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Abstract. In this paper, we present a histopathology image categoriza-
tion method based on Fisher vector descriptors. While Fisher vector has
been broadly successful for general computer vision and recently applied
to microscopy image analysis, its feature dimension is very high and
this could affect the classification performance especially when there is
small amount of training images available. To address this issue, we de-
sign a dimension reduction algorithm in a discriminative learning model
with similarity and representation constraints. In addition, to obtain the
image-level Fisher vectors, we incorporate two types of local descriptors
based on the standard texture feature and unsupervised feature learn-
ing. We use three publicly available datasets for experiments. Our eval-
uation shows that our overall approach achieves consistent performance
improvement over existing approaches, our proposed discriminative di-
mension reduction algorithm outperforms the common dimension reduc-
tion techniques, and different local descriptors have varying effects on
different datasets.

1 Introduction

Tissue examination using histopathology images is regularly performed in the
clinical routine for cancer diagnosis and treatment. Computerized histopathology
image classification supports automated categorization of cancer status (benign
or malignant) or subtypes, where manual analysis can be subjective and error-
prone due to the complex visual characteristics of histopathology images. The
majority of existing studies in this area have focused on image feature repre-
sentation. For example, custom feature descriptors have been designed based on
structures of cells or regions [1–3]. Other approaches propose to use automated
feature learning techniques such as convolutional sparse coding [4], dictionary
learning [5], and deconvolution network [6].

As a less studied feature representation for biomedical imaging, Fisher vector
(FV) [7] has recently been applied to microscopy image analysis [6, 3]. FV is a
feature encoding algorithm that aggregates a dense set of locally extracted fea-
tures, such as dense scale-invariant feature transform (DSIFT) descriptors, based
on the Gaussian mixture model (GMM) to form a high-dimensional image-level
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descriptor. Classification of FV descriptors is then performed using the linear-
kernel support vector machine (SVM). This approach has shown excellent per-
formance in many general imaging applications such as face recognition, texture
classification, and object detection.

On the other hand, due to the high dimensionality, the classification perfor-
mance using FV descriptors could be affected if there are insufficient training
data to represent the complex visual characteristics of the problem domain. This
issue would be especially important for histopathology image studies, due to the
cost of preparing training data. While it could be intuitive to apply standard
dimension reduction techniques such as principal component analysis (PCA), it
has been shown that with FV descriptors, discriminative dimension reduction is
more effective for face recognition [8]. However, we are not aware of existing stud-
ies on the design of suitable dimension reduction algorithms for FV descriptors
of histopathology images.

Fig. 1. Example images of three datasets: (a) UCSB breast cancer dataset, (b) MICCAI
2015 CBTC challenge training set, and (c) IICBU 2008 malignant lymphoma dataset.
Each image represents one image category.

In this work, we propose an automated method to categorize histopathol-
ogy images. Our algorithm contributions are two-fold. First, we design two FV



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ECCV

#10
ECCV

#10

ECCV-16 BioImage Computing submission ID 10 3

descriptors to represent the histopathology images, based on the local DSIFT
features and patch-level features that are learned using a deep belief network
(DBN) [9] model, respectively. Second, to address the issue of small training
data, we design a discriminative dimension reduction method to reduce the fea-
ture dimension and enhance the discriminative power of FV descriptors. Our
design is inspired by [8], but we find direct application of this method reduces
the classification performance on some datasets. We thus further improve the
model [8] by devising a classification score-based training set selection technique
and introducing an additional representation constraint into the optimization
objective. For evaluation, three public histopathology image datasets (Fig. 1)
are used. We demonstrate better categorization performance compared to other
feature representation and dimension reduction techniques.

2 Methods

2.1 Fisher Vector Descriptors

FV is analogous to the bag-of-words (BOW) encoding that it encodes a dense
set of local descriptors into an image-level descriptor. The encoding works by
first generating a GMM from all local descriptors. Based on the soft assignments
of local descriptors to the Gaussian modes, the first and second-order difference
vectors between the local descriptors and each of the Gaussian centers are com-
puted. The FV descriptor is then the concatenation of all difference vectors.
Assume that the local descriptor is d dimensional and k Gaussian modes are
used. The resultant FV descriptor is 2dk dimensional.

The local descriptors can be any patch-level features. In this study, we use two
types of local descriptors. 1) Following the standard FV computation, DSIFT
descriptors are extracted at multiple scales with spatial bins of 4, 6, 8, 10 and 12
pixels and sampled every two pixels. 2) Unsupervised feature learning using DBN
is performed on half-overlapping patches of 8× 8 pixels. The network comprises
two layers with each layer producing 64 features. The patch-level local descrip-
tor is the concatenation of features from the two layers. The use of unsupervised
feature learning is inspired by existing work [6, 10], which shows that unsuper-
vised feature learning is highly effective and can be more representative than
supervised feature learning for microscopy images. We have also evaluated DBN
with other numbers of layers and nodes, using only the features from the last
layer, or generating local descriptors at multiple scales. The proposed structure
is found to provide the best results.

For each type of local descriptor, we set a common feature dimension of 128
to make the different local descriptors directly comparable. PCA is then used to
reduce the local descriptor dimension to 64, and based on which, GMM of 64
modes is generated. The image-level FV descriptor is consistently d = 2×64×64
dimensional for each of the two types of local descriptors.
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2.2 Discriminative Dimension Reduction

We design a discriminative learning-based dimension reduction algorithm, which
helps to enhance the discriminative power of the FV descriptor. Formally, given
a training set of n images {Ii : i = 1, . . . , n}, the FV descriptor (regardless of
the local descriptor type) of image Ii is denoted as fi with category label yi. The
objective is to learn a linear projection matrix W ∈ Rh×d with h� d indicating
the reduced dimension. The descriptor fi is then transformed to Wfi, which is
expected to meet the similarity and representation constraints. The dimension-
reduced descriptors are finally used to train a linear-kernel SVM to categorize
the histopathology images. The overall method flow is illustrated in Fig. 2.

Fig. 2. Illustration of our method design. To categorize an image, the local DSIFT
or patch-wise DBN features are first extracted then encoded as FV descriptors. These
descriptors are then dimension reduced using our discriminative dimension reduction
method, and finally classified using linear-kernel SVM. Unsupervised learning is in-
volved in DBN feature extraction and FV encoding, and supervised learning is used in
discriminative dimension reduction and SVM classification.

Similarity constraint. This constraint specifies that after dimension reduc-
tion, descriptors of the same class should be similar and descriptors of different
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classes should be dissimilar. As a result, such descriptors would be more easily
classified compared to the original FV descriptors. We formulate this constraint
based on the Euclidean distance between pairs of descriptors:

‖Wfi −Wfj‖22 < b, ∀yi = yj ; ‖Wfi −Wfj‖22 > b, ∀yi 6= yj ; (1)

where i and j index the n training data, and b is a learned threshold. By imposing
a margin of at least one, the constraint is rewritten as:

θij(b− ‖Wfi −Wfj‖22) > 1 (2)

where θij is 1 if yi = yj , and −1 otherwise. This is equivalent to the following
learning objective:

argmin
W,b

∑
i,j

max[1− θij(b− (fi − fj)TWTW (fi − fj)), 0] (3)

An iterative optimization process can be used to update W and b by incorpo-
rating one pair of descriptors at each iteration [8].

An important issue of this learning process is the selection of descriptor
pairs fi and fj . If all possible pairs of training data are enumerated, there would
be a large number of descriptor pairs imposing contradicting optimization goals
hence affecting the effectiveness of the learned matrix. To overcome this issue, we
design a classification score-based training data selection approach. Specifically,
our idea is that for each fi, we select positive fj (i.e. θij = 1) that has high
classification score of class yj , and negative fj (i.e. θij = −1) that has low
classification score of class yj . The positive fj represents the good data that fi
should move towards, and the negative fj represents the hard examples that fi
should move further from. The classification score is the probability estimate
from a linear-kernel SVM trained using all the training data. The scores of all
training data from one class are then sorted and the score at the pth percentile
is chosen as the threshold. The positive (or negative) fj having a score above
(or below) this threshold is selected to form a training pair with fi. In addition,
we further reduce the number of descriptor pairs by restricting that only images
with classification scores lower than the threshold are used as fi, so that training
will focus on hard examples.

Representation constraint. While the similarity constraint measures the
pairwise similarity between descriptors, the representation constraint evaluates
the representativeness of the descriptor by the overall class space. In the lower
dimensional space, we expect the descriptor fi to be well represented by the
correct class only. Specifically, assume that there are nj descriptors from class
j, and the descriptor set is denoted as Rj ∈ Rd×nj (note for simplicity j is now
used to index the classes). The representation of fi by class j, defined as µi,j , is
computed as the sparse reconstruction from Rj , µi,j = Rjci,j . Here ci,j ∈ Rnj

is a weight vector with q nonzero elements and is derived analytically using
locality-constrained linear coding (LLC) [11]:

min
ci,j
‖fi −Rjci,j‖2 + λ‖vi,j � ci,j‖2 s.t.1T ci,j = 1, ‖ci,j‖0 = q (4)
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where vi,j ∈ Rnj contains the Euclidean distances between fi and each descriptor
in Rj , and the constant λ = 0.01. Note that fi is excluded from Rj if yi = j.

The representation constraint is then defined in a similar construct to the
similarity constraint, but replacing the distance between pairs of descriptors by
distance between the descriptor and its reconstructions. Formally, this constraint
is formulated as:

θij(b− ‖Wfi −Wµi,j‖22) > 1 (5)

where θij = 1 if yi = j, and otherwise θij = −1. The learning objective is thus:

argmin
W,b

∑
i,j

max[1− θij(b− (fi − µi,j)
TWTW (fi − µi,j)), 0] (6)

Note that we can set multiple q values q = {q1, q2, . . .}, so that for fi and each
class j, we obtain multiple representations {µi,j : q = q1, q2, . . .} and expect each
of the representation to satisfy Eq. (5). In this way, we increase the number of
training pairs for the representation constraint.

Algorithm 1: Discriminative Dimension Reduction

Data: Training data {f1, y1}, . . . , {fn, yn}.
Result: Linear projection matrix W .
Train a linear kernel SVM on the training data;
Based on the classification scores of the training data, create a set of training
pairs {(fi, fj), i ∈ {1, . . . , n}, j ∈ {1, . . . , n}};
Initialize W using PCA on the training data;
Initialize b as the threshold that can satisfy θij(b− ‖Wfi −Wfj‖22) > 1 for most
training pairs;
repeat

for each training pair (fi, fj) do
if θij(b− ‖Wfi −Wfj‖22) ≤ 1 then

∆ij = (fi − fj)(fi − fj)T ;
Wt+1 = Wt − γθijWt∆ij , b = b+ αθij ;

end

end
for each training data fi, class j, and parameter q do

minci,j ‖fi −Rjci,j‖2 + λ‖vi,j � ci,j‖2 s.t.1T ci,j = 1, ‖ci,j‖0 = q;
µi,j = Rjci,j ;
if θij(b− ‖Wfi −Wµi,j‖22) ≤ 1 then

∆ij = (fi − µi,j)(fi − µi,j)
T ;

Wt+1 = Wt − γθijWt∆ij , b = b+ αθij ;

end

end

until convergence or maximum number of iterations is reached ;

Combined optimization. W is first initialized using PCA on the training
data. Then, W and b are learned using a stochastic sub-gradient method combin-
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ing Eqs. (3) and (6). First, at each iteration t, the algorithm takes a descriptor
pair fi and fj . If Eq. (2) is not met, W and b are updated by:

Wt+1 = Wt − γθijWt∆ij , b = b+ αθij (7)

where ∆ij = (fi− fj)(fi− fj)T , γ and α are constant learning rates and default
to 0.25 and 1. After the selected descriptor pairs are enumerated, the training
pair fi and µi,j is used at each iteration to update W and b using Eq. (7)
with ∆ij = (fi − µi,j)(fi − µi,j)

T . The iteration continues until convergence or
maximum number of iterations is reached. The overall discriminative dimension
reduction method is summarized in Algorithm 1.

With the derived linear projection matrix W , a descriptor fi is dimension
reduced to Wfi. SVM training and classification are then performed on these
lower dimensional descriptors to obtain the image category. Our empirical anal-
ysis shows that a linear-kernel SVM is more effective than the polynomial and
radial basis function (RBF) kernels.

2.3 Datasets and Implementation

We use three public histopathology image datasets: 1) UCSB breast cancer
dataset of 58 hematoxylin and eosin (H&E) stained tissue microarray (TMA)
images, including 32 benign (B) and 26 malignant (M) cases; 2) MICCAI 2015
CBTC challenge training set, containing 32 whole-slide images of brain tumors
with 40x apparent magnification, out of which 16 are astrocytoma (A) and 16 are
oligodendroglioma (O); and 3) IICBU 2008 malignant lymphoma dataset of 374
H&E stained image sections from brightfield microscopy, including 113 chronic
lymphocytic leukemia (CLL), 139 follicular lymphoma (FL), and 122 mantle
cell lymphoma (MCL) cases. The first two datasets represent problems with
small numbers of training data, and the third dataset demonstrates multi-class
categorization. Example images are shown in Fig. 1.

For all datasets, we employ four-fold cross validation with three parts of the
data for training and one part for testing, following the same protocol used in
existing studies for the UCSB breast cancer dataset [2, 12]. For the first two
datasets, we set h (the reduced feature dimension) to half of the number of
images and p (the pth percentile of classification score) to 80. For the third
dataset, due to the relatively large number of images, h is set to a quarter of
the number of images, and p is set to 60. For the representation constraint, we
set q to 3 and 5 for all datasets. These parameter settings are determined using
10-fold cross validation within the training set.

3 Experimental Results

We first evaluate the effect of different local descriptors (DSIFT, DBN) and fea-
ture encoding algorithms (BOW, FV), and our proposed method. Table 1 shows
that in general FV encoding outperformed the BOW encoding by a large extent.
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DBN-FV is particularly effective for the CBTC dataset while DSIFT-FV is more
descriptive for the other two datasets. With our proposed discriminative dimen-
sion reduction (DDR), we achieve the best performance for all three datasets.
DBN-FV-DDR is more effective for the CBTC dataset while DSIFT-FV-DDR
is more effective for the IICBU dataset. Overall, the results suggest that FV can
provide more discriminative power than BOW, but the choice of local descriptors
(DSIFT or DBN) needs to be evaluated for different datasets.

Table 1. Classification accuracy (%) comparing feature representations.

UCSB CBTC IICBU

DSIFT-BOW 47.9 53.1 73.8
DBN-BOW 44.5 43.8 70.9
DSIFT-FV 87.8 50.0 90.9
DBN-FV 86.2 65.6 90.1

DSIFT-FV-DDR (proposed) 89.7 56.3 93.3
DBN-FV-DDR (proposed) 89.7 75.0 91.2

Fig. 3 shows the results using the original FV descriptor (no dimension reduc-
tion), our proposed discriminative dimension reduction (DDR) algorithm, and
the other popular dimension reduction techniques: PCA (unsupervised), linear
discriminative analysis (LDA) and generalized discriminative analysis (GDA)
[13] (supervised). It can be seen that PCA is useful for the CBTC dataset
only. While GDA with DSIFT local descriptors performs the best for the IICBU
dataset, the performance using GDA fluctuates largely for different datasets and
local descriptors. Our DDR method provides more consistent advantage.

The receiver operating characteristic (ROC) curves using our methods are
shown in Fig. 3 as well. For the UCSB dataset, although the DSIFT-FV-DDR
and DBN-FV-DDR methods produced the same classification accuracy (89.7%)
and AUC (0.93), differences exist in the ROC curves. It can be seen that to obtain
100% true positive rate, DBN-FV-DDR outputs a lower false positive rate; and
with 0% false positive rate, DBN-FV-DDR gives a higher true positive rate,
when compared to SIFT-FV-DDR. Similar performance differences are observed
for the other two datasets as well. This indicates the overall advantage of using
DBN as the local descriptors over DSIFT.

Table 2 lists the AUCs of our methods and those reported in the existing stud-
ies [2, 12, 14] for the UCSB dataset. The existing methods are based on multiple
instance learning (MIL) models and a combination of texture and morphological
features. Our method can be considered as related to MIL that only image-level
label is available; however, in our method, local descriptors are combined using
FV encoding and classification is performed at the image-level only. The results
show that while the advanced MIL method with joint clustering and classifica-
tion [14] is more effective, our method performs better than or comparably to
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the other approaches [2, 12]. We suggest that our method can be a viable and
conceptually simpler alternative to the MIL models.

Fig. 3. Classification results comparing dimension reduction approaches when DSIFT
or DBN is used as the local descriptor. The left column shows the classification accu-
racies (%). The middle and right columns show the ROC curves and AUCs using our
approaches DSIFT-FV-DDR and DBN-FV-DDR. The ROC curves of the compared
techniques are not shown, so that the curves of our methods can be seen clearly.

Table 2. AUCs on the UCSB breast cancer dataset compared to existing studies.

DSIFT-FV-DDR DBN-FV-DDR [2] [12] [14]

0.93 0.93 0.92 0.93 0.95

Table 3 lists the classification accuracies of methods and those reported in the
literature [15, 16] for the IICBU dataset. The approach [15] is standard bench-
mark for the IICBU dataset, and performs image classification by extracting
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texture and shape features and then using a variation of kNN classification. The
more recent approach [16] provides another open platform for the microscopy
image classification task with a different set of features and SVM classification.
Our results show large improvement over these approaches. We note that for the
CBTC dataset, to the best of our knowledge, there is no available benchmark
for performance comparison.

Table 3. Classification accuracies (%) on the IICBU 2008 lymphoma dataset compared
to existing studies.

DSIFT-FV-DDR DBN-FV-DDR [15] [16]

93.3 91.2 85 70.9

The effects of individual components in our DDR method are evaluated by
comparing the following approaches: 1) Sim: only the similarity constraint is
used for discriminative dimension reduction; 2) Rep: only the representation con-
straint is used; and 3) OneP: a single p value (p = 3) is used when constructing
the representation constraint. We also compare with the original discriminative
dimension reduction algorithm [8], which is equivalent to using only the similar-
ity constraint but without the classification score-based training data selection,
i.e. all possible positive and negative pairs are used in training. As shown in
Fig. 4, when DSIFT is used as the local descriptor, Sim provides some perfor-
mance improvement over FV; but when DBN is used as the local descriptor,
Rep is more effective than Sim. Combining Sim and Rep (i.e. DDR) gives the
best classification. The performance difference between Sim and [8] illustrates
the usefulness of having training data selection. It can be seen that Sim out-
performs [8] in most cases except when DBN is used as the local descriptor on
the CBTC dataset. We suggest that this is because the CBTC dataset contains
a small number of images, and including all possible training data is helpful
to better exploit the feature space characteristics. The overall advantage of our
DDR method over the compared approaches demonstrates that it is essential
to have both the similarity and representation constraints in the optimization
objective, and to use only a subset of descriptor pairs for training.

The confusion matrices of classification using our DSIFT-FV-DDR and DBN-
FV-DDR methods are shown in Fig. 4. For the CBTC dataset, with DBN-FV-
DDR, there is a tendency that more images are classified as oligodendroglioma
than astrocytoma, hence resulting in a high recall (81%) but low precision rate
(72%) of oligodendroglioma. For the IICBU dataset, DSIFT-FV-DDR generates
more balanced results among the various classes compared to DBN-FV-DDR.
Compared to using FV (without dimension reduction), the main difference is
that more MCL cases are correctly identified.

We would also like to mention that our discriminative dimension reduction
method is quite efficient. With Matlab implementation on a PC, the training
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process of DDR needs about 3.8 s on the UCSB dataset, 1.8 s on the CBTC
dataset, and 36.4 s on the IICBU dataset. The different sizes of datasets affect
the size and complexity of training data, and subsequently affect the number of
iterations and time required for optimization.

Fig. 4. Classification accuracy (%) comparing our DDR method with several variations
(Sim, Rep, and OneP) when DSIFT or DBN is used as the local descriptor. Results
using FV (without dimension reduction) or [8] are also included. Confusion matrices
of classification using our methods are shown as well.

4 Conclusions

We present a histopathology image categorization method in this paper. Our
method comprises two major components: FV encoding of local descriptors that
are computed using DSIFT or based on unsupervised learning with DBN; and
discriminative dimension reduction of FV descriptors with similarity and rep-
resentation constraints. Our method is evaluated on three public datasets of
breast cancer, brain tumor and malignant lymphoma images, and we show bet-
ter performance in comparison with some existing approaches and other feature
representation and dimension reduction techniques.
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