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Abstract: We provide an analytical framework for balanced realization model order reduction
of linear control systems which depend on an unknown parameter. Besides recovering known
results for the first order corrections, we obtain explicit novel expressions for the form of second
order corrections for singular values and singular vectors. The final result of our procedure is
an order reduced model which incorporates the uncertain parameter. We apply our algorithm
to a system of masses and springs with parameter dependent coefficients.
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1. INTRODUCTION

Order reduced models (Schilders et al. (2008)) are useful
to simulate very large models using less computational
resources, allowing, for instance, the exploration of pa-
rameter regions. The lower order model should have some
desirable properties, such as being easily computable, pre-
serving some of the structural properties of the full model
and, more importantly, yielding an error with respect to
the original model that can be bounded in terms of the
complexity of the approximating model. In particular, for
linear time-invariant MIMO systems, model order reduc-
tion (MOR) based on the truncation of balanced realiza-
tions preserves the stability, controllability and observabil-
ity of the full model, and furthermore provides bounds for
the norm of the error system (Antoulas (2005)).

The computation of a balanced realization for a linear
system relies on numerical linear algebra algorithms, and
does not allow for the presence of symbolic parameters
in the model. Hence, if a system contains an uncertain
parameter, appearing, for instance, due to a physical
coefficient which is only known to belong to a given
interval, or due to the specification of a working point in a
nonlinear system, the balancing procedure must be carried
out for each numerical value of the parameter. This results
in a set of reduced order models, which are difficult to work
with if they are to be used to design a controller and, in any
case, the explicit dependence on the original parameter is
lost in the reduced system.

In this paper we work out an algorithm to obtain a reduced
order model which incorporates the original, symbolical
parameter through a polynomial of arbitrary degree. To
this end, we solve each step of the balanced realization
procedure in powers of the symbolical parameter, although
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for the last step, which involves a singular value decom-
position (SVD), we only provide explicit expressions up to
second order corrections. Up to our knowledge, the second
order correction to the singular subspaces that we obtain
has not been reported in the literature, and it may be
useful in other applications of SVD.

The paper is organized as follows. Section 2 reviews the
steps of the computation of the balanced realization for
linear systems, and how a reduced order model can be
constructed from it. Section 3 develops a power series
expansion for each of the above steps. We give explicit
algorithms for each step, except for the singular value
decomposition, which we develop only to second order.
Section 4 applies the procedure to a system of masses and
springs with parameter dependent coefficients, and, finally,
we discuss our results and point to possible improvements
in Section 5.

An extended version of this work, with some detailed
developments that are not presented here, has been posted
on arXiv[cs.SY] (Batlle and Roqueiro (2016)).

2. BALANCED REALIZATION PROCEDURE

Consider the nonlinear control system

ẋ= f(x) + g(x)u, (1)

y = h(x), (2)

with x ∈ RN , u ∈ RM , y ∈ RP and f(0) = 0.

The controllability function Lc(x) is the solution of the
optimal control problem

Lc(x) = inf
u∈L2((−∞,0),RM )

1

2

∫ 0

−∞
||u(t)||2dt (3)

subject to the boundary conditions x(−∞) = 0, x(0) = x
and the system (1). Roughly speaking, Lc(x) measures the



minimum 2-norm of the input signal necessary to bring the
system to the state x from the origin.

The observability function Lo(x) is the 2-norm of the
output signal obtained when the system is relaxed from
the state x

Lo(x) =
1

2

∫ ∞
0

||y(t)||2dt =
1

2

∫ ∞
0

||h(x(t))||2dt, (4)

with x(0) = x and subjected to (1) with u = 0.

For linear control systems,

ẋ=Ax+Bu, (5)

y =Cx, (6)

assumed to be observable, controllable and Hurwitz, both
Lc(x) and Lo(x) are quadratic functions

Lc(x) =
1

2
xTW−1c x, (7)

L0(x) =
1

2
xTWox, (8)

where Wc > 0 and Wo > 0, the controllability and
observability Gramians, are the solutions to the matrix
Lyapunov equations

AWc +WcA
T +BBT = 0, (9)

ATWo +WoA+ CTC = 0. (10)

As shown by Moore (Moore (1981); see also Laub et al.
(1987) and Verriest and Kailath (1983)), the matrix Wc

provides information about the states that are easy to
control (in the sense that signals u of small norm can be
used to reach them), while Wo allows to find the states
that are easily observable (in the sense that they produce
outputs of large norm). From the point of view of the
input-output map given by (5) (6), one would like to select
the states that score well on both counts, and this leads to
the concept of balanced realization, for which Wc = Wo.

The balanced realization is obtained by means of a linear
transformation x = Tz, with T computed as follows:

(1) Solve the Lyapunov equations (9) and (10).
(2) Perform Cholesky factorizations of the Gramians:

Wc = XXT , Wo = Y Y T . (11)

(3) Compute the SVD of Y TX:

Y TX = UΣV T , (12)

with U and V orthogonal and

Σ = diag(σ1, . . . , σN ), σ1 ≥ · · · ≥ σN > 0. (13)

(4) The balancing transformation is given then by

T = XV Σ−1/2, with T−1 = Σ−1/2UTY T . (14)

(5) The balanced realization is given by the linear system

Ã = T−1AT, B̃ = T−1B, C̃ = CT, (15)

and, in the new coordinates,

W̃c = T−1WcT
−T = Σ, W̃o = TTWoT = Σ. (16)

Notice that, in the balanced realization,

L̃c(z) =
1

2

N∑
i=1

z2i
σi

=
1

2
zT Σ−1z, (17)

L̃o(z) =
1

2

N∑
i=1

σiz
2
i =

1

2
zT Σz, (18)

so that the state with only nonzero coordinate zi is both
easier to control and easier to observe than the state
corresponding to zi+1, for i = 1, 2, . . . , N−1. If, for a given
r, 1 ≤ r < N , one has σr � σr+1, it may be sensible, from
the point of view of the map between u and y, to keep just
the states corresponding to the coordinates z1, z2, . . . , zr,
and this is what is known as balanced realization model
order reduction.

H∞-norm lower and upper error bounds of the balanced
truncation method are given by

σr+1 ≤ ‖G(s)−Gr(s)‖H∞ ≤ 2

N∑
i=r+1

σi, (19)

where σi, i = 1, . . . , N , are the Hankel singular values
of the system (Glover (1984)Enns (1984)). From these
inequalities it follows that, in order to get the smallest
error for the truncated system, one should disregard the
states associated with the smallest Hankel singular values.

If we denote by Ãr the upper-left square block of Ã formed
by the first r rows and columns, and by B̃r and C̃r the
matrices obtained from the first r rows or columns of B̃
or C̃, respectively, the reduced system of order r obtained
by balanced truncation is given by

Żr = ÃrZr + B̃ru, y = C̃rZr, (20)

with Zr = (z1, . . . , zr).

One of the problems of the above procedure is that it
does not allow for the presence of symbolic parameters
in the problem, since the solution of the matrix equations
involved relies on numerical methods. In this paper we
address this issue, assuming that the linear system is
given by matrices A(m), B(m) and C(m) which depend
analytically on the parameter m. This may represent
an uncertain physical coefficient (this is the case of the
example in Section 4), or it may appear by considering
an unspecified working point in the linearization of a
nonlinear system.

Our goal is to develop a power series expansion in m of the
balanced model order reduction algorithm for the linear
input/output system given by A(m), B(m), C(m). This
will facilitate the analysis of how much the important
degrees of freedom vary when m is changed and, more
importantly, will yield a reduced order model, suitable for
control design, which incorporates the dependence on m
in an explicit way. A survey of other approaches to this
problem is presented in Benner et al. (2015).

3. POWER SERIES EXPANSION FOR THE
BALANCED REALIZATION

Following the previous discussion, consider the control
system

ẋ=A(m)x+B(m)u, (21)

y =C(m)x, (22)



with m a symbolic parameter. The controllability Gramian
W c(m) will be the solution to the Lyapunov equation

A(m)W c(m) +W c(m)AT (m) +B(m)BT (m) = 0. (23)

Assume that A(m), B(m) and C(m) are analytic in m,

A(m) =

∞∑
k=0

Akm
k, (24)

B(m) =

∞∑
k=0

Bkm
k, (25)

C(m) =

∞∑
k=0

Ckm
k, (26)

and let us look for likewise solutions of the form

W c(m) =

∞∑
k=0

W c
km

k. (27)

Putting the above expansions into (23) one obtains
r∑

s=0

(
Ar−sW

c
s +W c

sA
T
r−s +Br−sB

T
s

)
= 0, r = 0, 1, 2, . . . .

(28)
These are equivalent to the set of Lyapunov equations

A0W
c
0 +W c

0A
T
0 +B0B

T
0 = 0, (29)

A0W
c
r +W c

rA
T
0 + Pr = 0, r = 1, 2, . . . , (30)

with

Pr = B0B
T
r +

r−1∑
s=0

(
Ar−sW

c
s +W c

sA
T
r−s +Br−sB

T
s

)
. (31)

These equations can be solved recursively to the desired
order, starting with the zeroth order Lyapunov equation
(29). Observe that the internal dynamics is always given
by A0, and that it is only the effective control term Pr the
one that changes with the order.

Similarly, the observability Gramian W o(m) satisfies

AT (m)W o(m) +W o(m)A(m) + CT (m)C(m) = 0, (32)

and its power series solution

W o(m) =

∞∑
k=0

W o
km

k, (33)

can be obtained recursively from

AT
0W

o
0 +W o

0A0 + CT
0 C0 = 0, (34)

AT
0W

o
r +W o

rA0 +Qr = 0, r = 1, 2, . . . , (35)

with

Qr = CT
0 Cr +

r−1∑
s=0

(
AT

r−sW
o
s +W o

sAr−s + CT
r−sCs

)
. (36)

After computing W c(m) and W o(m) at the desired order,
the next step in the balancing transformation procedure is
to compute X(m) and Y (m) such that

W c(m) =X(m)XT (m), (37)

W o(m) = Y (m)Y T (m). (38)

If

X(m) =

∞∑
k=0

Xkm
k, (39)

one gets

W c
k =

k∑
s=0

Xk−sX
T
s , (40)

which, again, are solved recursively as

X0X
T
0 =W c

0 , (41)

XkX
T
0 +X0X

T
k =W c

k −
k−1∑
s=1

Xk−sX
T
s . (42)

Similarly, for

Y (m) =

∞∑
k=0

Ykm
k, (43)

one arrives at

Y0Y
T
0 =W o

0 , (44)

YkY
T
0 + Y0Y

T
k =W o

k −
k−1∑
s=1

Yk−sY
T
s . (45)

Equations (41) and (44) are standard Cholesky equations,
but (42) and (45) are not Lyapunov (or Sylvester) equa-
tions for Xk or Yk because of the presence of XT

k and Y T
k ,

respectively.

Equations of the form AX + XTB = C for X have
been studied in Vorontsov and Ikramov (2011), where
the problem is reduced to a sequence of low-order linear
systems for the entries of X. However, the conditions for
the uniqueness of the solution stated in Vorontsov and
Ikramov (2011) are not satisfied by equations of the form
of (42). Indeed, in order to solve (42) one has to consider
det(X0 + λ(XT

0 )T ) = (1 + λ)N detX0, which vanishes for
λ = −1 and thus violates condition (2) of Theorem 3 in
Vorontsov and Ikramov (2011). Notice, however, that the
right-hand side of (42) is a symmetric matrix. If one splits
Xk into symmetric, Sk, and skew-symmetric, Tk, parts,
one gets, after some calculations, that they obey

SkX
T
0 +X0Sk =W c

k −
k−1∑
s=1

Xk−sX
T
s , (46)

TkX
T
0 +X0Tk = 0. (47)

Equations (46) and (47) are Lyapunov equations, and in
fact the generic solution to (47) is Tk = 0. Hence, we have
that the solution to (42) is given by Xk = Sk, with Sk the
solution to the Lyapunov equation (46), and an analogous
reasoning applies to the solution of (45).

The last nontrivial step in the balancing algorithm is
the singular value decomposition (SVD) of the product
Y T (m)X(m),

Y T (m)X(m) = U(m)Σ(m)V T (m), (48)

where

Σ(m) = diag(σ1(m) ≥ σ2(m) ≥ . . . ≥ σn(m) > 0), (49)

and U(m) and V (m) are N ×N orthogonal matrices.



Let us denote by Rk the coefficients of the power series of
Y T (m)X(m),

Y T (m)X(m) =

∞∑
k=0

Rkm
k, (50)

with

Rk =

k∑
s=0

Y T
k−sXs =

k∑
s=0

Y T
s Xk−s. (51)

We also denote by Uk, Vk, and Σk the coefficients of the
power series of U(m), V (m) and Σ(m), respectively.

From now on we will consider approximations only up to
second order. We will write

R(m) =R0 +mR1 +m2R2, (52)

U(m) =U0 +mU1 +m2U2, (53)

V (m) = V0 +mV1 +m2V2, (54)

Σ(m) = Σ0 +mΣ1 +m2Σ2, (55)

with the understanding that any higher order contribution
is neglected. From R = UΣV T one gets the identities

RV = UΣ, RTU = V Σ, (56)

which in turn inply

RTRV = V Σ2, (57)

RRTU =UΣ2. (58)

If we denote by u
(k)
j the jth column vector of Uk, and by

v
(k)
j the one of Vk, equations (56) imply, to zeroth, first

and second order in m,

R0v
(0)
j =σ

(0)
j u

(0)
j , (59)

RT
0 u

(0)
j =σ

(0)
j v

(0)
j , (60)

R1v
(0)
j +R0v

(1)
j =σ

(0)
j u

(1)
j + σ

(1)
j u

(0)
j , (61)

RT
1 u

(0)
j +RT

0 u
(1)
j =σ

(0)
j v

(1)
j + σ

(1)
j v

(0)
j , (62)

R0v
(2)
j +R1v

(1)
j +R2v

(0)
j =σ

(0)
j u

(2)
j + σ

(1)
j u

(1)
j + σ

(2)
j u

(0)
j ,

(63)

RT
0 u

(2)
j +RT

1 u
(1)
j +RT

2 u
(0)
j =σ

(0)
j v

(2)
j + σ

(1)
j v

(1)
j + σ

(2)
j v

(0)
j .

(64)

with σ
(k)
j the jth element of the diagonal matrix Σk. From

the orthogonality condition UT (m)U(m) = I one gets〈
u
(1)
i , u

(0)
i

〉
= 0, (65)〈

u
(2)
i , u

(0)
i

〉
=−1

2
||u(1)j ||

2, (66)

and similarly, from V T (m)V (m) = I, one has〈
v
(1)
i , v

(0)
i

〉
= 0, (67)〈

v
(2)
i , v

(0)
i

〉
=−1

2
||v(1)j ||

2. (68)

The inner product of u
(0)
i with (61) yields (Stewart (1991))

σ
(1)
i =

〈
u
(0)
i , R1v

(0)
i

〉
=
〈
v
(0)
i , RT

1 u
(0)
i

〉
, (69)

where the second form can also be obtained operating from
(62). In order to complete the first order correction one

needs to compute the corrections to the singular subspaces,

i.e. the vectors u
(1)
i and v

(1)
i . To compute u

(1)
i , we act on

(62) with R0 and then use (61) to get rid of v
(1)
i . One

obtains then the system(
R0R

T
0 − (σ

(0)
i )2I

)
u
(1)
i

=−R0R
T
1 u

(0)
i + σ

(1)
i R0v

(0)
i − σ

(0)
i R1v

(0)
i + σ

(0)
i σ

(1)
i u

(0)
i

= 2σ
(0)
i σ

(1)
i u

(0)
i −R0R

T
1 u

(0)
i − σ

(0)
i R1v

(0)
i . (70)

This is a system of N equations for the N components of

u
(1)
i , but the equations are not independent. Indeed, from

(58) one has, to zeroth order,

R0R
T
0 u

(0)
i = (σ

(0)
i )2u

(0)
i , (71)

so that (σ
(0)
i )2 is an eigenvalue of R0R

T
0 and R0R

T
0 −

(σ
(0)
i )2I is not invertible. Assuming that the eigenvalues

are simple, one must find an extra equation in order to be

able to obtain u
(1)
i , and this is provided by (65). Denoting

by Q
(1)
i the vector in the right-hand side of (70),

Q
(1)
i = 2σ

(0)
i σ

(1)
i u

(0)
i −R0R

T
1 u

(0)
i − σ

(0)
i R1v

(0)
i , (72)

it turns out that each u
(1)
i can be uniquely computed as

the solution to the system(
R0R

T
0 − (σ

(0)
i )2I

(u
(0)
i )T

)
u
(1)
i =

(
Q

(1)
i
0

)
. (73)

An explicit form of the solution to (73) for the more general
case of non-square matrices is given in Liu et al. (2008).

Similarly, for v
(1)
i one has(

RT
0 R0 − (σ

(0)
i )2I

(v
(0)
i )T

)
v
(1)
i =

(
P

(1)
i
0

)
, (74)

with

P
(1)
i = 2σ

(0)
i σ

(1)
i v

(0)
i −R

T
0 R1v

(0)
i − σ

(0)
i RT

1 u
(0)
i . (75)

Under the assumption that the singular values σ
(0)
i are

non-degenerate, i.e. the solution spaces of equations (57)
and (58) are one-dimensional, the above systems have
unique solutions that can be numerically computed. In-
deed, if there is a vector u 6= 0 such that(

R0R
T
0 − (σ

(0)
i )2I

(u
(0)
i )T

)
u = 0,

then (R0R
T
0 − (σ

(0)
i )2I)u = 0, and hence, due to the non-

degeneracy, u = λu
(0)
i for some λ, which contradicts the

last relation (u
(0)
i )Tu = 0.

In order to obtain the second order corrections one has to
work with (63), (64) and (66). For instance, multiplying

(63) with u
(0)
i , and using (66) and (65), one gets the second

order correction to the singular values of R

σ
(2)
i =

1

2
σ
(0)
i

(
||u(1)i ||

2 − ||v(1)i ||
2
)

+
〈
u
(0)
i , R1v

(1)
i +R2v

(0)
i

〉
.

(76)
Notice that the right-hand side depends only on data from
the zeroth and first order approximations, plus the second
order perturbation R2.



To compute the second order correction to the singular

subspaces one must solve (63) and (64) for u
(2)
i and v

(2)
i .

One obtains that the u
(2)
i are the unique solution to(

R0R
T
0 − (σ

(0)
i )2I

(u
(0)
i )T

)
u
(2)
i =

 Q
(2)
i

−1

2
||u(1)i ||

2

 , (77)

with

Q
(2)
i =−R0R

T
1 u

(1)
i −R0R

T
2 u

(0)
i + σ

(0)
i σ

(1)
i u

(1)
i + σ

(1)
i R0v

(1)
i

+ 2σ
(0)
i σ

(2)
i u

(0)
i − σ

(0)
i R1v

(1)
i − σ

(0)
i R2v

(0)
i . (78)

Similarly, the v
(2)
i are given by the solution to(

RT
0 R0 − (σ

(0)
i )2I

(v
(0)
i )T

)
v
(2)
i =

 P
(2)
i

−1

2
||v(1)i ||

2

 , (79)

with

P
(2)
i =−RT

0 R1v
(1)
i −R

T
0 R2v

(0)
i + σ

(0)
i σ

(1)
i v

(1)
i + σ

(1)
i RT

0 u
(1)
i

+ 2σ
(0)
i σ

(2)
i v

(0)
i − σ

(0)
i RT

1 u
(1)
i − σ

(0)
i RT

2 u
(0)
i . (80)

Notice that the matrices appearing on the left hand-sides
of (77) and (79) are the same than the ones in (73) and
(74), respectively, and hence the solutions are unique.

This procedure can be repeated to obtain higher order
corrections in m. At order m, one obtains first an explicit

expression for the corrections σ
(m)
i to the singular values,

and then one can write systems of equations for the

corrections u
(m)
i and v

(m)
i to the singular vectors, with

the same matrices appearing in previous orders but with
different right-hand sides.

The final step of the procedure for the construction of
the balanced realization is to use (14) with (52)—(55),
keeping terms up to order m2. Since the matrix Σ(m) is
diagonal, Σ(m)−1/2 is defined diagonal-wise, and for each
entry σi(m) we have, up to order m2,

(σi(m))−1/2 =
1

(σ
(0)
i )1/2

−m σ
(1)
i

2(σ
(0)
i )3/2

+m2

(
− σ

(2)
i

2(σ
(0)
i )3/2

+
3(σ

(1)
i )2

8(σ
(0)
i )5/2

)
(81)

≡ s(0)i +ms
(1)
i +m2s

(2)
i . (82)

Hence, if Sa = diag(s
(a)
i ), a = 0, 1, 2,

Σ(m)−1/2 = S0 +mS1 +m2S2. (83)

Up to order m2, the matrix T (m) for the transformation
from the original x coordinates to the balanced ones z,
x = Tz, and its inverse T−1(m), are given by T (m) =
T2(m) +O(m3) and T−1(m) = T−12 (m) +O(m3), with

T2(m) =X0V0S0 +m(X0V0S1 +X0V1S0 +X1V0S0)

+m2(X0V0S2 +X2V0S0 +X0V2S0

+X0V1S1 +X1V0S1 +X1V1S0)

≡ T0 +mT1 +m2T2,

T−12 (m) = S0U
T
0 Y

T
0 +m(S0U

T
1 Y

T
0 + S0U

T
0 Y

T
1 + S1U

T
0 Y

T
0 )

+m2(S0U
T
0 Y

T
2 + S0U

T
2 Y

T
0 + S2U

T
0 Y

T
0

+S1U
T
1 Y

T
0 + S1U

T
0 Y

T
1 + S0U

T
1 Y

T
1 )

≡ T̂0 +mT̂1 +m2T̂2.

From these, the approximation of the balanced realization,
up to the second order in m, is given (see (15)) by

Ã2(m) = T̂0A0T0 +m(T̂0A1T0 + T̂0A0T1 + T̂1A0T0)

+m2(T̂0A0T2 + T̂0A2T0 + T̂2A0T0

+ T̂0A1T1 + T̂1A0T1 + T̂1A1T0), (84)

B̃2(m) = T̂0B0 +m(T̂0B1 + T̂1B0)

+m2(T̂0B2 + T̂2B0 + T̂1B1), (85)

C̃2(m) =C0T0 +m(C0T1 + C1T0)

+m2(C0T2 + C2T0 + C1T1). (86)

Matrices (84)—(86) define a balanced realization of the
original system which is exact for m = 0 and approximate
to O(m3) for m 6= 0. A reduced system of order r is
obtained by truncating this realization to the first r states.

4. A SYSTEM OF MASSES AND SPRINGS

We consider a system of N masses mi and (linear)springs
with constants ki and natural lengths di, so that the ith
spring lies between masses mi and mi+1, i = 1, . . . , N − 1,
and the last spring connects mass mN to a fixed wall. We
also add a linear damper to each mass, with coefficients
γi and, furthermore, act with an external force F on
the first mass. After redefining the coordinates to absorb
the lengths di and introducing the canonical momenta
pi = ẋi/mi, the system can be put in the first order form

Ẋ =

(
0N×N diag(1/m1, . . . , 1/mN )

KN×N −diag(γ1/m1, . . . , γN/mN )

)
X +BF,

(87)
where X = (x1, . . . , xN , p1, . . . , pN )T ,

B = (0, . . . , 0︸ ︷︷ ︸
N

, 1, 0, . . . , 0)T ,

and K is the corresponding stiffness matrix. If we measure
the velocity of the first mass, we have also the output
y = CX with C = ( 1 0 · · · 0 0 0 · · · 0 ).

In order to obtain a test of our algorithm, we consider
ki = 100(i+ 1), mi = i(1 +m), γi = 1, i = 1, . . . , N , with
m the parameter of the Taylor expansion. We set N = 10,
which yields a system with 20 states, and consider reduced
systems with four states. Our procedure, which we have
implemented entirely in Matlab, yields a linear reduced
system (Batlle and Roqueiro (2016))

q̇ = A4(m)q +B4(m)u, y = C4(m)q (88)

with q ∈ R4, and matrices A4(m), B4(m) and C4(m)
whose elements are polynomials of degree 2 im m.
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Fig. 1. Comparison of Bode plots for zeroth (black), first
(blue) and second (red) order approximations for
m = 0.5, together with the exact reduction of the
system (green).

Figure 1 shows a detail of the Bode diagrams for m =
0.5 computed using the polynomial approximations of
degree zero (black), one (blue) and two (red), together
with the exact reduced system (green). It is clearly seen
that the results improve as the order of the polynomial
approximation is increased. Notice that the zeroth order
polynomial approximation is equivalent to considering
m = 0.

5. CONCLUSIONS

We have developed a parameter dependent model order
reduction algorithm based on the balanced realization ap-
proximation. The algorithm yields a reduced order model
which can be used to design a controller valid for a range
of values of the parameter. As a by-product, we have
obtained an expression for the second order perturbation
of the singular subspaces (see equations (77) or (79)).

We should point out that, from the point of view of
simulating a large system, it may be better to compute the
exact reduced system for a given value of the parameter,
since the truncation error of our second order polynomial
approximation may become quite large for large m (or
even yield unstable reduced systems). Our procedure is
thus more relevant for control design than for simulation.

Some trivial extensions of our work, which we have not
reported here for the sake of simplicity, include considering
several parameters instead of one or computing some
further higher order corrections of the parametrized SVD.

We have not addressed the issue of the estimation of
the error of the reduced model. Notice that this error
involves both the truncation errors of the different steps
of the algorithm and the error which comes from the
truncation of the balanced realization. The latter is the
only present for m = 0, and is the one for which bounds
are well known. We currently do not know how to deal
with the former, and how it could be integrated with

the latter. However, the simulations of the system that
we have presented, together with some simulations of the
individual steps (not reported here) seem to indicate that
the errors due to the different polynomial truncations go
down when higher order approximations are used. We plan
to address this issue by relating our construction to the
general framework of Beck et al. (1996), and by comparing
it to the approaches in Benner et al. (2015).
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