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Introduction 

Musculoskeletal simulations can be useful to have a 
better understanding of the forces involved in human 
movements and their interactions with the environment. 
Recent advancements in the integration of algorithmic 
differentiation tools in powerful dynamic engines allow 
the simulations, based on the resolution of an optimal 
control problem, to be much faster than using traditional 
methods to compute derivatives, such as finite 
differences.   
The formulation of the optimal control problem could 
also have an impact on the convergence of the 
optimization (regarding number of iterations and 
computational time), especially when some variables 
are very sensitive to small changes of design variables.  
In this study we present how the use of algorithmic 
differentiation [1] can help to analyse the influence of 
slightly different formulations on the convergence of an 
optimization framework [2] to calibrate contact models 
(foot-ground and subject exoskeleton) and then predict 
movement with their forces.  
 

Material and methods 

The problem is based on two phases. The details of the 
problem and the formulation have been described in [2]. 
In Phase A, we calibrate the foot-ground and subject-
exoskeleton contact models so that they track 
experimental data (kinematics, ground reaction forces 
– GRF –, joint torques and subject-exoskeleton contact 
forces) using three trials at the same time. In Phase B, 
we estimate the kinematics as well as the subject-
exoskeleton contact forces, while tracking experimental 
GRF and joint torques. In each phase, an optimal 
control problem is solved using a direct-collocation 
method in order to find the optimal states and controls, 
as well as the contact model parameters in Phase A.  
In Phase A, we optimize the stiffness and damping 
parameters of the foot-ground contact model, the 
position of the spheres with respect to the foot, and the 
stiffness parameters of the spring-damper systems 
between subject and exoskeleton (p). In both phases, 
the state vector (x) contains the coordinates, velocities 
and accelerations of a multibody planar model 
consisting of the human and the exoskeleton. Human 
and exoskeleton kinematic chains are connected at the 
foot. The model has nine degrees of freedom (DoF): two 
translations and one rotation between the foot and the 
ground, and one DoF at the ankle, knee and hip joints 
of the human and exoskeleton. The subject-
exoskeleton contact is modeled with three spring-

damper systems at the pelvis, thigh and shank 
segments, and the foot-ground contact between two 
spheres and the ground plane with a smooth Hunt-
Crossley contact model (Figure 1).  
An implicit dynamic formulation is used, therefore, the 
control vector (u) contains joint torques (uT) and jerks 
(uJ). Subject-exoskeleton contact forces are also added 
as controls (uSEF). GRF are very sensitive to the state 
values, for this reason these variables could be treated 
as controls (uGRF), as in [2,3]. In order to test the 
influence of the different treatment of GRF, two 
formulations, with (Form 1) and without GRF (Form 2) 
as controls were tested.  

 

Figure 1. Left: Subject-exoskeleton model. q1, q2 and q3: 
DoFs of the foot with respect to ground; q4, q5 and q6: 

relative DoFs of the human; q7, q8 and q9: relative DoFs of 
the exoskeleton. Conf. 1 and 2 indicate the locations where 

we had experimental contact forces. 

The objective function of the optimization has terms to 
track experimental data: GRF, joint torques, and, only 
in Phase A, kinematics and subject-exoskeleton contact 
forces. It also has terms to minimize variables such as 
jerk and contact energy.  
Due to the implicit dynamic formulation, equations of 
motion calculated using OpenSim [2,4] are set as path 
constraints (algebraic constraints): 

  0, ,f x u p   (1) 

and dynamic constraints are set to impose continuous 
derivatives of the states. 
In Form 1 GRF are considered control variables 

 
GRFuGRF  in both the objective function (GRF tracking 

terms) and in the constraint vector (path constraints, Eq 
(1)); whereas in Form 2, GRF are calculated using the 
contact model (as a function of states and contact 
parameters). In addition, path constraints are added in 
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Form 1 so that the model GRF ( modelGRF ) matches the 

GRF calculated using controls (
GRFuGRF ): 

  0, ,
GRFmodel uGRF GRFq q p    (2) 

Doing so, the objective function is less sensitive to small 
changes of state values in Form 1, since GRFs are not 
dependent on states directly. 
Experimental data used in Phase A to calibrate the 
contact models consist of motion capture, GRF and 
subject-exoskeleton contact pressures in three sit-to-
stand trials with the exoskeleton in passive mode. 
Pelvis contact forces are measured in one of these trials 
and, thigh and shank contact forces in two trials. In 
addition, six sit-to-stand trials with the exoskeleton in 
assistive mode are used in Phase B to predict the 
kinematics and interaction forces of the collaborative 
subject-exoskeleton movement (three trials with contact 
forces at the pelvis and three at the thigh and shank). 
The optimal control problem is solved using 200 mesh 
intervals with four collocation points per interval. 

 

Results 

Both formulations (Form 1 and 2) led to almost the 
same local optima. For example, root mean square 
differences (RMSD) between formulations in phase A 
were 0.43 ± 0.26 degrees, 1.73 ± 1.00 degrees/s for 
angular coordinates and velocities, 6.5 ± 8.8 N for GRF, 
and 3.6 ± 3.9 N for subject-exoskeleton contact forces. 
In Phase B, both formulations also led to almost the 
same solutions (RMSD coordinates = 0.10 ± 0.12 
degrees, RMSD angular velocities = 0.30 ± 0.35 
degrees/s, RMSD contact forces = 0.01 ± 0.01 N). 
Form 1 led to a non-linear programming (NLP) problem 
bigger than Form 2. For example, in Phase A, the 
optimal control problem had 78972 variables and 73443 
constraints with Form 1, and 76560 variables and 
71031 constraints with Form 2.  
However, the number of iterations and, hence, the 
computational time, were lower in Form 1 (Figure 2). 

Figure 2. Number of iterations (upper row) and 
computational time (lower row) spent to solve the 

optimization in Phases A (left) and B (right). Note that the 
vertical scales in the two phases are not the same. 

 
 

When using GRF as controls (Form 1), the optimization 
took 989 iterations to solve Phase A, versus 1132 
without using GRF as controls (Form 2), which 
corresponds to 1814 s and 3195 s using Form 1 and 2, 
respectively. In Phase B, the number of iterations spent 
using Form 2 was also higher in all six trials (314 ± 71 
iterations versus 155 ± 17 iterations), which 
corresponds to a computational time of 167.4 ± 45.1 s 
using Form 2 and 109.6 ± 12.8 s using Form 1. The 
results were obtained with a regular laptop Intel Core i7-
6700HQ CPU @2.6 GHz. 
 

Discussion 

In this study we used an algorithmic differentiation [1] 
framework recently developed to solve biomechanical 
optimal control problems, and we did an analysis of the 
impact of formulating GRF as controls, since these 
forces are known to be highly sensitive to state values.    
Although the introduction of GRF as controls led to a 
bigger non-linear problem, the number of iterations as 
well as the computational time were smaller than when 
these control variables were not used. This was due to 
the fact that the introduction of these controls prevent 
the gradient of the objective function from being 
dependent on the model GRF, which could reach huge 
values just by slightly changing state values. Since the 
search direction of the optimization algorithm is 
gradient-based, this fact could explain why Form 1 
needs less iterations than Form 2 to find an optimal 
solution. 
The algorithmic differentiation framework allowed us to 
obtain the results with less than half an hour even when 
calibrating both models with three sit-to-stand trials at 
the same time. Otherwise, using finite differences, 
every iteration of the optimization would take much 
more time. For example, one iteration takes around  5 
minutes only for Phase B (without the contact model 
calibration and simulating only one trial) with finite 
differences, versus around 1 second with algorithmic 
differentiation. Future work will be focused on testing 
different formulations of contact models to decrease the 
computational time of the resolution of the optimization 
even more. 

 
Conclusion 

The take-home message of this study is two-fold. On 
the one hand, the used algorithmic differentiation 
framework allows to analyse different formulations of a 
large NLP with a relatively short computation time. On 
the other hand, it is shown that the use of GRF as 
controls leads to both a lower number of iterations and 
computational time. 
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