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Abstract

This paper is concerned with a numerical study on the behavior of a single Newtonian droplet suspended

in another Newtonian fluid, all subjected to a simple shear flow. Conservative finite-volume approximation

on a collocated three-dimensional grid along with a conservative Level-set method are used to solve the

governing equations. Four parameters of capillary number (Ca), Viscosity ratio (λ), Reynolds number (Re)

and walls confinement ratio are used to physically define the problem. The main focus of the current

study is to investigate the effect of viscosity on walls critical confinment ratio. In this paper, the phrase

critical is used to specify a state of governing parameters in which divides the parameter space into the

subcritical and supercritical regions where droplets attain a steady shape or breakup, respectively. To do so,

first, we validate the ability of proposed method on capturing the physics of droplet deformation including:

steady-state subcritical deformation of non-confined droplet, breakup of supercritical conditioned droplet,

steady-state deformation of moderate confined droplet, subcritical oscillation of highly-confined droplet, and

the effect of viscosity ratio on deformation of the droplet. The extracted results are compared with available

experimental, analytical and numerical data from the literature. Afterward, for a constant capillary number

of 0.3 and a low Reynolds number of 1.0, subcritical (steady-state) and supercritical (breakup) deformations

of the droplet for a wide range of walls confinement in different viscosity ratios are studied. The results

indicate the existence of two steady-state regions in a viscosity ratio-walls confinement ratio graph which

are separated by a breakup region.

Keywords: Simple shear flow, Droplet deformation and breakup, Conservative Level-set method, Viscosity

ratio, Critical confinement ratio
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1. Introduction

Droplets of one liquid dispersed in an immiscible liquid start to deform when subjected to shear flow.

If the conditions are met, the droplet may even breakup into daughter droplets. The study of a droplet

in shear flow is important from the aspect of dispersion science and mixing process. For example, it is

possible to create a specific blend morphology by shearing emulsions between two parallel plates with a

small separation [1] which has applications in Lab-on-a-Chip devices [2]. This area is not only limited to

laminar flows. According to Komrakova et al. [3], even though the flow regime in stirred tank reactors is fully

turbulent, the effect of the existing eddies on droplets could be modeled by a laminar shear flow. Study of

shear deformation of droplets can provide crucial understanding in morphology development of the blends,

immiscible fluid displacement in enhanced oil recovery, refinement of liquids, carbon-dioxide sequestration,

remediation of nonaqueous-phase liquids and emulsification.

Emulsification has wast applications in food, chemical, and pharmaceutical industries. Emulsification

process takes place by applying shear stress against the surface tension, to elongate and then rupture a

larger droplet into smaller ones. Emulsions can be made in many ways, however, shear mixing is one of

the main methods. Thus Studies of shear deformation of droplets can be beneficial to better understand

the properties of emulsions and to provides a deeper insight of rheological properties of the mixture. For

instance, the critical conditions at which a droplet breaks-up is useful to quantify emulsion stability [4, 5].

Another one of important applications of deformation and breakup of confined sheared droplets is on

Droplet-based microfluidic technology which has recently been exploited to perform microfluidic functions.

Its applications range from fast analytical systems and synthesis of advanced materials [6] to protein crys-

tallization [7] and biological assays for living cells [8, 9, 10] . Precise control of droplet volumes and reliable

manipulation of individual confined droplets have crucial effects on the performance of these systems and

are still a challenge [11]. Another important aspect of this area of study is in reacting dispersions, where

an understanding of the dynamics of the droplet is needed in order to gain a better perception on the

mechanisms of molecular transport, rates of chemical reaction and polymerization of the dispersion [12].

Since the experimental researches of Taylor [13, 14], droplet deformation and breakup in shear flow

evoked great interests. More details on these studies could be found in reviews done by Rallison [15], Stone

[16], Cristini and Renardy [17].

In the case where the droplet evolves to a steady shape, different parameters have been used by researchers

to measure the deformation attained by the droplet. The first one is the Taylor deformation parameter
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Figure 1: Schematic presentation of a deformed droplet along with related geometrical measurements in left:

velocity-velocity gradient plane and right: velocity-vorticity plane

defined as D = (L−B)/(L+B), where L and B are length and breadth of the drop, as shown in figure 1.

Another parameter is the angle θ of orientation of the droplet with respect to the axis of shear strain. In

addition to these parameters, Lp and W, as projected length and width of the droplet are used in literature

and depicted in figure 1. In another experimental research, Marks [18] studied a single droplet undergoing end

pinching in a strong shear flow in a process named "elongative end pinching". This process is in opposition

to "retractive end pinching" process studied by Bentley and Leal [19]. Vananroye et al. [20] reported that

confinement has a substantial effect on the critical capillary number. More studies in highly confined systems

were done by Sibillo et al. [21], where they found oscillatory behavior in droplet deformation in high but

subcritical capillary numbers. They also found complex breakup modes for supercritical capillary numbers.

In the context of this paper, subcritical, refers to conditions where the deformation of the droplet reaches

steady-state without any breakup and supercritical refers to conditions where the deformation of the droplet

leads to breakup.

Analytical studies in this field are limited. Shapira and Haber [22, 23] investigated the effect of two

parallel walls on the motion of a nearly spherical droplet and the drag force acting on it. Roths et al. [24]

reported that in two-dimensional cases with small capillary numbers, Taylor deformation parameter is a

linear function of capillary number. van der Sman and van der Graaf [25] used a slope equal to f(λµ) = 1.4

for this linear function where λµ is the viscosity ratio of droplet to matrix. In three-dimension however,

Stone [16] used f(λµ) = (16+19λµ/(16+16λµ)). Richardson [26] reported a trigonometric function between

deformation (D) and orientation (θ) of the droplet as D ∼ cos(2θ). Toose et al. [27] found out that time

evolution of droplet deformation in two-dimension elongational flow follows the Oldroyd approximation and

reported D=f(λµ)Ca exp(-γt/τ) where τ = Ca(1 + λµ) where γ is the shear rate and Ca = µγr/σ as the

capillary number is a measure of the ratio between the viscous and interfacial tension stresses. In this

formulation, µ is viscosity, r is radius of the droplet, and σ is the surface tension coefficient. In a more

recent work, Minale [28] presented a phenomenological model for the effect of wall on deformation of an
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ellipsoidal droplet.

Besides the experimental and analytical studies, there are plenty of numerical researches in this field using

mainly three methods of boundary integral, lattice Boltzmann (LB) and volume-of-fluid (VOF). Kennedy

et al. [12], Kwak and Pozrikidis [29] and Janssen and Anderson [30] studied the droplet deformations using

boundary integral method. Since in simulations of merging and folding interfaces in the boundary integral

method, the interface point should be reconstructed, significant logical programming techniques are required

which increases the computational costs. The mathematical implication of this method is described in

Pozrikidis [31].

Using lattice Boltzmann model (LBM), van der Sman and van der Graaf [25] investigated the numerical

criteria for correct analysis of emulsions and used them to study the droplet deformation and breakup

in two-dimensional cases. Xi and Duncan [32] applied the LBM in conjugation with the interface force

model presented by Shan and Chen [33] to simulate three-dimensional droplet deformation in simple shear

flow. Komrakova et al. [3] used free energy LBM to perform three-dimensional simulations of liquid droplet

deformation in simple shear flow for a wide range of flow conditions.

Volume-of-fluid (VOF) and coupled VOF/Level-set methods were used by many researchers [34, 35,

36, 37, 17, 38] to investigate the droplet deformation and breakup in shear flow. Li et al. [34] presented

results for different values of capillary numbers and reported that for supercritical cases, by increasing the

capillary number, the number of daughter droplets increases. Renardy and Cristini [35] studied the effect

of inertia on droplet breakup. They reported that inertia rotates the droplet toward the vertical direction,

in a mechanism similar to aerodynamic lift, afterward the droplet experiences higher shear, which pulls the

droplet apart horizontally. Renardy et al. [36] fixed the flow’s strength and focused on trends for the droplet

fragment distribution when the size of the droplet increases. Khismatullin et al. [37] found that for viscosity

ratios greater than the critical value, inertia can be used as a mechanism of breakup. Cristini and Renardy

[17] worked on the effect of inertia and scaling fragments after droplet breaks.

The studies on shear deformation of the droplets is not limited to Newtonian fluids. Verhulst et al.

[39] studied the influence of matrix and droplet viscoelasticity on the steady-state shear deformation of a

droplet. Mukherjee and Sarkar [40] numerically investigate the effects of viscosity ratio on an Oldroyd-B

droplet deforming in a Newtonian fluid under steady shear. They reported that the viscoelastic normal

stresses reduce droplet deformation and increase critical capillary number. Hsu and Leal [41] studied the

steady and transient deformations of a purely elastic droplet in a Newtonian fluid undergoing a planar

extensional flow. They reported the absence of overshoot of the droplet deformation upon startup, and a
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relative insensitivity to the Deborah number. Ioannou et al. [42] investigated the droplet deformation and

breakup under simple shear flow when droplet and/or matrix represents non-Newtonian shear-thinning or

shear-thickening behaviors. They stated that the shear-thinning droplets behave similarly to highly-viscous

Newtonian droplets.

In this paper, we focus on three-dimensional simulations of droplet deformation and breakup in simple

shear flow in the context of conservative level-set (CLS) method [43, 44, 45] with a finite-volume approach.

In the present CLS method, interface normals are computed using a least-squares method on a wide and

symmetric nodes-stencil around the vertexes of the current cell [44]. These normals are then used for

an accurate computation of surface tension, without additional reconstruction of the distance function,

as in geometrical volume-of-fluid/level-set methods [38] or fast-marching methods. Moreover, most of the

computational operations are local, which permit an efficient implementation on parallel platforms [46].

The CLS method has been designed for general unstructured meshes [44]. Indeed, the grid can be adapted

to any domain, enabling for an efficient mesh distribution in regions where interface resolution has to be

maximized, which is difficult by using structured grids. Furthermore, TVD flux-limiter schemes [44] are used

to discretize convective terms, avoiding numerical oscillations around discontinuities, whereas the numerical

diffusion is minimized. Finally, the present finite-volume formulation is attractive due to the satisfaction of

the integral forms of the conservation laws over the entire domain [45].

The first objective is to study the accuracy of our results on capturing the droplet’s deformation and

breakup in shear flow. The effect of domain size, mesh size and numerical parameters on the accuracy of

the results are studied. Validation is done by analyzing the effect of different parameters including walls

confinement, capillary number and viscosity ratio on the deformation and breakup of the droplet. The

extracted results are compared with the available numerical, analytical and experimental data.

In the next step, the effect of viscosity ratio on walls critical confinement ratio for a constant capillary

number of 0.3 and a low Reynolds number of 1.0 is studied. The walls critical confinement ratio divides the

parameter space into the regions where droplets break or attain a steady shape. According to Vananroye

et al. [47], for viscosity ratios smaller than 1, confinement suppresses breakup while for viscosity ratios bigger

than 1, breakup is enhanced. Janssen et al. [48] further studied the deformation of a single droplet as a

function of viscosity ratio and confinement ratio both experimentally and numerically using the boundary

integral method. They discussed the critical capillary number for a wide range of viscosity ratios in different

confinements and suggested that there is a generalized behavior on droplet breakup mechanism in confine-

ment. They presented a graph of five regions for the critical capillary number in different confinements.
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Despite these studies, to the best of our knowledge, effect of viscosity ratio on walls critical confinement

ratio is yet to be discovered. In the last section of this paper, we elaborately study this phenomenon for a

given capillary number of 0.3 and a low Reynolds number of 1.0. Our results illustrate two steady-state and

one breakup regions for droplet under different confinements and viscosity ratios.

The outline of this paper is as follow: Mathematical formulations are presented in section 2. Employed

numerical methods are explained in section 3. Section 4 involves the obtained results. Firstly we verify

the accuracy of the method against different numerical, analytical and experimental data. In section 4.6,

we study the effect of viscosity ratio on walls critical confinement ratio. Finally, concluding remarks are

presented in section 5.

2. Mathematical formulation

Navier-Stokes equations are used to describe the conservation of mass and momentum of two incom-

pressible immiscible newtonian fluids on a spacial domain Ω with boundary ∂Ω as following [44, 45]:

∂

∂t
(ρv) +∇.(ρvv) = −∇p+∇.µ

(
∇v + (∇v)T

)
+ ρg + σκnδΓ in Ω (1)

∇.v = 0 in Ω (2)

where ρ and µ are density and dynamic viscosity of the fluids, v is the velocity field, p pressure field, g

gravitational acceleration, and δΓ is the Dirac delta function concentrated at the interface (Γ). In this

formulation, n is the unit normal vector outward to interface and κ is the interface curvature and σ is the

interface tension coefficient.

Since the mass, density, and viscosity are constant within each fluid, they can be defined as scalar-fields

inside the whole domain as follows:

ρ = ρ1H + ρ2(1−H) (3)

µ = µ1H + µ2(1−H) (4)

where H is the Heaviside step function which takes the value one in dispersed phase and zero elsewhere.

In this research, conservative level-set (CLS) method [49], as introduced by Balcázar et al. [44] in the

context of a finite-volume method for unstructured grid is used. Instead of the signed distance function,

d(x,t), used to represent the interface in the classical level-set method, conservative LS method employs a
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regularized indicator function φ as below:

φ(x, t) =
1

2

(
tanh

(
d(x, t)

2ε

)
+ 1

)
(5)

where ε is the parameter that sets the thickness of the interface. φ varies from 0 in one fluid to 1 in other

fluid. With this formulation, interface is defined by Γ = {x|φ(x, t) = 0.5}. Normal vector n on the interface

and curvature κ of the interface, are obtained using [44]:

n =
∇φ
||∇φ||

(6)

κ(φ) = −∇.n (7)

Note that based on the definition of regularized indicator function (φ) in the domain (value 1 in the dispersed

phase and 0 in continuum phase, or vice-versa), the direction of n could be understood.

The level-set function is advected by velocity vector field, v, provided from solution of Navier-Stokes

equations. Since the velocity field is solenoidal (∇.v = 0), the interface transport equation can be written

in conservative form [44, 49]:

∂φ

∂t
+∇.φv = 0 (8)

Since sharp changes exist in level set function at the interface, Superbee flux limiter scheme is used in dis-

cretization of the convective term in order to minimize numerical diffusion and to avoid numerical instabilities

at the interface. To keep the profile and thickness of the interface constant, an additional re-initialization

equation [50] is used:

∂φ

∂τ
+∇.φ (1− φ)nτ=0 = ∇.ε∇φ (9)

where nτ=0 is the interface normal vectors computed at the pseudo-time τ = 0. This equation is advanced

in pseudo-time τ and consists of a compressive flux: φ(1 − φ)nτ=0 and a diffusion term: ∇.ε∇φ. The first

one keeps the level-set function compressed onto the interface along the normal vector n, and the second

one keeps the profile in prescribed characteristic thickness of ε. This parameter is defined based on the mesh
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resolution as [44]:

εp = Cεh
1−α (10)

where h = (VP )1/3 is the grid size based on volume VP of cell P. In all the simulations of this paper, Cε is

constant and equal to 0.5. Parameter α, however, varies in order to change the thickness of the interface

and can take values between [0,0.1], to overcome the possible numerical instabilities. The continuous surface

force model (CSF) [51] is used for surface tension computation which converts the term σκnδΓ in Eq. 1 to

a volume force term as follows [44]:

σκnδΓ = σκ(φ)∇φ (11)

where ∇φ is computed using least-square method based on vertex node stencils [44]. By applying this

approach, the explicit tracking of the interface is not necessary.

3. Numerical method

Finite-volume (FV) approach is used to discretize the Navier-Stokes and level-set equations on a collo-

cated grid, so all the computed variables are stored at centroids of the cells [44]. A central difference (CD)

scheme is used to discretize the compressive term of re-initialization equation (9) and diffusive fluxes at the

faces. A distance-weighted linear interpolation is used to calculate the face values of physical properties

and interface normals. The gradients are computed at the cell centroids using the least-squares method.

For creeping flow regime, a central difference scheme and for non-creeping flow regimes a total-variation

Diminishing (TVD) SUPERBEE flux limiter is used to discretize the convective term as implemented in

Balcázar et al. [44], in order to improve the numerical stability of the solver. At discretized level, physical

properties are regularized in the context of the CLS method. Therefore a linear average is used for density

as ρ = ρ1φ + ρ2(1 − φ), and a harmonic average is used for viscosity as µ =
(
φ
µ1

+ 1−φ
µ2

)−1

. Harmonic

average of viscosity improves the accuracy convergence of the results, compared with the linear average. As

a comparison, velocity profile of a two-dimensional two-phase oscillating droplet is presented in appendix

Appendix B where results of harmonic averages of viscosity are compared with results of linear average of

viscosity for this problem.

A classical fractional step projection method as described by Chorin [52] is used to solve the velocity-

pressure coupling. The solution procedure in each timestep is as follows:
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1. Physical properties, interface geometric properties and velocity field are initialized.

2. Allowable time step is calculated. The value of ∆t is limited by CFL conditions on convective term

and also by explicit treatment of surface tension as used by [44, 45]:

∆tconv ≡ α×min(
h

‖VP ‖
) (12)

∆tcap ≡ α×min(h3/2(
ρ1 + ρ2

4πσ
)1/2) (13)

where α is CFL coefficient. The final global value of time step is the minimum of ∆tconv and ∆tcap.

To decrease the computational costs, the maximum value of α which leads to a stable simulation is

used. Unless otherwise mentions, this value is 0.1.

3. The advection equation (8) is integrated in time with a 3-step third order accurate TVD Runge-Kutta

scheme [53].

4. The re-initialization equation (9) is integrated in pseudo time (τ) using a third order accurate TVD

Runge-Kutta scheme. The time τ is used to lead the solution into a stationary state. Since an explicit

scheme is used, the time step is restricted by the viscous term of equation 9 as follows [44, 49]:

∆τ = Cτmin

(
h2

εP

)
(14)

One iteration is used to solve the discretized form of equation 9. The value of Cτ in this formula

serving as a CFL-like coefficient for this equation, can take values between [0.01,0.05].

5. Physical properties in the domain (density and viscosity) and geometrical properties at the interface

(curvature and interface normal) are updated from the level set field.

6. The velocity and pressure fields are calculated using a fractional-step method. The first step is to

calculate the predicted velocity v. In the creeping flow regime, where the Reynolds number of the flow

is close to zero, the diffusion term in momentum equation tends to control and decreases the time step.

This implies a huge computational cost on simulations. To avoid this issue, diffusion term could be

treated implicitly. So a second-order implicit Crank-Nicolson scheme is used to discretize the diffusion

term of equation 1 while a second-order Adams-Bashforth scheme is used on convective, gravity and

surface tension terms.
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ρv∗ − ρnvn

∆t
=

3

2
(Rvh)n − 1

2
(Rvh)n−1 +

1

2
(Dh(v∗) + Dh(vn))−∇hpn (15)

where Rvh = −Ch(ρv) + ρg + σκ∇h(φ) with Ch(ρv) = ∇h.(ρvv) as the convective operator. In

this equation, Dh(v) = ∇h.µ(∇hv +∇Thv) as the diffusion operator where ∇h represent the gradient

operator.

A term of pressure gradient of previous time step is added to the discretized form of equation 1.

According to Armfield and Street [54], this will increase the accuracy of the momentum equation to

a second order in time, and combined with proper boundary condition of Kim and Moin [55] even

to a third order in time. In our case, the momentum equation has a second-order accuracy in time.

In appendix Appendix C, the convergence of implemented method for the accuracy of momentum

equation in time is analyzed.

Next, a correction to the predicted velocity applies as:

ρvn+1 − ρv∗

∆t
= −∇hπn+1 (16)

where π is the pressure correction term. By applying the incompressibility constraint (∇.v = 0),

equation 16 changes to a Poisson equation as follows:

∇h.
(

1

ρ
∇h(πn+1)

)
=

1

∆t
∇h.(v∗) (17)

The obtained linear system is solved using a preconditioned conjugated gradient method. At the end,

the velocity vn+1 is corrected using:

vn+1 = v∗ − ∆t

ρ
∇h(πn+1) (18)

and the pressure is updated using:

pn+1 = pn + πn+1 (19)
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Figure 2: Computational setup in the cubic structured mesh

7. In order to fulfill the incompressible constraint, Eq. 2, and to avoid pressure-velocity decoupling on

collocated meshes [56, 57], a cell-face velocity is used to advect the momentum and CLS function, as

introduced in [44, 58].

8. repeat steps 2 -7 to reach the desired time.

The reader is referred to [58, 44] for technical details on the finite-volume discretization of both the Navier-

Stokes and conservative level-set equations on collocated unstructured grids. The numerical methods are

implemented in an in-house parallel c++/MPI code called TermoFluids [59]. Validations and verifications of

the numerical methods in the context of Conservative level-set method used in this work have been reported

in [44, 43, 50, 38, 45, 46, 58, 60, 61].

4. Numerical experiments and discussion

A circular droplet with radius r is placed at the center of a domain with span Sx, Sy and Sz in x,y

and z directions, respectively. Figure 2 illustrates the initial computational setup. The opposite x-direction

velocities of +U and −U are imposed at the top and bottom walls inducing a shear rate of γ̇ = 2U/Sz in

the domain. A periodic boundary condition is applied in the flow direction (x) and Neumann boundary

condition in y direction. Computations have been performed using a Cartesian mesh of cubic grids with the
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edge size of h. This mesh was generated by a constant step extrusion of the two-dimensional y-z grid along

the x-axis with the step size of h. At the beginning of the simulation, a linear velocity field is applied inside

of the domain varying from −U at the bottom wall to +U at the top wall. Simulations with different mesh

resolutions are done to study the effect of the computational grid size.

The system can be physically defined by four parameters of Reynolds number (Re), capillary number

(Ca), viscosity ratio (λ = µd/µc) and walls confinement ratio (2r/Sz) while c stands for continuum and d

stands for droplet. For an arbitrary value of shear rate (γ̇), the velocity at the top and bottom walls are

calculated as U = γ̇Sz/2. Then viscosity is calculated using the Reynolds number as below:

Re =
ρcγ̇r

2

µc
(20)

The capillary number is a dimensionless parameter defining the relative effect of the shear stress versus

surface tension across the interface, given by:

Ca =
γ̇µcr

σ
(21)

For a given value of Ca and Re numbers, and the calculated value of µc, the related value of σ is

determined.

The effect of variable CLS parameters of Cτ and α on the results is studied in Appendix A. According

to this study, the variation of Cτ and α has negligible effect on the deformation of the droplet, and thus

constant values of 0.015 and 0.0 are choosen for these two parameters, respectively. In Appendix A, we have

also shown that our numerical tools conserve the mass of the droplet perfectly.

4.1. The effect of domain length

In order to study the effect of domain’s length on the results, simulations with (Re,Ca, λ) = (0.1, 0.3, 1)

in three domains with (Sx, Sy, Sz) = (6r, 4r, 8r), (8r, 4r, 8r) and (10r, 4r, 8r) with grid size of h = 2r/25 are

performed. The value of D and θ parameters for these cases are tabulated in table 1.

It is plain to see that domains with lower lengths encounter with a lower value of D and higher inclination

angle. Since periodic boundary condition is applied in the flow direction, it is important to make sure that

the fluctuations in the velocity profile downwind of the domain will dissipate before passing through the

periodic boundary and re-entering the domain. The ideal velocity profile at this location should linearly
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Figure 3: Taylor deformation parameter (D) and inclination of the droplet (45-θ) at steady-states for different

capillary numbers, in Stokes flow conditions (Re=0.0625) with λ = 1. Dash line represents the asymptotic

results by Cox [62] for small deformation.

Table 1: The effect of domain’s length (Sx) on steady-state values of Taylor deformation parameter (D) and

orientation angle (θ) for cases with Re = 0.1, Ca = 0.3 and λ = 1. The Sz and Sy of the domains are 8r

and 4r, respectively.

Sx 6r 8r 10r
D 0.3823 0.3985 0.4039
θ 25.15 24.50 24.34
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Table 2: The effect of grid size on Taylor deformation parameter (D) at steady-state for cases with Re=0.1,

λ = 1 and two different capillary numbers of 0.1, 0.4.

mesh h Ca=0.1 Ca=0.4

D εD D εD

M1 2r/25 0.1139 1.24% 0.6313 4.7%
M2 2r/30 0.1135 0.8% 0.6144 1.9%
M3 2r/35 0.1125 - 0.6030 -

vary from -U at the bottom wall to +U at the top wall. According to measurements and extracted profiles,

domain with Sx = 6r has nonuniform velocity profile at the location of the periodic boundary. This issue

affects the deformation of the droplet, while domain with Sx = 10r has a much more uniform velocity

distribution at this location. The standard deviation of D for cases with Sx = 6r and Sx = 8r is 1.1% while

this value for cases with Sx = 8r and Sx = 10r is 0.3%. In order to reduce the computational cost, unless

otherwise is mentioned, the length of the domains of simulations is Sx = 8r. According to our studies and

Komrakova et al. [3], Sy = 4r is wide enough to minimize the effect of the side walls on simulations and

save-up in computational costs. Hence, unless otherwise is mentioned, domains with Sy = 4r are used in

the simulations.

4.2. Grid convergence analysis

Concerning with the effect of grid size on results, simulations with Re=0.1, λ=1 and two different

capillary numbers of 0.1 and 0.4, as the boundaries of the subcritical regime of creeping flow, are done.

Table 2 summarizes the Taylor deformation parameter for these cases solved in three different meshes of

M1, M2, and M3. The mesh M3 (as it is formed with the finest grid) is used as the reference case, and

the relative error of cases with meshes M1 and M2 with regards to the case with this mesh are calculated.

According to these data, the error in Taylor deformation parameter of mesh M2 in the worse case is less

than 2%. In favor of computational cost, unless otherwise is specified, simulations are done in domains with

grid size of mesh M2.

4.3. The effect of capillary number

In order to study the accuracy of our results on capturing the effect of capillary number on deformation

of the droplet in creeping flow condition, simulations with different capillary numbers of 0.05, 0.1, 0.2,

0.3 and 0.4 in flow with Re=0.0625 and λ = 1 are done. For the case with Ca=0.4, a domain length of

Sx = 12r is used to ensure acceptable uniform velocity profile at the location of the periodic boundary.

14



Figure 4: Evolution of droplet shape at Re=0.1, Ca=0.42 and λ=1, along with the velocity magnitude

contours on the droplet surface, (t∗ = tγ̇).

Taylor deformation parameter (D) and inclination of the droplet (45-θ) are extracted and presented in

figure 3. These data are compared with results available in the literature, done by different methods i.e.

numerical methods including Lattice Boltzmann, VOF and boundary integral in addition to experimental

and analytical methods. The results extracted in this study agree well with the reference data.

For aforementioned cases, with capillary numbers of 0.2, 0.3 and 0.4, the steady-state droplet shape and

evolution of droplet deformation are illustrated in supplementary material figure 1 and 2.

According to the previous experimental, numerical and theoretical studies, in creeping flow conditions,

when λ < 4, there is a critical capillary number (Cac) above which the droplet won’t reach steady-state

and continues to deform until breaks-up. The value of Cac is lowest for λ values roughly around 0.6 [63].

According to Rallison [15], this value is slightly less than Cac for λ = 1 which is around 0.41. As reported
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Figure 5: Evolution of the droplet shape and the flow pattern inside of the droplet, along with the vorticity

magnitude contours all at y = Sy/2, for the case with Re=0.1, Ca=0.42 and λ=1. Snapshots are taken in

times tγ̇ = 25.20, 32.04 and 35.76 (from top to bottom).

by Li et al. [34], in case of Ca=0.42, the droplet breaks into two daughter droplets, one satellite, and two

sub-satellite droplets. In order to study the ability of the method on capturing the breakup, simulation with

Ca=0.42, Re=0.1 and λ = 1 in a domain with (Sx, Sy, Sz) = (12r, 4r, 8r) is carried out. The droplet shape

evolution is presented in figure 4. As expected, the droplet breaks-up into two daughters, one satellite in

the middle and two sub-satellite droplets. In order to gain a better understanding of the breakup process,

the final stages of the breakup of this case are illustrated in figure 5. This figure presents the cross-sectional

profile of the surface of the droplet (φ = 0.5) at three different times of tγ̇=25.20, 32.04 and 35.76 along

with the velocity streamlines and vorticity magnitude contours. According to this figure, at time tγ̇=25.20,

there are two visible vortices inside of the droplet elongated in the flow direction, each in one of the bulbous.

As time passes to tγ̇=32.04 and droplet evolves, a third vortex is formed inside of the waist of the droplet

which is separated from the other two vortices by the necks. Towards the end, where the waist breaks into

a satellite and two sub-satellite droplets, the vortex inside of it also divides into three vortices, one inside of

each piece.

4.4. The effect of walls confinement

In favor of studying the ability of the proposed method on capturing the effect of walls confinement on

droplet deformation in subcritical regions, simulations with (Re, Ca, λ)=(0.1,0.3,1) and (0.1,0.1,1) are done

in domains with different confinement ratios (2r/Sz). As reported by Renardy and Cristini [35], for the given

Reynolds number of 0.1 and λ value of 1, capillary numbers of 0.1 and 0.3 are below the critical value (Cacr)

which means the droplet must reach to a steady-state. Shapira and Haber [23] extracted the analytical
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Figure 6: Taylor deformation parameter (D) for cases with Ca=0.1 and 0.3 with λ = 1 in different walls

confinement ratios. Experimental data of Sibillo et al. [21] (◦) and analytical data of Shapira and Haber

[23] (dash dot lines) for Stokes flow regime, in comparison with results of current study for Re=0.1 (M)

expressions based on Lorentz’s reflection method for droplet deformation in confined shear flow in small

to moderate deformation regimes. They presented a first-order correction for the wall effect and claimed

that the droplet shape was not altered compared to the unbounded shear flow but only the magnitude of

deformation was increased.

The results of simulations of current study compared with the experimental data of Sibillo et al. [21]

and analytical studies of Shapira and Haber [23] are presented in figure 6. As can be seen in this figure, for

both capillary numbers, Taylor deformation parameter (D) increases with increasing the walls confinement

ratio (2r/Sz). In smaller capillary number (Ca=0.1) there is good agreement between analytical predictions

of Shapira and Haber [23] and both experimental data of Sibillo et al. [21] and the results of current

study. For cases with Ca=0.3, however, analytical predictions of Shapira and Haber [23] fails to predict

the Taylor deformation parameter compared with experimental data of Sibillo et al. [21] and results of the

present study. For all the cases, by decreasing the walls confinement ratio, the value of Taylor deformation

parameter converges to a constant value.

In the next step, we study the startup behavior of a highly confined droplet with 2r/Sz = 0.83, Ca=0.6,

λ=0.32 and Re=0.0625 in a domain with Sx = 16r. As stated in Vananroye et al. [47], the critical capillary
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Figure 7: Time evolution of a highly confined droplet in creeping flow condition with 2r/Sz = 0.83, λ =

0.32, and Ca=0.6, along with the pressure contours on the droplet’s surface (right column) compared with

experimental results of Vananroye et al. [64] (left column). (a): images taken in velocity-vorticity plane, (b):

images taken in velocity-velocity gradient plane at tγ̇/Ca=88.25
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Figure 8: Top: Streamline contours inside of the droplet in x-z plane at y = Sy/2, Bottom: droplet shape

along with the walls and vorticity contours (ey.∇× v) in x-z plane at y = Sy/2. Both shapes illustrates a

droplet in creeping flow conditions, with capillary number of 0.6, λ = 0.32, Reynolds number of 0.0625 and

walls confinement ratio of 2r/Sz = 0.83 at tγ̇/Ca=88.25

Figure 9: Startup behavior of a highly confined droplet with Re=0.0625, 2r/Sz = 0.83, λ = 0.32, and Ca=0.6.

compared with experimental results of Vananroye et al. [64] for creeping flow condition and confined MM

model of Minale [28] for Ca=0.5, 0.6
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number for a case with λ=0.32, 2r/Sz=0.83 and creeping flow condition is approximately equal to (Cacr =

)0.7. Thus for our intended case, we do not expect the breakup of the droplet. Figure 7 illustrates the time

evolution of the droplet in comparison with the same time instants of the experimental work of Vananroye

et al. [64].

According to the figure 7(a), shortly after starting the simulation, the droplet starts to stretch in the flow

direction. The stretching continues until the droplet reaches its maximum elongation at some time around

tγ̇/Ca=44, but instead of breaking up, the droplet retracts. According to figure 7(b), the central part of

the droplet takes a cylindrical shape, oriented in the flow direction and the tips are tilted towards the walls

giving the droplet a sigmoid shape. Figure 8 provides information about the streamline contours inside of

the droplet and vorticity contours in y = Sy/2 plane. According to this figure, two vortices exist inside of

the droplet which are stretched from the center of the droplet toward the tips.

Time variation of W/2r and Lp/2r parameters, along with experimental data of Vananroye et al. [64]

and analytical predictions of MM model Minale [28] are presented in figure 9. According to this figure,

for the time around tγ̇/Ca ≈44, the value of Lp/2r is maximum which is in agreement with information

provided in figure 9. Also for the time around tγ̇/Ca ≈95, the droplet starts to expand after reaching a local

minimum length. It seems that these oscillations in the deformation of the droplet will last for a long time

and reaching steady-state will take time much longer than the scale studied in this paper (tγ̇/Ca =140). It

is worth mentioning that in this case a good agreement is seen between the experimental data and the results

of current study. MM model of Minale [28] however fails to provide accurate information. In this model

for Ca=0.6, the droplet continuously deforms until it breaks-up. For smaller capillary of 0.5, this model

predicts a steady-state after tγ̇/Ca ≈80 and does not predict any oscillations in the droplet deformation.

4.5. The effect of viscosity ratio

In order to study the accuracy of the method on a wider range of viscosity ratios, three simulations with

viscosity ratios of λ=0.28, 1.2 and 1.9 all with Ca=0.2 and Re=0.1 are performed. The selected domain has

walls confinement ratio of 2r/Sz = 0.73. Figure 10 presents the startup transition of non-dimensionalized L

and B parameters along with the experimental results of Vananroye et al. [64] and predictions of confined MM

model of Minale [28]. It is clear to see that the startup transition of the droplets in all three cases are similar,

although approximately after tγ̇/Ca ≈3 the differences start. Good agreement is seen between experimental

data and results extracted in this study. The MM model results also match the startup transition process

predicted by experimental and numerical results. However, it over-predicts the deformation of the droplet

for the rest of the simulations.
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Figure 10: Effect of viscosity ratio on transition of droplet deformation for Ca=0.2 in a domain with con-

finement ratio of 2r/Sz = 0.73. Comparison between extracted data from experimental results of Vananroye

et al. [64] (symbols) and prediction of confined MM model of Minale [28] (dash lines) for creeping flow condi-

tion, along with the extracted results of current study (bold lines) for Re=0.1. Information in color red stand

for λ = 0.28, color blue for λ = 1.2 and color green for λ = 1.9. The absolute time (t) is non-dimensionalized

with characteristic emulsion time (τ).

Figure 11: Cross sectional steady-state scheme of droplet in y = Sy/2, along with stream lines of the flow

in different viscosity ratios of 0.28 (a), 1.2 (b) and 1.9 (c), for flow with Re=0.1 and Ca=0.2. All the

simulations are done in a domain with 2r/Sz = 0.73. The color contours presents the vorticity magnitude

in aforementioned plane.
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Figure 12: Left: Effect of viscosity ratio on droplet breakup in simple shear flow. Experimental data from

[63], Right: Schematic representation of the effect of walls confinment ratio on critical capillary number as

presented in Janssen et al. [48]

Figure 11 illustrates the cross-section of the droplet shape in x-z at y = Sy/2 plane at time tγ̇/Ca =20,

along with the velocity streamlines and vorticity magnitude contours. According to this figure, for the case

of λ = 0.28, there are two vortices inside of the droplet, but by increasing the viscosity ratio to 1.2 and 1.9,

it decreases to one vortex. Also, the vorticity magnitude decreases by increasing the viscosity ratio. Since

λ = µd/µc, smaller viscosity ratio means for a constant matrix viscosity, the droplet has lower viscosity, and

hence lower resistance towards the gradual deformation. That justifies the bigger deformation in the flow

pattern, two vortices and higher vorticity magnitude inside of the droplet with λ = 0.28.

4.6. The effect of viscosity ratio on walls critical confinement ratio

In previous sections, we validated the ability of our method on capturing the physics of problems with

different walls confinements (section 4.4) and viscosity ratios (section 4.5). We realized that increasing the

confinement ratio for subcritical cases increases the droplet deformation parameter (fig. 6) and for highly

confined cases, induces retractions and expansions in the droplet which causes fluctuations in the deformation

(fig. 9). We also noticed that by varying the viscosity ratio, the flow pattern inside of the droplet changes,

as increasing the viscosity ratio from 0.28 to 1.2 decreased the number of internal vortices of the droplet

from two to one, and also decreased the vorticity magnitude (fig. 11).

Grace [63] systematically studied the droplet breakup in simple shear flow as a function of viscosity ratio.

These data are now known as Grace curve which is presented in figure 12 (left). In this figure, the values

of λs which are above the fitted line prompt the breakup, while values of λ under it results in steady-state
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Table 3: subcritical (sub) and supercritical (super) values of viscosity ratios for different walls confinement

ratios along with the final values of D, θ, Lp/2r and W/2r for subcritical cases. l and h in λ stand for low

and high as in each confinement ratio there are two values of λcr, one smaller than the other.

2r/Sz λsub λsuper D θ Lp/2r W/2r

0.25 λl 0.2 0.3 0.48 25.32 1.70 0.75
λh 2.55 2.5 0.49 17.25 1.70 0.76

0.38 λl 0.35 0.4 0.53 21.64 1.82 0.74
λh 2.2 2.0 0.49 17.52 1.79 0.75

0.50 λl 0.65 0.7 0.6 16.67 2.1 0.715
λh 2.0 1.95 0.56 14.45 2.02 0.72

0.71 λl 1.4 1.5 0.7 11.16 2.47 0.6
λh 5 4.5 0.56 11.03 2.0 0.69

0.83 λl 1.75 2.0 0.76 8.52 2.84 0.54
λh 14 13 0.54 8.28 1.95 0.67

Figure 13: The effect of viscosity ratio on walls critical confinement ratio in steady-state deformation and

breakup of the droplet, for given values of Ca=0.3 and Re=1.0 (The trend lines are added for the sake of

clarity).
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Figure 14: The steady-state droplet shape along with the streamlines of the flow inside of the droplet in

y = Sy/2, for subcritical cases in higher steady-state region (left column), and subcritical cases in lower

steady-state region (right column) in different confinement ratios. The color contours present the vorticity

magnitude in the aforementioned plane.

24



Figure 15: D (solid lines), Lp/2r (dash lines) and W/2r (dash dot lines) parameters Vs. tγ̇ for subcritical

cases of table 3. Black color lines are related to the results of λh and green color lines are related to the

results of λl. 2r/Sz= (a): 0.25, (b): 0.38, (c): 0.50, (d): 0.71 and (e): 0.83.
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Figure 16: breakup of the droplet into daughter, satellite, and sub-satellite droplets for supercritical cases

of table 3. The color contours are pressure on the droplet surface. The left column is related to droplet

breakups of supercritical cases of the higher steady-state region. Right column is related to droplet breakups

of supercritical cases of lower steady-state region. The videos of the deformation and breakup processes of

the most confined cases (2r/Sz = 0.83) are provided in supplementary videos (supplementary videos 1 and

2 regarding the breakups of supercritical cases of the higher steady-state region and supplementary videos

3 and 4 regarding the breakups of supercritical cases of the lower steady-state region) for oblique and side

views. In these videos time is being non-dimensionalized as 3tγ̇ and the color contours represent the velocity

magnitude on the droplets surface with the same colourmap as represented in figure 4
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deformation of the droplet without breakup. According to this figure, for a constant capillary number more

than the critical value, there are two critical viscosity ratios, one smaller than the other. For smaller critical

viscosity ratio, increasing the λ will lead to breakup while for bigger critical viscosity ratios, decreasing the

λ will lead to breakup. Simulations without the presence of confinement effect of walls, performed so far

in this paper, are in agreement with Grace curve. Our simulations in creeping flow condition presented in

figure 3 (λ = 1, Ca=0.05, 0.1, 0.2, 0.3 and 0.4) as well as simulations presented in figure 10 (Ca=0.2 and

λ=0.28, 1.2 and 1.9), which all ended in steady-state deformation of the droplet, are in lower part of Grace

curve (steady-state region) and simulation of figure 4 (λ = 1 and Ca=0.42), ended in breakup of the droplet,

locates in the upper part of Grace curve (breakup region).

Despite the important information provided in this graph, the walls confinement effect is not taken into

account. Figure 12 (right) illustrates the findings of Janssen et al. [48] on the effect of walls confinement

ratio on critical capillary number. Despite the important information provided in this graph, the effect of

different viscosity ratios is not taken into account. Although combined with the Grace curve, these two

graphs provide essential information regarding the critical capillary number in different viscosity and walls

confinement ratios; there is a need to specify the effect of viscosity ratio on the walls critical confinement

ratio.

In this section, we study the effect of viscosity ratio on walls critical confinement ratio in droplet defor-

mation and breakup for a constant capillary number of 0.3 and Reynolds number of 1.0. We have selected

Ca=0.3 so that the droplet could undergo both steady-state deformation and breakup in the considered

range of governing parameters. A simulation with a decidedly smaller capillary number would not exhibit

breakup, and a simulation with a more prominent capillary number would not undergo the steady-state

deformation, and as a result, we would not be able to extract the whole diversity of physical phenomena as

extracted in this section. We perform a batch of simulations, where the walls confinement ratio and viscosity

ratio of the droplet to the matrix are changed systematically. For each confinement ratio, we look for two

values of critical viscosity ratios, one smaller than the other. Considering the conclusion of the Grace curve,

for the lower critical viscosity ratio (λlcr), decreasing the λ value will lead to steady-state deformation, and

increasing the λ value will lead to the breakup of the droplet. Although for the higher critical viscosity

ratio (λhcr), we expect opposite behavior, as ascending from λ value is supposed to lead to steady-state

deformation and descending from it is supposed to lead to breakup of the droplet.

In order to find the λlcr and λhcr as a function of 2r/Sz, for each chosen value of walls confinement

ratio, we were starting the simulation with arbitrary λs, searching for values where result in breakup of the
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droplet. We then gradually descend (ascent) from this value until simulation winds up in steady-state, with

no breakup, to find λlcr (λhcr). This process was done for walls confinement ratios of 2r/Sz=0.25, 0.38, 0.5,

0.71 and 0.83. A domain length of Sx = 16r is used to guarantee that the droplet is not going to collide

with its own image through periodic boundaries, and also to ensure an acceptable uniform velocity profile

at the location of periodic boundaries. For each critical viscosity ratio found, there is one subcritical λ

(λsub, leading to steady-state deformation) and one supercritical λ (λsuper, leading to breakup). For the

simulations performed, these values are extracted and presented in table 3 as well as steady-state values of

D, θ, Lp/2r and W/2r for subcritical cases.

Figure 13 illustrates the data provided in table 3. In this figure, it is noticeable that two steady-state

regions exist, one corresponding to λ values smaller than λlcr (hereinafter refereed to as lower steady-state

region) and another corresponding to λ values bigger than λhcr (hereinafter refereed to as higher steady-state

region). All the simulations in these two areas resulted in steady-state deformation of the droplet. In the

area between these two regions, there is a breakup zone in which simulations in this area, resulted in the

breakup of the droplet.

As mentioned before and as can be seen in the Grace curve (fig. 12), in creeping flow conditions

without the effect of walls confinement, for λ values higher than 4, simulation always results in steady-state

deformation. Although In our study, simulations with λ values as high as λ=13 ended-up in breakup. We

believe this is associated with effect of walls confinement, eventhough slightly higher Reynolds number in

our cases is affecting as well.

According to figure 13, in the lower steady-state region, by increasing the confinement ratio, the crit-

ical viscosity ratio monotonically increases. However, for the higher steady-state region, starting from

2r/Sz=0.25, increasing the confinement ratio up to 2r/Sz ≈ 0.45, decreases the λhcr, and after that, rapidly

increases the λhcr.

The results of figure 13 combined with the Grace curve and the findings of Janssen et al. [48] provide

important information on the binary relation between viscosity ratio-walls critical confinement ratio, critical

capillary number-viscosity ratio, and critical capillary number-confinement ratio, respectively. These infor-

mation are interesting and could be used to gain an understanding of the critical Grace number in different

confinement ratios.

In order to gain a better understanding of the introduced graph, the steady-state shape of the droplet,

streamlines of the flow inside of the droplet and the color contour of the vorticity magnitude all in x-z

at y = Sy/2 plane for subcritical cases in different confinement ratios are presented in figure 14. In this
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figure, the left column corresponds to the subcritical cases of the higher steady-state region and right column

corresponds to subcritical cases of the lower steady-state region. It is plain to see that by increasing the

confinement ratio, the droplet leans more towards the flow direction. This can be seen quantitatively in the

data provided in table 3 in which for example in cases with 2r/Sz=0.25, the value of inclination angle for

subcritical cases in lower and higher steady-state regions are 25.32◦and 17.25◦, respectively. These values

are bigger than the equivalent values in confinement ratio of 2r/Sz=0.71 which are 11.16◦and 11.03◦. In

all the cases in both lower and higher steady-state regions, by increasing the confinement ratio, the droplet

stretches more in the flow direction and as a result, the width of the droplet decreases (see for example

parameters Lp/2r and W/2r presented in table 3).

According to figure 14, and also information provided in table 3, in each confinement ratio, the value

of inclination angle for subcritical cases in lower steady-state region is higher than the same parameter in

higher steady-state region. In another word, in each confinement ratio, in subcritical cases, for viscosity

ratios in the lower steady-state region, the droplet leans more towards the flow direction compared with

the viscosity ratios in the higher steady-state region. Also in each confinement ratio, the Lp/2r parameter

which describes how much the droplet is stretched in the flow direction, for subcritical cases in the lower

steady-state region is higher than subcritical cases in the higher steady-state region.

According to figure 14, for five cases, there are two vortices inside of the droplet, and for the rest, there

are only one. The cases with two vortices inside of the droplet are (2r/Sz,λ)=(0.25, 0.2) and all the cases

with 2r/Sz=0.71 and 0.83. We suppose that for the case of (2r/Sz,λ)=(0.25, 0.2), this ratio (λ) is small

enough to allow the existence of two vortices inside of the drop. For cases with 2r/Sz=0.71 and 0.83, the

existence of two vortices inside of the droplet could be linked to the effect of higher confinement ratios and

the suppressing effect of the walls. In this figure, for cases in the lower steady-state region (right column of

images), the vorticity magnitude is higher compared to the relative case in the higher steady-state region

(left column of images). This could be associated with lower viscosity ratio of the cases of right column

compared with the relative cases in the left column.

For cases introduced in figure 14, time-dependent changes of Lp/2r, W/2r and D parameters are presented

in figure 15. It is clear to see that simulations in these cases have reached steady-state over time. In this

figure, for each confinement ratio, the results of simulations with two viscosities of λl and λh are similar to

each other, except for cases (d) and (e). In the case (d), the Lp/2r parameter of the droplet in subcritical

case of the lower steady-state region is approximately 23% more than its equivalent case in subcritical case

of the higher steady-state region. In case (e) this difference in the Lp/2r parameter between lower and
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higher steady-state regions increases to 45%. This difference which can be seen in figure 14 as well, could

be associated with the bigger difference in λ values in subcritical cases compared with the other cases. For

example, for subcritical cases in the domain with 2r/Sz=0.71, the difference between λlsub and λ
h
sub is 3.6,

while this value for cases in domain with 2r/Sz=0.50 is only 1.35.

Figure 16 illustrates the droplet breakup outcomes for supercritical cases mentioned in table 3 for different

confinement ratios. According to this figure, figure 14 and information provided in table 3, eventhough for

subcritical cases, by increasing the confinement ratio, droplet stretches more towards the flow direction, for

the relative supercritical cases, by increasing the confinement ratio, the droplet stretches less before breaking-

up. In another word, for smaller confinement ratios (2r/Sz=0.25, 0.38) the breakup mechanism is elongative

end-pinching while increasing the confinement ratio changes this mechanism to mid-point-pinching. It is

noteworthy that the presented results in this section are regarding a constant capillary number of 0.3, and

the effect of variation of the capillary number on these results is yet to be studied.

5. Conclusion

A finite-volume conservative level-set based method was utilized to numerically study the effect of vis-

cosity ratio on walls critical confinement ratio for deformation and breakup of a droplet in shear flow. To do

so, first, we selected validation test cases that concern the physical behaviours appearing in this phenom-

ena, i.e. breakup of a droplet into satellite and sub-satellite droplets, deformation of a droplet under walls

confinement effect and deformation of a droplet in different viscosity ratios. In all the cases, a very good

agreement was seen between the results extracted in the current study and the data available on literature.

In order to study the effect of viscosity ratio on walls critical confinement ratio, we have selected a small

Reynolds number of 1.0 and a constant capillary number of 0.3. We found out that for each confinement

ratio, there are two critical viscosity ratios. These two viscosity ratios create two steady-state regions and

one breakup region between them. We further analyzed these regions by studying the droplet deformation

and breakup parameters in these zones.

The insights gained from the research in this paper on the effect of viscosity ratio on walls critical

confinement ratio provide a clear roadmap to steady-state and breakup regions of droplets in shear. This

information is valuable in more effective design of future droplet-based microfluidic devices, reactive disper-

sions, emulsification process, morphology development of blends and Lab-on-a-Chip systems for individual

purposes with methods discussed in this paper, namely, by adjusting the viscosity or confinement ratios

of the existing shear flow to the appropriate values to control the droplet volume. For example, the pro-
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vided information on the existence and relation of two steady-state and one breakup regions can be used to

quantify emulsions stability by analyzing the droplet size spectrum in the emulsion.
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Appendix A. The effect of variable CLS parameters on the results

The effect of variable CLS parameters of Cτ and α on final results is studied through a set of numerical

simulations. These two parameters are introduced in equations 14 and 10, respectively. The results including

time varying D, Lp/2r and W/2r parameters and steady-state shape of the droplet are presented in figures

B.17 and B.18, for cases with Re=0.1, Ca=0.3, λ=1 in a domain with (Sx, Sy, Sz) = (8r, 4r, 8r) with the

grid size of h = 2r/25. In the cases of figure B.17, for a constant value of Cτ=0.025, three different values

of α=0.0, 0.05 and 0.10 are tested. In the cases of figure B.18, for a constant value of α=0.0, three different

values of Cτ=0.01, 0.025 and 0.050 are tested. The selected values include the boundaries of the proposed

range for these parameters. According to these results, the variation of Cτ and α, has negligible influence

on deformation of the droplet, thus any value in the proposed range could be used. However, According

to figure B.18 (left), since the values of droplet deformation parameter (D) for Cτ=0.01 and 0.025 are very

close to each other, we believe in this sub-range ([0.01,0.025]), the effect of this parameter would even be

smaller and almost close to zero. As a result, an arbitrary value in this sub-range would be an appropriate

choice which we select Cτ=0.015. For all the simulations throughout this paper, values of 0.015 and 0.0

were set for Cτ and α, respectively.

In each iteration, droplet’s mass conservation error is calculated using ∆M = (Mt −M0)/M0, where

M0 is droplet’s initial mass and Mt is droplet’s mass at time t. In all the simulations of this research,

droplet’s mass conservation error is in the order of O(10−12). Figure B.19 presents the time variation of

mass conservation error of the droplet for cases with Re=0.1 and λ=1, and four capillary numbers of 0.1,
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Figure B.17: Left: Taylor deformation parameter (D), right: Lp/2r and W/2r parameters vs. tγ̇ for

subcritical cases with Re=0.1, Ca=0.3 and λ=1 all in a domain with (Sx, Sy, Sz) = (8r, 4r, 8r) and grid size

of h = 2r/25. All the cases have Cτ = 0.025. Three different values of α = 0.0, 0.05 and 0.10 are tested.

Figure B.18: Left: Taylor deformation parameter (D), right: Lp/2r and W/2r parameters vs. tγ̇ for

subcritical cases with Re=0.1, Ca=0.3 and λ=1 all in a domain with (Sx, Sy, Sz) = (8r, 4r, 8r) and grid size

of h = 2r/25. All the cases have α = 0.0. Three different values of Cτ = 0.01, 0.025 and 0.050 are tested.

0.2, 0.3 and 0.4, all in a domain with the grid size of h = 2r/25. Evidently, the mass conservation error of

droplet in all the cases has converged to the order of O(10−12).

Appendix B. Harmonic Vs. Linear Average of Viscosity

In order to compare the accuracy of harmonic versus linear average of viscosity, a two-dimensional test

case of oscillation of a droplet in an adjacent matrix in x-y plane is studied. The domain is a square with the

side length of 8r with the droplet placed in its center, (x0, y0). At time t=0, an initial velocity as following
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Figure B.19: The evolution in the mass conservation error of the droplet for cases all with Re=0.1 and

λ=1 in a domain with the grid size of h = 2r/25. The results of the simulation with four different capillary

numbers of 0.1, 0.2, 0.3 and 0.4 are presented. ∆M for the droplet is (Mt−M0)/M0, where M0 is droplet’s

initial mass and Mt is the mass at time t.

is applied to the droplet, causing an oscillation in its deformation:

U = u0
x− x0

2r
(B.1)

V = −u0
y − y0

2r
(B.2)

where U and V are velocities in x and y directions, respectively. Four different grid sizes used to solve

this problem are h=r/10, 2r/25, r/15 and r/20, where the results of the finest grid are used as the reference

to extract the order of accuracy convergence in space. Two different interpolation methods of linear and

harmonic are applied in calculations of viscosity. Time is non-dimensionalized with t∗ = r/u0. A constant

non-dimensional time-step of dt′ = dt/t∗ = 7× 10−4 is used in all the simulations. The physical properties

of the droplet and matrix are presented in table B.4 where Weber and Reynolds are defined as follows:

We =
ρdu

2
0r

σ
(B.3)

Re =
ρdu0r

µD
(B.4)

Simulations are performed until t*=10. The radial expansion of the droplet in y-direction as a function

of time for these cases are presented in figure B.20.
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Table B.4: Flow parameters of the 2D droplet oscillation test case

ρd/ρm µd/µm We Re
666.08 119.08 5.0 6.25

Figure B.20: Time variation of non-dimensionalized radial expansion of the droplet in y-direction for cases

with linear and harmonic interpolation of the viscosity in domain with different grid sizes.

The U component of velocity in the centerline x-direction at t′ = 10 is extracted as comparison criteria.

The results of cases with h=r/20 for linear and harmonic cases are used as the reference of linear and

harmonic cases, respectively. The first-norm of error for each case is extracted and used to calculate the

convergence of the solution as L1 =
∑
i |ei|, where ei is the point-wise error of each cell compared with its

reference. According to the extracted results, the linear interpolation of viscosity has the convergence rate

of 2.03 in space, while the same value for results of harmonic interpolation is 2.61.

Appendix C. Momentum Convergence Analysis

In order to evaluate the accuracy convergence of momentum equation in time, a 2D channel flow problem

with the length of Sx and height of Sy = H in x and y directions, is solved. The initial configuration of

the domain is illustrated in figure C.21. A periodic boundary condition is applied in X direction and no-slip

boundary condition in Y. Numerical parameters to fully define this problem are presented in table C.5. For

this problem, analytical exact solution would be as follows:
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Table C.5: Flow parameters of the 2D channel test case

ρ1/ρ2 µ1/µ2 σ ∂P/∂x
1.0 10 20 0.2

Figure C.21: Schematic of the 2D channel flow problem.

Vx(y) =
∂P

∂x

h2

2µi

[ 2µi
µ1 + µ2

+
µ1 − µ2

µ1 + µ2
(
y

h
)− (

y

h
)2
]

(C.1)

where i ∈ {I, II} determines the region of the fluid. Numerical simulations are done for enough long time to

reach steady-state (t=30.0 s). Three different time steps of dt = 2×10−5, 4×10−5 and 8×10−5 for solutions

in a domain with grid size of h=H/40 are used. Figure C.22 represent the variation of x-direction velocity

profile in y direction (Vx(y)) for cases with different time steps, along with the analytical exact solution.

In each case, x-direction velocity profile at t=30.0 is extracted to compare the results. The Analytical

solution is used as the reference. The infinity-norm of error for each case is extracted and used to calculate

the convergence of the solution as L∞ = max(|ei|) , where ei is the point-wise error of each cell compared

with its reference. Figure C.23 illustrates the L∞ of the error for different time steps. As can be seen, the

convergence of error for this test case is almost 2.

References

1. Tufano C, Peters GWM, Meijer HEH. Confined flow of polymer blends. Langmuir 2008;24(9):4494–505. URL: https:

//doi.org/10.1021/la7036636. doi:10.1021/la7036636. arXiv:https://doi.org/10.1021/la7036636; pMID: 18348582.

2. Stone H, Stroock A, Ajdari A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annual Review of

Fluid Mechanics 2004;36(1):381–411. URL: https://doi.org/10.1146/annurev.fluid.36.050802.122124. doi:10.1146/

annurev.fluid.36.050802.122124. arXiv:https://doi.org/10.1146/annurev.fluid.36.050802.122124.

3. Komrakova A, Shardt O, Eskin D, Derksen J. Lattice boltzmann simulations of drop deformation and breakup in shear

flow. International Journal of Multiphase Flow 2014;59:24 – 43. URL: http://www.sciencedirect.com/science/article/

pii/S0301932213001547. doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.10.009.

35

https://doi.org/10.1021/la7036636
https://doi.org/10.1021/la7036636
http://dx.doi.org/10.1021/la7036636
http://arxiv.org/abs/https://doi.org/10.1021/la7036636
https://doi.org/10.1146/annurev.fluid.36.050802.122124
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
http://dx.doi.org/10.1146/annurev.fluid.36.050802.122124
http://arxiv.org/abs/https://doi.org/10.1146/annurev.fluid.36.050802.122124
http://www.sciencedirect.com/science/article/pii/S0301932213001547
http://www.sciencedirect.com/science/article/pii/S0301932213001547
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2013.10.009


Figure C.22: Variation of Vx velocity profile in y direction for cases with different time steps, along with the

exact solution.

Figure C.23: L∞ of the error in VX(y) compared with the analytical solution, Vs. time step of the simulations.

36



4. Mason TG, Bibette J. Shear Rupturing of Droplets in Complex Fluids. Langmuir 1997;13(17):4600–13. URL: http:

//pubs.acs.org/doi/abs/10.1021/la9700580. doi:10.1021/la9700580.

5. Gounley J, Boedec G, Jaeger M, Leonetti M. Influence of surface viscosity on droplets in shear flow. J Fluid Mech

2016;791:464–94. URL: http:/www.cambridge.org/core/terms.{%}5Cnhttp://dx.doi.org/10.1017/jfm.2016.39. doi:10.

1017/jfm.2016.39.

6. AbouHassan A, Sandre O, Cabuil V. Microfluidics in inorganic chemistry. Angewandte Chemie International Edition

2010;49(36):6268–86. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200904285. doi:10.1002/anie.

200904285.

7. Li L, Fu Q, Kors CA, Stewart L, Nollert P, Laible PD, Ismagilov RF. A plug-based microfluidic system for dispensing

lipidic cubic phase (lcp) material validated by crystallizing membrane proteins in lipidic mesophases. Microfluidics and

Nanofluidics 2010;8(6):789–98. URL: https://doi.org/10.1007/s10404-009-0512-8. doi:10.1007/s10404-009-0512-8.

8. Rowat AC, Bird JC, Agresti JJ, Rando OJ, Weitz DA. Tracking lineages of single cells in lines using a microfluidic device.

Proceedings of the National Academy of Sciences 2009;106(43):18149–54. URL: http://www.pnas.org/content/106/43/

18149. doi:10.1073/pnas.0903163106. arXiv:http://www.pnas.org/content/106/43/18149.full.pdf.

9. Theberge A, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W. Microdroplets in microflu-

idics: An evolving platform for discoveries in chemistry and biology. Angewandte Chemie International Edition

2010;49(34):5846–68. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200906653. doi:10.1002/anie.

200906653. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200906653.

10. Vyawahare S, Griffiths AD, Merten CA. Miniaturization and parallelization of biological and chemical assays in microflu-

idic devices. Chemistry Biology 2010;17(10):1052 –65. URL: http://www.sciencedirect.com/science/article/pii/

S1074552110003510. doi:https://doi.org/10.1016/j.chembiol.2010.09.007.

11. Seemann R, Brinkmann M, Pfohl T, Herminghaus S. Droplet based microfluidics. Reports on Progress in Physics

2012;75(1):016601. URL: http://stacks.iop.org/0034-4885/75/i=1/a=016601.

12. Kennedy M, Pozrikidis C, Skalak R. Motion and deformation of liquid drops, and the rheology of dilute emulsions in

simple shear flow. Computers and Fluids 1994;23(2):251 –78. URL: http://www.sciencedirect.com/science/article/

pii/004579309490040X. doi:http://dx.doi.org/10.1016/0045-7930(94)90040-X.

13. Taylor GI. The viscosity of a fluid containing small drops of another fluid. Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences 1932;138(834):41–

8. URL: http://rspa.royalsocietypublishing.org/content/138/834/41. doi:10.1098/rspa.1932.0169.

arXiv:http://rspa.royalsocietypublishing.org/content/138/834/41.full.pdf.

14. Taylor GI. The formation of emulsions in definable fields of flow. Proceedings of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences 1934;146(858):501–23.

URL: http://rspa.royalsocietypublishing.org/content/146/858/501. doi:10.1098/rspa.1934.0169.

arXiv:http://rspa.royalsocietypublishing.org/content/146/858/501.full.pdf.

15. Rallison JM. The Deformation of Small Viscous Drops and Bubbles in Shear Flows. Annual Review of Fluid Mechan-

ics 1984;16(1):45–66. URL: http://dx.doi.org/10.1146/annurev.fl.16.010184.000401. doi:10.1146/annurev.fl.16.

010184.000401.

16. Stone HA. Dynamics of drop deformation and breakup in viscous fluids. Annual Review of Fluid Mechanics 1994;26(1):65–

102. URL: http://dx.doi.org/10.1146/annurev.fl.26.010194.000433. doi:10.1146/annurev.fl.26.010194.000433.

37

http://pubs.acs.org/doi/abs/10.1021/la9700580
http://pubs.acs.org/doi/abs/10.1021/la9700580
http://dx.doi.org/10.1021/la9700580
http:/www.cambridge.org/core/terms.{%}5Cnhttp://dx.doi.org/10.1017/jfm.2016.39
http://dx.doi.org/10.1017/jfm.2016.39
http://dx.doi.org/10.1017/jfm.2016.39
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200904285
http://dx.doi.org/10.1002/anie.200904285
http://dx.doi.org/10.1002/anie.200904285
https://doi.org/10.1007/s10404-009-0512-8
http://dx.doi.org/10.1007/s10404-009-0512-8
http://www.pnas.org/content/106/43/18149
http://www.pnas.org/content/106/43/18149
http://dx.doi.org/10.1073/pnas.0903163106
http://arxiv.org/abs/http://www.pnas.org/content/106/43/18149.full.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.200906653
http://dx.doi.org/10.1002/anie.200906653
http://dx.doi.org/10.1002/anie.200906653
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.200906653
http://www.sciencedirect.com/science/article/pii/S1074552110003510
http://www.sciencedirect.com/science/article/pii/S1074552110003510
http://dx.doi.org/https://doi.org/10.1016/j.chembiol.2010.09.007
http://stacks.iop.org/0034-4885/75/i=1/a=016601
http://www.sciencedirect.com/science/article/pii/004579309490040X
http://www.sciencedirect.com/science/article/pii/004579309490040X
http://dx.doi.org/http://dx.doi.org/10.1016/0045-7930(94)90040-X
http://rspa.royalsocietypublishing.org/content/138/834/41
http://dx.doi.org/10.1098/rspa.1932.0169
http://arxiv.org/abs/http://rspa.royalsocietypublishing.org/content/138/834/41.full.pdf
http://rspa.royalsocietypublishing.org/content/146/858/501
http://dx.doi.org/10.1098/rspa.1934.0169
http://arxiv.org/abs/http://rspa.royalsocietypublishing.org/content/146/858/501.full.pdf
http://dx.doi.org/10.1146/annurev.fl.16.010184.000401
http://dx.doi.org/10.1146/annurev.fl.16.010184.000401
http://dx.doi.org/10.1146/annurev.fl.16.010184.000401
http://dx.doi.org/10.1146/annurev.fl.26.010194.000433
http://dx.doi.org/10.1146/annurev.fl.26.010194.000433


arXiv:http://dx.doi.org/10.1146/annurev.fl.26.010194.000433.

17. Cristini V, Renardy Y. Scalings for droplet sizes in shear-driven breakup: non-microfluidic ways to monodisperse emulsions.

Fluid Dyn Mater Process 2006;2(2):77–94.

18. Marks CR. Drop breakup and deformation in sudden onset strong flows 1998;.

19. Bentley BJ, Leal LG. An experimental investigation of drop deformation and breakup in steady, two-dimensional linear

flows. Journal of Fluid Mechanics 1986;167:241–83. URL: http://journals.cambridge.org/article_S0022112086002811.

doi:10.1017/S0022112086002811.

20. Vananroye A, Van Puyvelde P, Moldenaers P. Structure development in confined polymer blends: steady-state shear flow

and relaxation. Langmuir 2006;22(5):2273–80.

21. Sibillo V, Pasquariello G, Simeone M, Cristini V, Guido S. Drop deformation in microconfined shear flow. Phys Rev

Lett 2006;97:054502. URL: http://link.aps.org/doi/10.1103/PhysRevLett.97.054502. doi:10.1103/PhysRevLett.97.

054502.

22. Shapira M, Haber S. Low reynolds number motion of a droplet between two parallel plates. International Journal of

Multiphase Flow 1988;14(4):483 – 506. URL: http://www.sciencedirect.com/science/article/pii/0301932288900249.

doi:http://dx.doi.org/10.1016/0301-9322(88)90024-9.

23. Shapira M, Haber S. Low reynolds number motion of a droplet in shear flow including wall effects. International Journal

of Multiphase Flow 1990;16(2):305 –21. URL: http://www.sciencedirect.com/science/article/pii/030193229090061M.

doi:http://dx.doi.org/10.1016/0301-9322(90)90061-M.

24. Roths T, Friedrich C, Marth M, Honerkamp J. Dynamics and rheology of the morphology of immiscible polymer blends

– on modeling and simulation. Rheologica Acta 2002;41(3):211–22. URL: https://doi.org/10.1007/s003970100189.

doi:10.1007/s003970100189.

25. van der Sman R, van der Graaf S. Emulsion droplet deformation and breakup with lattice boltzmann model. Com-

puter Physics Communications 2008;178(7):492 – 504. URL: http://www.sciencedirect.com/science/article/pii/

S0010465507004675. doi:http://dx.doi.org/10.1016/j.cpc.2007.11.009.

26. Richardson S. Two-dimensional bubbles in slow viscous flows. Journal of Fluid Mechanics 1968;33:475–93. URL: http:

//journals.cambridge.org/article_S0022112068001461. doi:10.1017/S0022112068001461.

27. Toose E, Geurts B, Kuerten J. A boundary integral method for two-dimensional (non)-newtonian drops in slow viscous

flow. Journal of Non-Newtonian Fluid Mechanics 1995;60(2-3):129 –54. URL: http://www.sciencedirect.com/science/

article/pii/0377025795013863. doi:http://dx.doi.org/10.1016/0377-0257(95)01386-3.

28. Minale M. A phenomenological model for wall effects on the deformation of an ellipsoidal drop in viscous flow. Rheologica

Acta 2008;47(5):667–75. URL: http://dx.doi.org/10.1007/s00397-007-0237-0. doi:10.1007/s00397-007-0237-0.

29. Kwak S, Pozrikidis C. Adaptive triangulation of evolving, closed, or open surfaces by the advancing-front method.

Journal of Computational Physics 1998;145(1):61 – 88. URL: http://www.sciencedirect.com/science/article/pii/

S0021999198960302. doi:http://dx.doi.org/10.1006/jcph.1998.6030.

30. Janssen PJA, Anderson PD. Boundary-integral method for drop deformation between parallel plates. Physics of Fluids

2007;19(4):043602. URL: http://scitation.aip.org/content/aip/journal/pof2/19/4/10.1063/1.2715621. doi:http://

dx.doi.org/10.1063/1.2715621.

31. Pozrikidis C. Boundary Integral and Singularity Methods for Linearized Viscous Flow (Cambridge Texts in Applied Math-

ematics). Cambridge University Press; 1992. ISBN 0521406935. URL: http://www.amazon.com/exec/obidos/redirect?

38

http://arxiv.org/abs/http://dx.doi.org/10.1146/annurev.fl.26.010194.000433
http://journals.cambridge.org/article_S0022112086002811
http://dx.doi.org/10.1017/S0022112086002811
http://link.aps.org/doi/10.1103/PhysRevLett.97.054502
http://dx.doi.org/10.1103/PhysRevLett.97.054502
http://dx.doi.org/10.1103/PhysRevLett.97.054502
http://www.sciencedirect.com/science/article/pii/0301932288900249
http://dx.doi.org/http://dx.doi.org/10.1016/0301-9322(88)90024-9
http://www.sciencedirect.com/science/article/pii/030193229090061M
http://dx.doi.org/http://dx.doi.org/10.1016/0301-9322(90)90061-M
https://doi.org/10.1007/s003970100189
http://dx.doi.org/10.1007/s003970100189
http://www.sciencedirect.com/science/article/pii/S0010465507004675
http://www.sciencedirect.com/science/article/pii/S0010465507004675
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2007.11.009
http://journals.cambridge.org/article_S0022112068001461
http://journals.cambridge.org/article_S0022112068001461
http://dx.doi.org/10.1017/S0022112068001461
http://www.sciencedirect.com/science/article/pii/0377025795013863
http://www.sciencedirect.com/science/article/pii/0377025795013863
http://dx.doi.org/http://dx.doi.org/10.1016/0377-0257(95)01386-3
http://dx.doi.org/10.1007/s00397-007-0237-0
http://dx.doi.org/10.1007/s00397-007-0237-0
http://www.sciencedirect.com/science/article/pii/S0021999198960302
http://www.sciencedirect.com/science/article/pii/S0021999198960302
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.1998.6030
http://scitation.aip.org/content/aip/journal/pof2/19/4/10.1063/1.2715621
http://dx.doi.org/http://dx.doi.org/10.1063/1.2715621
http://dx.doi.org/http://dx.doi.org/10.1063/1.2715621
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521406935
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521406935


tag=citeulike07-20&path=ASIN/0521406935.

32. Xi H, Duncan C. Lattice boltzmann simulations of three-dimensional single droplet deformation and breakup under

simple shear flow. Phys Rev E 1999;59:3022–6. URL: http://link.aps.org/doi/10.1103/PhysRevE.59.3022. doi:10.

1103/PhysRevE.59.3022.

33. Shan X, Chen H. Lattice boltzmann model for simulating flows with multiple phases and components. Phys Rev E

1993;47:1815–9. URL: http://link.aps.org/doi/10.1103/PhysRevE.47.1815. doi:10.1103/PhysRevE.47.1815.

34. Li J, Renardy YY, Renardy M. Numerical simulation of breakup of a viscous drop in simple shear flow through a

volume-of-fluid method. Physics of Fluids 2000;12(2).

35. Renardy YY, Cristini V. Effect of inertia on drop breakup under shear. Physics of Fluids 2001;13(1).

36. Renardy Y, Cristini V, Li J. Drop fragment distributions under shear with inertia. International Journal of Multiphase

Flow 2002;28(7):1125 –47. URL: http://www.sciencedirect.com/science/article/pii/S0301932202000228. doi:http:

//dx.doi.org/10.1016/S0301-9322(02)00022-8.

37. Khismatullin DB, Renardy Y, Cristini V. Inertia-induced breakup of highly viscous drops subjected to simple shear.

Physics of Fluids 2003;15(5).

38. Balcázar N, Lehmkuhl O, Jofre L, Rigola J, Oliva A. A coupled volume-of-fluid/level-set method for simulation of two-

phase flows on unstructured meshes. Computers and Fluids 2016;124:12 – 29. Special Issue for ICMMES-2014.

39. Verhulst K, Cardinaels R, Moldenaers P, Renardy Y, Afkhami S. Influence of viscoelasticity on drop deformation and

orientation in shear flow Part 1. Stationary states. J Non-Newtonian Fluid Mech 2009;156:29–43. doi:10.1016/j.jnnfm.

2008.06.007.

40. Mukherjee S, Sarkar K. Effects of viscosity ratio on deformation of a viscoelastic drop in a Newtonian matrix under steady

shear. J Non-Newtonian Fluid Mech 2009;160:104–12. doi:10.1016/j.jnnfm.2009.03.007.

41. Hsu AS, Leal GL. Deformation of a viscoelastic drop in planar extensional flows of a Newtonian fluid. J Non-Newtonian

Fluid Mech 2009;160:176–80. doi:10.1016/j.jnnfm.2009.03.004.

42. Ioannou N, Liu H, Oliveira M, Zhang Y. Droplet dynamics of newtonian and inelastic non-newtonian fluids in confinment.

Micromachines 2017;8(2):57. URL: http://www.mdpi.com/2072-666X/8/2/57. doi:10.3390/mi8020057.

43. Balcázar N, Lehmkuhl O, Jofre L, Oliva A. Level-set simulations of buoyancy-driven motion of single and multiple bubbles.

International Journal of Heat and Fluid Flow 2015;56:91 – 107. URL: http://www.sciencedirect.com/science/article/

pii/S0142727X15000867. doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.07.004.

44. Balcázar N, Jofre L, Lehmkuhl O, Castro J, Rigola J. A finite-volume/level-set method for simulating two-phase flows on

unstructured grids. International Journal of Multiphase Flow 2014;64:55 – 72. URL: http://www.sciencedirect.com/

science/article/pii/S030193221400072X. doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.04.008.

45. Amani A, Balcázar N, Gutiérrez E, Oliva A. Numerical study of binary droplets collision in the main collision

regimes. Chemical Engineering Journal 2019;370:477 –98. URL: http://www.sciencedirect.com/science/article/pii/

S1385894719306631. doi:https://doi.org/10.1016/j.cej.2019.03.188.

46. Balcázar N, Castro J, Rigola J, Oliva A. Dns of the wall effect on the motion of bubble swarms. Procedia Computer Science

2017;108(Supplement C):2008 –17. URL: http://www.sciencedirect.com/science/article/pii/S1877050917306142.

doi:https://doi.org/10.1016/j.procs.2017.05.076; international Conference on Computational Science, ICCS 2017,

12-14 June 2017, Zurich, Switzerland.

47. Vananroye A, Van Puyvelde P, Moldenaers P. Effect of confinement on droplet breakup in sheared

39

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521406935
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0521406935
http://link.aps.org/doi/10.1103/PhysRevE.59.3022
http://dx.doi.org/10.1103/PhysRevE.59.3022
http://dx.doi.org/10.1103/PhysRevE.59.3022
http://link.aps.org/doi/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://www.sciencedirect.com/science/article/pii/S0301932202000228
http://dx.doi.org/http://dx.doi.org/10.1016/S0301-9322(02)00022-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0301-9322(02)00022-8
http://dx.doi.org/10.1016/j.jnnfm.2008.06.007
http://dx.doi.org/10.1016/j.jnnfm.2008.06.007
http://dx.doi.org/10.1016/j.jnnfm.2009.03.007
http://dx.doi.org/10.1016/j.jnnfm.2009.03.004
http://www.mdpi.com/2072-666X/8/2/57
http://dx.doi.org/10.3390/mi8020057
http://www.sciencedirect.com/science/article/pii/S0142727X15000867
http://www.sciencedirect.com/science/article/pii/S0142727X15000867
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijheatfluidflow.2015.07.004
http://www.sciencedirect.com/science/article/pii/S030193221400072X
http://www.sciencedirect.com/science/article/pii/S030193221400072X
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.04.008
http://www.sciencedirect.com/science/article/pii/S1385894719306631
http://www.sciencedirect.com/science/article/pii/S1385894719306631
http://dx.doi.org/https://doi.org/10.1016/j.cej.2019.03.188
http://www.sciencedirect.com/science/article/pii/S1877050917306142
http://dx.doi.org/https://doi.org/10.1016/j.procs.2017.05.076


emulsions. Langmuir 2006;22(9):3972–4. URL: http://dx.doi.org/10.1021/la060442+. doi:10.1021/la060442+.

arXiv:http://dx.doi.org/10.1021/la060442+; pMID: 16618134.

48. Janssen PJA, Vananroye A, Puyvelde PV, Moldenaers P, Anderson PD. Generalized behavior of the breakup of viscous

drops in confinements. Journal of Rheology 2010;54(5):1047–60. URL: http://dx.doi.org/10.1122/1.3473924. doi:10.

1122/1.3473924. arXiv:http://dx.doi.org/10.1122/1.3473924.

49. Olsson E, Kreiss G. A conservative level set method for two phase flow. Journal of Computational Physics 2005;210(1):225

–46. URL: http://www.sciencedirect.com/science/article/pii/S0021999105002184. doi:http://dx.doi.org/10.1016/

j.jcp.2005.04.007.

50. Balcázar N, Lehmkuhl O, Rigola J, Oliva A. A multiple marker level-set method for simulation of deformable fluid

particles. International Journal of Multiphase Flow 2015;74:125 –42. URL: http://www.sciencedirect.com/science/

article/pii/S0301932215001019. doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.04.009.

51. Brackbill J, Kothe D, Zemach C. A continuum method for modeling surface tension. Journal of Computational

Physics 1992;100(2):335 –54. URL: http://www.sciencedirect.com/science/article/pii/002199919290240Y. doi:http:

//dx.doi.org/10.1016/0021-9991(92)90240-Y.

52. Chorin AJ. Numerical solution of the navier-stokes equations. Mathematics of computation 1968;22(104):745–62.

53. Gottlieb S, Shu CW. Total variation diminishing runge-kutta schemes. Mathematics of computation of the American

Mathematical Society 1998;67(221):73–85.

54. Armfield S, Street R. An analysis and comparison of the time accuracy of fractional-step methods for the navier-stokes

equations on staggered grids. International Journal for Numerical Methods in Fluids 2002;38(3):255–82. URL: http:

//dx.doi.org/10.1002/fld.217. doi:10.1002/fld.217.

55. Kim J, Moin P. Application of a fractional-step method to incompressible navier-stokes equations. Journal of Com-

putational Physics 1985;59(2):308 –23. URL: http://www.sciencedirect.com/science/article/pii/0021999185901482.

doi:http://dx.doi.org/10.1016/0021-9991(85)90148-2.

56. Rhie C, Chow W. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA journal

1983;21(11):1525–32.

57. Felten FN, Lund TS. Kinetic energy conservation issues associated with the collocated mesh scheme for incompressible

flow. Journal of Computational Physics 2006;215(2):465 –84. URL: http://www.sciencedirect.com/science/article/

pii/S0021999105004997. doi:http://dx.doi.org/10.1016/j.jcp.2005.11.009.

58. Balcázar N, Rigola J, Castro J, Oliva A. A level-set model for thermocapillary motion of deformable fluid particles.

International Journal of Heat and Fluid Flow 2016;62(Part B):324 –43. URL: http://www.sciencedirect.com/science/

article/pii/S0142727X16301266. doi:https://doi.org/10.1016/j.ijheatfluidflow.2016.09.015.

59. Termo fluids s.l. http://www.termofluids.com/; .

60. Gutiérrez E, Favre F, Balcázar N, Amani A, Rigola J. Numerical approach to study bubbles and drops evolving through

complex geometries by using a level set - moving mesh - immersed boundary method. Chemical Engineering Journal

2018;349:662 –82. URL: http://www.sciencedirect.com/science/article/pii/S1385894718309240. doi:https://doi.

org/10.1016/j.cej.2018.05.110.

61. Amani A, Balcázar N, Naseri A, Oliva A. A study on binary collision of droplets using Conservative Level-Set method. In:

6th European Conference on Computational Mechanics (ECCM 6)- 7th European Conference on Computational Fluid

Dynamics (ECFD 7). Glasgow, UK; 2018:11–15 June.

40

http://dx.doi.org/10.1021/la060442+
http://dx.doi.org/10.1021/la060442+
http://arxiv.org/abs/http://dx.doi.org/10.1021/la060442+
http://dx.doi.org/10.1122/1.3473924
http://dx.doi.org/10.1122/1.3473924
http://dx.doi.org/10.1122/1.3473924
http://arxiv.org/abs/http://dx.doi.org/10.1122/1.3473924
http://www.sciencedirect.com/science/article/pii/S0021999105002184
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2005.04.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2005.04.007
http://www.sciencedirect.com/science/article/pii/S0301932215001019
http://www.sciencedirect.com/science/article/pii/S0301932215001019
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.04.009
http://www.sciencedirect.com/science/article/pii/002199919290240Y
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1002/fld.217
http://dx.doi.org/10.1002/fld.217
http://dx.doi.org/10.1002/fld.217
http://www.sciencedirect.com/science/article/pii/0021999185901482
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(85)90148-2
http://www.sciencedirect.com/science/article/pii/S0021999105004997
http://www.sciencedirect.com/science/article/pii/S0021999105004997
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2005.11.009
http://www.sciencedirect.com/science/article/pii/S0142727X16301266
http://www.sciencedirect.com/science/article/pii/S0142727X16301266
http://dx.doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.09.015
http://www.termofluids.com/
http://www.sciencedirect.com/science/article/pii/S1385894718309240
http://dx.doi.org/https://doi.org/10.1016/j.cej.2018.05.110
http://dx.doi.org/https://doi.org/10.1016/j.cej.2018.05.110


62. Cox RG. The deformation of a drop in a general time-dependent fluid flow. Journal of Fluid Mechanics 1969;37(3):601–23.

doi:10.1017/S0022112069000759.

63. Grace HP. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion

devices in such systems. Chemical Engineering Communications 1982;14(3-6):225–77. URL: https://doi.org/10.1080/

00986448208911047. doi:10.1080/00986448208911047. arXiv:https://doi.org/10.1080/00986448208911047.

64. Vananroye A, Cardinaels R, Puyvelde PV, Moldenaers P. Effect of confinement and viscosity ratio on the dynamics of

single droplets during transient shear flow. Journal of Rheology 2008;52(6):1459–75. URL: http://dx.doi.org/10.1122/

1.2978956. doi:10.1122/1.2978956. arXiv:http://dx.doi.org/10.1122/1.2978956.

41

http://dx.doi.org/10.1017/S0022112069000759
https://doi.org/10.1080/00986448208911047
https://doi.org/10.1080/00986448208911047
http://dx.doi.org/10.1080/00986448208911047
http://arxiv.org/abs/https://doi.org/10.1080/00986448208911047
http://dx.doi.org/10.1122/1.2978956
http://dx.doi.org/10.1122/1.2978956
http://dx.doi.org/10.1122/1.2978956
http://arxiv.org/abs/http://dx.doi.org/10.1122/1.2978956

	Introduction
	Mathematical formulation
	Numerical method
	Numerical experiments and discussion
	The effect of domain length
	Grid convergence analysis
	The effect of capillary number
	The effect of walls confinement
	The effect of viscosity ratio
	The effect of viscosity ratio on walls critical confinement ratio

	Conclusion
	The effect of variable CLS parameters on the results
	Harmonic Vs. Linear Average of Viscosity
	Momentum Convergence Analysis



