

http://www.mol.org/


 

 

demanded a minimum gradient length of 2000 m and a minimum species richness of 10 across a 181 

mountain range. This resulted in 86 mountain ranges for analyses. 182 

We acknowledge that both types of data, point records and range maps, suffer from potential 183 

yet complementary caveats (here and in any comparable studies). Point data are undersampled and 184 

require removing a larger number of mountain ranges from analyses, whereas range maps are more 185 

complete but are estimates, so not based on observed specimens confirmed to occur at all sites. We 186 

compensate for sampling deficiencies by comparing results from analyses of both types of data, 187 

focusing on consistency of conclusions. As the results are highly concordant, we present in the main 188 

text mainly modelled data, whereas point data are in appendices where appropriate. 189 

 190 

Richness patterns 191 

Each mountain range was binned into 100 m elevational bands and we used interpolated 192 

species elevational ranges (i.e., assuming presence between the highest and lowest recorded specimen 193 

in each range) for both datasets, as is standard in elevational studies. As we used only elevational 194 

bands with sphingid presence recorded or modelled, there were no richness data with zero values in 195 

analysis. 196 

Species richness across the 100 m elevational bands per mountain was visualized and patterns 197 

were sorted into four different pattern types (decreasing  ̶  D; low plateau  ̶  LP; midpeak  ̶  MP; low 198 

plateau with midpeak  ̶  LPMP) according to criteria outlined in McCain (2010) and McCain & 199 

Grytnes (2010). We classified mountain ranges as arid (incl. semi-arid) and humid according to the 200 

UNEP humidity index map (Deichmann & Eklundh, 1992) to compare for consistent differences in 201 

moth richness patterns. We tested, in particular, for associations of midpeak patterns with arid 202 

mountain ranges (McCain, 2007a; 2009) using contingency table χ
2
 tests. 203 

 204 

Environmental predictors 205 



 

 

Five predictor variables were tested for effects on elevational species richness, including area 206 

of the 100 m elevational bands (A), mean annual temperature (T), annual precipitation (P), net 207 

primary productivity (NPP), and the sum of NPP within an elevation band (SNPP; i.e., A × NPP). In 208 

preliminary analyses, we also considered the mean temperature of the months ≥0 °C (as a proxy of 209 

temperature of the growing season) but since the results were nearly identical to T, we do not present 210 

these data here.  211 

For A, T and P, data were extracted from Worldclim (Hijmans et al., 2005) at 30 arcsec (∼1 212 

km) resolution using GIS tools. Global NPP was extracted from MODIS17 (Heinsch et al., 2003, 213 

Running et al., 2004) in 30 arcsec resolution. Crucially, for our purposes, we edited NPP data by 214 

setting all ‘no data’ values to zero; ‘no data’ on land are caused by lack of vegetation reflectance 215 

(indicating vegetation-free regions such as desert, bare rock or ice), hence there is zero NPP. For all 216 

variables, sea and larger inland waters were clipped out (based on a polygon map by National Imagery 217 

and Mapping Agency, 2009). The mean of each predictor variable was calculated across every 100 m 218 

band in all mountain ranges, except for A where the sum was used (reprojected to a 1 km equal area 219 

grid), and SNPP. We validated the NPP dataset (Turner et al., 2006) by plotting mean NPP for each 220 

elevational gradient and checked patterns for many regions that we knew personally (which convinced 221 

us of the appropriateness and overall quality of the dataset). 222 

 223 

Statistical analysis 224 

Predictor and response variables were standardized to a mean of zero and unity standard 225 

deviation (SD; i.e. (x-x̅)/SD), which allowed direct comparison of model coefficients. Prior to that, 226 

some variables had to be transformed to reach normality. P was square root-transformed whereas A, 227 

SNPP and species richness were log10-transformed. We subsequently fitted models expecting a 228 

Gaussian error distribution to the transformed data. 229 

For a preliminary assessment of main effects in our data we ran univariate correlations within 230 

each mountain range, plotting the frequency distribution of r
2
 values across mountain ranges and 231 



 

 

using median r
2
 values to compare which predictor was most strongly supported as a general, single 232 

driver of richness patterns. These data can be compared to earlier studies using this approach (e.g., 233 

McCain, 2009; Beck et al., 2017).  234 

To identify environmental drivers more rigorously in a multivariate setting, we used 235 

generalized linear models (GLM, Gaussian error) with pooled data (i.e., N = number of all 100 m 236 

bands across all mountain ranges). However, prior to that we controlled data for mountain range-237 

specific variation in species richness by deducting the average richness of elevation bands within each 238 

mountain range (after transformation and standardization, see above).  We did this to limit regional 239 

effects of richness variation (e.g., latitudinal) lending support to environmental drivers of local 240 

richness variation along elevation gradients (this is a variant of using a random intercept mixed 241 

model; see Beck et al., 2017 for similar reasoning and application). Trying various predictor 242 

comparisons, we evaluated models with the Akaike information criterion (AIC) and computed AIC-243 

weighted averaged coefficients to compare effects. To avoid logical problems we did not include the 244 

composite variable SNPP in models containing either NPP or A. We calculated pseudo-R
2
 values of 245 

best models as linear correlations of predicted vs. observed data. We also replicated multivariate 246 

analyses using non-transformed richness data in a GLM with Poisson-distributed error, which had 247 

been recommended by O’Hara & Kotze (2010). 248 

 249 

Results 250 

The majority of mountain regions featured a midpeak (MP) or low plateau-midpeak (LPMP) 251 

pattern of sphingid moth species richness (modelled data: 64%; point data, lenient selection: 75%; 252 

strict selection: 79%; Fig. 1). With modelled data, 17 of 21 datasets (81%) with MP patterns were 253 

located in arid mountains, whereas only 16 of 65 (9%) non-MP patterns were in arid regions. The link 254 

of MP patterns and the aridity of landscapes is unlikely to be due to chance (contingency table 255 

analysis: N = 86, χ
2
 = 19.0, p <0.001). For point locality data the associations are somewhat weaker 256 

but still significantly supported (lenient: N = 40, χ
2
 = 9.4, p = 0.002; strict: N = 19, χ

2
 = 4.4, p = 257 

0.036). The elevation of richness peaks was not affected by mountain-wide species richness (see 258 



 

 

Appendix S1 for data and implications). Appendix S2 shows plots of elevational richness for each 259 

region; the data are published as Appendix S3. 260 

Preliminary univariate comparisons (Appendix S4) suggested area (A) as the strongest single 261 

predictor of elevational species richness. Temperature (T) and productivity variables (NPP, SNPP) 262 

were less strongly supported, whereas we found no support for precipitation (P) as a single, univariate 263 

driver of richness (median r
2
 <0.01). Notably, despite these clear assessments of variable importance 264 

across all mountain ranges, all variables featured the entire range of r
2
-values within single mountain 265 

ranges (i.e., from r
2
 <0.1 to r

2
 >0.9). These first assessments were supported by model-based as well 266 

as point locality data (Appendix S4) 267 

Multivariate models containing A, T, P and NPP as predictors were always best with a wide 268 

margin (according to AIC; modelled data: (pseudo-)R
2
 = 0.689; points-lenient: R

2
 = 0.715; points-269 

strict: R
2
 = 0.795), whereas models containing SNPP are weaker. They are highly concordant in their 270 

AIC-based assessment among the three data sources (Appendix S5). Averaged coefficients (Fig. 2) 271 

clearly point to the paramount importance of A in predicting richness in all three datasets, followed by 272 

T, NPP and SNPP, while P was always a non-significant predictor. Alternative analyses (using 273 

untransformed richness and Poisson- error models) confirmed most above effects but were ambiguous 274 

on whether there is an effect of P or not (Appendix S6; see there also for discussion on the necessity 275 

and reliability of this approach for our data). 276 

Repeating univariate correlation analyses separately for humid and arid mountains, we found 277 

slightly higher fits of richness with temperature in humid mountains but lower, rather than higher, fits 278 

in NPP in arid mountains contrary to predictions (Appendix S7). Both arid and humid mountain data 279 

individually supported the same conclusions drawn for the combined dataset. 280 

Sphingid and geometrid moth elevational richness along 15 elevational gradients did not 281 

strongly correspond, with geometrids featuring mid-peak (or LPMP) patterns more often than 282 

sphingids. This may indicate that taxon-specific effects contribute to shape these patterns (see 283 

Appendix S8 methods and details).  284 



 

 

 285 

Discussion 286 

Our study provides the most comprehensive analysis of elevational gradients for any insect 287 

taxon, covering 86 mountain ranges from the northern-temperate, tropical to the southern-temperate 288 

regions (Figs. 1, Appendix S1). This allowed us to compare the variation in species richness patterns 289 

across ecologically diverse zones with different biogeographic histories, and test hypotheses on 290 

environmental drives of richness for their global generality. Consistent for different data types 291 

(modelled range maps, point locality records) and analytical approaches (multivariate and univariate), 292 

we found that the area of elevational bands (i.e., the topography of mountains) had the strongest 293 

impact on measured richness. Multivariate modelling (Fig. 2) indicated that this area-shaped pattern is 294 

further modulated by temperature and primary productivity (NPP), but not by precipitation per se. We 295 

did not find strong support for the area-integrated metric of productivity (SNPP).  296 

 297 

Mountain topography and its effect on species richness  298 

Our finding of strong elevational area effects is consistent with earlier regional studies on 299 

other taxa such as vertebrates (Rahbek, 1995; McCain 2007b) and plants (Karger et al., 2011). It is 300 

also consistent with non-elevational species-area relationships (SAR; Preston, 1962; Rosenzweig, 301 

1995), ‘ecology’s most general pattern’ (Lomolino, 2000). The same mechanisms that shape non-302 

elevational SARs, among them more comprehensive sampling and higher habitat heterogeneity in 303 

larger areas, could affect regional-scale richness in mountains (i.e., richness of elevational bands), 304 

which could then ‘echo’ down to a (weakened) area effect on the species richness in local samples 305 

(Rosenzweig & Ziv, 1999; Romdal & Grytnes, 2007). Consistent with this idea, many elevational 306 

studies based on local samples of richness also reported correlations with area (e.g., Kessler et al., 307 

2009; Beck et al., 2017). Furthermore, Karger et al. (2011) showed that an area-correction of regional 308 

richness yields higher correspondence of regional and local richness patterns than uncorrected data, 309 

supporting the causal link of area to regional to local richness. However, we see at least three issues 310 



 

 

that cast some doubt on this apparent consensus of (largely non-elevational) SAR theory and 311 

empirical studies on mountain biodiversity.  312 

First, although area effects seem best-supported even in our univariate analyses (with very 313 

high median r
2
 values; Appendix S4), area alone cannot account for the highly prevalent richness 314 

midpeaks (or similar curvilinear patterns; Fig. 1). Area usually declines, often monotonically, with 315 

elevation except in landlocked landscapes (where lowest elevations can occur in valleys or ravines; 316 

McCain, 2007b), as long as the surrounding lowlands are included (our selection included lowlands 317 

contained approximately within 50 km pixels, see Methods). Thus, there must be additional, 318 

modulating effects on richness patterns (McCain, 2007b). Among the candidates for such modulation, 319 

climate and productivity patterns (see below) could lead to a variation in richness patterns in different 320 

parts of the world (as observed; Fig. 1; McCain, 2007a, b), whereas the mid-domain effect (not 321 

addressed here; Colwell & Hurtt, 1994; Colwell et al., 2016) would lead to symmetrical midpeaks 322 

uniformly among all mountain ranges (not observed). 323 

Second, given the ubiquitous pattern of declining temperature on almost all mountain ranges 324 

of the world (Barry, 1992), combined with theoretically sound and empirically well-documented 325 

temperature effects on richness, it is unwise a priori to ‘correct’ richness for area via residuals from 326 

the Arrhenius-function (as is commonly done; e.g., Rahbek, 1995; Sanders, 2002; Karger et al., 327 

2011). Such an a priori area correction is likely to capture variation of other potential, collinear 328 

predictors, such as temperature, which leads to biased estimates of effects (i.e., overestimating area 329 

effects, underestimating collinear effects; Freckleton, 2002). Furthermore, parameter estimates of area 330 

effects are often uncertain due to small sample sizes (i.e., number of elevation bands on a mountain). 331 

Empirically measured SAR slopes (‘z-values’) are highly variable in non-elevational empirical studies 332 

(Dengler, 2009) despite the elegant theoretical deduction of z = 0.27 in idealized landscapes (Preston, 333 

1962). In an elevational context there is not even any certainty of what to expect theoretically. Instead, 334 

area effects should be accounted for as partial coefficients in a multivariate setting (Freckleton, 2002). 335 

However for illustration, we carried out an a priori correction for area effects (Appendix S9), results 336 

of which highlighted the problems listed above. 337 



 

 

Third, area effects on richness, even when strongly supported as a single driver in elevational 338 

studies (Appendix S4), imply effects of environmental variation along mountain slopes on the level of 339 

individual species. Without elevational habitat or climatic specificity for individual species that lead 340 

to range limits there could be no elevational SAR; such elevational zones (or bands) would be 341 

identical, continuous habitat. Elevational range limits can only be caused by environmental variables 342 

(abiotic or biotic) because the proximity of elevational bands in a mountain range makes dispersal 343 

limitation an implausible mechanism. Most organisms covered in elevational biodiversity studies can 344 

be assumed to be sufficiently mobile to be able to disperse to suitable available habitat within the 345 

studied mountain slope, which often covers only few kilometers in travel distance. This is in contrast 346 

to non-elevational SARs where dispersal limitation could theoretically cause distinct geographical 347 

ranges even in a ‘neutral’ world (Preston, 1962). Thus, elevational area effects require the assumption 348 

of environmentally determined elevational range limits of species to explain a non-environmental, 349 

area-driven effect on the emergent level of species richness. This is not a contradiction to elevational 350 

SARs, but spelling out its inherent assumptions draws strong parallels to the mid-domain effect, 351 

where the same assumption of a priori-set, species-specific elevational ranges had sparked a very 352 

controversial discourse (e.g., Hawkins et al., 2005). 353 

 354 

Temperature and productivity, but not precipitation 355 

Our multivariate analyses indicated independent, partial effects of temperature as well as 356 

productivity (Fig. 2); temperature is also supported as a single ‘main driver’ of richness (Appendix 357 

S4) whereas NPP is not. Both effects are consistent with a very large number of studies on the 358 

environmental control of biodiversity yet both assume mechanistic underpinnings that are 359 

controversial and not yet well-substantiated. Temperature or kinetic energy, as a direct driver of 360 

richness variation, has been hypothesized to affect generation times, speciation rates, and the speed of 361 

evolution (Rhode, 1992), for example through its effect on chemical reaction speeds and metabolism 362 

(e.g., the ‘metabolic theory of ecology’; Brown et al., 2004; Allen et al., 2007). Empirical evidence 363 



 

 

for the precise predictions on temperature effects on richness is mixed (Brown et al., 2004; Hawkins 364 

et al., 2007).  365 

Primary productivity is clearly affected by climatic factors such as temperature and 366 

precipitation as well as evaporation rates, but its effect on richness, empirically shown here and in 367 

many other studies (Mittelbach et al., 2001; Ballesteros-Mejia et al., 2017) must not be confused with 368 

direct effects of these variables. Potential energy supplied into a system by photosynthesis could 369 

affect richness through various hypothetical mechanisms (Mittelbach et al., 2001; Evans et al. 2005; 370 

Storch et al., 2005; Allen et al., 2007), but the most commonly assumed causal pathway is via 371 

increased food resources and thus population sizes, which would reduce extinction rates in a system 372 

(the ‘more individuals-hypothesis’; Evans et al., 2005). Surprisingly, given its relevance for the 373 

understanding of biodiversity patterns, there are very few rigorous, comprehensive tests of all four 374 

aspects of this idea (productivity-food resources-population sizes-diversity), yielding mixed results 375 

(Classen et al., 2016; McCain et al., 2018) and tests for two or three variables are also equivocal. 376 

Because overall productivity may not necessarily be tightly linked to the fraction of productivity 377 

available to a given taxon (e.g., due to feeding specialization or competition from other taxa), analyses 378 

of NPP may underestimate the relevance of available food resources on richness (but see McCain et 379 

al., 2018).  380 

One potential mechanism for how area as well as productivity could affect richness may be 381 

their combined influence of both, for example the area-integration of productivity. The reasoning 382 

behind this is that the total, regional amount of potential energy, not its local average, affects 383 

population sizes hence extinction rates (Evans et al., 2005; Storch et al., 2005; Jetz & Fine, 2012; 384 

Hurlbert & Stegen, 2014). Although Beck et al. (2017) presented supporting data for such a 385 

mechanism in an elevational context for geometrid moths, these data did not indicate superior effects 386 

of SNPP over area alone (but rather weaker ones) for sphingid moths. Nevertheless SNPP was a 387 

stronger single ‘main’ driver of richness than NPP alone (Appendix S4). Further evaluations of SNPP 388 

by exploring landscapes with uncorrelated or even opposite area and NPP gradients, may thus be 389 

informative. 390 



 

 

Our analyses reject any direct effect of precipitation on richness (but see Appendix S6, and 391 

discussion therein). However, we found a higher prevalence of midpeak patterns in arid regions, 392 

which points towards a precipitation-influenced midpeak of productivity. In arid regions, water 393 

availability is usually the limiting factor for plant growth (hence productivity), and arid mountains 394 

typically feature higher precipitation at mid-elevation compared to the base of the mountains (as 395 

precipitation increases with elevation across the mountains; Barry, 1992; McCain & Colwell, 2011). 396 

Thus, we suggest that earlier reports of precipitation effects on richness may in parts have been 397 

indirect due to its effect on primary productivity, data for which were not readily available in many 398 

past studies. In arid mountains, for example, (actual) evaporation and productivity typically peak at 399 

mid-elevations where both precipitation (increasing with elevation) and temperature (declining with 400 

elevation) are not too low. However, neither temperature nor precipitation necessarily has a direct 401 

effect on richness in such situations despite detected empirical correlations. Exceptions may be 402 

taxonomic groups whose life history is tightly bound to water (e.g., ferns, amphibians). A caveat to 403 

this assessment, however, is the unreliability of Worldclim interpolated precipitation data from 404 

tropical regions with few weather stations (Soria-Auza et al., 2010). This may have hidden 405 

precipitation effects. Nonetheless, when restricting analysis to 15 European mountain ranges (where 406 

raw climate data used for interpolation were presumably more comprehensively sampled), we also 407 

found no evidence for positive precipitation effects on richness (i.e., for model data, univariate 408 

analysis: median r
2
 = 0; all but one mountain range featured negative coefficients). Our published data 409 

(Appendix S3) will allow future retesting with alternative or future improved climate data. 410 

Our study does not exclude the possibility of further modulation of richness patterns by 411 

variables not included in our analysis, among them the mid-domain effect (Colwell et al., 2016), past 412 

climatic change (Colwell et al., 2008), biotic interactions, geology, and locally idiosyncratic 413 

evolutionary histories. Furthermore, human landscape modification has the potential to affect richness 414 

patterns. Diversity-eroding habitat modifications, agriculture in particular, is most prevalent in 415 

lowlands, and it has been suggested that human impacts could therefore shift naturally declining 416 

richness patterns towards midpeaks (McCain & Grytnes, 2010). If this were true, we would find 417 



 

 

midpeaks predominantly in region of high, long-lasting human disturbance. We could not rigorously 418 

address this hypothesis here due to uncertainties of the timing of human disturbance in relation to 419 

point record data sampling in our sphingid data. However, preliminarily, Fig. 1 does not lend support 420 

to low-elevation disturbance and midpeaks. For example, whereas the Alps, as a region of heavy 421 

human impact for many centuries, exhibit a midpeak (consistent with the hypothesis), the neighboring 422 

and equally disturbed Dinarids and Pyrenees show a decreasing pattern, as do heavily disturbed 423 

regions in eastern Asia. Furthermore, some regions with the world’s least and most recent human 424 

disturbance, such as Borneo, New Guinea, Central Asia and Siberia, also feature (low-plateau) 425 

midpeaks. Beck et al. (2017) concluded the same for geometrid moth data across the globe. 426 

Concurrent with elevational studies on various taxa (McCain, 2007a,b; Kessler et al., 2011; 427 

McCain & Beck, 2016; Beck et al., 2017) we observed high idiosyncrasies of results from individual 428 

mountain ranges despite finding clear, interpretable results from pooled data. This implies that single-429 

gradient studies can lead to spuriously different results on the drivers of diversity. Our study also 430 

highlights how range maps based on fine-grained SDMs can be used in combination with point 431 

locality records to balance each other’s weaknesses and uncertainties. 432 

Raw richness differed clearly between point records and model data in many mountain ranges 433 

(Appendix S2). Most point data indicate overall lower richness than model data (probably due to 434 

undersampling in point records), but a similar richness trend with elevation. Furthermore, some 435 

mountains richness patterns differ because point records often show a faster decline of richness 436 

towards high elevations compared to model data. Possibly high elevations are particularly 437 

undersampled, likely due to difficulties of access. Alternatively, model data may overestimate ranges 438 

at high elevations in particular. SDMs were fitted to point records including data from lowland 439 

regions (not analyzed in this study). If a species occurred widely across lowlands of a given climate, it 440 

may also be predicted on a mountain of similar climate even if mountain-specific environmental 441 

circumstances may cause its absence. Because mountains overall have a small area compared to 442 

lowlands, their impact on SDM fitting and evaluation may be too small to avoid such effects. 443 

Furthermore, the grain size of SDMs (5 km) may cause error at high elevations where environmental 444 



 

 

gradients are often very steep (i.e., 5 km may encompass a large elevational variation in mountain top 445 

regions). However, we do not have the relevant data to address these speculations empirically. Other 446 

pattern variability occurred in particular where undersampling seemed an issue (i.e., large difference 447 

in absolute numbers between point records and model data) or on small mountains with few 448 

elevational bands (Appendix S2), both pointing towards random effects. To reiterate, both point 449 

records and modelled data led to very similar conclusions with regard to the environmental drivers of 450 

richness. 451 

This study is another step towards summarizing and conceptualizing the wealth of 452 

Lepidoptera data on elevation gradients. Comparing pattern variation and underlying differences in 453 

adaptations among this hugely diverse order may help to formulate and test novel hypotheses on 454 

evolutionary impacts on the environment-richness relationship. Data on geometrid moths (i.e., 455 

inchworms) from Beck et al. (2017; see Appendix S8) show predominantly midpeak richness patterns 456 

irrespective of the geographic position of gradients, whereas we have shown here strong variation in 457 

patterns for sphingids particularly between arid and humid mountains (Fig. 1). The likely causes for 458 

the incongruent patterns between geometrid and sphingid moths is currently far too complex for 459 

speculation, as geometrids and sphingids differ in many aspects of their ecology  ̶  among which are 460 

body size, mobility and larval host plant specificity (see Appendix S8 for further discussion). Future, 461 

comprehensive multi-gradient assessments for other major moth taxa (such as arctiine erebids; Brehm, 462 

2009; pyraloids; Fiedler et al., 2008) may help to pinpoint more clearly how ecological differences 463 

co-vary with richness patterns. Due to their high diversity, potential for experimental studies, and 464 

more detailed descriptive analyses that include more difficult-to-measure variables (such as local 465 

productivity, taxon-specific food resources, and species’ abundances), we see potential in insects and 466 

other understudied taxonomic groups for testing macro-scale predictions on biodiversity effects in 467 

relation to major life history traits, as has been attempted already in vertebrates (Buckley et al., 2012). 468 

For birds, the arguably best-studied taxon in macroecology, Quintero & Jetz (2018) have recently 469 

gone one step further by studying phylogenetic patterns along elevational gradients (i.e., 470 

diversification rates). With the proliferation of phylogenetic information in other clades, increasingly 471 



 

 

so within insects, future research will also involve cross-taxon comparisons of such patterns. By 472 

publishing our data, raw as well as condensed for elevational analysis, we help make sphingid moths a 473 

part of such comparative endeavors, possibly as the presently only insect representative. 474 

 475 

Outlook  476 

Our results on global-scale elevational richness pattern variability as well as on the main 477 

drivers of richness patterns are consistent with patterns found in other taxonomic groups, and with 478 

main environmental correlates of richness found in non-elevational settings, in sphingid moths 479 

(Ballesteros-Mejia et al., 2017) and other taxa (e.g. Davies et al., 2007; Kreft & Jetz, 2007; Fritz et 480 

al., 2017). Rather than viewing this as a lack of novelty, we find it highly reassuring. Elevational 481 

gradients have been proposed as model systems to study larger-scale richness pattern, but the repeated 482 

observation of midpeak patterns of richness variation in many mountains had cast doubt on this. It 483 

seemed as if something fundamentally different goes on in shaping mountain biodiversity. Our study 484 

tentatively suggests that this is not the case for sphingids – it just requires the inclusion of fine-grained 485 

primary productivity data as a driver of richness to explain not only such seemingly strange patterns, 486 

but also where they occur and where not (McCain, 2007a). Pseudo-R
2
 values between 0.7 and 0.8 487 

from our relatively simplistic, one-fits-all global multivariate models indicate a very good fit given the 488 

inevitable error and uncertainty in predictor and response data, which are estimates themselves. This 489 

suggests that while clade-specific adaptations and their effects urgently require better understanding, 490 

the principal mechanisms shaping biodiversity patterns can be reconciled among elevational and non-491 

elevational studies. Elevational richness gradients, however, will continue to play a central role in 492 

biodiversity research due to their natural replication, exclusion of unwanted dispersal limitation 493 

effects, and breadth of environmental gradients within small study regions, among other advantages.  494 

 495 
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FIGURE CAPTIONS 696 

 697 

Fig. 1 Mountain ranges and their prevailing richness pattern for sphingid moths (LPMP = low 698 

plateau-midpeak; pattern definitions and inset sketches based on McCain & Grytnes 2010). “No 699 

pattern” identifies regions that did not fit any of these categories (see Appendices S2 & S3 for plots 700 

and data of all richness patterns). 701 

 702 

Fig. 2 Averaged standardized coefficients (bars; AIC weighted) and 95% confidence intervals 703 

(whiskers) from multivariate linear models (see Appendix S5 for model details; S = strict selection, L 704 

= lenient selection). Positive associations were expected for all predictors (Appendix S4). 705 


