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Abstract

Research into the classical simulation of quantum circuits has produced influential conceptual

leaps and, practical solutions to important problems. Literature in this area has generally focused

on what circuits can be, and how these can be simulated. This thesis also aims to answer these

questions but shifts its focus toward understanding how and why the answers to these questions

change when we change the definition of what it means to classically simulate. Whether a class of

quantum circuits can be efficiently simulated with a probabilistic classical computer, or is provably

hard to simulate, depends quite critically on the precise notion of “classical simulation” and in

particular on the required accuracy. We focus on two important notions of simulator, that we

refer to as poly-boxes and epsilon-simulators and, discuss how other notions of simulation relate

to these. A poly-box is a classical algorithm that outputs additive 1/poly precision estimates

of Born probabilities and marginals. Poly-boxes offer useful practical solutions for important

problems that have eluded pragmatic classical solutions using stronger notions of simulation. We

present a general mathematical framework that can be used to construct poly-boxes for certain

quantum circuit families. This framework provides a flexible mathematical structure that can be

combined with a number of free parameter choices (we call the model) to produce a poly-box.

This framework (sometimes partially) generalizes a number of recent works on simulation. By

reformulating simulation techniques used in these works into the general framework, we show

how the poly-box’s performance is influenced by the choice of model. As an application, we use

the general framework to construct a classical additive 1/poly precision Born rule probability

estimation algorithm for Clifford plus T circuits. Our algorithm scales exponentially in the

number of T gates but polynomially in all other parameters and is intended to be state of the art

for this estimation task. We expect this result to be particularly useful in the characterization

and verification of near term quantum devices.

Investigating the classical simulability of quantum circuits also provides a promising avenue

towards understanding the computational power of quantum systems. We argue that the notion

of classical simulation we call epsilon-simulation, captures the essence of possessing “equivalent

computational power” to the quantum system it simulates: It is statistically impossible to distin-

guish an agent with access to an epsilon-simulator from one possessing the simulated quantum

system. We relate epsilon-simulation to various alternative notions of simulation predominantly

focusing on its relation to poly-boxes. Accepting some plausible computational theoretic as-

sumptions, we show that epsilon-simulation is strictly stronger than a poly-box by showing that

IQP circuits and unconditioned magic-state injected Clifford circuits are both hard to epsilon-

simulate and yet admit a poly-box. In contrast, we also show that these two notions are equivalent

under an additional assumption on the sparsity of the output distribution (poly-sparsity).
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Chapter 1

Introduction

A computation is a physical process. Here, the initial and final configuration of a dynamic

physical system are used to map an encoding of a problem to an encoding of a solution. The

time, energy or other resources required in order to perform a particular computation using a

particular computational device are inevitably governed by the laws of physics. Specifically, the

computational device is limited in the physical processes it can exploit, and the laws of physics

govern the resource cost of executing these processes.

There has been almost a century of research exploring many facets of computation in the

context of physical systems that “solve” computational tasks by relying on classical dynamical

processes. Early work mathematically formalized the theory of computation. The computa-

tional device was formalized to the Turing machine [4] and the dynamical mapping between its

configurations was abstracted to a computation of a function on the natural numbers.

The weak form of the Church-Turing Thesis (CTT) states that a function on the natural

numbers is physically computable, using finite resources, by any mechanical means if and only if

it is computable by a Turing machine. This thesis was proposed as a result of the equivalence

of a number of different computational models (Turing’s machines [4], Gödel’s general recursive

functions [5] and Church’s λ calculus [6]) and is still unchallenged and widely accepted.

From the perspective of computability using finite resources, the CTT asserts the equivalence

of many models of computation including classical and quantum computation. A more resource

sensitive formalism was developed by shifting from the concept of computability to efficiency.

Given an infinite family of computational tasks, in this formalism, the resource requirements of

a computational device are considered as a function of the size of the input. The computational

device is said to efficiently solve the family of tasks (problem) if its resource requirements scale at

most polynomially in the size of the input. Many classes of problems known as complexity classes

have been defined in terms of sets of problems which can be solved efficiently by a particular

computational device. For example, the complexity classes BPP and BQP define the set of

binary outcome problems – decision problems – that can be efficiently solved by a (probabilistic,

universal) classical computer and by a universal quantum computer respectively.

The strong form of the CTT states that any function on the natural numbers that can be

efficiently computed physically can be efficiently computed by a Turing machine. This strong

form is now seriously challenged by the emergence of quantum computation.
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Chapter 1

The brilliant insight of Feynman [7] was that for certain tasks, quantum computers appear

to exploit the quantum behavior of certain physical systems in a way that perform computations

using fewer resources. This and other pioneering works leveraged insights about important dif-

ferences between classical and quantum mechanical laws of nature to construct the foundations

of the field of quantum computation.

The early insights into quantum phenomena such as exponentially growing Hilbert spaces,

superposition and interference and how to use these in computation led to the first quantum

algorithms including the Deutsch-Jozsa algorithm [8], Shor’s factoring algorithm [9] and Grover’s

search algorithm [10]. In a similar vein, an appreciation of the believed classical hardness of distin-

guishing probability distributions [11] motivates important quantum tools such as the Hadamard

test and the SWAP test [12]. More recently, the classical hardness of computing the permanent

of random binary matrices motivated Aaronson and Arkhipov’s seminal work on boson sampling

[13] and the sub-field focused on demonstrating quantum advantage.

Classical simulation of quantum systems is the primary formal tool for the theoretical ex-

ploration of the computational advantages of quantum mechanics. The inability to efficiently

classically simulate quantum interactions sparked Feynman’s idea of quantum computation. And

the appearance of matrix permanents in attempts to classically simulate bosonic quantum sys-

tems combined with our modern understanding of classical complexity theory (in particular the

average case hardness of classically estimating matrix permanents [14]), gave rise to the active

study of intermediate models of quantum computation such as boson sampling [13] and instan-

taneous quantum polynomial time circuits [15, 16]. In this historical context, the role of classical

simulation of quantum systems is to deliver deeper theoretical insights about the fundamental

differences between classical and quantum systems. We refer to this domain of application as

“classical-hardness inspired quantum insights”.

The classical simulation of quantum systems is much broader than the few significant examples

that spring to mind [17, 18, 19, 20, 21]. What it means to classically “simulate” a quantum system

is a matter of definition. Such a definition picks out a particular qualitative or quantitative feature

the classical system must replicate to successfully achieve “simulation” of the quantum system.

One may define the classical simulation of a family of quantum circuits as the ability to solve

decision problems with a bounded error probability. Alternatively, one may define it in terms of

the ability to estimate, within a specified accuracy, the Born rule probability of certain events

or the expectation value of certain observables. As yet another alternative, simulation can be

defined in terms of the ability to sample from the output distribution of a quantum circuit.

A crucial observation is that subtle changes to the notion of simulation will exhibit different

manifestations of the fundamental differences between classical and quantum systems. Under

one particular notion of simulation, a qualitative property of the quantum system may indicate

a clear separation between classically simulable and classically hard to simulate. Under another

notion of simulation this indicator of “quantumness” may be obscured or perhaps appear as a

quantitive property that measures “quantumness”.

As an example, Refs. [22, 23] showed that the discrete Wigner function can be used to give an

efficient simulation of Clifford circuits acting on odd dimensional quantum systems provided that

the states and measurements have non-negative discrete Wigner functions (see also Refs. [24, 23]

for the continuous variable analog). The notion of simulation used here, required that the clas-

2



Chapter 1

sical algorithm be able to sample from the quantum output distribution. This has been referred

to as weak simulation in the literature [25, 26, 16, 27]. Within this model it is believed that weak

simulation is not possible for circuits where the input state or measurement has a discrete Wigner

function that takes a negative value at some point in phase space. This is in part supported by

the fact that many negative states can be distilled to magic states allowing universal quantum

computation [28, 29], the connections between negativity and quantum phenomenon of contex-

tuality [30] and the folklore from the quantum optics community that negativity of the Wigner

function is a uniquely quantum phenomenon [31]. Despite the fact that from the perspective of

efficient weak simulation the presence of any negativity appears to be an insurmountable obstacle,

our work [1] showed that under an alternate notion of efficient classical simulation, the presence

of negativity merely results in a computational runtime overhead that increases incrementally

with increases in negativity. This gave us an operationally meaningful way to quantify negativity

as a resource for quantum computation. This insight arose from the contrast between what is

classically simulable under two different notions.

In light of the above, the development of classical-hardness inspired quantum insights will be

greatly aided by a broader exploration of notions of simulation, their advantages and limitations

as well as work focused on tailoring notions of simulation that best highlight specific distinctions

between the classical and quantum paradigms. The second half of this thesis is dedicated towards

this endeavor. In this thesis (see also Ref. [3]), we develop a notion of simulation (epsilon-

simulation) that faithfully captures the ability to solve computational problems in a very general

sense. By leveraging other results on classical “simulation” of quantum system and relating

epsilon-simulation to other notions of simulation, we are able to develop a more refined picture

of how various properties of (non-universal) quantum computers come together to result in either

a computer that can efficiently solve a problem that is not solvable by efficient classical means,

or otherwise.

The study of classical simulation of quantum systems also produces direct practical benefits

and will become increasingly important moving forward. The vastly different structure of quan-

tum mechanics means that it more naturally lends itself to solving certain problems. However,

often there is also a classical solution to the problem which may become easier or more important

to identify given the quantum solution. In this context, the development of classical algorithms

for quantum tasks offers cheap, fast and presently accessible solutions to computational problems

that are of practical significance. A prominent recent example is the work of Ewin Tang [32] on

a classical algorithm for recommendation systems. We borrow terminology from Tang in calling

this application of classical simulation “quantum inspired classical solutions” but note that it

has a rich history with prominent examples including the classical simulation of Clifford circuits

(Gottesman-Knill theorem [17, 18]) and classical simulation of non-interacting fermionic quan-

tum systems [19, 20, 21]. These classical simulation algorithms have been invaluable tools with

practical applications in the sub-fields of quantum error correction; quantum characterization,

validation and verification; measurement based quantum computation and condensed matter

physics.

We use our work on classical simulation [1] to give examples of the practical benefits of study-

ing classical simulability. In Ref. [1], we presented a classical simulation algorithm for estimating

the probabilities associated with certain quantum events. This result has found a number of im-

3
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portant applications. For example, in Ref. [33], our algorithm was used to numerically assess the

performance of the Steane code in the more realistic regime where all Clifford operations are sub-

ject to small coherent noise. Howard and Campbell [34] built on our work to show lower bounds

on magic state distillation protocols and Temme, Bravyi and Gambetta applied our techniques

to the task of using noisy quantum circuits to simulate ideal quantum circuits [35]. In addition,

this work has inspired a number of important developments in the classical simulation literature

[36, 2, 34, 3, 37, 38, 39]. In this thesis, we will present a general framework for the estimation of

Born rule probabilities. This framework substantially generalizes our earlier work [1] as well as a

number of additional results. This work provides a general framework that affords us a common

lens through which we can study and compare many of the significant developments in the field

including Refs. [40, 41, 2, 34, 3, 37, 38].

This thesis is structured into two parts. Part I is focused on the development of a general

technique for the classical simulation of quantum systems. In particular, this technique focuses on

classically estimating Born rule probabilities associated with certain events. In Ch. 2 we will give

a more focused introduction to the topic of classical estimation of Born rule probabilities followed

by some background material in Ch. 3. We present the general framework for Born probability

estimation in Ch. 4. Here, we will also give a detailed overview of a number of classical simulation

techniques from recent literature and discussion how they relate to the general framework. Ch. 5

is an application of the general framework and presents a classical simulation algorithm for the

estimation of Born rule probabilities associated with the universal family of circuits generated

by Clifford and T gates. This algorithm is a work in progress but is intended to be the state of

the art method for the task of computing additive polynomial precision estimates of Born rule

probabilities. In Ch. 6, we conclude with a discussion of Born rule probability estimation and

provide an outlook.

In Part II of this thesis, the theme will shift from the pragmatic focus of “quantum inspired

classical solutions” to the more concept focused “classical-hardness inspired quantum insights”.

This work identifies a notion of simulation, epsilon-simulation, that in a certain precise sense

minimally captures the notion of computational power. In Ch. 7 we will give a more detailed in-

troduction to the context and central ideas motivating this work. Ch. 8 contains the mathematical

results that underpin the conceptual significance of epsilon-simulation. In Ch. 9 we will briefly

return to discussing Born rule probability estimation but this time from a complexity theoretic

perspective. The connection between various notions of simulation and epsilon-simulation is

presented in Ch 10. We devote particular attention to the more subtle relationship between poly-

boxes (additive polynomial precision Born rule probability estimation) and epsilon-simulators

where we show that the two simulators are equivalent under certain conditions. Ch. 11 focuses

on showing that the two simulators are also distinct. We conclude with a discussion in Ch. 12.

4
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Estimation of Born probabilities
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Chapter 2

Introduction: Estimation of Born

probabilities

The Born rule is the essential ingredient that translates the abstract world of complex Hilbert

spaces to observable predictions about the physical world. It provides a formula for computing

the probability associated with observing any particular outcome in a given quantum experiment.

In any given quantum process, the set of Born rule probabilities associated with every possible

outcome fully characterize all physically observable predictions of quantum theory. For this

reason, it is very natural to define notions of classical simulation of quantum systems in relation

to Born rule probabilities.

As we have already briefly discussed, there is a great diversity of candidates when choosing a

notion of simulation. With respect to notions that relate to Born rule probabilities, two important

categories are those based on estimation and those based on sampling. Definitions of classical

simulations falling into the sampling category require the classical simulator to approximately or

exactly sample for the quantum outcome distribution (specified by the Born rule probabilities).

Part II of this thesis will focus on this category of notions.

Definitions of classical simulations falling into the estimation category require the classical

simulator to calculate an approximation of the Born rule probability associated with a specified

events. The variation in definitions within this category arises from differences in the demands

placed on a simulator in relation to the precision of estimates, the run-time and the range of

inputs for which the simulator must satisfactorily perform. Within the estimation category, the

literature has almost entirely focused on strong simulation and multiplicative error or relative

error estimation [17, 19, 20, 26, 42, 2]. These notions of simulation impose very strong require-

ments on the precision to run-time tradeoff. As an example, under strong simulation, the classical

device is required to efficiently estimate Born rule probabilities to within an exponentially small

(in the number of qubits) additive error.

The adaptability of these precise estimation algorithms has rightfully motivated research focus

in this direction. As we will discuss in Ch. 10, the precise estimation algorithms of this type can

be employed as sub-procedures in efficient classical protocols to construct accurate simulators for

sampling tasks amongst other applications. Thus, in a sense, these precise estimation algorithms

can be seen as bona fide simulators because they offer substantial freedom to manipulate the

6
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algorithm’s output (e.g. from estimates to samples) to suit a range of applications.

In Part I of this thesis, we will instead focus on a weaker notion of Born rule probability

estimation. Under this notion of simulation the classical device is required to efficiently estimate

Born rule probabilities (and all marginal probabilities) to within an inverse polynomially small (in

the number of qubits) additive error. We call a computational device that satisfies this notion of

simulation (to be precisely defined later) a poly box. Following our work [1] and the related work of

Ref. [43], estimation algorithms targeting this weaker additive polynomial level of precision have

started to gain prominence [34, 44, 37, 3]. This notion of simulation is in general limited in its

range of application compared to strong and multiplicative precision estimation as well as weak

simulation. However, the study of classical simulation under this notion also offers a number

of significant advantages. Before discussing these, let us put into context the computational

hardness of Born rule probability estimation to various levels of precision.

First let us note that the exact computation of Born rule probabilities associated with universal

quantum circuits is as hard as the hardest problems in the complexity class #P (also known as

#P-hard). This is an extremely powerful complexity class containing counting problems believed

to be well outside the reach of classical and even universal quantum computers. Estimating these

probabilities to additive exponential precision or even to within a multiplicative factor of
√

2

remains #P-hard [45, 46]. Thus it is believed that the estimation of general Born rule probabilities

to these high levels of accuracy is not possible even with an ideal universal quantum computer. We

will see that reducing the accuracy requirement to the level of polynomial additive errors, makes

Born rule probability estimation realizable on a universal quantum computer. However, this is

believed to still be well outside of classical computational power. In fact, even the computational

ability to estimate general Born rule probabilities to within an additive error of 1/6 is sufficient to

solve the set of all problems in BQP. Thus, the efficient classical estimation of general Born rule

probabilities to within an inverse polynomial additive error is not possible unless BQP = BPP.

It is strongly believed that counting problems in the complexity class #P-hard cannot be

solved by a universal quantum computer. Accepting this, it is evident that undertaking to com-

pute Born rule probabilities to the aforementioned high levels of precision is superfluous and

prohibitively hard. Additionally, in some cases, estimating the corresponding quantity to addi-

tive polynomial precision is easy. As a classical example, given an arbitrary n variable Boolean

formula in Conjunctive Normal Form (CNF), the task of computing the proportion of bit-strings

that satisfy the Boolean formula is #P-hard (see #SAT or #3SAT) but an additive polynomial

precision approximation can be computed simply by sampling random bit-strings and approxi-

mating the proportion using the observed frequency with which the sampled bit-strings satisfy the

Boolean formula. Looking beyond notions based on high precision estimation, our work in Ref. [3]

shows that even when we consider the easier task of sampling from the output distribution of gen-

eral quantum circuits, there exist a number of known examples of intermediate models of quantum

computing (IQP circuits-CIQP, unconditioned magic-state injected qubit Clifford circuits-CPROD,

and a significantly more general version of the corresponding qudit class-CpolyN ) that do not

plausibly admit a classical (sampling based) simulator but allow efficient classical estimation to

inverse polynomial additive precision. These results and the above named families of quantum

circuits, CPROD, CIQP, CpolyN will be discussed in detail in Part II.

In light of this discussion, the study of classical simulation in terms of additive polynomial

7
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precision estimation of Born rule probabilities offers greater scope for simulation but at a reduced

level of precision. This non-trivial extension in scope to include interesting computational models

including a number of known intermediate models of quantum computing offers and has already

delivered new conceptual insights and practical benefits.

Part I of this thesis significantly generalizes and refines our earlier work [1]. In Ref. [1], we

presented a method for (possibly inefficiently) classically estimating (to additive polynomial pre-

cision) the probabilities and marginals associated with any given quantum circuit. This technique

works by transforming the mathematical objects that we conventionally use to describe quantum

processes into new mathematical objects that can more naturally be interpreted as describing a

generalized stochastic process. In particular this procedure maps density states, unitary trans-

formations and positive operator valued measurement (POVM) elements to their corresponding

objects in a quasi-probability representation. This mapping is not uniquely specified but rather

depends on a choice of dual frame [47, 48]. We will define dual frames later but for now point

out that a well known example is the set of phase point operators [49, 50, 51] that define a

self-dual frame and for odd dimensional quantum systems produce the quasi-probability repre-

sentation known as the discrete Wigner function. For certain quantum processes (and choice of

dual frame), the objects in the quasi-probabilistic representation corresponding to density states,

unitary transformations and POVM elements are probability distributions, stochastic maps and

conditional probability distributions respectively. However, in general the state and POVM ele-

ment representations may take on negative values and the representation of a unitary transfor-

mation may map some probability distributions to a quasi-probability distribution (that has a

negative value somewhere). Prior to our work, it was known [24, 23] that if the Wigner function

was non-negative, then, the outcome distribution of the quantum circuit could be sampled via a

Markov chain Monte-Carlo procedure. In the case of odd dimensional quantum systems, these

results generalized the Gottesman-Knill theorem. Importantly, this Monte-Carlo sampling pro-

cedure is undefined when any of the quasi-probabilities are negative. We were able to show that

for any choice of quasi-probabilistic representation, there is a quantity (negativity) associated

with every state, unitary transformation and POVM element. For example, the negativity of a

quantum state is the l1 norm of the associated quasi-probability distribution. Additionally, there

is a quantity, N (the negativity), associated with the entire quantum circuit and this can be

small even if the quantum state or POVM element negativity is extremely large. We showed that

the circuit negativity can be efficiently classically computed. Furthermore, one can classically

estimate any Born rule probability or marginal probability associated with the circuit, to within

±ε, with high probability, in run-time O(poly(n, 1/ε,N )). Thus, for the set of quantum circuit

families CpolyN where the negativity of each circuit is upper bounded by a polynomial in the

number of qudits, our algorithm produces an efficient additive polynomial precision estimate of

Born rule probabilities.

The work of Veitch, Mousavian, Gottesman and Emerson [29] showed that negativity in the

discrete Wigner function is a monotone for the amount of non-stabilizer resource. Thus, our work

established an efficiently computable monotone which polynomially upper-bounds the classical

simulation run-time of any quantum circuit.

In this thesis, we refine and extend our earlier work from Ref. [1] in several significant ways.

Firstly, we extend the simulation technique from one that only applies to the mixed state formal-
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ism of quantum mechanics to the pure state formalism as well. In the mixed state formalism, n

qudit quantum states are represented by density operators and live in a Hilbert space of linear

operators from
(
Cd
)n

to
(
Cd
)n

. In the pure state formalism, quantum states are represented by

kets and live in a Hilbert space of vectors
(
Cd
)n

. The mathematical extension of our methods to

the pure state formalism can result in a significantly faster run-time for the algorithm compared

to simulation of the pure system within the mixed state formalism. In the present work, we also

make several important relaxations to the mathematical construction in Ref. [1]. Here, we remove

a technical condition related to the normalization of frames, move away from the dual frame for-

malism instead requiring a choice of only one frame and remove the Hermiticity requirement of

this frame. These relaxations mean that the simulated quantum system is no longer represented

by a quasi-probability distribution in the sense of Ref. [1] but a much more general object, an

un-normalized, complex valued field. The advantage of these relaxations is increased flexibility

resulting in faster run-times combined with a less constrained mathematical structure.

Part I of this thesis is structure as follows. In Ch. 3 we review some useful background material.

In Ch. 4 we present the general framework for Born probability estimation. In Sec. 4.1 we discuss

some preliminary details covering the scope the simulation and some introductory concepts. In

Sec. 4.2, we present the general framework for Born rule probability estimation along with a

number of examples. In Sec. 4.3, we present an overview of simulation algorithms from the recent

literature and discuss these from the perspective of our general framework. In Ch. 5 we apply our

general framework to the construction of an estimation algorithm for a universal gate-set. This

algorithm has exponential run-time in the number of T gates, scales polynomially in all other

parameters and is intended to be the state of the art method for inverse polynomial precision

Born rule probability estimation.
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Background and notation

3.1 Notation

N represents the natural numbers including zero. For n ∈ N\{ 0 }, [n] represents the set of positive

integers { 1, 2, . . . , n }. Z represents the integers and for n ∈ N\{ 0 }, we use Zn = { 0, 1, . . . , n− 1 }
to refer to the quotient ring Z/nZ.

For x a vector and j a positive integer, xj will represent the jth entry of x unless specified

otherwise. Products of non-commuting objects will be indexed ascending from left to right i.e.

∏
i∈[n]

gi =
n∏
i=1

gi := g1 × g2 × . . .× gn. (3.1)

Products in the reverse ordering will be written:

1∏
i=n

gi := gn × gn−1 × . . .× g1. (3.2)

We will apply this convention to tensor products, Kronecker products as well as matrix prod-

ucts.

The convex polytope of all probability distributions (non-negative vectors with l1-norm of

unity) over a finite set S are represented by PS . U(S) ∈ PS will be used to represent the uniform

distribution over |S| elements and my be written as U where S is clear from the context.

3.2 Commonly used gates

The non-identity, qubit Pauli operator are written X,Y, Z and can be written in the computa-

tional basis as:

X =

[
0 1

1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0

0 −1

]
. (3.3)

The set of Clifford gates acting on qubits can be generated from the single qubit gates referred
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to as the Hadamard gate (H); the phase gate (S) and the two qubit controlled-NOT gate (CX

or CNOT). Other commonly used gates include the controlled-Z gate (CZ) and the swap gate

(SWAP) which is also a Clifford gate and the T gate (T) which promotes the Clifford gates to

universality. Written in matrix form, in the computational basis, these are:

S =

[
1 0

0 i

]
, H =

1√
2

[
1 1

1 −1

]
, T =

[
1 0

0 eiπ/4

]
, (3.4)

and:

CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , SWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (3.5)

3.3 The qudit stabilizer sub-theory

We present some elementary mathematical objects related to the stabilizer sub-theory for qudits

[49]. Throughout this section, we assume that d is a prime, although everything can be extended

to arbitrary integer d. First, the qudit generalization of the Pauli X and Z operators are defined:

X |j〉 = |j + 1 (mod d)〉 , Z |j〉 = ωj |j〉 , (3.6)

where d is the dimensionality of the qudits, ω := exp(2πi
d ) and |j〉, for j ∈ Zd, forms an orthonor-

mal basis of the qudit state space known as the computational basis.

We note that ZX = ωXZ. For all prime d, the X and Z operators are unitary. However,

unlike the d = 2 case, for d > 2, they are not Hermitian.

We will use the notation Xj or Zj to represent the X and Z operators acting on the jth qubit

and padded with identitites. We will also apply this notation to other single particle and two

particle operators acting on an n particle system.

We write the qudit generalization of the controlled-NOT gate as CX. Specifically, CXi,j repre-

sents the CX gate acting non-trivially on qudits i and j where qudit i is the controll and qudit j is

the target. The action of CX is defined by the linear extension of it’s action on the computational

basis states:

CX1,2 |a〉 |b〉 = |a〉 |a⊕ b〉 , (3.7)

where “⊕” is the sum modulo d. Alternatively, it can be written:

CX1,2 =

d−1∑
k=0

Π(k)⊗Xk, (3.8)

where Π(k) = |k〉〈k| acts only on one qudit and is the projector onto the (k+ 1)th computational

basis state.
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The single particle Weyl-Heisenberg displacement operators are defined as follows:

Dd := {Dz,x = ω−2−1zxZzXx|x, z ∈ Zd}, (3.9)

where, for d odd, 2−1 is the multiplicative inverse of 2 in the finite field Zd while for d = 2,

2−1 := 1
2 ∈ R. The qubit Pauli operators { I,X, Y, Z } can be regarded as a special case of the

Weyl-Heisenberg displacement operators for d = 2.

We will use the compact notation Xx and Zz to represent strings of generalized Pauli opera-

tors. More specifically, for x, z ∈ Znd , we define:

Xx := ⊗nj=1X
xj , Zz := ⊗nj=1Z

zj , (3.10)

where X0 = Z0 = I. The set of multi-particle Weyl-Heisenberg displacement operators is then

written as:

D⊗nd = {Dz,x = ω−2−1zxZzXx|x, z ∈ Znd}. (3.11)

For vectors αz, αx, βz, βx ∈ Znd , we represent the symplectic product between the two vectors

α := (αz, αx)T and β := (βz, βx)T in Z2n
d by the notation [α, β] := αz · βx − βz · αx. Using this

notation, the product of two multi-particle Weyl-Heisenberg displacement operators is given by:

Dαz ,αxDβz ,βx = ω2−1[α,β]Dαz+βz ,αx+βx , (3.12)

where Dα =: Dαz ,αx . These operators satisfy:

tr (Dα) = dnδ0,α. (3.13)

Thus, with a normalization of d−n/2, these operators form an orthonormal basis (of the space of

linear operators from
(
Cd
)n

to itself) with respect to the trace inner product. That is:

1

dn
tr
(
D†αDβ

)
= δ0,α−β. (3.14)

The Clifford group Cd,n is defined to be the normalizer of the group 〈D⊗nd 〉, that is:

Cd,n = {U ∈ U(dn) | U〈D⊗nd 〉U † = 〈D⊗nd 〉 } , (3.15)

where 〈D⊗nd 〉 is the group generated by the set of displacement operators D⊗nd . The set of

stabilizer states is the image of the computational basis under the Clifford group Cd,n. The

stabilizer polytope is the convex hull of the set of stabilizer states. The stabilizer sub-theory

is then the set of preparations of states in the stabilizer polytope, stabilizer measurements and

convex combinations of Clifford transformations.
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3.4 Discrete Wigner functions and negativity

A discrete Wigner function is defined over a phase space Z2
d via the phase-point operators

A0,0 =
1

d

∑
x,z∈Zd

Dx,z,

Ax,z = Dx,zA0,0D
†
x,z , (3.16)

which form a trace-orthogonal basis for the space of bounded linear operators acting on Cd, that

is:

tr (Aα) = 1,

tr (AαAβ) = dδα,β, (3.17)

where we write α = (x, z) ∈ Z2
d for brevity.

The multi-particle phase point operators can be constructed as the tensor product of the

single particle phase point operators or alternatively can be written in terms of the multi-particle

Weyl-Heisenberg operators:

A0,0 =
1

dn

∑
x,z∈Znd

Dx,z,

Ax,z = Dx,zA0,0D
†
x,z , (3.18)

which still form a trace-orthogonal basis for the space of bounded linear operators acting on(
Cd
)n

such that:

tr (Aα) = 1,

tr (AαAβ) = dnδα,β. (3.19)

A discrete Wigner function of an n-qudit state ρ, unitary U and positive operator valued

measurement (POVM) effect E can be defined as follows:

Wρ(α) =
1

dn
tr (ρAα) ,

WU (β|α) =
1

dn
tr
(
AβUAαU

†
)
,

W (E|α) = tr (EAα) , (3.20)

where α = (α1, . . . , αn) ∈ Z2n
d , αj ∈ Z2

d and Aα = ⊗nj=1Aαj . The trace-orthogonality of the

phase-point operators can then be used to show that

WU2U1(β|α) =
∑
γ

WU2(β|γ)WU1(γ|α) . (3.21)

The Born rule, which determines the probability Pr(E|ρ, U) of measuring an effect E given a
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quantum state ρ evolved according to a unitary U , can be written as

Pr(E|ρ, U) = tr
(
UρU †E

)
=

∑
α,β∈Z2n

d

W (E|β)WU (β|α)Wρ(α) . (3.22)

While a Wigner function of a generic quantum state ρ or effect E has negative values, the

negativity is bounded by the eigenvalues of the Aα, which are all ±1 [51]. Since the Aα are

Hermitian, we have:

|Wρ(α)| ≤ d−n,
|WU (β|α)| ≤ d−n,
|W (E|α)| ≤ 1, (3.23)

for all α, β, ρ, U and E.

In odd-prime-dimension, one special property of the discrete Wigner function is that every ρ,

E or U in the stabilizer sub-theory has a non-negative Wigner function [49]. In fact, there are

also some mixed states (and the corresponding effects) that have non-negative Wigner function

and are not convex combinations of stabilizer states, so simulations based upon the discrete

Wigner function provide strict generalizations of the Gottesman-Knill theorem in odd-prime-

dimension [22]. In even dimension, whether a stabilizer state is negative or not depends on the

choice of phase convention used in defining the Wigner function.
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A general framework for Born

probability estimation

In this chapter, we present a generalized framework for the construction of Born rule probability

estimators. Through this generalized framework, we consolidate a number of known results in the

existing literature and bring into focus the interesting and pressing open questions in the field.

4.1 Preliminaries

We begin with an overview of some of the key concepts and background needed to proceed.

4.1.1 Estimators and sampling methods

An estimator is a rule for computing an estimate of some target quantity (the estimand) from

sampled data. A simple example is the average of a sample used to estimate the population

mean. In our setting, producing an estimate will require both an estimator and the specification

of a technique for sampling from some desired probability distribution.

In Born rule probability estimation, a commonly used approach to the sampling component

is the Monte Carlo method [1, 34, 33]. Other examples of sampling techniques such as rejection

sampling, pseudo-random number sampling and inverse transform sampling may also find appli-

cation in Born rule probability estimation and can sometimes be used in conjunction with the

Monte Carlo method.

Let p be an unknown parameter we wish to estimate, e.g., a Born rule probability. In the

Monte Carlo based approach of Ref. [1], p is estimated by observing a number of random variables

X1, . . . , Xs generated through a Markov Chain Monte Carlo sampling procedure and computing

some function of the outcomes p̂s(X1, . . . , Xs), chosen so that p̂s is close to p in expectation. In

this case, p̂s is an estimator of p.

We first fix some terminology regarding the precision of as estimator, and how this precision

scales with resources. We say that an estimator p̂s of p is additive (ε, δ)-precision if:

Pr
(
|p− p̂s| ≥ ε

)
≤ δ , additive (ε, δ)-precision. (4.1)
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We say that p̂s is multiplicative (ε, δ)-precision if:

Pr
(
|p− p̂s| ≥ εp

)
≤ δ , multiplicative (ε, δ)-precision. (4.2)

In the case where p ≤ 1 is a probability, a multiplicative precision estimator is more accurate

than an additive precision estimator for any given (ε, δ).

For estimation using sampling methods based on Monte Carlo, there is a polynomial (typically

linear) resource cost associated with the number of samples s. For example, the time taken to

compute p̂s will scale polynomially in s. More generally, s may represent some resource invested

in computing the estimator p̂s such as the computation run-time. For this reason, we may wish

to classify additive/multiplicative (ε, δ)-precision estimators by how s scales with 1/ε and 1/δ.

We say that p̂s is an additive (multiplicative) polynomial precision estimator of p if there exists

a polynomial f(x, y) such that for all ε, δ > 0, p̂s is an additive (multiplicative) (ε, δ)-precision

estimator for all s ≥ f(ε−1, log δ−1).

A useful class of polynomial additive precision estimators is given by application of the Ho-

effding inequality. Suppose p̂1 resides in some interval [a, b] and is an unbiased estimator of p (i.e.

E(p̂1) = p). Let p̂s be defined as the average of s independent observations of p̂1. Then, by the

Hoeffding inequality [52], we have:

Pr
(
|p− p̂s| ≥ ε

)
≤ 2 exp

( −2sε2

(b− a)2

)
, (4.3)

for all ε > 0. We note that for s(ε−1, log δ−1) ≥ (b−a)2

2ε2
log(2δ−1), p̂s is an additive (ε, δ)-precision

estimator of p. With this observation, we see that additive polynomial precision estimators can

always be constructed from unbiased estimators residing in a bounded interval.

4.1.2 The circuits we consider

The quantum systems we will consider will be multi-particle systems each with d levels (qudits)

where d can be any positive integer (including 2). We will consider quantum circuits both in the

pure state and the mixed state setting.

In the pure state setting, we consider an n qudit system initially in a computational basis

state. This state is acted on by a sequence of L unitaries U1, . . . , UL each of which acts non-

trivially on at most two qudits. All of the qudits are then simultaneously measured using a

projective measurement. The case where an arbitrary subset of qubits is measured also fits

within this framework since our algorithm is required to estimate all marginal probabilities as

well as probabilities for n-qubit measurement outcomes.

In the mixed state setting, we consider quantum circuits on n qudits initially in a product

of qudit density states. This state is acted on by a sequence of L completely positive trace

preserving (CPTP) maps E1, . . . , EL which act non-trivially on at most two qudits. All of the

qudits are then simultaneously measured using a positive operator valued measurement (POVM)

M = {E~x | ~x ∈ Znd } constructed from a product of local POVMs Mi = {Exi | xi ∈ Zd }
where, E~x = E(x1,...,xn) =

⊗n
i=1Exi .

We note that any n qudit quantum circuit consistent with the above can be accurately de-
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scribed using at most poly(n) bits of information.

4.1.3 Born rule probabilities

In the pure state formalism, we consider the description c = {| ψ〉, U,M} of some ideal quan-

tum circuit, with |ψ〉 an initial state, U = UL × UL−1 × · · · × U1 a sequence of unitaries, and

M = {Πx | x ∈ Znd } a set of rank one projectors where each projector is formed by product of

projections onto each qudit. That is:

Πx =
∏
j∈[n]

Π(j)
xj , (4.4)

where Π
(j)
xj is the projector onto the measurement outcome xj ∈ Zd for qudit j padded with

identities acting on all other qudits. The Born rule gives us the exact quantum predictions

associated with observing any particular outcome x:

P(x) : = 〈ψ|U †ΠxU |ψ〉 (4.5)

= tr
(
U |ψ〉〈ψ|U †Πx

)
. (4.6)

In the mixed state formalism, we consider the description c = { ρ, E ,M} of some ideal quan-

tum circuit, with ρ an initial state, E = EL ◦ EL−1 ◦ · · · ◦ E1 a sequence of CPTP maps, and

M = {Ex | x ∈ Znd} a set of measurement operators each associated with the measurement out-

come x ∈ Znd . The Born rule gives us the exact quantum predictions associated with observing

any particular outcome x:

P(x) := tr (E(ρ)Ex) . (4.7)

We will refer to the map P : x 7→ P(x) as the probability distribution P. Sometimes we

will refer to such a probability distribution by Pc. Here, c is the description of the quantum

circuit which provides an implicit description of the probability distribution Pc. We will omit the

subscript when the probability distribution is clear from the context.

In both the pure and mixed state formalism, the marginal probabilities associated with events

(W, x) ≡ S are given by:

P(S) :=
∑

y∈Zn−wd

tr
(
E(ρ)E(x,y)W

)
(4.8)

where we have used the notation (x, y)W =: z to represent a vector formed by interlacing the

entries from vectors x ∈ Zwd and y ∈ Zn−wd such that within z ∈ Znd , the entries of x each appear

in the order that that they appear in x (and similarly for y) but the position of the entries of x

within z is specified by W ⊆ [n].
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4.1.4 The complexity of Born probability estimation

The task of efficiently classically estimating these probabilities with respect to general quantum

circuits is of great practical interest, but is known to be hard even for rather inaccurate levels of

estimation. For example, given a circuit ca from a family of universal quantum circuits with a

Pauli Z measurement of the first qubit only, deciding if Pa(0) > 2
3 or < 1

3 is BQP-complete.

We note that for universal families of quantum circuits, exact computation (and even mul-

tiplicative precision estimation) of Born probabilities is #P-hard. On this basis, it is unlikely

that universal quantum computers can be used to estimate Born rule probabilities to these levels

of precision. In contrast, we note that a universal quantum computer can be used to produce

1/poly additive precision estimates of Born rule probabilities associated1 with any language in

BQP. Let us demonstrate this point using an example with broader conceptual significance.

Example 1. Suppose an agent is given access to a universal quantum computer and required

to produce an estimate for any requested Born rule probability. Than given a description of a

quantum circuit ca ∈ CUNIV and a description of an event S ⊆ Znd such that membership in S

can be decided with high probability, the agent can efficiently estimate the probability of the event

occurring, p = Pa(S).

A simple approach is to construct the estimator p̂s by independently running the circuit s

times. On each of the runs i = 1, . . . , s, the agent computes/decides if the outcome x is in the

event S (in this case, Xi = 1) or not in S (in this case, Xi = 0). We then define p̂s = 1
s

∑s
i=1Xi.

Using the Hoeffding inequality, it is easy to show that the Born rule probability estimator p̂s is an

additive polynomial precision estimator of p. Thus, for all ca ∈ CUNIV, ε, δ > 0, there is a choice

of s ∈ N such that this procedure can be used to compute an estimate p̂ of p := Pa(S) such that p̂

satisfies the accuracy requirement:

Pr
(
|p− p̂| ≥ ε

)
≤ δ (4.9)

and the run-time required to compute the estimate p̂ is O(poly(n, ε−1, log δ−1)).

As a minor technicality we note that, when deciding membership in the event is non-deterministic,

the chance of error can be exponentially suppressed. Thus this source of error makes an insignif-

icant contribution to the estimator error.

4.1.5 The poly-box: generating an additive polynomial precision estimate

In this section, we define a class of classical estimation algorithms that are of practical interest.

We will refer to such a class of algorithms as a poly-box.

For a given n qudit circuit, let W ⊆ [n] be a subset of qudits. We will be interested in the

events where there is a fixed measurement outcome of the qudits in W and the measurement

outcomes of the remaining qudits are ignored. For a fixed W, these events can be indexed by

a string x ∈ Zwd where w := |W|. Thus, these events can be represented as the pair (W, x).

1A Born rule probability is a probabilities of observing an event when we run a particular quantum circuit.
However an event can be defined as the set of all length n strings in a language. In this way, a language in BQP
can be viewed as sequence of events decidable in BQP. The specification of a quantum circuit specifies the event
of interest through n, the number of measured qubits.
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Alternatively, we can represent these events by the string S ∈ (Zd ∪ { • })n where an entry of

“•” in the jth position of the string indicates that the jth qudit is not in W and hence it’s

measurement outcome can be ignored while an entry b ∈ Zd imposes the restriction that the

measurement outcome of the qudit must be b.

We will focus on estimating the probability p of observing the event S for some given S ∈
(Zd ∪ { • })n. We point out that the set of allowed events we are considering is significantly

restricted. In particular, for fixed n, the number of allowed events is |(Zd ∪ { • })n| = (d+ 1)n. In

contrast, the total number of events that can be defined on n qudit measurements is the number

of subsets of Znd which is 2d
n
. Our Born rule probability estimate will be denoted by p̂. We are

interested in estimation algorithms that satisfy the following accuracy requirement: for all ε, δ > 0,

the algorithm outputs an additive (ε, δ)-precision estimate in run-time O(poly(n, ε−1, log δ−1)).

Let us now more precisely define a notion of simulation we call a poly-box.

Definition 1. (poly-box). A poly-box over a family of quantum circuits C = { ca | a ∈ A∗ } with

associated family of probability distributions P = {Pa | a ∈ A∗ } is a classical algorithm that,

for all a ∈ A∗, ε, δ > 0 and S ∈ { 0, 1, • }n, can be used to compute an estimate p̂ of Pa(S) such

that p̂ satisfies the accuracy requirement:

Pr
(
|p− p̂| ≥ ε

)
≤ δ (4.10)

and, the run-time required to compute the estimate p̂ is O(poly(n, ε−1, log δ−1)).

Eq. (4.10), gives an upper bound on the probability that the computed estimate, p̂, is far

from the target quantity. This probability is over the potential randomness in the process used

to generate the estimate p̂. For simplicity, we additionally require that the output of a poly-box

is independent of prior output. In particular, let α = (a, ε, δ, S) be an input into a poly-box and

p̂α the observed output. Then, we require that the probability distribution of p̂α only depends

on the choice of input α and in particular is independent of prior output.

4.2 The general framework for estimation

In this section, we outline a general framework that can be applied to construct a poly-box for a

given family of quantum circuits. This framework is a generalization of our earlier work [1] and

broadly uses the approach outlined in Sec. 4.1.1 where samples from some probability distribution

are used to compute an estimate. Within this framework, a number of parameters are free choices

that select a particular estimation algorithm from a family of possible algorithms. These free

parameters will be, collectively referred to as the estimation model. We first discuss the choice of

model.

4.2.1 The estimation model

In order to specify a Born rule probability estimation algorithm, we must fix a choice of the

following mathematical objects:
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1. Fix a Hilbert space Hn representing the quantum state space of the system. For pure

quantum systems of n qudits, Hn can be chosen to be
(
Cd
)n

. Alternatively, for mixed

quantum systems of n qudits, Hn can be chosen to be the set of linear maps
(
Cd
)n → (

Cd
)n

.

2. Fix a base field K ∈ {R,C }.

3. For M ≥ dim(Hn), fix an ordered set of elements B := [B1, . . . ,BM ]T with Bj ∈ Hn for

j ∈ [M ] such that:

span
C
{B1, . . . ,BM } = Hn (4.11)

i.e. the C span of B contains Hn. We will call B a frame for Hn. The frame may be

overcomplete. In this case M > dim(Hn) and the frame is not linearly independent.

4. Fix a map PB : Hn → RM such that for all H ∈ Hn, PB(H) is a probability distribution

over the set [M ] := { 1, . . . ,M }. This step defines the probability distribution we will be

sampling from in the Monte Carlo procedure. The map PB will not be linear. We will

discuss a number of examples shortly.

5. Fix a complementary map FB : Hn → KM such that for all H ∈ Hn:

E
X∼PB(H)

[
FBX(H)BX

]
= H. (4.12)

That is, the vector H ∈ Hn is the expectation value of sampling a random variable X from

the distribution PB(H) then computing FBX(H)BX , the pointwise product of the Xth row

of FB(H) with the Xth row of B.

We will omit the B superscript from the maps PB and FB when the frame is clear from

context.

We will also refer to the triple (B,P,F) as the estimation model when the Hilbert space and

base field are clear from the context. The model will need to satisfy a number of additional

efficiency constraints for the estimation algorithm to execute efficiently. We postpone discussion

on the efficiency constraints for now and return to these in Sec. 4.2.5. Instead, we now briefly

comment on the purpose and use of the objects defined above.

We aim to produce an estimate of the Born rule probability associated with some quantum

circuit and event. In doing so, our algorithm will need to first represent the initial state of

the system. Then, this representation needs to be updated with each transformation that the

quantum system undergoes up until immediately prior to the final measurement. Finally, this

representation will be updated due to the final measurement.

The elements of the frame B will be used to represent the quantum state of the system we

wish to simulate. After each transformation is applied to the quantum system, we will use a

single element of B and a single number in K to represent the quantum state. Specifically, after

the kth transformation, we will represent the quantum state of the system by some element Bxk
and some number FBxk . For non-trivial examples, we do not expect the quantum state after the

kth transformation to be a scalar multiple of Bxk . However, the quantum state is some linear

20



Chapter 4

combination of the vectors Bxk for xk ∈ [M ]. A crucial observation is that the state can be “on

average” accurately represented by FBxkBxk , if we choose xk probabilistically. A typical quantum

state can only be represented as a linear combination of exponentially many elements from B.

Specifying the weights in this linear combination immediately precludes an efficient simulation.

The simulation procedure we describe avoids this by only ever retaining in memory a single index

xk ∈ [M ] that specifies a part of the information required to describe the full linear combination,

namely the element of B and FB that is relevant. The remainder of the information specifying the

linear combination is encoded in the probability distribution from which the value xk is sampled.

Eq. (4.12) imposes a requirement on our model choice ensuring that our representation of the

quantum state is “on average” accurate. To ensure that Eq. (4.12) is satisfied, we must choose

FBxk and PBxk such that their product is the weight of the coefficient of Bxk in a linear expansion

of the quantum state.

Since the quantum state lives in a high dimensional vector space, this simulation algorithm

avoids some inefficiency pitfalls by representing this state with the pair (Bx,FBx ). However, it

is also crucial that one can efficiently manipulate the elements of the frame B as required by

the estimation algorithm. We will present the estimation algorithm later and also discuss these

efficiency requirements. For now, we note that without the ability to efficiently manipulate these

objects our representation of the quantum state by the pair (Bx,FBx ) is potentially no more useful

than its representation as a quantum circuit.

In this section we described a set of abstract objects (the estimation model) and conveyed a

rough intuition for the role of these objects in our estimation algorithm. In Sec. 4.2.3 we will

concretely state how an estimation algorithm can be constructed based on a given model. Before

proceeding to the estimation algorithm, we present some examples of estimation models.

4.2.2 Examples of estimation models

We now present a number of examples for the choice of model. We will start with two simple

examples. The first will present a simple choice of model in the pure state formalism and the

next will be an example of a simple model within the mixed state formalism. Following these,

we will present two substantially more general examples. One of these within the pure and the

other applying to the mixed state formalism.

Let us first consider a simple example based on the pure state formalism.

Example 2. (pure state formalism - simple)

Let K = C, Hn =
(
Cd
)n

and set the frame to be the computational basis, B = { | x〉 | x ∈ Znd }.
We define the maps P : Hn → Rdn and F : Hn → Cdn entry-wise as follows:

Px(|ψ〉) :=
|〈x|ψ〉|
N , Fx(|ψ〉) := N exp (iArg(〈x|ψ〉)) , (4.13)

where N :=
∑

x∈Znd
|〈x|ψ〉| and we have chosen the strings x ∈ Znd as the more natural index for

the entries of P and F .

We note that B spans the Hilbert space; for all |ψ〉 ∈ Hn, P(ψ) is a valid probability distribution
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over x ∈ Znd ; Fx(|ψ〉) is a scalar and Eq. (4.12) is satisfied:

E
X∼P(|ψ〉)

[FX(|ψ〉)BX ] =
∑
x

Px(|ψ〉)Fx(|ψ〉)Bx (4.14)

=
∑
x

〈x|ψ〉 |x〉 (4.15)

= |ψ〉 . (4.16)

We now present an example based on the mixed state formalism.

Example 3. (mixed state formalism - simple)

Let K = C, Hn be the set of linear maps from
(
Cd
)n

to itself and set the frame to be proportional

to the Weyl-Heisenberg operators defined in Sec. 3.3, i.e. B = { 1
dnDz,x | x, z ∈ Znd }. We define

the maps P : Hn → Rd2n and F : Hn → Cd2n entry-wise as follows:

Px,z(H) :=

∣∣tr (H†Bx,z)∣∣
N , Fx,z(ρ) := N exp

(
iArg(tr

(
H†Bx,z

)
)
)

, (4.17)

where N :=
∑

x,z

∣∣tr (H†Bx,z)∣∣ and we have used the string pair, (x, z) ∈ Z2n
d , as the index for

the entries of P and F .

Denoting the Hadamard product (entry-wise product) by “ ∗ ”, we note that P(H) ∗ F(H)

is known as the characteristic function of H [49]. The frame, B, spans the Hilbert space; for all

H ∈ Hn, P(H) is a valid probability distribution over (x, z) ∈ Z2n
d ; Fx,z(H) is a scalar and by

the application of Eq. (3.14), Eq. (4.12) is satisfied:

E
X∼P(H)

[FX(H)BX ] =
∑
(x,z)

Px,z(H)Fx,z(H)Bx,z (4.18)

=
∑
(x,z)

tr
(
H†Bx,z

)
Bx,z (4.19)

= H. (4.20)

We note that for qubits (d = 2), this frame is Hermitian hence FX(H) ∈ R for all Hermitian H.

We now present a more general choice of model. Examples 2 and 3 can be generated as special

cases of these more general examples of models.

Example 4. (pure state formalism - general)

Let K = C and Hn =
(
Cd
)n

. Let G be a group and for g ∈ G, let Ug ∈ SU(dn) be a unitary

representation of G and let α : G→ C such that:∑
g∈G

αgUg |0n〉〈0n|U †g = I. (4.21)

Set B = {Ug | 0n〉 | g ∈ G }.
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We define the maps P : Hn → Rdn and F : Hn → Cdn entry-wise as follows:

Pg(|ψ〉) :=

∣∣∣αg 〈0n|U †g |ψ〉∣∣∣
N , Fg(|ψ〉) := N exp

(
iArg(αg 〈0n|U †g |ψ〉)

)
, (4.22)

where N :=
∑

g∈G

∣∣∣αg 〈0n|U †g |ψ〉∣∣∣ and we have chosen the elements of G as the more natural

index for the entries of P and F .

Eq. (4.21) insures that B is spanning. To show this, we will show that |φ〉, an arbitrary element

of Hn, can be written as a linear combination of the frame:

|φ〉 = I |φ〉 (4.23)

=
∑
g∈G

αgUg |0n〉〈0n|U †g |φ〉 (4.24)

=
∑
g∈G

(
αg 〈0n|U †g |φ〉

)
Ug |0n〉 . (4.25)

We note that for all |ψ〉 ∈ Hn, P(|ψ〉) is a valid probability distribution over g ∈ G and

Fg(|ψ〉) is a scalar. Using Eq. (4.21), we show that Eq. (4.12) is satisfied:

E
X∼P(|ψ〉)

[FX(|ψ〉)BX ] =
∑
x

Pg(|ψ〉)Fg(|ψ〉)Bg (4.26)

=
∑
g

αg 〈0|U †g |ψ〉Ug |0〉 (4.27)

=
∑
g

[
αgUg |0〉〈0|U †g

]
|ψ〉 (4.28)

= |ψ〉 . (4.29)

As a simple special case of Example 4, we can choose G = Znd with Ux = Xx. This choice

recovers Example 2.

We now present an example based on the mixed state formalism.

Example 5. (mixed state formalism - general) Let K = C and Hn be the set of linear maps from(
Cd
)n

to itself. Let G be a group and for g ∈ G, let Ug ∈ SU(dn) be a unitary representation of

G; let α : Hn ×G×G→ C be a map and O ∈ Hn a fiducial operator such that for all H ∈ Hn:∑
(g,h)∈G×G

αg,h(H)UgOU †h = H. (4.30)

We set the frame to be B =
{
UgOU †h | g, h ∈ G

}
.

We define the maps P : Hn → Rd2n and F : Hn → Cd2n entry-wise as follows:

Pg,h(H) :=
|αg,h(H)|
N (H)

, Fg,h(ρ) := N (H) exp (iArg(αg,h(H))) , (4.31)

where N (H) :=
∑

g,h |αg,h(H)| and we have used the group element pair, (g, h) ∈ G×G, as the
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index for the entries of P and F .

Eq. (4.30) imposes the requirement that B spans the Hilbert space. We note that for all

H ∈ Hn, P(H) is a valid probability distribution over (g, h) ∈ G × G; Fg,h(H) is a scalar and

using Eq. (4.30), it is easy to show that Eq. (4.12) is satisfied:

E
X∼P(H)

[FX(H)BX ] =
∑
(g,h)

Pg,h(H)Fg,h(H)Bg,h (4.32)

=
∑
(g,h)

αg,h(H)Bg,h (4.33)

= H. (4.34)

For concreteness, let us now briefly discuss two special cases.

1. From this example, we can construct the model that corresponds to that used in Ref. [1]

based on the Wigner function. To do so, we set:

• O := A0,0 (this is a phase point operator defined in Eq. (3.18)),

• The unitary group {Ug }g∈G to be the Weyl-Heisenberg operator defined in Eq. (3.11)

i.e. D⊗nd = {Dz,x = ω−2−1zxZzXx|x, z ∈ Znd}
• α(z,x),z′,x′(H) := δz,z′δx,x′

1
dn tr

(
H
†
Az,x

)
= δz,z′δx,x′WH

† (z, x)

2. From this example, we can construct the model that corresponds to that used in Ref. [34]

based on the set of stabilizer states. To do so, let us set:

• O := |0〉〈0|,
• The unitary group {Ug }g∈G to be the group of Clifford operators Cd,n defined in

Eq. (3.15). There, we will label the elements of Cd,n by g ∈ G for notational sim-

plicity.

• αg,h(H) := δg,h fg(H) where the function f : Hn ×G→ C only needed to be partially

defined in Ref. [34]. Here, for all g, h ∈ G, the map is defined as fg(Uh |0〉〈0|U
†
h) = δg,h

and the map is also defined on up to 5 copies of the magic state |T 〉〈T | (defined in

Eq. (5.6)) but there, it was chosen through a numerical convex optimization done to

minimize the quantity N .

In Sec. 4.2.1 we discussed a set of free parameters (the model) within the general framework.

To elucidate the abstract formalism, we provided some simple, and some more general examples of

models. In Sec. 4.2.3 we will discuss how these models are used to produce Born rule probability

estimates.

4.2.3 An estimation algorithm

We aim to produce an estimate of the Born rule probability associated with some quantum circuit

and event. In Sec. 4.2.1 we presented the mathematical objects that will be used to “simulate”

the evolution of the quantum system throughout the string of transformations that are applied
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to it (e.g. one and two qubit unitaries and a final projective measurement). Sec. 4.2.1 and the

examples that followed in Sec. 4.2.2, show how a classical algorithm in the general framework

will (often efficiently) represent the quantum state at each stage of its evolution. We have not

yet discussed how this representation will be used to produce a Born rule probability estimate.

We now present an algorithm for keeping track of the quantum system through each of the

transformations applied in a circuit and discuss techniques for producing a Born rule probability

estimate from the updated state representation.

Let us now assume that we have fixed a choice of model. Our algorithm will require three

components. First, we require a method for converting the input state2 into the “natural repre-

sentation” given by the model. Next, for each transformation that acts on the state throughout

the quantum circuit, we require the ability to update our state representation to a new state

representation. Finally, we require a method for producing an estimate of the Born probability

associated with a measurement performed on the state stored in the natural representation given

by the model. We discuss each of these components in turn.

Throughout this section, we will ignore all efficiency constraints. We ask the reader to think

of the algorithm presented in this section as a (possibly inefficient) alternative to the standard

exponential sized matrix representation. In the next section, we will return to each of the steps

presented here and discuss any additional constraints that will be required to ensure the efficiency

of the algorithm.

Translation of input state to the model’s state representation

We now present the first component of our general framework. This component specifies how the

input quantum state is to be translated into the representation that is used by the algorithm.

Let σ ∈ Hn be the input quantum state to the quantum circuit. This may be a state

represented in either the pure or mixed state formalism. We will represent the state σ by the

pair (F (0),Bx). Where F (0) is a number defined by F (0) := Fx(σ) and Bx is an element of the

frame B. The value of x will be randomly sampled from the probability distribution P(σ). We

represent this random variable by X(0).

Thus the translation of state representation involves three steps:

1. For σ ∈ Hn, sample X(0) from the distribution P(σ)

2. Compute and store F (0) := FX(0)(σ)

3. Store X(0) (this will serve as the index for BX(0))

Updating the state under transformations

We now present the second component of algorithms in the general framework; this component

specifies how the input quantum state is to be transformed from one state representation to the

next as the quantum state is updated through each elementary step of the quantum circuit.

2Represented in the standard form, i.e. as a tensor product of a quantum states for a bounded number of qudits
with each of these smaller parts given explicitly as a vector/matrix.

25



Chapter 4

Let the map Tt : Hn → Hn represent the tth state transformation in either the pure or

mixed state formalism. We will be representing the state of the system prior to the application

of Tt+1 by the double (F (t),BX(t)). The application of Tt+1 will update our representation to

(F (t+1),BX(t+1)) where X(t+1) is sampled from the probability distribution P(Tt+1(BX(t))) and

F (t+1) := F (t) ×FX(t+1)(Tt+1(BX(t))).

Thus the state update involves three steps:

1. Sample X(t+1) from the probability distribution P(Tt+1(BX(t)))

2. Compute entry X(t+1) of F(Tt+1(BX(t))), multiply the result by F (t) and store the result

as F (t+1)

3. Store X(t+1) (this will serve as the index for BX(t+1))

Producing Born rule probability estimates

We now present the third and final component of algorithms in the general framework. This

component specifies how the state representation will be used to produce a Born rule probability

for a given measurement outcome. In the pure and mixed state formalisms, this component of

the algorithm is distinct. In the mixed state formalism, the mapping between the quantum state

(density operators) and the Born rule probability is linear. In the pure state formalism, the

mapping between the quantum state (ket vectors) and amplitudes is linear but the mapping to

Born rule probabilities is not. This distinction underlies the need to treat this component of our

algorithm differently in the two formalisms.

We now present the third component of algorithms in the general framework first as it applies

to the mixed state formalism (as this makes use of more familiar elements) then as it applies to

the pure state formalism.

Producing Born rule probability estimates in the mixed state formalism

Consider a projective measurement with the outcome of interest corresponding to the projector Π.

We will be representing the state of the system prior to measurement by the double (F (L),BX(L)).

The application of Π will update our representation to (F (L+1),BX(L+1)).

In the first two components of the algorithm, we defined each of the distributions in the string

of probability distributions
(
P(σ),P(T1(Bx0)), . . . ,P(TL(BxL−1)),P(ΠBxL)

)
. These described the

distributions and conditional distributions we sampled from in order to choose the next scalar

and frame element to use in the updated state representation. At this stage, it may be helpful to

think of the string of sampled points as a “path” through some “discretized phase space” [M ].

In this picture, the process of sampling the string of points (x0, . . . , xL+1) is a Markov process

for sampling from the joint distribution over all length L+ 1 paths in [M ].

For j = 0, 1, . . . , L + 1, it is useful to also define Q(j), the joint probability distribution of
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X :=
(
X(0), X(1), . . . , X(j)

)
i.e. the distribution of paths of length j.

Q(j)
(x0,...,xj)

=


Px0(σ); for j = 0

Px0(σ)×∏j
i=1 Pxi(Ti(Bxi−1)); for j = 1, . . . , L

Px0(σ)×∏L
i=1 Pxi(Ti(Bxi−1))× PxL+1(ΠBxL); for j = L+ 1

.

We now note that the expectation value, over randomly sampled paths, of our state represen-

tation at the end of the circuit F (L+1)BX(L+1) is given by:

E
X∼Q(L+1)

[
F (L+1)BX(L+1)

]
=

∑
x1,...,xL+1

Q(L+1)F (L+1)BxL+1

=
∑

x1,...,xL+1

Q(L)F (L)PxL+1(ΠBxL+1)FxL+1(ΠBxL+1)BxL+1 (4.35)

=
∑

x1,...,xL

Q(L)F (L)ΠBxL (4.36)

...

= Π× TL ◦ . . . ◦ T1(σ) (4.37)

where from Eqs. (4.35) to (4.36), we have summed over xL+1 using Eq. (4.12) and from Eqs. (4.36)

to (4.37) we use the linearity of the the action of the operators Π and Ti to move these outside

the sum.

Recall that the RHS, Π × TL ◦ . . . ◦ T1(σ) is the initial state σ evolved under each of the

transformation applied within the circuit including a final projection relating to the measurement.

Hence, we have shown that the algorithm’s final state representation F (L+1)BX(L+1) will, on

expectation equal the circuit’s output quantum state.

We now note that in the mixed state case, for a given state ρ and projector Π, the Born prob-

ability can be written tr (Πρ) = tr (ρΠ) = tr (ΠρΠ). Here, we are free to choose a representation

where our state is multiplied by Π from the left, or the right, or both or a combination of these

by splitting Π into a tensor product. For simplicity, we have presented the above based on the

“multiplication from the left approach”.

We now output the Born rule probability estimate:

p̂1 := F (L+1) × tr (BX(L+1)) . (4.38)

By the linearity of the trace we have:

E
X∼Q(L+1)

[p̂1] = E
X∼Q(L+1)

[
F (L+1)tr (BX(L+1))

]
(4.39)

= tr (Π× TL ◦ . . . ◦ T1(σ)) (4.40)

= p. (4.41)

Given this unbiased estimator, we can independently compute s estimates and average these

27



Chapter 4

arriving at the average p̂s. By the Hoeffding inequality:

Pr
(
|p− p̂s| ≥ ε

)
≤ 2 exp

(−2sε2

R2

)
, (4.42)

where R is defined as the maximum range of p̂1 over all possible sample outcomes X.

We now present the third component of the algorithm in the pure state formalism.

Producing Born rule probability estimates in the pure state formalism

In the pure state case, the update of representation due to measurement is the same as it was

in the mixed state formalism. To update the state representation based on the action of the

measurement projector, Π; X(L+1) is sampled from the probability distribution P(ΠBX(L)). Using

F (L+1) := F (L) × FX(L+1)(ΠBX(L)), the final state post measurement is represented by the pair

(F (L+1),BX(L+1)).

In the pure state formalism, it is still helpful to have in mind the “path through phase space”

picture we discussed earlier in relation to the mixed state formalism. For j = 0, 1, . . . , L + 1,

we will still define a joint distribution of paths of length j using Q(j) as we did in the mixed

state formalism. However, in the pure state formalism, the projector Π must always act by

multiplication from the left. This ensures that as per the mixed state case:

E
X∼Q(L+1)

[
F (L+1)BX(L+1)

]
= Π× TL ◦ . . . ◦ T1(σ). (4.43)

The squared l2 norm of this expectation vector is the desired Born rule probability. We will

produce this estimate in two steps. First, we will independently sample from F (L+1)BX(L+1) a

total of s times and compute (or estimate) the sample average. This vector will be used as an

estimate of the expectation vector. We will then compute the squared l2 norm of the sample

average vector (or approximation to the sample average vector) as an estimate for the target

Born probability. The accuracy of such an estimate can be bounded by a vector version of the

Hoeffding inequality.

Lemma 1. Let χ, s ∈ N and m > 0. Let FB := { | φj〉 }j∈[χ] be a set of D-dimensional vectors

over C with lengths ‖|φj〉‖2 ≤ m. Let P := {Pj }j∈[χ] be a probability distribution over [χ] and

define |µ〉 as the D-dimensional vector over C that is the expectation of |φX〉 with respect to the

random variable X with probability distribution P:

|µ〉 = E
X∼P

[|φX〉] =
∑
j∈[χ]

Pj |φj〉 . (4.44)

For j ∈ [s], let xj ∈ [χ] be independently sampled from the probability distribution P. We define

a vector sample mean over s samples by:

|φ〉 =
1

s

s∑
j=1

|φxj 〉. (4.45)
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Then for all ε > 0:

Pr
(∥∥∥|φ〉 − |µ〉∥∥∥

2
≥ ε
)
≤ 2e2 exp

( −sε2
2(m+ p)2

)
(4.46)

where p := ‖|µ〉‖2.

The proof of Lem. 1 is presented in Sec. 4.2.4.

Let us denote the s independent samples of F (L+1)BX(L+1) by |φx1〉 , . . . , |φxs〉 and the average

of these by |φ〉. If the squared l2 norm of the sample average,
∥∥∥|φ〉∥∥∥2

2
, can be exactly computed,

then this quantity serves as our estimator p̂s for the Born rule probability p. In particular, we

will now show that for all ε > 0:

Pr (|p̂s − p| ≥ ε) ≤ 2e2 exp

(
−s
(√
p+ ε−√p

)2
2(R+ p)2

)
, (4.47)

where R is the upper bound on
∥∥F (L+1)BX(L+1)

∥∥
2
.

By application of Lem. 1, we have:

Pr
(∥∥∥|φ〉 − |µ〉∥∥∥

2
≥ ε
)
≤ 2e2 exp

( −sε2
2(R+ p)2

)
, (4.48)

where, |µ〉 is the expectation of |φ〉 given by Eq. (4.43) and has a squared l2 norm of p. We now

note that by the reverse triangle inequality:∥∥∥|φ〉 − |µ〉∥∥∥
2
≥
∣∣∣∥∥∥|φ〉∥∥∥

2
− ‖|µ〉‖2

∣∣∣
=
∣∣∣√p̂s −√p∣∣∣ . (4.49)

This gives:

Pr
(∣∣∣√p̂s −√p∣∣∣ ≥ ε) ≤ 2e2 exp

( −sε2
2(R+ p)2

)
. (4.50)

We now note that if
∣∣√p̂s −√p∣∣ ≤ ε then |p̂s − p| ≤ ε(ε + 2

√
p). This can be seen by applying

the triangle inequality as follows:

|p̂s − p| =
∣∣∣√p̂s +

√
p
∣∣∣ ∣∣∣√p̂s −√p∣∣∣

=
∣∣∣√p̂s −√p+ 2

√
p
∣∣∣ ∣∣∣√p̂s −√p∣∣∣

≤
(∣∣∣√p̂s −√p∣∣∣+ 2

√
p
) ∣∣∣√p̂s −√p∣∣∣

≤ (ε+ 2
√
p)ε. (4.51)
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This gives:

Pr (|p̂s − p| ≥ ε(ε+ 2
√
p)) ≤ 2e2 exp

( −sε2
2(R+ p)2

)
. (4.52)

We can now define a new variable ε = ε(ε+ 2
√
p) and solve this quadratic equation for ε. Taking

only the positive solution gives ε =
√
p+ ε−√p. Substituting into Eq. (4.52) gives:

Pr (|p̂s − p| ≥ ε) ≤ 2e2 exp

(
−s
(√
p+ ε−√p

)2
2(R+ p)2

)
, (4.53)

which is equivalent to Eq. (4.47).

We note that the RHS of Eq. (4.47) can be upper bounded by setting p = 1. This gives a p

independent bound on the accuracy of the estimator however, we note that performance improves

when the Born probability p is smaller.

In Ch. 5, we will present an algorithm that uses the approach outlined here but in the slightly

more complicated setting where the l2 norm of the sampled average vector,
∥∥∥|φ〉∥∥∥

2
, is itself

estimated.

4.2.4 Proof of the vector version of the Hoeffding inequality

In this section we prove Lem. 1. This will use a theorem from Ref. [53] and the definition of a

very-weak martingale given below.

Definition 2. (very-weak martingale) Let N ∈ N, Ω be a sample space and for all j ∈ N, let

Xj : Ω → RN be a random variable taking values in RN such that X0 = 0, E
[
‖Xj‖2

]
< ∞ and

E [Xj | Xj−1] = Xj−1. Then we call the sequence (X0, X1, . . .) a very-weak martingale in RN .

Theorem 2. (Hayes: Theorem 1.8) Let X ba a very-weak martingale taking values in RN such

that X0 = 0 and for every j, ‖Xj −Xj−1‖2 ≤ 1. Then for every a > 0:

Pr (‖Xs‖2 ≥ a) ≤ 2e1−(a−1)2/2s < 2e2 exp
(
−a2/2s

)
(4.54)

We now prove Lem. 1

Proof. The proof is a simple application of Thm. 2. Let us use R : CD → R2D to denote the

two-norm preserving linear map R(a1 + ib1, . . . , aD + ibD) = (a1, b1, . . . , aD, bD). For s ∈ N, we

define the random variable Ys ∈ R2D as follows. Y0 = (0, . . . , 0) and for s > 0:

Ys :=
s

m+ p
R
(
|φ〉 − |µ〉

)
,

where we note that |φ〉 depends on s as per Eq. (5.19).
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We now note that Ys is a very-weak martingale since Y0 = 0, and:

E [‖Ys‖2] =
s

m+ p
E

[√(
〈φ| − 〈µ|

)(
|φ〉 − |µ〉

)]
<∞

and

E [Ys | Ys−1] = E
[
Ys−1 +

1

m+ p
R (|φxs〉 − |µ〉) | Ys−1

]
= Ys−1.

Additionally, we note that ‖Ys − Ys−1‖2 ≤ 1 since:

‖Ys − Ys−1‖2 =

∥∥∥∥ 1

m+ p
R (|φxs〉 − |µ〉)

∥∥∥∥
2

=
1

m+ p

√
〈φxs |φxs〉 − 〈φxs |µ〉 − 〈µ|φxs〉+ 〈µ|µ〉

≤ 1

m+ p

√
m2 + 2mp+ p2

= 1.

Hence, by Thm. 2:

Pr (‖Ys‖2 ≥ a) = Pr

(∥∥∥|φ〉 − |µ〉∥∥∥
2
≥ a(m+ p)

s

)
< 2e2 exp

(
−a2/2s

)
.

Substituting ε = a(m+p)
s proves the claim.

4.2.5 Efficiency constraints

Our exposition of the general framework has to this point introduced the main mathematical

structure and estimation procedure while avoiding discussion relating to efficiency. The choice

of the triple (B,P,F) must satisfy a number of additional constraints to render the estimation

algorithm efficiently executable. In particular, we impose the following requirements.

1. Recall that each of the three components of our framework requires sampling from prob-

ability distributions in order to update the state representation. Hence, we require that

the probability distributions P(σ), P(Ti(Bj)) and P(ΠBj) can be efficiently sampled for all

i ∈ [L] and j ∈ [M ].

2. Recall that each of the three components of our framework requires computing certain “F-

factors” in order to update the state representation. Hence, we require that the scalars

Fk(σ), Fk(Ti(Bj)) and Fk(ΠBj) can be efficiently computed for all i ∈ [L] and j, k ∈ [M ].
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3. Recall that the quantity R quantifies the range of values that our Born rule probability

estimate, p̂ can take. We will require that R is upper bounded by a polynomial in n.

4. If applying the pure state formalism using the vector Hoeffding method, we will also require

that one can efficiently (in n and s) estimate the l2 norm of the sample average vector.

We discuss each of these points in turn. First let us note that sampling from a probability

distribution is not a computationally trivial task. In particular, the probability distributions we

are considering are over a space of M elements where M will typically grow like dn (or significantly

faster for over-complete frames). In general, there do not exist efficient protocols for sampling

from probability distribution families over exponentially growing spaces. However, there exists

a large toolbox of techniques that can be used to efficiently sample from such distributions.

The simplest examples occur when the random variable we wish to sample from has a product

distribution or can be invertibly transformed into a product distribution. Additionally there

exist a plethora of techniques such as rejection sampling, metropolis sampling and other Monte

Carlo sampling methods. Sampling from another distribution that is a good approximation to

the target distribution may be possible provided that the effect of this approximation on the final

Born probability estimate is acceptable.

Secondly, we note that computation of the F-factors is non-trivial. Approximation to these

may also be used provided that the effect of this approximation on the final Born probability

estimate is acceptable.

To address the third point, we note that the simulation run-time will quadratically depend

on the quantity R. Recall that:

R :=


max

X∈Supp QL+1
{
∥∥F (L+1)BX(L+1)

∥∥
2
} ; in the pure state formalism

max
X∈Supp QL+1

{
∣∣F (L+1) × tr (BX(L+1))

∣∣ } ; in the mixed state formalism,
(4.55)

quantifies the range of values that the Born rule probability estimates p̂1 can take. Based on

Eqs. (4.42) and (4.47), the number of samples s that are required to achieve an (ε, δ)-additive

precision estimate for a particular (ε, δ) scales proportionally to R2. It is important to note that

the magnitude of R is driven by the magnitude of F (L+1). This quantity in turn is determined

by multiplying F-factors from the initial state and through each step of the evolution. Finally,

we point out that as seen in all examples in Sec. 4.2.2, the F-factors are driven by the l1 norms

N in the linear decomposition of states into the frame elements.

We note that it is possible for the estimator to achieve an (ε, δ)-additive precision despite the

number of samples being “insufficiently large” based on Eqs. (4.42) and (4.47). This is because

these performance bounds, based on the Hoeffding inequality may not be tight.

Finally, the application of the pure state formalism produces a linear combination of sampled

vectors such that its l2 norm is the desired estimate. Computing or estimating this norm is a key

step in producing the final Born rule probability estimate. The inaccuracy introduced through

the use of approximations of this l2 norm will impact the estimator accuracy.

The above discussion focuses on the efficiency of each step in the estimation protocol. However,

there are a number of interesting application where the state of the art Born rule probability
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estimation protocols have exponential run-time in n. In this setting, often the goal is to improve

the scaling of run-time despite the inefficiency of the algorithm. The focus of Chapter 5 is the

exposition of such an algorithm.

4.2.6 Summary of the general framework

In Sec. 4.2, we defined a general framework for constructing algorithms that produce Born rule

probability estimates. We discussed a key ingredient known as the model by first providing a

mathematical definition then giving a number of examples. We then presented an algorithm

for Born rule probability estimation given a fixed choice of model. Finally, we discussed the

requirements that must be satisfied to produce an efficient estimation algorithm.

4.3 Related works within the general framework

In Sec. 4.2, we presented a general framework for the construction of Born rule probability

estimation algorithms. In this section we present selected recent works on classical simulation

algorithms [1, 40, 41, 2, 38, 34, 37]. We do not intend to give a detailed review of these works or

aim to compare their relative performance/merits. Instead, our exposition will focus on certain

features of each algorithm with the primary aim of motivating and elucidating the abstract

mathematical framework we presented in Sec. 4.2.

4.3.1 Dual frame mixed state formalism

Ref. [1] presented a general family of additive 1/poly precision estimation algorithms based on a

slightly more constrained model than we are considering3. Ref. [1] restricts its focus to the mixed

state formalism where, similarly to the present work, they provide an “incomplete recipe” for the

construction of an estimation algorithm.

Ref. [1] can be used to construct simulation algorithms for n-particle, d-level quantum systems

with a state space given by the Hilbert space Hn of linear operators from
(
Cd
)n

to itself. The

construction of a simulation algorithm requires a choice of a dual frame. Here, two frames

F := {Fλ }λ∈Λ and G := {Gλ }λ∈Λ are defined where each frame is a set of Hermitian operators

in Hn such that:

1. Each frame is spanning:

span
C

F = span
C

G = Hn. (4.56)

2. The F frame satisfies the following normalization condition:∑
λ∈Λ

Fλ = I. (4.57)

3However, they consider positive operator valued measurements which are more general than the projective
measurements considered here.
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3. The G frame satisfies the following normalization condition:

tr (Gλ) = 1 (4.58)

for all λ ∈ Λ.

4. the pair F,G satisfy a duality condition. This requires that for all H ∈ Hn:

H =
∑
λ∈Λ

tr
(
HF †λ

)
Gλ. (4.59)

The dual frame in this construction is a free choice analogous to the free choice of mod-

els. However, given the choice of dual frame, one has a complete recipe for constructing a

quasi-probabilistic representation and an estimation algorithm. Specifically, a quasi-probabilistic

representation is defined by the mapping of the quantum states, transformations and POVM

elements as follows:

(ρ, λ) 7→Wρ(λ) := tr
(
ρF †λ

)
(4.60)

(U, λ, λ′) 7→WU (λ′ | λ) := tr
(
UGλU

†F †λ′
)

(4.61)

(E, λ′) 7→W (E | λ′) := tr (EGλ′) . (4.62)

The notation is in analogy to probabilities and conditional probabilities because like these,

Wρ(λ),WU (λ′ | λ) and W (E | λ′) are real values and normalized like (conditional) probabil-

ity distributions i.e. ∑
λ∈Λ

Wρ(λ) = 1. (4.63)

For all λ ∈ Λ: ∑
λ′∈Λ

WU (λ′ | λ) = 1. (4.64)

Finally, for any positive, Hermitian set of operators {E1, . . . , Em } that sums to the identity and

hence define a positive operator valued measurement, we have:∑
j

W (Ej | λ′) = 1. (4.65)

These are called quasi-probabilistic distributions because they can be negative. Despite this,

the Born rule probability can be written in terms of these quasi-probabilities in an identical way

to a probability associated with a Markov chain process. Specifically, letting U :=
∏
j∈[L] Uj ,

then the Born rule probability associated with starting in the state ρ, acting on it with U then

observing the first outcome upon measuring {E, I − E } is given by p := tr
(
UρU †E

)
. In the
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quasi-probabilistic language, this can be written as:

p =
∑

λ(0),...,λ(L)∈Λ

Wρ(λ
(0))×

L∏
j=1

WUj (λ
(j) | λ(j−1))×W (E | λ(L)). (4.66)

This allows the construction of an estimator p̂1 as follows. We first sampling the string (λ(0), . . . , λ(L))

from the distributions:

Pr(λ(0)) =

∣∣Wρ(λ
(0))
∣∣

Nρ
Pr(λ(j) | λ(j−1)) =

∣∣WUj (λ
(j) | λ(j−1))

∣∣
NUj (λ(j−1))

(4.67)

where Nρ :=
∑

λ |Wρ(λ)| and NUj (λ(j−1)) :=
∑

λ

∣∣WUj (λ | λ(j−1))
∣∣. We then compute the esti-

mate:

p̂1(λ(0), . . . , λ(L)) := sgn(Wρ(λ
(0)))Nρ ×

 L∏
j=1

sgn(WUj (λ
(j) | λ(j−1)))NUj (λ(j−1))

×W (E | λ(L)).

Using Eq. (4.66), it is easy to show that p̂1 is an unbiased estimator of p and hence, by the ap-

plication of the Hoeffding inequality produces (ε, δ)-additive precision estimates of Born probabili-

ties with run-time that scales like poly(n, 1/ε, log 1/δ,N ) whereN ≤ max
λ(0),...,λ(L)

∣∣p̂1(λ(0), . . . , λ(L))
∣∣.

The quantity N is analogous to the quantity R discussed in Sec. 4.2.3. In Ref. [1], N is referred

to as the negativity of the circuit because the imposed normalization conditions ensure that N is

a natural measure of the total “amount of negative quasi-probabilities” in the quasi-probabilistic

representation of the quantum circuit elements.

Ref. [1] also makes the useful observation that a number of symmetries of the Born rule

probability are not shared by the estimator. Thus, the application of symmetry transformations

can result in the construction of better performing estimators for the same Born rule probability.

One particularly useful symmetry is the circuit reversal symmetry and can be applied when the

evolution is unitary. Under this symmetry on can apply the following mapping to the input state

ρ, each of the unitaries Ui and the final POVM effect E:

ρ̃← 1

tr (E)
E Ũi ← U †i Ẽ ← tr (E)ρ, (4.68)

where the tilded objects are the post-transformation circuit inputs. It is straightforward to verify

that the Born rule probability is unchanged under this transformation i.e.

tr
(
UρU †E

)
= tr

(
ŨρŨ †Ẽ

)
. (4.69)

The key differences between the model we present in Sec. 4.2.3 and that of Ref. [1] are that:

1. The present model unifies the pure and mixed state formalism.

2. The normalization conditions imposed in Ref. [1] can be weakened to include additional

estimation algorithms with practical applications. We will discuss this in more detail in
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Sec. 4.3.5.

3. The present model does not make explicit reference to a choice of dual frame. In the model

presented in Ref. [1], the frame G acts as the state representative in analogy to the B frame

of the present model. The frame F serves to decide the coefficients used in the expansion of

the state in terms of the G frame. In the special case where |Λ| = M = dim(Hn), the frame

F is uniquely determined by the choice of G. Thus, in this case, all else being equal, setting

B = G results in very similar estimation algorithms. However, in a more general setting,

for a D dimensional space an over-complete spanning set of vectors { v1, . . . , vm } has an

m−D dimensional degree of freedom in the choice of dual frame. Thus, when the frames

B = G are over-complete, this degree of freedom need not be fixed by the algorithm and

may in fact vary from one state representation to another within a single estimation run.

In Sec. 4.3.4 we will discuss an example where this degree of freedom is used to optimize

for algorithm run-time. In principal, one may view this as an optimization over the choice

of F frame however, in this setting it is unclear how the mathematical structure of F is at

all useful or natural for the optimization task.

4. In the present model, we do not impose the condition of Hermiticity on the frame B. Ref. [54]

shows that removal of such a requirement can result in substantially improved run-time for

a fixed estimation accuracy.

4.3.2 Path integral pure state formalism

A path integral view of quantum circuits was used in Ref. [40] to study the complexity of comput-

ing quantum amplitudes. We present the path integral view in the general framework but look

at it in the context of Born rule probability estimation. We use this example to illustrate how

the run-time performance of the algorithms constructed using the general framework can change

as we change the choice of model parameters such as the frame.

Let us revisit Example 2 and consider the simulation of a circuit where the quantum system

starts in the state |φ〉, evolves under a string of unitaries U = UL×. . .×U1 and is finally measured

in the computational basis. Let us consider the step by step evolution of the initial state written

in the computational basis frame of Example 2.

|φ〉 =
∑
x(0)

〈x(0)|φ〉 |x(0)〉

U1 |φ〉 =
∑
x(0)

〈x(0)|φ〉U1 |x(0)〉

=
∑

x(0),x(1)

〈x(1)|U1 |x(0)〉 〈x(0)|φ〉 |x(1)〉

...

UL × . . .× U1 |φ〉 =
∑

x(0),...x(L)

〈x(L)|UL |x(L−1)〉 × . . .× 〈x(1)|U1 |x(0)〉 〈x(0)|φ〉 |x(L)〉

Finally, we note that the amplitude associated with outcome y ∈ Znd can be written as the
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sum:

〈y|U |φ〉 =
∑

x(0),...x(L)

〈y|x(L)〉 〈x(L)|UL |x(L−1)〉 × . . .× 〈x(1)|U1 |x(0)〉 〈x(0)|φ〉. (4.70)

Thus, we note that the discretized path integral approach to amplitude estimation is naturally

related to the present model. Ref. [40] considers the application of the path integral formalism

for the universal gate-set generated by Toffoli and Hadamard gates acting on qubits (see also the

related work of Montanaro [41]). For this choice, all gate amplitudes associated with the Toffoli

gate are deterministic. Specifically, for |a〉 , |b〉 ∈ { | x〉 | x ∈ Zn2 } = B and Ti,j,k representing the

Toffoli gate with target qubit k controlled on qubits i and j, the transition amplitudes appearing

in Eq. (4.70) are given by:

〈b|Ti,j,k |a〉 = δb̄k,ākδbk,ak⊕aiaj (4.71)

where v̄k represents the vector v with the the kth entry removed and “⊕” represents addition

modulo 2. This results in a simplification of the sum corresponding to deterministic (and effi-

ciently computable) jumps in the Markov chain at each step corresponding to a Toffoli gate. In

this model, up to a normalization factor, the Hadamard gates act only on the phase of each term

as follows:

〈b|Hk |a〉 =
1√
2
δb̄k,āk(−1)akbk . (4.72)

For the choice of model we are presently considering, the non-deterministic jumps associated

with Hadamard gates can be sampled with probability Pb(|a〉) and corresponding F-factor Fb(|a〉)
given by:

Pb(|a〉) :=
|〈b|Hk |a〉|
N Fb(|a〉) := N exp (iArg(〈b|Hk |a〉)) (4.73)

where N :=
∑

b |〈b|Hk |a〉| =
√

2. This simplifies to the following:

Pb(|a〉) :=


0.5; if b̄k = āk and bk = ak

0.5; if b̄k = āk and bk = ak ⊕ 1

0; otherwise

(4.74)

and

Fb(|a〉) :=

{√
2; if b̄k = āk and akbk = 0

−
√

2; if b̄k = āk and akbk = 1.
(4.75)

For our choice of frame, we get a particularly simple sampling algorithm which unfortunatly

perform poorly in the number of Hadamard gates. This is because when a Hadamard gate acts on

a computational basis state (our chosen frame), it produces a state that has maximal l1 norm (in

the computational basis) over all possible states with unit l2 norm. Nevertheless, for the purpose
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of illustrating the techniques through an example, we apply Lem. 1 by using s independent

samples from the paths appearing in the sum in Eq. (4.70). We note that each sampled path

produces a computational basis state with a phase. Thus the l2 norm of the sample average

vector can be exactly computed in run-time4 O(ns log s). This quantity serves as the estimator

p̂s for the Born rule probability p = |〈y|U |φ〉|2. Thus for all ε > 0:

Pr (|p̂s − p| ≥ ε) ≤ exp

(
−s
(√
p+ ε−√p

)2
2(2h/2 + p)2

)
, (4.76)

where h is an the total number of Hadamard gates appearing in U . Of course, this estimator

is not useful because it requires using more than 2h samples despite the fact that Eq. (4.70) in

conjunction with Eq. (4.71) gives a formula for exactly computing 〈y|U |φ〉 that involves the sum

of 2h terms each of which is efficiently computable.

We point out that the situation can be significantly improved by choosing a different model.

As an example, we can move to the model presented in Example 4. Here, the choice of {Ug }g∈G =

〈X1, . . . , Xn〉 reproduces Example 2 but we can extend from this base case. As an example, we

can consider {Ug }g∈G = 〈X1, . . . , Xn, H1, . . . ,Hn〉. This now makes Hadamard gates free by

increasing the number of elements in the frame. This results in two additional complications.

First, the frame element transitions under the action of the Toffoli gate are no longer fully

specified by Eq. (4.71) since this now only deals with a subset of the full set of frame elements.

As a consequence, when it acts on some of the frame elements, the Toffoli gate will no longer

produce a deterministic transition. The run-time cost associated with this may be outweighed by

the cost saving associated with free Hadamard gates. The second complication which presents

itself whenever the frame is over-complete relates to the choice of function α : G→ C subject to∑
g∈G αgUg |0〉〈0|U

†
g = I. This choice affects run-time and can be greedily chosen at each step

to locally minimize run-time. To be specific, suppose we are part way through the estimation

protocol and are currently representing the state of the system by some frame element |Bh〉 and

adjustment factor F . We now wish to act with the next transformation Ũ . At this point we can

freely choose a function α : G → C subject to
∑

g∈G αgUg |0〉〈0|U
†
g = I such that the updated

state:

Ũ |Bh〉 =
∑
g∈G

αgUg |0〉〈0|U †g Ũ |Bh〉 (4.77)

can be represented by sampling |Bg〉 := Ug |0〉 with probability:

Pg(Ũ |Bh〉) :=

∣∣∣αg 〈0|U †g |Bh〉∣∣∣
N . (4.78)

This will require updating the adjustment factor by multiplying it by:

Fg(Ũ |Bh〉) := N exp
(
iArg(αg 〈0|U †g |Bh〉)

)
(4.79)

4One way to do this is to use mergesort to sort the sampled computational basis states. This will require
O(s log s) comparisons of basis states with each basis state comparison achievable in O(n) runtime.
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where N :=
∑

g∈G

∣∣∣αg 〈0|U †g |Bh〉∣∣∣. By choosing α such that max
g∈G
{Fg(Ũ | Bh〉) } is minimized,

we can in this way greedily locally minimize the adjustment factors (although this may not be

a global minimum). In many cases, this optimization can be pre-computed for each gate in the

gate-set and conditioned on the the state representative |Bh〉 immediately prior to the application

of the gate. In particular, this is always possible when the gate-set is generated by gates that act

non-trivially on at most one or two qubits and the frame is constructed from a tensor product

of single qudit frames. In Sec. 4.3.4 we will see an example of a non-product frame choice (the

set of stabilizer states in the mixed state formalism) where this convex optimization is extremely

computationally intensive but can nevertheless be applied to give useful upper bounds to the

run-time of the simulation algorithm.

4.3.3 Stabilizer frame pure state formalism

In Ref. [2], Bravyi and Gosset presented two classical simulation algorithms. These simulate

n-qubit pure quantum systems that are initialized in the computational zero state, evolve under

the universal gate set consisting of Clifford and T gates with the first w qubits being measured

in the computational basis at the end of the circuit. In both algorithms, the quantum state space

is Hn =
(
C2
)n

.

Both algorithms use a notion of simulation that is substantially stronger than additive poly-

nomial precision estimation. The first of these is an exponential time algorithm for approximately

sampling from the circuit’s output distribution.The second of these is an exponential time algo-

rithm for estimating to multiplicative precision the Born rule probability associated with any

specified outcome. We note that this also allows for the estimation of marginal probabilities sim-

ply by estimating the outcome probabilities for a slightly modified circuit with a smaller number

of measured qubits.

This work appears to be very different for the approach of Ref. [1] but, the two results

are nevertheless closely related. The connection between these is captures within the general

framework which incorporates some of the multiple important contributions made in Ref. [2].

The recent work of Bravyi et. al. [38] extends and refines the techniques of Ref. [2] to improves

on the run-time performance as well as broadening the range of gate-sets considered. This work

also focuses on the relationship between the stabilizer rank and the stabilizer extent. The first of

these is the crucial parameter that causes the exponential run-time of the algorithms in Ref. [2].

The second of these is a quantity that is closely connected to the negativity in Ref. [1] and is

equivalent to the quantity R of the general framework under a specific choice the models. The

algorithm we present in Ch. 5 is a application of the general framework under this specific choice

the models, showcasing the connection between these techniques.

Ref. [38] and Ref. [55] also consider a classical simulation technique based on the linear de-

composition of unitary gates into Clifford gates. These techniques are currently not incorporated

into our general framework but we believe that this extension is useful future work.

39



Chapter 4

4.3.4 Stabilizer frame mixed state formalism

Howard and Campbell [34] further extended probability estimation techniques by considering

the qubit stabilizer operator frame in the magic state injection model of quantum computation.

Specifically, using a procedure known as gadgetization (this will be discuss later in Sec. 5.3), they

are able to convert a Clifford plus T circuit into a Clifford circuit with a number of magic states

as inputs. Then the input product state was broken up into blocks of k qubits with each block

decomposed into a linear combination of stabilizer states. Then using a sampling techniques very

similar to Ref. [1], a stabilizer state is sampled based on the weights in the decomposition. Since

the sampled states are now stabilizers, Clifford operations can be cheaply implemented using the

Gottesman-Knill theorem [18].

After the gadgetization step, this simulation algorithm can be represented within the general

framework by defining the mixed state stabilizer frame B = { |s〉〈s| | |s〉 ∈ Stabn } where Stabn
is the set of n-qubit stabilizer states. See also Example 5 for a similar construction and related

discussion. We note that the run-time of the simulation protocol scales in a quantity known as

the robustness of magic (RoM). This quantity is analogous to the negativity of Ref. [1] and to the

quantity R in the present work. Specifically, it is the sum of the absolute values of the coefficients

in the stabilizer decomposition of the input magic states.

We note that the stabilizer frame is overcomplete. As a consequence, the decomposition of

states into this frame is in general non-unique. Howard and Campbell showed that the RoM

can be minimized by using a linear program to find the optimal decomposition into stabilizer

states. Further, the RoM of a block of k magic states grows sub-multiplicativly in k. Thus, the

simulation run-time can improve by increasing the block size k. However, due to the extremely

fast growth in the number of stabilizer states, the optimization protocol is very computation

intesive and Howard and Campbell were only able to compute the RoM of magic states for up to

blocks of size 5.

By exploiting the symmetries of the stabilizer polytope, Ref. [56] was able to compute the

RoM for up to blocks of size 9.

4.3.5 Weyl-Heisenberg frame mixed state formalism

In this section, we consider the use of the Weyl-Heisenberg frame, B = { 1
dnDz,x | x, z ∈ Znd }.

For the case of qubits (d = 2), these operators are the Pauli operatos; thus in the case of qubits, we

also refer to this frame as the Pauli frame. This choice of model was considered in Example 3. This

frame forms a basis of the Hilbert space (is not over-complete) and consequently has a uniquely

defined dual frame. It is easy to show that, up to a normalization constant each frame element

is dual to itself. Letting B = G = {Gα = 1
dnDz,x | x, z ∈ Znd } and F = {Dz,x | x, z ∈ Znd } we

note that any operator H ∈ Hn can be written in the G basis as:

H =
∑
β∈Z2n

d

aβGβ (4.80)

=
1

dn

∑
β∈Z2n

d

aβDβ,
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for some coefficients aβ ∈ C. By Eq. (3.14) we note that:

tr
(
HF †α

)
=
∑
β∈Z2n

d

aβ
dn

tr
(
D†αDβ

)
= aα. (4.81)

By substituting Eq. (4.81) into Eq. (4.80), we see that the duality property from Eq. (4.59) is

satisfied by the G,F frame pair:

H =
∑
β∈Z2n

d

aβGβ

=
∑
β∈Z2n

d

tr
(
HF †α

)
Gβ.

Technically, this example does not fit within the model presented in Ref. [1] and summarized

in Sec. 4.3.1 because B = G fails to satisfy the normalization condition Eq. (4.58) and its dual,

F , fails to satisfy the corresponding normalization condition Eq. (4.57). In fact, applying the F

frame normalization gives the phase point operator at the origin, up to a dimensional factor:∑
α∈Z2n

d

Fα = dnA0,0, (4.82)

and applying the G frame normalization gives:

tr (Gα) = δ0,α. (4.83)

The normalization condition ensured that the quasi-probabilities constructed from the dual

frame were normalized like (conditional) probability distributions. In this case, failing this results

in: ∑
λ

Wρ(λ) =
∑
λ

tr
(
ρF †λ

)
(4.84)

= dntr (ρA0,0) . (4.85)

For a general input state ρ, this quantity resides in the interval [−dn, dn] and in particular, can

result in an exponentially large R causing inefficiency of the estimation protocol.

We note that the normalization constant of 1/dn can be moved from the G frame to the

F frame but this results in a similar issue potentially arising at the end of the circuit (upon

measurement resulting in a large factor of tr (EDα)) rather than the start. As previously discussed

in Sec. 4.3.1, the simulation procedure from Ref. [1] can also be executed in reverse. Thus, one

can also consider attempting the estimation procedure in this setting. We note that while these

attempts will fail in the most general cases, there are many interesting and/or useful cases where

efficient simulation is nevertheless achievable using the Weyl-Heisenberg frame. Ref. [3] presents

one such algorithm that we will make use of in Part II. Rall et. al. [37] consider application of
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this estimation technique based on the qubit Pauli frame in more detail outlining its limitations

and the regimes in which it remains efficient and/or outperforms other simulation techniques.

We note that the normalization conditions from Ref. [1] can sometimes be usefully weakened.

However, they must for all operators H ∈ Hn, satisfy the following:

tr (H) =
∑
λ

tr
(
HF †λ

)
tr (Gλ) (4.86)

= tr

(
H
∑
λ

F †λtr (Gλ)

)
. (4.87)

This imposes the weaker normalization requirement that:∑
λ

F †λtr (Gλ) = I. (4.88)

This requirement is indeed satisfied by the Weyl-Heisenberg frame.

Below we present an algorithm from our earlier work [3], where a Pauli frame was used to

produce a poly-box for a family of quantum circuits CPROD.

A poly-box over CPROD

As a nontrivial example of a class of Clifford circuits for which there exists a poly-box, consider

the family of circuits CPROD. This family consists of quantum circuits with an n-qubit input states

ρ is an arbitrary product state5 (with potentially exponential Wigner function negativity [1] in

the input state). The allowed transformations are non-adaptive Clifford unitary gates, and k ≤ n
qubits are measured at the end of the circuit, in the computational basis. Such a circuit family

has been considered by Jozsa and Van den Nest [57], where it was referred to as INPROD,

OUTMANY, NON-ADAPT. This circuit family will be discussed again in Sec. 11 where we will

show the classical hardness of simulating this family according to another notion of simulation.

Aaronson and Gottesman [18] provide the essential details of a poly-box for this family of circuits;

for completeness, we present an explicit poly-box for CPROD in the following lemma.

Lemma 3. A classical poly-box exists for the Clifford circuit family CPROD.

Proof. Give an arbitrary circuit c = {ρ, U,M} ∈ CPROD and an event S ∈ { 0, 1, • }n we construct

an estimator p̂s of the probability P(S) as follows:

1. Let Π = ⊗ni=1Πi be the projector corresponding to S. Here, we set:

Πi =


I+Z

2 if the ith entry of S is 0
I−Z

2 if the ith entry of S is 1

I if the ith entry of S is •
(4.89)

5As an additional technical requirement, we impose that the input product state is generated from |0〉⊗n by the
application of polynomially many gates from a universal single qubit gate set with algebraic entries.
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2. For each i where the ith entry of S is not •, Πi = I±Z
2 . In these cases, define a local Pauli

operator Pi by sampling either I or ±Z with equal probability. For each i where the ith

entry of S is a •, we deterministically set Pi = I.

3. We construct the n-qubit Pauli operator P := ⊗ni=1Pi, (including its sign ±).

4. Using the Gottesman-Knill theorem [18], we compute the Pauli operator P ′ = ⊗ni=1P
′
i :=

U †PU .

5. We compute the single sample estimate p̂1 using the equation:

p̂1 := tr
(
ρP ′
)

=

n∏
i=1

tr
(
ρiP

′
i

)
. (4.90)

6. We compute the estimator p̂s by computing s independent single sample estimates and

taking their average.

It is straightforward to show that the expectation value of p̂s is the target quantum probability

p := P(S). Further, the single sample estimates are bounded in the interval [−1, 1]. Hence, by

the Hoeffding inequality,

Pr(|p̂s − p| ≥ ε) ≤ 2e
−sε2

2 . (4.91)

This algorithm can be executed efficiently in s and in n and produces additive polynomial precision

estimates of P(S) for any circuit c ∈ CPROD and any S ∈ { 0, 1, • }n and is thus a poly-box.

4.4 Summary and technical discussion

In this chapter, we presented a generalized framework for the construction of Born rule probability

estimators. We discussed a set of free parameters (the model) within the general framework. To

elucidate the abstract formalism, we provided some simple, and some more general examples of

models. We presented an algorithm that, for a given choice of model, can be used to produce

Born rule probability estimates. Through this generalized framework, we consolidated a number

of known results in the existing literature.

In our discussion on efficiency constraints, we showed that the quantity R plays a key role

in determining the run-time of the estimation algorithm. We noted that this quantity is driven

by the l1 norm in the decomposition of states into frame elements at each stage of the system’s

evolution. Through an example in our discussion in Sec. 4.3.2, we showed the complex behavior

of the l1 norms (N ) under variation of frame elements. In particular, we showed how the addition

of new frame elements can cause costly gates to become free and free ones become costly. We

also noted that in the case of overcomplete frames, R can be minimized by optimizing the linear

decomposition into frame elements.

We note that significant run-time advantage is offered by representing a pure state in the

pure state formalism rather than in the mixed state formalism. To see this, let us fix a frame
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Bp = { | ui〉 }i∈[M ], a pure state |φ〉, and assume the following decomposed of |φ〉 into the frame

elements is optimal:

|φ〉 =
∑
i∈[M ]

αi |ui〉 , (4.92)

in the sense that the l1 norm of the coefficients is minimized, i.e. α minimizes:

N (|φ〉) =
∑
i∈[M ]

|αi| . (4.93)

In this case, we note that the representing this state in the mixed state formalism using the

corresponding frame Bp = { | ui〉〈uj | }i,j∈[M ] we find that the optimal decomposition must be:

|φ〉〈φ| =
∑

i,j∈[M ]

αiαj |ui〉〈uj | . (4.94)

This has an l1 norm given by:

N (|φ〉〈φ|) =
∑

i,j∈[M ]

|αiαj | = N (|φ〉)2. (4.95)

Our general framework has many aspects that are not yet well understood. Going froward,

we hope to better understand the transformations that can act on model and how these influence

R. For example, consider the set of transformation to the model that leaves the frame unchanged

and the state decomposition (given by the product P ∗ F) unchanged but transforms P and F .

As a second example we can consider the set of transformation that fix the frame but allows the

decomposition to vary. This is the set of transformation over which the RoM was minimized in

Refs. [34]. Developing better tools for understanding the relationships between model choice and

R is an important pursuit with significant benefits.
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An estimation algorithm for Clifford

plus T gates

5.1 Introduction: Clifford plus T algorithm

In this chapter, we present an algorithm for computing additive polynomial precision estimates of

Born rule probabilities and marginals. We anticipate that efficient classical methods for Born rule

probability estimation will become increasingly important in the near future. With state-of-the-

art experimental control over noisy intermediate-scale quantum (NISQ) systems [58], we are now

already seeing claims of experimentally observed quantum supremacy [59]. Thus, between now,

the age of NISQ, and the age of universal, fault tolerant quantum devices there will inevitably

be a need to compare classically computed theoretical predictions with the observed frequency

of particular events generated by a quantum device. Techniques such as direct fidelity estima-

tion [60] already rely on such comparisons. We expect the rapidly developing field of quantum

characterization, validation and verification to make increasingly important contributions using

innovations in estimation of Born rule probabilities [61].

In this setting, we argue that developments in additive polynomial precision estimation are

particularly important. As per our discussion in Sec. 4.1, by repeatedly running a quantum

device, experimentally observed frequencies of the occurrence of a particular event can be used to

estimate the probability of the occurrence of this event. These estimates will be additive inverse

polynomial precision in the number of independent trials. For correctly functioning quantum

devices, these probabilities should be consistent with the theoretical predictions given by the

Born rule. In comparing the consistency between the probability of the event’s occurrence using

the quantum device with the associated Born rule probability, two sources of error arise. The

first of these is the statistical error between the observed frequency and the true probability of

the quantum event occurring on any independent trial executed on the quantum device. The

second source is the estimation error associated with the classical estimation protocol. The

effectiveness of the statistical tests for checking consistency are driven by the sum of the two

errors. As a consequence, the marginal benefits of suppressing the classical estimation error

diminish as the statistical error starts to dominate. Hence, assuming we are interested in hard

to classically compute Born rule probabilities, the run-time to precision trade-off for classical
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Born rule estimation will be chosen such that the estimation error is comparable to the statistical

error. For these reasons, we believe that additive polynomial precision estimation algorithms are

effective in just the right parameter regime to play an important role in the characterization and

non-adversarial verification of near term quantum devices.

The algorithm we present here is an application of the general framework presented in Ch. 4

to the universal circuit family considered in Ref. [2]. In particular, this algorithm is based on the

pure state formalism using the set of qubit stabilizer states as the choice of frame. The algorithm

simulates n-qubit pure quantum systems that are initialized in the computational zero state,

evolve under the universal gate set consisting of Clifford and T gates with the first w qubits being

measured in the computational basis at the end of the circuit.

Our algorithm has a run-time that scales exponentially in t, the number of T gates in the

quantum circuit. In particular, ignoring polynomial factors, the run-time scales like 2γt where

2γ ≈ 20.228 is known as the stabilizer extent of the |T 〉 state [38]. This exponential component of

run-time is identical to that of the sampling algorithm presented in Ref. [2], which we will refer to

as the Bravyi-Gosset (BG) sampling algorithm. Compared to the run-time of the BG sampling

algorithm, we anticipate our algorithm to exhibit modest improvements in the polynomially

scaling pre-factor to the exponential component of the run-time.

For the specific task of fast Born rule probability estimation, there is an additional run-

time cost associated with modifying the BG sampling algorithm. The BG sampling algorithm is

more flexible and can be used to produce additive polynomial precision estimates of Born rule

probabilities and marginals. However, we note that this conversion, from samples to estimates

carries an additional polynomial overhead that contributes to further widening the expected run-

time differential, compared to the algorithm we present in this chapter. Although the run-time

differential will depend on many unknowns including the choice of parameters, we believe it is

reasonable to expect a few orders of magnitude improvement in run-time for simulations that are

currently near the classical computational limits.

To compare our estimation algorithm with that of the BG multiplicative precision estimation

algorithm, we consider run-time and accuracy. In the case where the Born rule probability is

large, say > 0.1, the multiplicative precision estimates have errors comparable to our estimates.

However, with each order of magnitude reduction in the Born rule probability, errors due to

multiplicative precision estimates must improve by an order of magnitude while the errors due

to additive precision estimates remain unchanged. Thus, BG’s multiplicative precision estima-

tion algorithm achieves substantially higher precision estimates particularly for low Born rule

probabilities. In comparing run-times, to leading order our algorithm (as well as BG’s sampling

algorithm) are substantially faster for high T gate count circuits. In our algorithm, the exponen-

tial component of run-time scales as approximately 20.228t compared to 20.47t in BG’s estimation

algorithm. This results in a substantial run-time saving for modest T counts.

The algorithm we present here is a work in progress. In Sec. 5.2, we commence with an

overview describing the scope of the algorithm and results. Then we first describe a simple

algorithm that showcases the main techniques and ideas that are employed. This is covered in

four steps in Secs. 5.3 to 5.6. In Sec. 5.7 we discuss the run-time of this algorithm. In Sec. 5.8, we

discuss a modification to this algorithm aimed at sharpening the run-time followed by the run-

time analysis. In Sec. 5.9 we discuss methods for choosing two particular algorithmic parameters
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in order to sharpen run-time. In Sec. 5.10 we conclude with an outlook.

5.2 Overview of the estimation algorithm

We consider a system composed of n computational qubits, initially prepared in a computational

zero state |0〉⊗n, which we will denote by |0n〉. The system then evolves to the final state |ψU 〉
according to a unitary transformation U synthesized from the gate-set consisting of T, H, S, CX

and CZ gates (see Sec. 3.2 for definitions).

|ψU 〉 := U |0n〉 (5.1)

Given some ordered subset J = { j1, . . . , jw } ⊆ [n] of qubits to be measured in the computational

basis and some outcome x = (x1, . . . , xw) ∈ {0, 1}w, our aim is to estimate the probability

p = p(J,x) of observing the outcome x when measuring the final state, i.e., we want to estimate

p := ‖P |ψU 〉 ‖2, (5.2)

where

P =
w⊗
i=1

Iji + (−1)xiZji
2

⊗
k/∈J

Ik (5.3)

is the projector onto the target outcome x. Without loss of generality, we will assume that the

first w qubits are measured and hence J = { 1, . . . , w }. Since it is known that a general n-qubit

unitary circuit can be approximated arbitrarily well by a circuit composed only of Clifford and

T gates, we will focus only on estimating the probability for circuits composed of t instances of

the T gates and c Clifford gates. Then, our main result is captured by the following theorem.

Theorem 4. Suppose an n-qubit unitary U can be written as a product consisting of c one- or

two-qubit Clifford gates from H, S, CX and CZ; and t single-qubit T gates. Then, there exists a

classical algorithm that can output an estimate p̂ of the outcome probability p such that for all

εtot, δtot > 0:

Pr (|p̂− p| ≥ εtot) ≤ δtot (5.4)

with the dominant exponential component of run-time scaling as τexp ∼ Õ
(
2γtt3ε−4

tot

)
, where γ ≈

0.228 is a constant and the tilde hides logarithmic factors in the run-time.

In the above theorem, we have omitted logarithmic components of run-time and components

that do not scale exponentially in t. We have also omitted additional run-time components that

scale like Õ
(
2γt/2t3ε−4

tot

)
or more slowly. Not omitting these exponential components, the run-

time scales like Õ
(
(2γt/2 + 1)2t3ε−4

tot

)
. These simplifications have been applied in order to focus

on what is likely to be the most significant component of run-time. A more detailed discussion

of run-time is presented in Sec. 5.8.

In Thm. 4, we have provided a pessimistic upper bounds to the run-time. However, as per

our discussion in Sec. 5.9, we expect that our algorithm will perform with run-time that is closer
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to:

τexp ∼ Õ
(
2γtt3p3ε−4

tot

)
; when εtot � p. (5.5)

resulting in significantly shorter run-time for instances that have small Born rule probabilities.

Eq. (5.5) is a simplification of a more complicated expression (see eqs. (5.61) and (5.62)) in

the regime εtot � p. Thus one should exercise caution in interpreting this result. In particular,

it is not valid to take the limit p → 0 while holding εtot constant. By simplifying the more

complicated expressions in eqs. (5.61) and (5.62) under this limit, it is easy to show that as

p→ 0, τexp → Õ(2γtt3ε−1
tot).

We note that the run-time of the BG sampling algorithm is Õ(2γtt3w3ε−4) where we have

again ignored logarithmic factors and all run-time components that do not scale exponentially in

t. To convert this into an estimation algorithm that is with high probability accurate to within ε

additive error generically requires O(ε−2) samples. This gives a total run-time of O(2γtt3w3ε−6)

for estimation using the BG sampling algorithm. Thus the run-time for estimation based on the

BG sampling algorithm is larger than the dominant exponential component of our algorithm’s

expected run-time by a factor of Õ(w3ε−2p−3). This is likely to result in a large reduction in

run-time particularly for circuits where multiple qubits are measured.

The algorithm we will use to prove Thm. 4 is an application of the general framework presented

in Ch. 4. This algorithm is based on the pure state formalism using the set of qubit stabilizer

states as the choice of frame. We will use magic state injection post-selected on the all zero

outcome to inject the T gates. At a conceptual level, the basic steps of the simple algorithm we

present in Secs. 5.3 to 5.6 are as follows:

1. Re-express the circuit, from Eq. (5.1), as a post-selected Clifford circuit with a magic state

input (see Eq. (5.7)).

2. Express the input magic state as a (typically exponential) linear combination of stabilizer

states (see Eq. (5.14)).

3. Iterate the following procedure:

(a) uniformly sample from the stabilizer states appearing in the (typically exponential)

linear combination;

(b) propagate the sampled stabilizer state through the Clifford circuit;

(c) project this onto the relevant measurement and post-selection outcome.

Using the results from all of the iterations, form an equally weighted superposition (sample

average) as per Eq. (5.25).

4. Use the fast norm estimation algorithm from Ref. [38] to compute the norm of the result.

The square of this quantity is an estimate of the target probability.

The details of this simple algorithm will be modified in Sec. 5.8 to sharpen run-time. This

modification introduces an additional step after step 1 and makes step 3(b) unnecessary. We now

proceed to a step-by-step description of the protocol.
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5.3 Step 1: Gadgetization and post-selection

It is well known that a T gate acting on a qubit j can be replaced by its gadgetized version [62].

More precisely, one can prepare an ancillary qubit in a magic state

|T 〉 =
1√
2

(|0〉+ exp(iπ/4) |1〉), (5.6)

couple it to qubit j by a CNOT gate (with the qubit j acting as the control) and measure in the

computational basis. Then, if the outcome is |1〉, one also needs to apply a correction Clifford

phase gate S to qubit j. The effect of the above procedure is the same as direct application of

the T gate to qubit j. We can gadgetize each of the t occurrences of the T gate in this way.

Hence, we can replace a general unitary circuit U on n qubits in a state |0n〉 by a circuit on n+ t

qubits in a state |0n〉c ⊗ |T t〉m. Here, we use a subscript m to denote the magic states register

prepared in the state |T 〉⊗t. Similarly, we use a subscript c to denote the computational register

of n qubits. The variable c representing the number of Clifford gates in U should not be confused

with this subscipt. This gadgetized circuit is composed of Clifford gates and classically controlled

Clifford gates that depend on computational basis measurement of the magic register.

Now, one can easily show that each of the 2t measurement outcomes arising through gadgeti-

zation is equally likely. Therefore, we can focus on just one particular outcome – for simplicity

chosen to be the all zeros outcome (as no correction gates are then needed) – and estimate the

target probability using this simplified post-selected circuit. More precisely, let us denote by V

the unitary acting on n + t qubits and composed of c + t Clifford gates: the original c Clifford

unitaries appearing in the decomposition of U into Cliffords and T gates, plus t CNOT gates

between computational and ancillary qubits arising from gadgetization of T gates. Then, the

evolution induced by V on |0n〉c ⊗ |T t〉m with the post-selection on the all zero outcome (for

ancillary qubits) has the same effect (up to a normalization factor) on the computational qubits

as the original unitary U applied to |0n〉c, i.e.,

|ψU 〉 := 2t/2
(
In ⊗ 〈0t|m

)
V
(
|0n〉c ⊗ |T t〉m

)
. (5.7)

5.4 Step 2: Pure stabilizer decomposition of magic states

Now that we have expressed |ψU 〉 as Clifford evolution of computational and magic states, the

next step is to decompose the state of the magic register |T t〉m into a superposition of stabilizer

states. This will allow us to employ the known results on classical simulation of the evolution

of stabiliser states under Clifford gates (the Gottesman-Knill theorem) in the next step of our

estimation algorithm. We will then see that the crucial quantity responsible for the scaling of the

run-time will be given by the stabilizer extent ξ [38],

ξ(|φ〉) := min
c

‖c‖21 |φ〉 =
∑
j

cj |sj〉 , |sj〉 ∈ Stab

 . (5.8)

An optimal decomposition of the |T 〉 state, i.e., one that achieves a square l1 norm equal to
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the stabilizer extent ξ(|T 〉), is given by

|T 〉 = α |0̃〉+ α∗ |1̃〉 , α =
1 + i(

√
2− 1)

2
(5.9)

where we introduced the following non-standard notation for |+〉 and |+i〉 states:

|0̃〉 =
1√
2

(|0〉+ |1〉), |1̃〉 =
1√
2

(|0〉+ i |1〉). (5.10)

The stabilizer extent is thus equal to

ξ(|T 〉) = 4− 2
√

2 ≈ 1.17, (5.11)

and we also define its logarithm in base 2 (which will be a crucial quantity appearing in the

scaling of the run-time of our algorithm):

γ := log2 ξ(|T 〉) ≈ 0.228. (5.12)

Moreover, as proven in Ref. [38], the stabilizer extent for products of single-qubit states is mul-

tiplicative, so

ξ
(
|T 〉⊗t

)
= ξ(|T 〉)t = 2γt, (5.13)

and thus the optimal decomposition of the magic register is simply given by

|T t〉m =
(
α |0̃〉+ α∗ |1̃〉

)⊗t
=

∑
y∈{0,1}t

αt−|y|(α∗)|y| |ỹ〉m , (5.14)

where |y| denotes the Hamming weight of y.

5.5 Step 3: Sampling from stabilizer decomposition

The first two steps allow us to express |ψU 〉 as a superposition of stabilizer states evolved under

Clifford circuit V and projected (with a normalization factor) on the all zero state of the magic

register. More precisely, combining Eqs. (5.7) and (5.14), we get

|ψU 〉 = 2t/2
(
In ⊗ 〈0t|m

) ∑
y∈{0,1}t

αt−|y|(α∗)|y|V (|0n〉c ⊗ |ỹ〉m) . (5.15)

Contracting this state with 〈x|J , representing the measurement outcome of interest, produces the

vector:

|µ〉 := 2t/2
(
〈x|J ⊗ 〈0t|m

) ∑
y∈{0,1}t

αt−|y|(α∗)|y|V (|0n〉c ⊗ |ỹ〉m) . (5.16)

The square of the l2 norm of |µ〉 is the target probability from Eq. (5.2)

p = ‖|µ〉‖22 . (5.17)
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Note that each term of the sum from Eq. (5.16) can be efficiently calculated using Gottesman-

Knill theorem. However, there are 2t of those terms, and so the exact calculation of p scales as

2t with the number of t gates. Instead, we will now explain how to estimate p with additive

error, but with the run-time scaling considerably better in t, as 2γt. This will be achieved in

two further steps (steps 3 and 4). In step 3, we will use a probabilistic sampling procedure to

sample s unnormalized stabilizer vectors. The sample average of these vectors, denoted by |Ψ〉
(see Eq. (5.25)) will be used to estimate |µ〉. In step 4, we will use BG’s fast norm estimation

algorithm to estimate the l2 norm of |Ψ〉 giving us an estimator for ‖µ‖2 =
√
p.

The main technical tool that we will employ in step 3 is Lem. 1, the generalization of the

Hoeffding’s inequality [52] from estimating real parameters to estimating complex vectors. Lem. 1

and its proof can be found in Sec. 4.2.3. The original theorem of Hoeffding, can be found in

Appendix A.

For the reader’s convenience we restate Lem. 1 here.

Lemma 5 (Restated lemma). Let χ, s ∈ N and m > 0. Let FB := { | φj〉 }j∈[χ] be a set of

D-dimensional vectors over C with lengths ‖|φj〉‖2 ≤ m. Let P := {Pj }j∈[χ] be a probability

distribution over [χ] and define |µ〉 as the D-dimensional vector over C that is the expectation of

|φX〉 with respect to the random variable X with probability distribution P:

|µ〉 = E
X∼P

[|φX〉] =
∑
j∈[χ]

Pj |φj〉 . (5.18)

For j ∈ [s], let xj ∈ [χ] be independently sampled from the probability distribution P. We define

a vector sample mean over s samples by:

|φ〉 =
1

s

s∑
j=1

|φxj 〉. (5.19)

Then for all ε > 0:

Pr
(∥∥∥|φ〉 − |µ〉∥∥∥

2
≥ ε
)
≤ 2e2 exp

( −sε2
2(m+ p)2

)
(5.20)

where p := ‖|µ〉‖2.

The following procedure will be repeated s times, with s depending on the circuit and the

estimation accuracy we want to achieve. First, with a uniform probability q(y) = 2−t we sample a

bit string y of length t, corresponding to the stabilizer states |ỹ〉m appearing in Eq. (5.16). Next,

we combine the sampled state with the initial state of the computational qubits, |0n〉c, and use

the Gottesmann-Knill algorithm to evolve the joint stabilizer state |0n〉c ⊗ |ỹ〉m under a Clifford

circuit V into the final stabilizer state |ψ(y)〉.

|ψ(y)〉 = V |0n〉c ⊗ |ỹ〉m (5.21)

We then compute the inner product between the (w + t) qubit bra vector 〈x|J ⊗ 〈0t|m and the
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(n+ t) qubit ket vector |ψ(y)〉. This outputs the (n− w) qubit unnormalized state:

|Ψ(y)〉 := 23t/2αt−|y|(α∗)|y|
(
〈x|J ⊗ 〈0t|m

)
|ψ(y)〉 . (5.22)

Note that since |x〉J 〈x|J ⊗ |0t〉m 〈0t|m is a projector onto a stabiliser codespace and |ψ(y)〉 is

a stabilizer state, |Ψ(y)〉 is itself an unnormalzed stabilizer state. Our algorithm will require s

independent samples |Ψ1〉 , . . . , |Ψs〉 with |Ψi〉 for each i ∈ [s] selected by uniformly sampling

yi ∈ {0, 1}t then computing |Ψ(yi)〉.
Now, comparing with eqs. (5.16), we see that the expectation1 of the random vector |Ψ〉,

which is constructed by uniformly sampling y then computing |Ψ(y)〉, is given by:

E
|Ψ〉∼U

[|Ψ〉] : =
∑

y∈{0,1}t
2−t |Ψ(y)〉 = 2t/2

∑
y∈{0,1}t

αt−|y|(α∗)|y|
(
〈x|J ⊗ 〈0t|m

)
|ψ(y)〉

= 2t/2
∑

y∈{0,1}t
αt−|y|(α∗)|y|

(
〈x|J ⊗ 〈0t|m

)
V (|0n〉c ⊗ |ỹ〉m) (5.23)

= |µ〉 ,

and so, by Eq. (5.17), we see that

p =

∥∥∥∥ E
|Ψ〉∼U

[|Ψ〉]
∥∥∥∥2

2

. (5.24)

For some finite sample size s, we will aim to use the sample average |Ψ〉,

|Ψ〉 =
1

s

s∑
i=1

|Ψi〉, (5.25)

as an approximation to the expectation value. We will thus employ Lem. 1 to bound the departure

of the sample average vector from the expectation vector. Before that, let us first bound the norm

of |Ψ(y)〉. We have

〈Ψ(y)|Ψ(y)〉 = 23t |α|2t 〈ψ(y)|
(
P ⊗ |0t〉m〈0t|m

)
|ψ(y)〉

≤ 23t |α|2t 2−t = (2|α|)2t = ξ(|T 〉)t = 2γt, (5.26)

where the inequality comes from the fact that the qubits in the magic register of |ψ(y)〉 were

initially prepared in states |0̃〉 and |1̃〉 and, under the evolution by V , were only acted on by CX

gates as target qubits, so they did not change the overlap with the computational basis states,

which initially was 1/
√

2 per magic qubit. Using Lem. 1 we now get:

Pr

(∥∥∥∥|Ψ〉 − E
|Ψ〉∼U

[|Ψ〉]
∥∥∥∥

2

≥ ε
)
≤ 2e2 exp

( −sε2

2(2γt/2 + p)2

)
. (5.27)

As per the derivation of Eq. (4.47), we first apply the reverse triangle inequality, and use Eq. (5.24)

1this is a vector with components given by expectation values of the components of the input vector
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to get:

Pr
(∣∣∣∥∥∥|Ψ〉∥∥∥

2
−√p

∣∣∣ ≥ ε) ≤ 2e2 exp

( −sε2

2(2γt/2 + p)2

)
. (5.28)

Then, by noting that for λ, p ∈ R, if
∣∣∣√λ−√p∣∣∣ ≤ ε then |λ− p| ≤ ε(ε+ 2

√
p), we find:

Pr

(∣∣∣∣∥∥∥|Ψ〉∥∥∥2

2
− p
∣∣∣∣ ≥ ε(ε+ 2

√
p)

)
≤ 2e2 exp

( −sε2

2(2γt/2 + p)2

)
. (5.29)

We will denote
∥∥∥|Ψ〉∥∥∥2

2
by λ. Thus for all ε > 0:

Pr (|λ− p| ≥ ε) ≤ 2e2 exp

(
−s
(√
p+ ε−√p

)2
2(2γt/2 + p)2

)
=: δ. (5.30)

We conclude that the squared l2 norm of an unnormalized state |Ψ〉 created by an equal super-

position (with coefficients 1/s) of s states sampled according to the described procedure can get

ε close to p, with probability greater than 1− δ, as long as s is sufficiently large:

s ≥ 2(2γt/2 + p)2(√
p+ ε−√p

)2 log

(
δ

2e2

)−1

. (5.31)

We note that s, the number of samples required to satisfy Eq. (5.30) depends on the unknown

quantity p. For now, we note that a conservative choice of s can always be made by setting p = 1.

However, this reduces sharpness in the run-time. Instead, for now we will treat s as a variable

and we will discuss how s is to be chosen in Sec. 5.9.

Let us now point out a slight complication that is encountered in computing the inner product

in Eq. (5.22). We note that the standard technique for computing the inner product between

two stabilizer states Ref. [63] produces the inner product up to a global phase. We will be con-

cerned with computing the sum of multiple such inner products. Thus, for our purposes, the

relative global phase of each term will be important. There exist a number of techniques for

efficiently computing stabilizer inner products while remaining sensitive to global phase informa-

tion Ref. [64]. For concreteness, we will use the CH-form to represent and manipulate stabilizer

states. This was developed by Bravyi et. al. in Ref. [38].

5.6 Step 4: Fast norm estimation

Eq. (5.30) shows that the target Born rule probability can be estimated by λ, the norm of the

sample mean given in Eq. (5.25). The last remaining problem then is to calculate λ.

BG developed an algorithm for producing an estimate φ̂ of the norm of any linear combination

|φ〉 of s stabilizer states for n-qubit system. The norm of such a state can be estimated with

multiplicative precision, i.e., for any desired error level ε̃ > 0 and confidence parameter δ̃ > 0 we
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get

Pr
(∣∣∣φ̂− ‖|φ〉‖22∣∣∣ ≥ ε̃‖|φ〉‖22) ≤ δ̃, (5.32)

and the run-time of the algorithm scales as:

O(sn3 ε̃−2 log δ̃−1). (5.33)

The fast norm estimation algorithm works as follows. As an input, the algorithm is given an

n qubit state |φ〉 as a linear combination of s stabilizer states:

|φ〉 =
1

s

s∑
j=1

|φj〉 (5.34)

where |φj〉 are n qubit stabilizer states. To proceed, we generate L randomly sampled n qubit

stabilizer states |θ1〉 , . . . , |θL〉. The estimate φ̂ is computed by first computing the quantities:

φ̃i := 〈θi|φ〉 =
1

s

s∑
j=1

〈θi|φj〉 (5.35)

for each i ∈ [L]. Then, the estimate φ̂ is computed using:

φ̂ =
2n

L

L∑
k=1

∣∣∣φ̃k∣∣∣2 . (5.36)

The run-time of this algorithm is O(sn3L) and by choosing:

L =
⌈
ε̃−2 log δ̃−1

⌉
, (5.37)

we ensure that Eq. (5.32) is satisfied.

Let us denote the estimate of λ :=
∥∥∥|Ψ〉∥∥∥2

2
produced using the fast norm algorithm by p̂. The

estimate p̂ is the final output of our algorithm and is an estimate of the target probability p. We

now combine the two sources of error (arising from steps 3 and 4) to show that, for an appropriate

choice of s and L, our estimate satisfies Eq. (5.4). First, we can employ the triangle inequality

to obtain

|p̂− p| = |p̂− λ+ λ− p| ≤ |p̂− λ|+ |λ− p| . (5.38)

From Eq. (5.32) we have that with probability larger than 1− δ̃ the following holds:

|p̂− λ| ≤ ε̃λ ≤ ε̃ (|λ− p|+ p) . (5.39)

Then, from Eq. (5.30) we get that with probability larger than 1− δ we have

|λ− p| ≤ ε. (5.40)

Since both algorithms (estimating the expectation vector and estimating its norm) are indepen-
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dent, we get that with probability larger than (1− δ)(1− δ̃) we have

|p̂− p| ≤ ε̃(ε+ p) + ε. (5.41)

We can thus write

Pr (|p̂− p| ≥ ε̃(ε+ p) + ε) ≤ δ̃ + δ. (5.42)

For any choice of εtot, δtot > 0, p̂ satisfies:

Pr (|p̂− p| ≥ εtot) ≤ δtot, (5.43)

for every choice of ε ∈ (0, εtot) and δ ∈ (0, δtot) whenever:

s ≥ 2(2γt/2 + p)2(√
p+ ε−√p

)2 log

(
δ

2e2

)−1

; (5.44)

with

ε̃ =
εtot − ε
p+ ε

; and δ̃ = δtot − δ. (5.45)

By using Eq. (5.37), this gives the number of iterations, L, required for the fast norm estima-

tion:

L ≥
(

p+ ε

εtot − ε

)2

log δ̃−1. (5.46)

As per the case for the required number of samples s, we see that the choice of L also depends on

the unknown p. For now, we note that a conservative choice of L can always be made by setting

p = 1. However, this reduces sharpness in the run-time. Instead, for now we will treat L as a

variable and we will discuss how L is to be chosen in Sec. 5.9.

5.7 Analysis of run-time

We now discuss the performance of this algorithm before considering possible modifications to

improve run-time. The key computational steps in this algorithm are:

1. Compute V , the gadgetized Clifford circuit.

2. For each of the s independent trials, uniformly sample a bit-sting y ∈ { 0, 1 }t.

3. For each of the s independent trials, compute the evolution of |0n〉c ⊗ |ỹ〉m to |ψ(y)〉 as per

Eq. (5.21).

4. For each of the s independent trials, compute the contraction of |ψ(y)〉 to |Ψ(y)〉 as per

Eq. (5.22).

5. Compute the estimate p̂ using L iterations of BG’s fast norm estimation algorithm.
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We point out the this algorithm is not fully specified as we have not specified a means for

determining s and L which depend on (the unknown) p. For now we will assume that these take

the minimal values specified by eqs. (5.44) and (5.46) and return to this issue in Sec. 5.9.

Let us denote the run-time associated with each of these steps as τ1, . . . , τ5 respectively. The τ1

component of run-time is O(c+t) assuming the circuit is specified as a length c+t list of gates with

associated registers that they act on. The τ2 component of run-time is O(st) assuming uniform

bit sampling is done in time O(1). Here, we note that τ2 and all other run-time components that

involve s repetitions are parallelizable.

The τ3 component of run-time is O(s[(c+ t− h)(n+ t) + h(n+ t)2]) where h is the number of

Hadamard gates in V and c+t−h is the number of remaining gates (these must be non-Hadamard

Clifford gates). To see this, we note that the state initially starts off as |0n〉c ⊗ |ỹ〉m represented

in CH-form and is subsequently updated by each gate in V as per Eq. (5.21). The CH-form can

be used to update an n qubit stabilizer state by the action of a Clifford gate in time O(n) if the

gate is a CX, CZ or phase gate and, in time O(n2) if it is a Hadamard gate. Applying these

runtimes to a system with n+ t qubits, we arrive at the claim.

We expect the τ4 component of run-time to be O(s(n+ t)2(w+ t)). For an n qubit stabilizer

state in CH-form acted on by a projector of the form (I +P )/2, where P is a Pauli operator, the

resultant n qubits stabilizer state can be computed in CH-form in time O(n2). The formalism

outlined in Ref. [38] does not specify how to contract an n qubit stabilizer state in CH-form with

a k < n qubit stabilizer state in CH-form to attain a n−k qubit stabilizer state in CH-form. Due

to the non-uniqueness of the CH-form, this computation is non-trivial and our proposed method

for computing the outcome has not been rigorously analyzed for run-time. We nevertheless expect

that this run-time will be O(n2k).

Conjecture 1. Given an n qubit stabilizer state |ψ〉 in CH-form with a k < n qubit stabilizer

state |φ〉 in CH-form, there is a classical procedure that outputs the n − k qubit stabilizer state

〈φ|ψ〉 = |ψ̃〉 in CH-form in time O(n2k) assuming that the action of each Clifford gate on a Pauli

operator can be computed in time O(1).

Assuming Conjecture 1 and noting that we will be contracting an n + t qubit state with an

w + t qubit state to get a n− w qubit state, we arrive at our expected run-time τ4.

The τ5 component of run-time is O(s(n−w)3L). This can be attained by setting the number

of qubits to n− w in the run-time of BG’s fast norm estimation algorithm.

Putting all of the steps together, we arrive at an overall run-time for the simple algorithm

given by:

O (τ1 + τ2 + τ3 + τ4 + τ5)

= O
(
c+ t+ s

[
t+ (c+ t− h)(n+ t) + h(n+ t)2 + (n+ t)2(w + t) + (n− w)3L

])
(5.47)

From Eq. (5.44) we see that s contains the exponential dependence on t. Thus, it is important

to minimise the polynomial run-time factor associated with s. Instead of the direct approach

resulting in the run-time of Eq. (5.47), in Sec. 5.8 we discuss a modification that significantly

reduces this run-time in most cases of interest.
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Using Eqs. (5.44), (5.45) and assuming Conjecture 1, the total time of the estimation algorithm

that satisfies Eq. (5.43), scales as

O

(
c+ t+

2(2γt/2 + p)2Γ(√
p+ ε−√p

)2 log

(
δ

2e2

)−1
)
, (5.48)

with,

Γ :=

(
t+ (c+ t− h)(n+ t) + h(n+ t)2 + (n+ t)2(w + t) + (n− w)3

(
p+ ε

εtot − ε

)2

log(δtot − δ)−1

)
,

(5.49)

where ε ∈ (0, εtot) and δ ∈ (0, δtot) are free parameters. This gives the final run-time of the

protocol ignoring the modifications to the algorithm discussed in Sec. 5.8. Here, we have also

ignored the issue of how to choose the parameters s and L instead assuming that a choice within a

factor of the optimal choice (see eqs. (5.44), (5.46)) can be made. To aid comparison to competing

algorithms, we will now simplify this expression. First, we set δ = δtot/2 as this achieves near

minimal run-time for small δtot. The regime where εtot/p � 1 is interesting and natural to

consider because here, the additive error in our estimate is likely to be significantly less than the

Born rule probability allowing our estimate to “resolve” the target. Thus, we also assume that

εtot/p� 1. This results in the simplifications:

1(√
p+ ε−√p

)2 ≈ 4p

ε2
(5.50)

and also achieves near minimal run-time for ε = εtot/2. We note that the regime εtot/p � 1

results in the same order runtime as εtot/p ≈ 1 and is slower than the regime of εtot/p � 1 and

small p. Ignoring the relatively smaller τ1 ∼ O(c+ t) component and the non-quadratic terms in

2γt/2 in the expansion of (2γt/2 + p)2, these approximations result in a simplified run-time given

by:

O

(
2γtp

ε2tot

(
t+ (c+ t− h)(n+ t) + h(n+ t)2 + (n+ t)2(w + t) + (n− w)3 p

2

ε2tot

(
4 + log δ−1

tot

)2))
.

(5.51)

In interpreting this run-time, it is helpful to think of factors such as p/ε2tot as (εtot/p)
−1× ε−1

tot.

Here, εtot/p can be though of as the relative error in contrast to the additive error εtot. For

example, if the run-time for an estimation algorithm scaled purely in the relative error, then the

algorithm is in fact multiplicative precision. Thus we see that in the above algorithm is a hybrid

of additive and multiplicative precision, depending on both the relative and additive errors. As

such, we expect that for a fixed run-time and all else being equal, the accuracy will improve due

to a reduction in the target probability but not proportionally to the reduction.

We note that the number of Clifford gates in the input circuit can in practice be quite large.

In these cases, the τ3 component of run-time may become the bottle neck for this algorithm. In

Sec. 5.8 we modify this algorithm such that the Clifford evolution component is applied to the

final projection instead of the initial state. This modification has two key consequences. First,
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the Clifford evolution can be computed only once. This is in contrast to the pre-modification

algorithm where the Clifford evolution is applied to each of the s samples representing the initial

state. Secondly, the number of qubits in the state immediately prior to the application of the

fast norm estimation algorithm is changed from n−w to t. Another consequence, related to this

point is that in the modified algorithm, the step associated with τ4 is incorporated into the fast

norm estimation component.

5.8 Improvements

We now consider a useful modification to the basic algorithm presented above. This modification

involves rewriting the Born rule probability as the expected value of a projector Π with respect to

the magic state |T t〉. After this initial modification, the algorithm proceeds in a similar fashion

to that described above involving each of the key steps including the decomposition of the magic

state, sampling stabilizer states based on this decomposition, updating these samples (here, they

are updated by the application of the projector Π), constructing a vector average from the updated

samples and finally running the fast norm estimation algorithm to estimate the l2 norm of this

average vector.

We now sketch an argument showing that there exists an integer u and a t-qubit projector

Π onto a stabilizer code such that p = 2t−u 〈T t|Π |T t〉. From Eq. (5.7) we see that the target

probability p can be computed by:

p = 〈ψU | (|x〉〈x| ⊗ In−w) |ψU 〉 (5.52)

= 2t 〈0n|c ⊗ 〈T t|m V
† (|x〉〈x| ⊗ In−w ⊗ ∣∣0t〉〈0t∣∣

m

)
V |0n〉c ⊗ |T t〉m . (5.53)

The n + t qubit stabilizer projector Π̃ := V
† (|x〉〈x| ⊗ In−w ⊗ ∣∣0t〉〈0t∣∣

m

)
V can be easily

computed using the Gottesman Knill theorem. This involves evolving the set of stabilizers

{ (−1)x1Z1, . . . , (−1)xwZw, Zn+1, . . . , Zn+t } by the Clifford circuit V . Further, using now stan-

dard techniques [2, 36, 39], this can be contracted to a t qubit projector:

2−uΠ = 〈0n|c Π̃ |0n〉c , (5.54)

where u ∈ N and the generating set of Π can be computed in time O((w + t)(c + t) + (n + t)3).

Then, as claimed, the target probability is given by p = 2t−u 〈T t|Π |T t〉. If the projector Π is

zero, then p = 0 and we are done. Otherwise, Π is a rank R projector onto a stabilizer sub-space

where 1 ≥ R ≥ min {n− w, t }.
The remainder of this modified algorithm follows in close analogy to the algorithm we pre-

sented earlier. In the remainder of this section, we present each of the key steps and discuss the

impact on run-time.
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Having computed the projector Π and the integer u, we write p as a square norm,

p = 2t−u 〈T t|Π Π |T t〉 (5.55)

=
∥∥∥2(t−u)/2Π |T t〉

∥∥∥2

2
(5.56)

=
∥∥|µ′〉∥∥2

2
(5.57)

where we have defined the vector |µ′〉 := 2(t−u)/2Π |T t〉 in analogy to |µ〉 from Eq. (5.16). We now

proceed to decompose of the magic state into stabilizers as per Eq. (5.14) and then sample from

this decomposition similarly to the method from Sec. 5.5. We define the vector |Ψ′(y)〉 analogous

to |Ψ(y)〉 in Eq. (5.22) as follows:

|Ψ′(y)〉 = 2(3t−u)/2αt−|y|(α∗)|y|Π |ỹ〉 . (5.58)

Using Eq. (5.14) it is easy to show that the expectation value of |Ψ′(y)〉 over uniform samples of

y ∈ {0, 1}t is equal to |µ′〉.
Additionally, by using eqs. (5.54) and (5.26) it is easy to show that the square l2 norm of

|Ψ′(y)〉 is upper bounded by 2γt. Thus, as before, we will use the s sample average:

|Ψ′〉 =
1

s

s∑
i=1

|Ψ′i〉 (5.59)

to approximate |µ′〉. In the above |Ψ′i〉 represents |Ψ′(y)〉 computed using the ith independent

uniform sample of y ∈ {0, 1}t. Since the l2 norm upper bounds for |Ψ′〉 and |Ψ〉 are the same, the

number of samples needed under this modified algorithm is given by Eq. (5.31) as before. The

final step is to apply the fast-norm estimation algorithm to |Ψ′〉 to approximate p as previously.

The number of iterations, L, in the fast-norm estimation algorithm is also unchanged and given

by Eq. (5.46).

We note that the run-time of the algorithm depends on the number of qubits. In particular

the fast norm estimation run-time scales as the cube of the number of qubits. This modification

has resulted in a potential change in the number of qubits. In particular, the number of qubits

associated with |Ψ′(y)〉, |Ψ′〉 and |µ′〉 is now t compared to n − w for the corresponding states

in the original algorithm. This modification also removes the need to evolve the post sampling

state through a Clifford circuit saving time. The run-time of the modified algorithm will be:

O
(
c+ t+ (w + t)(c+ t) + (n+ t)3 + st3L

)
. (5.60)

Assuming s and L can be chosen within a constant factor of the minimal values in eqs. (5.31)

and (5.46), the run-time becomes:

O

(
c+ t+ (w + t)(c+ t) + (n+ t)3 +

2(2γt/2 + p)2Γ′(√
p+ ε−√p

)2 log

(
δ

2e2

)−1
)
, (5.61)
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with,

Γ′ :=

(
t3
(

p+ ε

εtot − ε

)2

log(δtot − δ)−1

)
, (5.62)

where ε ∈ (0, εtot) and δ ∈ (0, δtot) are free parameters. To simplify this run-time, we set δ = δtot/2

and ε = εtot/2. We also assume that εtot/p� 1 as previously. Ignoring the component that does

not scale exponentially with t and the non-quadratic terms in 2γt/2 in the expansion of (2γt/2+p)2,

this results in a simplified run-time given by:

O

(
2γtp3

ε4tot

t3 log2 δ−1
tot

)
. (5.63)

We summarize the main steps in the modified algorithm as follows:

1. We first gadgetize the circuit to produce the n+ t qubit Clifford gate-sequence V .

2. We compute u ∈ N and the generators of the t qubit projector Π.

3. For each i ∈ [s], we:

• uniformly sample yi ∈ {0, 1}t

• compute |Ψ′i〉 = |Ψ′(yi)〉 as per Eq. (5.58)

4. Compute the average vector |Ψ′〉 as per Eq. (5.59).

5. Apply the fast norm estimation algorithm using L iterations to produce the estimate p̂.

5.9 On the choice of algorithm parameters

We have previously noted that the minimal choice of the number of samples s and the number of

iterations L is given by eqs. (5.31) and (5.46). With this minimal choice, our algorithm produces

estimates of Born rule probabilities that satisfy Eq. (5.4) and achieves a run-time specified by

eqs. (5.61) and (5.62). However, we note that computing the minimal choice of s and L is non-

trivial as these depend on the unknown parameter p. This does not present the possibility of the

algorithm running forever since the parameters s and L can always be chosen conservatively as

the RHS of eqs. (5.31) and (5.46), evaluated at p = 1.

In this section we argue that, in the cases when p is small, it is reasonable to expect that we

can substantially improve on the conservative choice of p = 1. We do this by noting that one

can run our algorithm for some initial choice of s and L to produce an estimate p̂. This estimate

can then be used to guide the choice of s and L in another round of execution. As this is a

work in progress, we have yet to fine tune the ideal strategy for this procedure. Nevertheless,

in Appendix B, we show that with high probability p can be upper bounded by the following

function of the initial choice of s, L and the resulting initial estimate p̂:

p ≤ p̂ 1

1−
√
b/L

+
1 +

√
b/L

1−
√
b/L

(
2

√
a

s
+
a

s

)
, (5.64)
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where a := 2(2γt/2 + 1)2 log
(
δtot/8e

2
)−1

and b := log (δtot/4)−1. Thus, by making an initial

choice of s and L that is sufficiently large relative to a and b respectively, we can with probability

greater than 1− δtot/2 non-trivially upper bound p.

Now, let us consider a small increase on the minimal choices of s and L given by Eqs. (5.44)

and (5.46) combined with the choice δ = δ̃ = δtot/4:

s =
2(2γt/2 + 1)2(√
p+ ε−√p

)2 log
(
δtot/8e

2
)−1

L =

(
p+ ε

εtot − ε

)2

log (δtot/4)−1 . (5.65)

We have now chosen δ and δ̃ so that the total failure probability from this round sums to δtot/2

allowing a non-zero failure tolerance for future rounds. We note that since both s and L in

Eq. (5.65) are increasing functions of p, our upper bound can be used to determine a better

choice of s and L in the next round.

Our algorithm can be executed in such a way as to allow us to also incorporate the sample

data used to produce the initial estimate p̂ into future estimates. In doing so, one can introduce

selection bias into the estimation procedure but this may be outweighed by the increased sample

data.

5.10 Conclusions and outlook

In this chapter, we have motivated the need for a fast additive precision Born rule probability

estimation algorithms. We have presented an algorithm that promises to achieve this specific

task significantly faster than the BG algorithm.

Our algorithm is a work in progress. The key aspects of this algorithm that still need to

be finalized relate to the content of Sec. 5.9. Here, we aim to identify a precise near optimal

iterative strategy for computing the choices of the s and L parameter. We aim to analyze the

run-time performance of the algorithm and compare this to our predicted performance given in

Eq. (5.5). We also aim to incorporate refinements to our algorithm based on the results from

Ref. [38]. Finally, we aim to explore the possibility of reducing the number of qubits from t to R,

the rank of the projector Π. This will result in a reduced run-time in the fast norm estimation

component but it will incur a run-time cost associated with applying a sequence of Clifford gates

Uc to the sampled stabilizer states. We hope to mitigate the latter deficiency by developing a

technique that allows us to evolve the set of all stabilizer states of the form |ỹ〉 while treating y

as a variable. This can be used to uniformly sample from the post evolution set {Uc | ỹ〉 }y of

states without repeating the evolution separately for each sample.
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Discussion: Part 1

Research into the classical simulation of quantum systems has produced important conceptual

leaps in our understanding of quantum computation. These insights have been influential in

numerous developments. They have contributed to the birth of quantum computation and the

development of early quantum algorithms, as well as ubiquitous tools used in their construction.

More recently, these ideas have motivated the study of intermediate models of quantum compu-

tation and demonstrations of quantum advantage. Classical algorithms for simulating quantum

systems have produced and continue to produced practical solutions to important problems. For

example, algorithms for the classical simulation of Clifford circuits [17, 18] and classical sim-

ulation of non-interacting fermionic quantum systems [19, 20, 21] have been crucial in solving

many research problems. More recently, classical analogs of the HHL quantum matrix inver-

sion algorithm [65] have provided practical solutions to a wide variety of data analysis problems

such as finding the optimal investment portfolio given many stocks [66] and providing optimal

recommendations based on a user’s preferences [32].

In Ref. [1], we presented a method that can be used to construct classical simulation algorithms

for estimating Born rule probabilities. Born rule estimation with controllable precision represents

a widely applicable notion of classical simulation. Our result has found a number of important

applications in: assessing the performance of certain error correcting codes in a more physically

realistic setting [33], proving optimality of certain gate synthesis protocols [34] and the use of

noisy quantum circuits to simulate ideal ones [35]. In addition, Ref. [1] has inspired a number of

important developments in the classical simulation literature [36, 2, 34, 3, 37, 38, 39].

In Part I of this thesis, we substantially extend our earlier work. The general framework we

present here provides a flexible mathematical structure that can be combined with a number of

free parameter choices (the model) to produce a Born rule probability estimation algorithm. This

framework generalizes a number of recent works on simulation including Ref. [1]. By reformulating

simulation techniques used in these works into the general framework, we show how the estimation

algorithm’s performance is influenced by the choice of model. In this thesis, we make progress

by refining the mathematical formalism, increasing the scope of the framework and enriching it

through examples and applications, as follows.

Our present work substantially relaxes the mathematical structure of the framework, removing

unnecessarily restrictive conditions relating to Hermiticity, normalization and duality of frames.
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The benefits of this improvement are threefold. Firstly, the increased flexibility of the mathe-

matical formalism permits more freedom to incorporate additional techniques into the simulation

algorithm. Secondly, the simpler mathematical structure makes the set of possible algorithms

easier to study, making it more amenable to no-go theorems, theorems proving conditional opti-

mality etc. Finally, we note that the removal of these mathematical restrictions has significantly

broadened the scope of estimation models; for example our general framework includes the Weyl-

Heisenberg frame (i.e. the Pauli frame for qubits).

Compared to Ref. [1], our generalized framework has also provided a significant broadening

in scope of application through the inclusion of the pure state formalism. While the techniques

presented in Ref. [1] permit the simulation of pure states within the mixed state mathematical

formalism; simulation within the pure state formalism can be achieved with a significantly im-

proved run-time. In addition to this practical benefit, our generalization provides a deeper insight

into how changes to the state space of a quantum system and its associated norms influence the

run-time. We believe this will be important in future work.

The abstract general framework that we present in this thesis is complemented with multiple

examples. We explore a range of possibilities by presenting multiple examples of estimation

models as well as example applications such as the Clifford plus T algorithm presented in Ch. 5

and the reformulation of other works. We have seen important phenomenological differences that

arise from model choice. For example, unlike the discrete Wigner function frame, overcomplete

frames such as the stabilizer frames can be optimized to improve performance but the optimization

process can be inefficient. Through these examples we have provided an enhanced appreciation

for the scope of possibilities within this framework.

The utility of our general framework is twofold. Firstly, it provides an avenue towards the

discovery of algorithms that offer conceptual insight and/or practical solutions to important

problems. As a tool for the development of novel estimation algorithms, the general framework

makes it easier to recognize common structure and generalize patterns in known examples to form

testable hypotheses. Secondly; it provides a unifying mathematical formalism that can be used to

study the opportunities and limitations of this powerful approach to classically estimating Born

rule probabilities.

Our framework provides a vast and, with the exception of a handful of examples, unexplored

space of models. There is significant opportunity to better characterize the space of models.

For example, there is opportunity to show no-go results for efficient protocols using known re-

sults characterizing the isometry groups of lp spaces. There is also vast potential for developing

techniques for sharpening run-times of algorithms fitting in this framework. For example, it is

promising to explore generalizations to the run-time reduction phenomena we observed when sim-

ulating a system in the pure state formalism instead of the mixed state formalism. Can we more

generally use known constraints imposed on the quantum state space to improve run-time? In a

similar vein, it is promising to explore these questions in the context of maps between quantum

state spaces.

Through the common lens of our general framework, promising research directions are re-

vealed. In the general framework, we have seen three distinct applications using Wigner frames,

Weyl-Heisenberg frames and stabilizer frames. From these examples, other prominent possibil-

ities become self-evident. For example, tensor networks with restricted bond dimension offer a
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promising avenue of investigation. Another possibility is presented in frames generated from a

computational basis state under the action of matchgates. Recent work [67] showed that gad-

getization and magic state injection in the context of Clifford circuits have analogs in the context

of matchgate circuits. The application of our general framework towards simulations based on

magic state injected matchgate circuits is an alluring direction of research.

In this thesis, we also presented a classical additive 1/poly precision Born rule probability

estimation algorithm for Clifford plus T circuits. This algorithm is still a work in progress, but

has the potential for being best-in-class for estimation of this important computational model,

and a state-of-the-art algorithm for application in the characterization and verification of near

term quantum devices.

64



Part II

From estimation to sampling
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Introduction: From estimation to

sampling

Which quantum processes can be efficiently simulated using classical resources is a fundamental

and longstanding problem [7, 18, 19, 20, 68, 69]. Research in this area can be split into two

broad classes: results showing the hardness of efficient classical simulation for certain quantum

processes, and the development of efficient classical algorithms for simulating other quantum pro-

cesses. Recently, there has been substantial activity on both sides of this subject. Works on boson

sampling [13], instantaneous quantum polynomial (IQP) circuits [16, 70], various translationally

invariant spin models [71, 72], quantum Fourier sampling [73], one clean qubit (also known as

DQC1) circuits [74, 27], chaotic quantum circuits [75] and conjugated Clifford circuits [76] have

focused on showing the difficulty of classically simulating these quantum circuits. On the other

hand, there has been substantial recent progress in classically simulating various elements of quan-

tum systems including matchgate circuits with generalized inputs and measurements [77] (see also

[19, 20, 21] for earlier works in this direction), circuits with positive quasi-probabilistic represen-

tations [22, 24, 23], stabilizer circuits supplemented with a small number of T gates [2], stabilizer

circuits with small coherent local errors [33], noisy IQP circuits [78], noisy boson sampling cir-

cuits [79], low negativity magic state injection in the fault tolerant circuit model [34], quantum

circuits with polynomial bounded negativity [1], Abelian-group normalizer circuits [80, 81] and

certain circuits with computationally tractable states and sparse output distributions [82]. In

addition, there has been some work on using small quantum systems to simulate larger quantum

systems [36] as well as using noisy quantum systems to simulate ideal ones [35].

An important motivation for showing efficient classical simulability or hardness thereof for a

given (possibly non-universal) quantum computer is understanding what properties of a quantum

computer give rise to super-classical computational power. In this context, we desire classical

simulability to imply that the computational power of the target quantum computer is “contained

in classical”, and the hardness of classical simulablility to imply that the target computational

device can achieve at least some computational task beyond classical. Achieving these desiderata

hinges crucially on the strength of the notion of simulation that is employed. As an extreme

example, if one uses a notion of simulation that is too weak, then efficient classical “simulation”

of universal quantum circuits may be possible (even if BQP 6⊆ BPP). In such a case, the existence
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of a “simulator” does not imply that the computational power of the simulated system is contained

within classical. As an opposite extreme, if one uses a notion of simulation that is too strong,

then efficient classical “simulation” of even classical circuits may be impossible [83]. In this

case, the non-existence of such a simulator does not imply that the computational power of the

“un-simulable” system is outside of classical. Once we establish the notion of simulation that is

neither “too strong” nor “too weak”, it will become evident that both too strong and too weak

notions of simulations have been commonly used in the literature. To this end, we require a clear

mathematical statement about which notion of simulation minimally preserves the computational

power of the system it simulates.

From a computer science perspective, the computational power of a device can be charac-

terized by the set of problems such a device can solve. However, when it comes to quantum

devices that produce probabilistic output from an exponentially growing space, even the ques-

tion of what problems these devices solve or what constitutes a solution is subtle. Given an

efficient description of a quantum circuit, the exact task performed by a quantum computer is

to output a sample from the probability distribution associated with the measurement outcomes

of that quantum circuit. This suggests that for ideal quantum computers, sampling from the

exact quantum distribution is what constitutes a solution. On the other hand, it is unclear what

well justified necessary requirement fail to be met by an arbitrarily small departure from exact

sampling. Perhaps due to these subtleties, the choice of notion of “classical simulation” for sam-

pling problems lacks consensus and, under the umbrella term of weak simulation, a number of

different definitions have been used in the literature. We will argue that some of these notions

are too strong to be minimal and others are too weak to capture computational power. The

cornerstone of this argument will be the concept of efficient indistinguishability ; the ability of

one agent to remain indistinguishable from another agent under the scrutiny of any interactive

test performed by a computationally powerful referee whilst simultaneously employing resources

that are polynomially equivalent.

Examples of definitions that we argue are too strong include simulators required to sample

from exactly the target distribution or sample from a distribution that is exponentially close

(in L1-norm) to the target distribution [25]. These also include a notion of simulation based on

approximate sampling where the accuracy requirement is the very strong condition that every

outcome probability is within a small relative error of the target probability [26, 16, 27]. From

the perspective of efficient indistinguishibility, these notions of simulation are not minimal since

they rule out weaker notions of simulation that are nonetheless efficiently indistinguishable from

the target quantum system.

An example of a notion of approximate weak simulation that we argue is too weak requires

that the classical algorithm sample from a distribution that is within some small fixed constant

L1-norm of the target distribution [78, 79, 70, 71, 72, 84, 76]. We argue that such a notion does

not capture the full computational power of the target, since it cannot perform a task that can

be performed by the target device, namely of passing some sufficiently powerful distinguishibility

test.

The focus of Part II of this thesis will be on a notion of approximate weak simulation we call

epsilon-simulation. This has been used in prior works including Refs. [13, 85, 73, 2]. We will ad-

vocate for this notion of simulation (over other definitions of weak simulation) by showing that an
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epsilon-simulator of a quantum computer achieves efficient indistinguishablity and any simulator

that achieves efficient indistinguishablity satisfies the definition of an epsilon-simulator. Thus

epsilon-simulation minimally captures computational power. The notion of epsilon-simulation

is also closely related to the definition of a sampling problem from Ref. [85] (where the definition

includes an exact statement of what constitutes a solution to the sampling problem). In this

language, an epsilon-simulator of a family of quantum circuits can be exactly defined as an effi-

cient classical algorithm which can solve all sampling problems defined by the family of quantum

circuits in the natural way. Thus, our result shows that a device can solve all sampling problems

defined by a quantum computer if and only if the device is efficiently indistinguishable from the

quantum computer.

The conceptual significance of epsilon-simulation as a notion that minimally captures com-

putational power motivates the study of its relation to other notions of simulation. This is

particularly important for translating the existing results on simulability and hardness into state-

ments about computational power relative to classical. Such a comparison to the above-mentioned

approximate weak simulators is clear but a comparison to simulators defined in terms of Born

probability estimation can be significantly more involved. Simulators which output sufficiently

accurate Born probability estimates can be called as subroutines in an efficient classical proce-

dure in order to output samples from a desired target distribution. Such a procedure can be used

to “lift” these simulators to an epsilon-simulator implying that the computational power of all

families of quantum circuits simulable in this way is contained within classical.

Some commonly used notions of simulation such as strong simulation and multiplicative pre-

cision simulation require the ability to estimate Born probabilities extremely accurately. These

simulators can be lifted to epsilon-simulators [19, 20, 26]. We focus on another notion of simula-

tion that has been prominent in recent literature [1, 34, 33] which we call a poly-box . Compared

to strong or multiplicative precision simulators, a poly-box has a much less stringent requirement

on the accuracy of Born probability estimates that it produces. We discuss the significant con-

ceptual importance of poly-boxes owing to the fact that they capture the computational power

with respect to decision problems while simultaneously being weak enough to be admitted by

IQP circuits, unconditioned magic-state injected Clifford circuits and possibly other intermediate

models for quantum computation.

Assuming some complexity theoretic conjectures, we show that a poly-box is a strictly weaker

notion of simulation than epsilon-simulation. However, if we impose a particular sparsity re-

striction on the target family of quantum circuits, then we show that a poly-box can be lifted to

an epsilon-simulator, implying that the two notions are, up to efficient classical computation,

equivalent under this sparsity restriction.

7.1 Outline of our main results

7.1.1 Indistinguishability and ε-simulation.

In Sec. 8, we motivate the use of a particular notion of efficient simulation, which we call efficient

polynomially small in L1-norm simulation (epsilon-simulation or ε-simulation for short). Essen-

tially, we say that an algorithm can ε-simulate a family of quantum circuits, if for any ε > 0, it
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can sample from a distribution that is ε-close in L1-norm to the true output distribution of the

circuit, and if the algorithm runs in time polynomial in 1/ε and in the number of qubits. We

provide an operational meaning for this notion by showing that “possessing an ε-simulator” for

a family of circuits is equivalent to demanding that even a computationally omnipotent referee

cannot distinguish the simulator’s outputs from that of the target circuit family. Further, any

simulator that satisfies efficient distinguishability also satisfies the definition of an ε-simulator.

This is captured by the following theorem presented in Sec. 8.

Result 1. Bob has an ε-simulator of Alice’s quantum computer if and only if given the hypoth-

esis testing scenario considered in Sec. 8.3 there exists a strategy for Bob which jointly achieves

indistinguishability and efficiency.

7.1.2 Efficient outcome estimation: the poly-box.

A family of binary outcome quantum circuits, where each circuit is indexed by a bit-string, defines

a decision problem as follows: Given a bit-string indexing a quantum circuit, decide which of the

circuit’s two possible outcomes is more likely1.

Here, the only quantity relevant to the computation is the probability associated with the bi-

nary measurement outcome (decision). Hence, in this setting, simulation can be defined in terms

of the accuracy to which these probabilities can be estimated. A commonly used notion of sim-

ulation known as strong simulation requires the ability to estimate Born probabilities extremely

accurately. In Sec. 4.1.5, we defined a much weaker notion of simulation (poly-box 2) which is a

device that computes an additive polynomial precisions estimate of the quantum probability (or

marginal probability) associated with a specific outcome of a quantum circuit.

We show that families of quantum circuits must admit a poly-box in order to be ε-simulable.

Result 2. If C is a family of quantum circuits that does not admit a poly-box algorithm, then C
is not ε-simulable.

We advocate the importance of this notion on the grounds that whether or not some given

family of quantum circuits admits a poly-box informs our knowledge of the computational power

of that family relative to classical. In particular:

• if a (possibly non-universal) quantum computer can be efficiently classically simulated in

the sense of a poly-box, then such a quantum computer cannot solve decision problems

outside of classical

• if a (possibly non-universal) quantum computer cannot be efficiently classically simulated

in the sense of a poly-box, then such a quantum computer can solve a sampling problem

outside of classical (Thm. 7)

We give three examples of poly-boxes. The first one is an estimator based on Monte Carlo

sampling techniques applied to a quasiprobability representation. This follows the work of Ref. [1],

1Technically, one is also promised that the given bit-string will only ever index a circuit where the probability
of the two outcomes are bounded away from 50%.

2This notion is similar to a notion introduced by Ref. [86] where it was (using a terminology inconsistent with
the present paper) referred to as weak simulation.
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where the it was found that the efficiency of this estimator depends on the amount of “negativity”

in the quasiprobability description of the quantum circuit. As a second example, we consider

the family of circuits CPROD, for which the n-qubit input state ρ is an arbitrary product state

(with potentially exponential negativity), transformations consist of Clifford unitary gates, and

measurements are of k ≤ n qubits in the computational basis. We present an explicit poly-

box for CPROD in Sec. 9. As a third example, we also outline a construction of a poly-box for

Instantaneous Quantum Polynomial-time (IQP) circuits CIQP based on the work of Ref. [87].

7.1.3 From estimation to simulation.

For the case of very high precision probability estimation algorithms, prior work has addressed

the question of how to efficiently lift these to algorithms for high precision approximate weak

simulators. In particular, Refs. [19, 20, 26] (see also Appendix C) lift estimation algorithms with

small relative error. In Appendix C, we also present a potentially useful algorithm for lifting

small additive error estimators. In Sec. 10 we focus on the task of lifting an algorithm for a poly-

box, to an ε-simulator. Since a poly-box is a much less precise probability estimation algorithm

(in comparison to strong simulation), achieving this task in the general case is implausible (see

Sec. 11). In Sec. 10, we will show that a poly-box can efficiently be lifted to an ε-simulator if we

restrict the family of quantum distributions to those possessing a property we call poly-sparsity.

This sparsity property measures “peakedness versus uniformness” of distributions and is related

to the scaling of the smooth max-entropy of the output distributions of quantum circuits. Loosely,

a poly-sparse quantum circuit can have its outcome probability distribution well approximated

by specifying the probabilities associated with polynomially many of the most likely outcomes.

We formalize this notion in Sec. 10.

Result 3. Let C be a family of quantum circuits with a corresponding family of probability dis-

tributions P. Suppose there exists a poly-box over C, and that P is poly-sparse. Then, there exists

an ε-simulator of C.

We emphasize that the proof of this theorem is constructive, and allows for new simulation

results for families of quantum circuits for which it was not previously known if they were effi-

ciently simulable. As an example, our results can be straightforwardly used to show that Clifford

circuits with sparse outcome distributions and with small amounts of local unitary (non-Clifford)

noise, as described in Ref. [33], are ε-simulable.

7.1.4 Hardness results.

Finally, in Sec. 11, we prove that the poly-box requirements of Result 3 is on its own not sufficient

for ε-simulability. The challenge to proving such a result is identifying a natural family of non-

poly-sparse quantum circuits for which a poly-box exists but for which ε-simulation is impossible.

We prove that the family CPROD described above, which violates the poly-sparsity require-

ment, admits a poly-box. Then, by assuming a now commonly used “average case hardness”

conjecture [13, 70, 71, 73, 84, 76], we show that the ability to perform ε-simulation of CPROD im-

plies the unlikely result that the polynomial hierarchy collapses to the third level. Loosely, this

result suggests that there exist quantum circuits where the probability of any individual outcome
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(and marginals) can be efficiently estimated, but the system cannot be ε-simulated. Our hardness

result closely follows the structure of several similar results, and in particular that of the IQP

circuits result of Ref. [70].

Our proof relies on a conjecture regarding the hardness of estimating Born rule probabilities

to within a small multiplicative factor for a substantial fraction of randomly chosen circuits from

CPROD. This average case hardness conjecture (which we formulate explicitly as Conjecture 1) is

a strengthening of the worst case hardness of multiplicative precision estimation of probabilities

associated with circuits from CPROD. Worst case hardness can be shown by applying the result

of Refs. [88, 57, 46, 89, 45] and follows from an analogous argument to Thm. 5.1 of Ref. [76].

Result 4. If there exists an ε-simulator of CPROD and Conjecture 2 holds, then the polynomial

hierarchy collapses to the third level.

We note that our hardness result is implied by the hardness results presented in Refs. [71, 72],

however; our proof is able to use a more plausible average case hardness conjecture than these

references due to the fact that we are proving hardness of ε-simulation rather than proving the

hardness of the yet weaker notion of approximate weak simulation employed by these references.

In Appendix E we also present Thm. 18. This theorem shows that the properties of poly-

sparsity and anti-concentration are mutually exclusive.

The flow chart in Fig. 7.1 summarizes the main results in Part II of this thesis by categorizing

any given family of quantum circuits in terms of its computation power based on whether or not

the circuit family admits certain properties related to simulability.

NO

Admits a multiplicative precision or 
strong simulator?

Admits a poly-box?

Is poly-sparse?

YES

YES

YES

NO

NO

(Thm 7 )

(Thm 10 )(Thm 12 & Lem 3)

(Thms 14 & 15)

Figure 7.1: An overview of the main results. An arbitrary family of quantum circuits C is partially
classified by its computational power relative to universal classical computers. The unclassified category
(admits a poly-box and is not poly-sparse) is known to contain circuit families that are hard to epsilon-
simulate assuming some plausible complexity theoretic conjectures. We give examples of circuits families in
these categories. Here, C∗UNIV, C∗STAB, C∗polyN and C∗IQP refer to the following families of circuits: universal
circuits, stabilizer circuits, circuits with polynomially bounded negativity and IQP circuits respectively.
The circuit families Ce and CPROD are discussed in some detail in Secs. 10.1 and 4.3.5 respectively. The
presence of a superscript represents an upper bound on the number of qubits to be measured.
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Defining simulation of a quantum

computer

While there has been a breadth of recent results in the theory of simulation of quantum systems,

this breadth has been accompanied with a plethora of different notions of simulation. This

variety brings with it challenges for comparing results. Consider the following results, which are

all based on (often slightly) different notions of simulation. As a first example, the ability to

perform strong simulation of certain classes of quantum circuits would imply a collapse of the

polynomial hierarchy, while under a weaker (but arguably more useful) notion of simulation this

collapse is only implied if additional mathematical conjectures hold true [13, 70]. As another

example, Ref. [27] shows that the quantum complexity class BQP is contained in the second level

of the polynomial hierarchy if there exist efficient classical probabilistic algorithms for sampling a

particular outcome (from the quantum circuits considered) with a probability that is exponentially

close to the true quantum probability in terms of additive error (or polynomially close in terms

of multiplicative error). As additional examples, Refs. [1, 33] present efficient classical algorithms

for additive polynomial precision estimates of Born rule probabilities. While many such technical

results are crucially sensitive to these distinctions in the meaning of simulation, there is a growing

need to connect the choice of simulation definition used in a proof against (or for) efficient classical

simulability to a statement about proofs of quantum advantage (or ability to practically classically

solve a quantumly solvable problem). In particular, to the non-expert it can be unclear what

the complexity of classical simulation (in each of the above mentioned notions of simulation) of

a given quantum device says about the hardness of building a classical device that can efficiently

solve the computational problems that are solvable by the quantum device.

In this section, we will discuss a meaningful notion of approximate weak simulation, which we

call ε-simulation. This notion of simulation is a natural mathematical relaxation of exact weak

simulation and has been used in prior works, e.g., in Refs. [13, 73, 2]. Further, this notion of

simulation is closely related to the class of problems in complexity theory known as sampling

problems [85]. Here, we define ε-simulation and prove that up to polynomial equivalence, an

ε-simulator of a quantum computer is effectively a perfect substitute for any task that can be

performed by the quantum computer itself. In particular, we will show that ε-simulators satisfy

efficient indistinguishability meaning that they can remain statistically indistinguishable from
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(according to a computationally unbounded referee) and have a polynomially equivalent run-

time to the quantum computer that they simulate. We argue that efficient indistinguishability

is a natural choice of a rigorously defined global condition which minimally captures the concept

of computational power. The accuracy requirements of ε-simulation are rigorously defined at the

local level of each circuit and correspond to solving a sampling problem (as defined in [85]) based

on the outcome distribution of the circuit. Thus our result shows that the ability to solve all

sampling problems solvable by a quantum computer C is a necessary and sufficient condition to

being efficiently indistinguishable from C or “computationally as powerful as C”.

8.1 Strong and weak simulation

We note that every quantum circuit has an associated probability distribution that describes the

statistics of the measurement outcomes. We will refer to this as the circuit’s quantum probability

distribution. As an example, Fig. 8.1 below depicts a quantum circuit. The output of running

this circuit is a classical random variable X = (X1, . . . , Xk) that is distributed according to the

quantum probability distribution.

ρ1

U

X1

ρ2 X2

...
...

ρk Xk

...

ρn

1

Figure 8.1: An example of a quantum circuit. This circuit acts on n qubits (or, in general, qudits). The
initial state is a product state. The unitary operation U must be constructed out of a sequence of local
unitary gates. The first k qubits in this example are each measured in a fixed basis, yielding outcome
(X1, X2, . . . , Xk). Qubits i > k, shown without a measurement, are traced over (marginalized).

Two commonly used notions of simulation are strong simulation and weak simulation. A

weak simulator of a quantum circuit generates samples from the circuit’s quantum probability

distribution. In the strict sense of the term, a weak simulator generates samples from the exact

quantum probability distribution. Loosely, having a weak simulator for a quantum system is an

equivalent resource to using the quantum system itself.

The term weak simulation has also been used in reference to classical algorithms which sample

from distributions which approximate the target probability distribution. There exist at least four

distinct notions of approximate weak simulation. As background, we give a brief description of

these here although the focus of this paper will be on only one of these and will be discussed in

some detail later in this section.

1. The strongest1 of these requires that the classical algorithm sample from a distribution

1We note that the relative strength of these notions of approximate weak simulation depends on the specifics
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that is exponentially close (in L1-norm) to the target distribution. This notion was used in

Ref. [25, 83].

2. A generally weaker notion requires that the sampled distribution be sufficiently close to

the target distribution so as to ensure that for every outcome x, the sampled distribution

satisfies |Psampled(x)− Ptarget(x)| ≤ εPtarget(x) for some fixed ε > 0. See Ref. [26] and also

[16, 27] for related variants.

3. A yet weaker notion of approximate weak simulation requires that the classical algorithm

sample from a distribution that is inverse polynomially close (in L1-norm) to the target

distribution. This notion of simulation has been used in prior works, e.g., in Refs. [13,

85, 73, 2] both in the context of hardness of classical simulation and existence of classical

simulators. We call this ε-simulation.

4. The final prominent example of approximate weak simulation, the weakest of all four ap-

proximate notions, requires that the classical algorithm sample from a distribution that is

within some small fixed constant L1-norm of the target distribution. This definition has

predominantly featured in hardness proofs [70, 71, 72, 84, 76]. It has also feature in proofs

of efficient classical simulability of noisy boson sampling circuits [79] and noisy IQP circuits

[78].

A strong simulator, in contrast, outputs probabilities or marginal probabilities associated

with the quantum distributions. More specifically, a strong simulator of a circuit is a device that

outputs the quantum probability of observing any particular outcome or the quantum probability

of an outcome marginalized2 over one or more of the measurements. Note that a strong simulator

requires an input specifying the event for which the probability of occurrence is required. Taking

Fig. 8.1 as an example, a strong simulator could be asked to return the probability of observing

the event (X1, X2) = (1, 0), marginalized over the measurements 3 to k. The requirement that a

strong simulator can also output estimates of marginals is weaker than requiring them to estimate

the quantum probability associated with any event (subset of the outcome space).

While the names ‘strong’ and ‘weak’ simulation suggest that they are in some sense different

magnitudes of the same type of thing, we note that these two types of simulation produce different

types of output. In particular, a strong simulator outputs probabilities. (More specifically, it

outputs exponential additive precision estimates of Born rule probabilities and their marginals.)

In contrast a weak simulator outputs samples (from the exact target probability distribution).

Ref. [83] provides a compelling argument advocating for the use of weak simulation in place

of strong simulation by showing that there exist classically efficiently weak simulable probability

distributions that are #P-hard to strong simulate, thus showing that aiming to classically strong

simulate is an unnecessarily challenging goal. In a similar vein, here we will advocate for the notion

of ε-simulation over other notions of simulation including the alternative notions of approximate

weak simulation.

of the target probability distributions. Our ordering of strongest to weakest is only a rough guide.
2A distribution P (x) over bit-strings x ∈ { 0, 1 }n is said to have a marginal distribution P{ i1,...,im }(x̃) =∑
xi1

. . .
∑
xim

P (x) (marginalized over the bits { i1, . . . , im } where x̃ ∈ {0, 1}n−m is given by modifying the vector

x by removing the entries { i1, . . . , im }.
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8.2 ε-simulation

A weak simulator, which generates samples from the exact quantum probability distribution, is

a very strict notion. Often, it would be sufficient to consider a simulator that generates samples

from a distribution that is only sufficiently close to the quantum distribution, for some suitable

measure of closeness. Such a relaxation of the requirement of weak simulation has been used by

several authors, e.g., in Refs. [25, 83, 13, 85, 73, 2, 70, 71, 84, 76, 79, 78] . Here, we define

the notion of ε-simulation, which is a particular relaxation of the notion of weak simulation, and

motivate its use.

We first define a notion of sampling from a distribution that is only close to a given distri-

bution. Consider a discrete probability distribution P. Let B(P, ε) denote the ε ball around the

target P according to the L1 distance (or equivalently, up to an irrelevant constant, the total

variation distance). We define ε-sampling of a probability distribution P as follows:

Definition 3. Let P be a discrete probability distribution. We say that a classical device or

algorithm can ε-sample P iff for any ε > 0, it can sample from a probability distribution Pε ∈
B(P, ε). In addition, its run-time should scale at most polynomially in 1/ε.

We note that the use of the L1-norm in the above is motivated by the fact that the L1-distance

upper bounds on the one-shot success probability of distinguishing between two distributions.

More details can be found in the proof of Thm. 6 in Sec. 8.4.

The definition above does not require the device to sample from precisely the quantum proba-

bility distribution P, but rather allows it to sample from any probability distribution Pε which is

in the ε ball around the target probability distribution, P. We note that the device or algorithm

will in general take time (or other resources) that depends on the desired precision ε in order

to output a sample, hence the efficiency requirement ensures that these resources scale at most

polynomially in the precision 1/ε.

Definition 4. We say that a classical device or algorithm can ε-simulate a quantum circuit if it

can ε-sample from the circuit’s associated output probability distribution P.

We note that each of the above mentioned notions of simulation refers to the simulation of a

single quantum circuit. More generally, we may be interested in (strong, weak, or ε) simulators of

uniform families of quantum circuits. In this setting we can discuss the efficiency of a simulator

with respect to n, the number of qubits3. As an example, consider a family of circuits described

by a mapping from A∗ (finite strings over some finite alphabet A) to some set of quantum

circuits C = { ca | a ∈ A∗ } where for each a ∈ A∗, ca is a quantum circuit with some efficient

description4 given by the index a. In the case of strong (weak) simulation, we say that a device

can efficiently strong (weak) simulate the family of quantum circuits C if the resources required

by the device to strong (weak) simulate ca ∈ C are upper-bounded by a polynomial in n. In

3As a technical condition, we require the circuit size, run-time (or any other resources) as well as the length of
the circuit’s description to be upper-bounded by poly(n).

4Such a description must satisfy the uniformity condition. This can be done by fixing a finite gate set, input
state and measurement basis and explicitly defining an efficiently computable mapping between A∗ and the gate
sequence.
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the case of ε-simulation, we require that the simulator be able to sample a distribution within ε

distance of the quantum distribution efficiently in both n and 1/ε.

Definition 5. We say that a classical device or algorithm can ε−simulate a uniform family of

quantum circuit C if for all ε > 0 and for any c ∈ C (with number of qubits n and quantum distri-

bution P) it can sample from a probability distribution Pε ∈ B(P, ε) in run-time O(poly(n, 1
ε )).

8.3 ε-simulation and efficient indistinguishability

As noted earlier, this definition ensures that ε-simulation is a weaker form of simulation than exact

weak simulation. However, we point out that the notion of exact sampling may be weakened in

a number of ways, with the ε-simulation approach being well suited to many applications related

to quantum simulators. As an example, if the definition of simulation allowed for a fixed but

small amount of deviation in L1 distance (as opposed to one that can be made arbitrarily small)

then computational power of a simulator will immediately be detectably compromised. The

above notion of ε-simulation requires a polynomial scaling between the precision (1/ε) of the

approximate sampling and the time taken to produce a sample. Below (Thm. 6), we will use a

statistical indistinguishability argument to show that a polynomial scaling is precisely what should

be demanded from a simulator. In particular, we will show that a run-time which scales sub-

polynomially in 1/ε puts unnecessarily strong demands on a simulator while a super-polynomial

run-time would allow the simulator’s output to be statistically distinguishable from the output

of the device it simulates.

We now introduce the hypothesis testing scenario we consider.

Hypothesis testing scenario. Suppose Alice possesses a quantum computer capable of running

a (possibly non-universal) family of quantum circuits C, and Bob has some simulation scheme for

C (whether it’s an ε-simulator is to be decided). Further, suppose that a referee with unbounded

computational power and with full knowledge of the specifications of C, will request data from

either Alice or Bob and run a test that aims to decide between the hypotheses:

Ha: The requested data came from Alice’s quantum computer or

Hb: The requested data came from Bob’s simulator.

The setup will be as follows: At the start of the test, one of Alice or Bob will be randomly

appointed as “the candidate”. Without knowing their identity, the referee will then enter into a

finite length interactive protocol with the candidate (see Fig 8.2). Each round of the protocol will

involve the referee sending a circuit description to the candidate requesting the candidate to run

the circuit and return the outcome. The choice of requests by the referee may depend on all prior

requests and data returned by the candidate. The rules by which the referee:

1. chooses the circuit requested in each round,

2. chooses to stop making further circuit requests and

3. decides on Ha versus Hb given the collected data

define the hypothesis test. The goal of the referee is as follows. For any given δ > 0 decide Ha

versus Hb such that Pcorrect ≥ 1
2 + δ where Pcorrect is the probability of deciding correctly. Bob’s
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goal is to come up with a (δ-dependent) strategy for responding to the referee’s requests such that

it jointly achieves:

• indistinguishablity: for any δ > 0 and for any test that the referee applies, Pcorrect <
1
2 + δ

and

• efficiency: for every choice of circuit request sequence α, Bob must be able to execute his

strategy using resources which are O(poly(N(α), 1
δ )) where N(α) is the resource cost incurred

by Alice for the same circuit request sequence.

We note that the referee can always achieve a success probability Pcorrect = 1
2 simply by

randomly guessing Ha or Hb. Importantly, the referee has complete control over the number

of rounds in the test and additionally does not have any upper bound imposed on the number

of rounds. Hence, Pcorrect is the ultimate one shot probability of the referee correctly deciding

between Ha or Hb and in no sense can this probability be amplified through more rounds of

information requests. As such, we will say that the referee achieves distinguishability between

Alice and Bob if ∀δ > 0, there exists a test that the referee can apply ensuring that Pcorrect ≥ 1−δ
(independent of Bob’s strategy). Alternatively, we will say that Bob achieves indistinguishability

(from Alice) if ∀δ > 0, there exists a response strategy for Bob such that Pcorrect ≤ 1
2 + δ

(independent of what test the referee can apply). We will show that if Bob has an ε-simulator then

there exists a strategy for Bob such that he jointly achieves indistinguishablity (i.e. the referee

cannot improve on a random guess by any fixed probability δ > 0) and efficiency. In this case,

Bob can at the outset choose any δ > 0 and ensure that Pcorrect <
1
2 + δ for all strategies the

referee can employ.

The efficiency requirement imposed on Bob’s strategy is with respect to the resource cost

incurred by Alice. Here we will define what this means and justify the rationale behind this

requirement. Let us first note that for any circuit ca ∈ C, there are resource costs R(ca) incurred

by Alice in order to run this circuit. This may be defined by any quantity as long as this quantity

is upper and lower-bounded by some polynomial in the number of qubits. For example, R(ca)

may be defined by run-time, number of qubits, number of elementary gates, number of qubits

plus gates plus measurement, length of circuit description etc. Since this quantity is polynomially

equivalent to the number of qubits, without loss of generality, we can treat na (the number of

qubits used in circuit ca) as the measure of Alice’s resource cost R(ca). We now note that for

a given test, the referee may request outcome data from some string of circuits c1, . . . , cm ∈ C.
Thus we define the resource cost for Alice to meet this request by N := n1 + . . .+ nm.

Bob’s resource cost (run-time) with respect to each circuit ca ∈ C is polynomially dependent

on both na and the inverse of his choice of accuracy parameter ε. Thus, Bob’s strategy is defined

by the rules by which he chooses εj , the accuracy parameter for his response in the jth round5.

Thus, for a given sequence of circuit requests a1, . . . , am ∈ A∗, Bob will incur a resource cost

T = t1 + . . .+ tm where tj ∼ poly(naj , 1/εj) is Bob’s resource in the jth round. Thus the efficiency

condition requires that there exists some polynomial f(x, y) such that for all δ > 0 and for all

5Bob must possess some computational power in order to execute these rules. We will only require that Bob
have some small amount of memory (to keep count of the rounds in the protocol) and compute simple arithmetic
functions of this counter.
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possible request sequences α = (a1, . . . , am), T (α) ≤ f(N(α), 1
δ ). The efficiency requirement

imposed on Bob’s strategy thus naturally requires that the resource costs of Alice and Bob be

polynomial equivalent for the family of tests that the referee can apply.

Theorem 6. Bob has an ε-simulator of Alice’s quantum computer if and only if given the hy-

pothesis testing scenario considered above, there exists a strategy for Bob which jointly achieves

indistinguishablity and efficiency.

The proof for this theorem can be found in Sec. 8.4. The proof uses the fact that the L1

distance between Alice and Bob’s output distributions over the entire interactive protocol can be

used to upper bound the probability of correctly deciding between Ha and Hb. Further, we show

that the total L1 distance between Alice and Bob’s output distributions over the entire interactive

protocol grows at most additively in the L1 distance of each round of the protocol. We also note

that an ε-simulator allows Bob to ensure that the L1 distance of each round decays like an inverse

quadratic ensuring that the sum of the L1 distances converges to the desired upper bound. The

convergence of the inverse quadratic series, which is an inverse polynomial, thus motivates the

significance of ε-simulators i.e. simulators with run-time O(poly(n, 1/ε)).

We note that the “if” component of the theorem says that meeting the definition of ε-

simulator is necessary for achieving efficient indistinguishability, thus the notion of simulation

cannot be weakened any further without compromising efficient indistinguishability.

Throughout this paper we view a quantum computer as a uniform family of quantum circuits

C = { ca | a ∈ A∗ }. We note that by committing to the circuit model of quantum computation,

our language including important definitions such as ε-simulation are not necessarily well suited

to other models of computation unless these are first translated to the circuit model. For example,

in a quantum computational model that makes use of intermediate measurements, such as the

measurement based quantum computing (MBQC) model, consider a procedure where a part of

the state is measured then conditioned on the outcome, a second measurement is conducted.

This procedure (consisting of 2 rounds of measurement) can be described as a single circuit in

the circuit model, but cannot be broken up into two rounds involving two separate circuits. This

limitation becomes apparent when we consider the hypothesis testing scenario. If the referee is

performing a multi-round query, expecting the candidate to possess an MBQC-based quantum

computer, then even Alice with a quantum computer may be unable to pass the test unless her

computer operates in an architecture that can maintain quantum coherence between rounds. In

the setting we consider, such a query by the referee in not allowed.

8.4 Statistical indistinguishability proof

We first show a well know connection between the optimal probability of choosing the correct

hypothesis in a hypothesis test and the L1 distance.

Suppose P1 and P2 are probability distribution over some finite set I, and suppose a sample X

is observed from the distribution Q where either Q = P1 (hypothesis H1) or Q = P2 (hypothesis

H2). Then, any hypothesis test must have some H1 acceptance region A1 ⊆ I and some H2

acceptance region A2 := Ac1 ⊆ I. The probability of a type I error is α := Pr(X ∈ A2 | X ∼ P1)

78



Chapter 8

and the probability of a type II error is β := Pr(X ∈ A1 | X ∼ P2). The L1-norm between P1

and P2 can be written as:

||P1 − P2||1 : =
∑
x∈I
|P1(x)− P2(x)|

= 2 sup
A1⊂I

[P1(A1)− P2(A1)]

= 2 sup
A1⊂I

[(1− P1(Ac1)− P2(A1)]

= 2(1− α∗ − β∗)

where, the second equality can be verified by noting that the supremum is achieved when A1 =

{x ∈ I | P1(x) ≥ P2(x) }. Here, α∗ and β∗ are the type I and type II errors for the optimal

choice of acceptance region / hypothesis test. We note that if a priori, H1 and H2 are equally

likely, then the probability of choosing the correct hypothesis, based on a single sample, using

the optimal test is thus given by:

Pcorrect = 1− Pr(X ∈ A2 | X ∼ P1) Pr(X ∼ P1)− Pr(X ∈ A1 | X ∼ P2) Pr(X ∼ P2)

= 1− α∗ Pr(H1)− β∗ Pr(H2)

=
1

2
+
||P1 − P2||1

4
. (8.1)

The interactive protocol between the referee and the candidate will proceed as follows (see

Figure 8.2):

1. Initially, the referee will fix a test by choosing a function a(·) that dictates how all gathered

data in prior rounds determines the next circuit request. We note that while this can be

further generalized by allowing stochastic maps (rather than functions), this has no baring

on our results and our proof can fairly easily be extended if required.

2. Initially the referee will make the circuit request a∅ ∈ A∗

3. The response from the candidate is denoted by the random variable Ỹa∅ and the string of

random variables a∅, Ỹa∅ will be represented by X̃1

4. The referee may make another circuit request by applying the map a to X̃1 thus defining

the next circuit request a(X̃1).

5. On the (j + 1)th round, the referee’s circuit request will be represented by a(X̃j) and the

response will be represented by Ỹa(X̃j)
where, X̃j+1 represents the string of random variables

X̃j , a(X̃j), Ỹa(X̃j)
.

6. In addition, at the end of the jth round for j = 1, 2, . . ., a fixed stochastic binary map h

will be applied to X̃j with the outcome determining whether or non to halt the interactive

procedure. We will assume that the test will eventually halt and represent the final round

of any given test by m ∈ N.
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a(∅)

a(X̃1)

a(X̃m−1)

Ỹa(∅)

Ỹa(X̃1)

Ỹa(X̃m−1)

X̃1

X̃2

X̃m

...

referee candidate

Figure 8.2: The figure above shows the interactive protocol between the referee and the candidate. In
each round of the protocol, the referee send a circuit description to the candidate. This circuit description
is in general given by applying any fixed (possibly stochastic) map to all of the prior data collected by the
referee. The candidate’s responses (Ỹ ) may depend only on the circuit request from the current round
and the round number. When the candidate is known to be Alice or Bob, we will represent the variables
corresponding to Ỹ and X̃ by Y and X or Y ′ and X ′ respectively.

7. Finally, the referee will decide Ha vs Hb by applying a fixed binary map d to the full

collected data set X̃m.

We will use the notation convention above but in the case when the candidate is fixed to be

Alice, we will remove the tilde (i.e. X̃, Ỹ → X,Y ) and alternatively when the candidate is fixed

to be Bob, we will replace the tilde with a prime (i.e. X̃, Ỹ → X ′, Y ′).

The set of all possible data collected by the referee (based on all probabilistic choices including

the choice of the candidate) over the course of the entire test can be viewed as a tree where

each branch corresponds to a distinct observed value of the random variable X̃m. The two

probability distribution P1 and P2 discussed above will each correspond to a distribution over

all of the branches of this tree conditioned on the choice of candidate. We note that one can

easily incorporate probabilistic choices by the referee into the formalism which will only result

in an increase in the number of branches of the tree. Equation (8.1) shows that Bob can ensure

suppression of Pcorrect by suppressing the L1 distance ||P1 − P2||1. However, if Bob has an ε-

simulator, he can only directly control the L1 distance between his output and that of Alice for

a given circuit request. The proof below culminating in Eq. (8.5) demonstrates that ||P1 −P2||1
is sub-additive in the L1 distance of each circuit request thus Bob can upper bound Pcorrect by

bounding each round’s L1 distance in such a way as to ensure the sum converges to the desired

bound for ||P1 − P2||1.
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Proof. We now prove each direction of the “if and only if” statement of Thm. 6.

“⇒” Here, we assume that Bob’s simulation scheme is an ε-simulator over C and explicitly specify

a strategy for Bob which simultaneously achieves indistinguishability and efficiency.

Bob’s strategy will be as follows; if he becomes the candidate, then in the jth round of the

protocol, he will be asked to report the outcome of running some circuit indexed by aj ∈ A∗. In

this case, Bob will ε-simulate the circuit caj with the precision setting given by:

εj =
24δ

π2j2

We note that Bob’s strategy as outlined above is fixed and independent of the referee’s hy-

pothesis test. Further, we note that for all m ∈ N:

m∑
j=1

εj ≤
∞∑
j=1

εj (8.2)

= 4δ

We define the map E [X,X ′] from any pair of random variables X with probability distribution

P and X ′ with probability distribution P ′ to R as the L1 distance between P and P ′.
We will show that for every test, the quantity on the LHS of Eq. (8.2) upper bounds

E [Xm, X
′
m]. Hence:

E [Xm, X
′
m] ≤ 4δ (8.3)

E [Xj+1, X
′
j+1] =

∑
α,β

∣∣∣Pr(Ya(Xj) = β|Xj = α) Pr(Xj = α)− Pr(Y ′a(X′j)
= β|X ′j = α) Pr(X ′j = α)

∣∣∣
=
∑
α,β

|Pr(Ya(Xj) = β|Xj = α) Pr(Xj = α)− Pr(Ya(Xj) = β|Xj = α) Pr(X ′j = α)

+ Pr(Ya(Xj) = β|Xj = α) Pr(X ′j = α)− Pr(Y ′a(X′j)
= β|X ′j = α) Pr(X ′j = α)|

≤
∑
α,β

Pr(Ya(Xj) = β|Xj = α)
∣∣Pr(X = α)− Pr(X ′ = α)

∣∣
+
∑
α,β

Pr(X ′j = α)
∣∣∣Pr(Ya(Xj) = β|Xj = α)− Pr(Y ′a(X′j)

= β|X ′j = α)
∣∣∣

≤ E [Xj , X
′
j ] +

∑
α

E [Ya(α), Y
′
a(α)] Pr(X ′j = α) (8.4)

where the sums are taken over α in the support of X̃j and β in ∪
a∈A∗

supp(Ỹa).

We note that the precision of Bob’s response in any round only depends on the round number.

Thus, Eq. (8.4) can be simplified by replacing E [Ya(α), Y
′
a(α)] with the upper bound εj+1. Combined

with the observation that E [X1, X
′
1] = ε1, we have shown that:
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E [Xm, X
′
m] ≤

m∑
j=1

εj (8.5)

≤ 4δ

This proves that Bob’s strategy meets the indistinguishibility property. We now consider the

efficiency of the strategy. We recall that given a circuit request sequence α, Alice’s and Bob’s

resource costs are represented by N(α) and T (α) respectively. Further, Alice’s resource costs is

lower bounded by m, the number of rounds of the Hypothesis test α.

By definition of ε-simulation, there exists κ, c1, c2 ∈ N such that for a given circuit index a,

and precision ε, T (a) ≤ c1

(
N(a)
ε

)κ
+ c2. For simplicity, we will set c1 = 1 and c2 = 0 as this

is immaterial given sufficiently large N(α) and 1
ε . For m = 1, clearly the strategy is efficient.

Hence, given a string of inputs α = (a1, . . . , am), with m ≥ 2 we have:

T (α) =
m∑
j=1

T (aj) (8.6)

≤
m∑
j=1

(
N(aj)

εj

)κ
(8.7)

=

m∑
j=1

(
π2j2N(aj)

24δ

)κ
(8.8)

≤
(
π2

24δ

)κ m−1∑
j=1

j2κ +m2κ[N(α)− (m− 1)]κ

 (8.9)

≤
(
π2

24δ

)κ [(
m− 0.5

2κ+ 1

)2κ+1

+m2κN(α)κ −m2κ(m− 1)κ

]
(8.10)

≤
(
π2m2N(α)

24δ

)κ
(8.11)

≤
(
π2N(α)3

24δ

)κ
(8.12)

∈ O
(
poly(N(α),

1

δ
)

)
(8.13)

where:

• in Eq. (8.9) we have used the fact that N(aj) ≥ 1 for all j hence the expression is maximized

when α is chosen such that N(aj) = 1 for j = 1, . . . ,m − 1 and N(am) = N(a1) + . . . +

N(am)− (m− 1);

• in Eq. (8.10) we have used integration to show the inequality for any k ∈ N;
∑m

j=1 j
k <

(m+0.5
k+1 )k+1; and

• in Eq. (8.10) we have also used the fact that for κ > 1 and N ≥ m > 0, one can show that
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(N −m)κ ≤ Nκ −mκ

• in Eq. (8.11) we have used the inequality
(
m−0.5
2κ+1

)2κ+1
−m2κ(m − 1)κ ≤ 0 for m ≥ 2 and

κ ≥ 1;

hence, there exists a polynomial f(x, y) such that for all request strings α and δ > 0, T (α) ≤
f(N(α), 1

δ ).

“⇐”: We restrict ourselves to interactive protocols consisting of only one round. For each

fixed circuit request, under the optimal choice of the decision map d, δ ∝ ε hence for all c ∈ C
and for all ε > 0, Bob must be able to sample from some distribution Pε ∈ B(P, ε). Further,

since Bob’s strategy meets the efficiency condition, for every a ∈ A∗, Bob must be able to output

the sample using resources ∈ O
(
poly(N(a), 1

δ )
)
⊆ O

(
poly(n, 1

ε )
)
.

8.5 ε-simulation and computational power

In addition to the technical contribution of Thm. 6, we wish to make an argument for the

conceptual connection between computational power and efficient indistinguishability. Intuitively,

we wish to say that an agent A is at least as computationally powerful as agent B if A can “do”

every task that B can do using an equivalent amount of resources. In our setting, we can restrict

ourselves to polynomially equivalent resources and the most general task of sampling from a target

probability distribution given an efficient description of it. However, defining what constitutes

an acceptable solution to the sampling task is not only of central importance but also difficult to

conceptually motivate. Given a description of a probability distribution, can anything short of

sampling exactly from the specified distribution constitute success? An answer in the negative

seems unsatisfactory because very small deviations6 from exact sampling are ruled out. However,

an answer in the positive presents the subtlety of specifying the exact requirement for achieving

the task. It is easy to offer mathematically reasonable requirements for what constitutes success

at the local level of each task but significantly more difficult to conceptually justify these as

precisely the right notion. In our view, this difficulty arises because a well formed conceptually

motivated requirement at the local level of each task must be inherited from a global requirement

imposed at the level of the agent across their performance on any possible task.

We advocate for efficient indistinguishability as the right choice of global requirement for

defining computational power and implicitly defining what constitutes a solution to a sampling

task. If an agent is efficiently indistinguishable from another then, for any choice of δ > 0 chosen

at the outset, the referee cannot assign any computational task to the candidate to observe a

consequence that will improve (over randomly guessing) their ability to correctly decide between

Ha and Hb by a probability δ. Thus, there is no observable consequence7 to substituting an agent

6For example consider the scenario that whenever an agent is asked to sample from some distribution P, they
output samples from exactly P every time, possibly with one exception. In particular, a memory bit stores if the
exception has ever taken place. If it has occurred, then forever more, when the agent is asked to sample from P,
an exact sample is produced. If the exception has not yet taken place then with some very small probability, the
agent will output the most likely outcome instead of an exact sample from P.

7Since the observer is the computationally unbounded referee, then any event is an observable consequence i.e.
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with another efficiently indistinguishable agent. For these reasons, we argue that in the setting

where the agents are being used as computational resources, an agent’s ability to (efficiently and

indistinguishably) substitute another naturally defines containment of computational power. In

light of this, the “only if” component of Thm. 6 says that, the computational power of Bob

(given an ε-simulator of C) contains that of Alice (given C) and the “if” component says that an

ε-simulator is the minimal simulator that achieves this since any simulator to achieve efficient

indistinguishibility is an ε-simulator.

The referee can be seen as a mathematical tool for bounding the adversarial ability of any

natural process to distinguish an agent from an efficiently indistinguishable substitute. As such

one may argue for further generalization of the concept of efficient indistinguishability from

one which is defined with respect to (w.r.t.) a computationally unbounded referee to a notion

dependent on the computational power of the referee. If we take the view that the computational

power of all agents within this universe is bounded by universal quantum computation, then a

particularly interest generalization is efficiently indistinguishability w.r.t. a referee limited to

universal quantum computation. We return to this generalization in the discussion, elsewhere

focusing on efficient indistinguishability w.r.t. a computationally unbounded referee.

if we let S be the set of all possible responses across all rounds from both Alice and Bob, then any element of the
power set of S is an observable consequence.
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Probability Estimation

As described in the previous section, an exact (or approximate in the sense of Ref. [25]) weak sim-

ulator produces outcomes sampled from the exact (or exponentially close to the exact) Born rule

probability distribution associated with a quantum circuit. The notion of ε-simulation is a weaker

notion of simulation, a fact we aim to exploit by constructing algorithms for ε-simulation that

would not satisfy the above-mentioned stronger notions of simulation. In Ch. 10, we describe an

approach to ε-simulation of quantum circuits based on two components: first, estimating Born

rule probabilities for specific outcomes of a quantum circuit to a specified precision, and then

using such estimates to construct a simulator.

In Part I of this thesis, we focussed on this first component presenting a general framework

for the construction of Born rule probability estimation algorithms. In Ch. 5 we also discussed

an additive 1/poly precision Born rule probability estimation algorithms that is not a poly-box

because its run-time is exponential in the number of T gates. In this chapter we will focus

specifically on poly-boxes. First we will discuss the conceptual significance of a poly-box from

the perspective of computational power. Then we will present a poly-box over the family of

Instantaneous Quantum Polynomial-time (IQP) quantum circuits [15, 90, 16, 70].

9.1 Conceptual significance of a poly-box

Whether or not a family of quantum circuits C admits a poly-box has bearing on both the

complexity of sampling problems and decision problems solvable by C, and so we will find that

the notion of a poly-box is a useful concept. We first note that the existence of a poly-box is a

necessary condition for ε-simulation.

Theorem 7. If C is a family of quantum circuits that does not admit a poly-box algorithm, then

C is not ε-simulable.

Proof. We note that given an ε-simulator of C, a poly-box over C can be constructed in the

obvious way simply by observing the frequency with which the ε-simulator outputs outcomes in

S and using this observed frequency as the estimator for P(S).

A poly-box over C is not only necessary for the existence of an ε-simulator over C, but as we

will show in Thm. 10, combined with an additional requirement, it is also sufficient. In addition,
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we note that if C admits a poly-box then all “generalized decision problems” solvable by C are

solvable within BPP.

As an illustrative but unlikely example, suppose there exists a classical poly-box over a uni-

versal quantum circuit family CUNIV. Then, for any instance x of a decision problem L in BQP,

there is a quantum circuit ca ∈ CUNIV that decides if x ∈ L (correctly on at least 2/3 of the runs),

simply by outputting the decision “x ∈ L” when the first qubit measurement outcome is 1 on a

single run of ca and conversely, outputting the decision “x 6∈ L” when the first qubit measurement

outcome is 0. We note that, in order to decide if x ∈ L one does not need the full power of an

ε-simulator over CUNIV. In fact it is sufficient to only have access to the poly-box over CUNIV.

Given a poly-box over CUNIV, one can request an (ε, δ)-precision estimate p̂ for the probability

p that the sampled outcome from ca is in S = (1, •, . . . , •). For ε < 1/6 and δ < 1/3, one may

decide “x ∈ L” if p̂ ≥ 1/2 and “x 6∈ L” otherwise. This will result in the correct decision with

probability ≥ 2/3 as required. A poly-box over C offers the freedom to choose any S ∈ { 0, 1, • }n
which can in general be used to define a broader class of decision problems. Of course in the case

of CUNIV, this freedom cannot be exploited because for every choice of a and S 6= (1, •, . . . , •),
there is an alternative easily computable choice of a′ such that the probability that running the

circuit ca′ ∈ CUNIV results in an outcome in (1, •, . . . , •) is identical to the probability that running

the circuit ca ∈ CUNIV results in an outcome in S. However, since we are considering the general

case of not necessarily universal families of quantum circuits, it is feasible that a poly-box over

C will be computationally more powerful than a poly-box over C restricted to only estimating

probabilities of events of the form S = (1, •, . . . , •). On the other hand, we do not wish to make

poly-boxes exceedingly powerful. If we view a poly-box over C as a black box containing an agent

with access to C and processing an estimation algorithm as per the aforementioned example, then

by restricting the allowable events as above and choosing such a simple method of indexing these,

we are able to limit the additional computational power given to the agent and/or poly-box.

9.2 Example: A poly-box over CIQP

IQP circuits [15, 90, 16, 70] consist of computational basis preparation and measurements with

all gates diagonal in the X basis. This family of circuits is a well studied intermediate model for

quantum computing.

We show that IQP circuits admit a poly-box. One can construct such a poly-box over CIQP by

noting that Proposition 5 from Ref. [87] gives a closed form expression for all Born rule proba-

bilities and marginals of these circuits [91]. This expression:

PP (S) = Er∈span{~ei | i∈{ i1,...,ik } }

[
(−1)r·sα

(
Pr,

π

4

)]
(9.1)

is an expectation value over 2k vectors in Zn2 where:

• { i1, . . . , ik } are the set of indices where the entries of S are in { 0, 1 };

• s ∈ Zn2 is defined by si = Si when i ∈ { i1, . . . , ik } and si = 0 otherwise;

• Pr is the affinification of the m × n binary matrix P which defines a Hamiltonian of the
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IQP circuit constructed from Pauli X operators according to HP :=
∑m

i=1⊗nj=1X
Pij ;

• α(P, θ) is the normalized version of the weight enumerator polynomial (evaluated at e−2iθ)

of the code generated by the columns of P .

We note that this is an expectation over exponentially many terms which have their real part

bounded in the interval [−1, 1]. Further, for each r, the quantity α
(
Pr,

π
4

)
can be evaluated

efficiently using Vertigan’s algorithm [92] and Ref. [87]. As such, one can construct an additive

polynomial precision estimator for all Born rule probabilities and marginals simply by evaluating

the expression:

p̂1 = Re
[
(−1)r·sα

(
Pr,

π

4

)]
(9.2)

for polynomially many independent uniformly randomly chosen r ∈ span {~ei | i ∈ { i1, . . . , ik } }
and computing the average over all choices. This can be shown to produce a poly-box by appli-

cation of the Hoeffding inequality.

87



Chapter 10

From estimation to simulation

Given the significance of ε-simulation as the notion that minimally preserves computational power,

here we turn our attention to the construction of an efficient algorithms for lifting a poly-box

to an ε-simulators. We give strong evidence that in the general case, such a construction is not

possible. This suggests that a poly-box is statistically distinguishable from an ε-simulator and

hence computationally less powerful. However, by restricting to a special family of quantum

circuits, we show an explicit algorithm for lifting a poly-box to an ε-simulator. Combined with

Thm. 7 this shows that within this restricted family a poly-box is computationally equivalent to

an ε-simulator.

The significance of ε-simulation also motivates the need to understand the relationship to

other simulators defined in terms of Born probability estimation. At the end of this section and

in Appendices C and D we present two algorithms which lift an estimator of probabilities and

marginals to a sampler.

10.1 A poly-box is not sufficient for ε-simulation

This section focuses on the relation between poly-boxes and ε-simulation. With a poly-box, one

can efficiently estimate Born rule probabilities of outcomes of a quantum circuit with additive

precision. However, assuming BQP 6= BPP, a poly-box alone is not a sufficient computational

resource for ε-simulation. We illustrate this using a simple but somewhat contrived example,

wherein an encoding into a large number of qubits is used to obscure (from the poly-box) the

computational power of sampling [93].

Define a family of quantum circuits Ce using a universal quantum computer as an oracle as

follows:

1. take as input a quantum circuit description a ∈ A∗ (this is a description of some quantum

circuit with n qubits);

2. call the oracle to output a sample outcome from this quantum circuit. Label the first bit

of the outcome by X;

3. sample an n-bit string Y ∈ { 0, 1 }n uniformly at random;
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4. output Z = (X ⊕Par(Y ), Y ) ∈ {0, 1}n+1, where Par(Y ) is the parity function on the input

bit-string Y .

We note that Ce cannot admit an ε-simulator unless BQP⊆BPP, since simple classical post

processing reduces the ε-simulator over Ce to an ε-simulator over universal quantum circuits

restricted to a single qubit measurement.

We now show that Ce admits a poly-box:

1. take as input a ∈ A∗, ε, δ > 0 and S ∈ { 0, 1, • }n+1. Our poly-box will output probability

estimates that are deterministically within ε of the target probabilities and hence we can

set δ = 0;

2. if S specifies a marginal probability i.e. k < n+ 1, then the poly-box outputs the estimate

2−k (where k is the number of non-marginalized bits in S); otherwise,

(a) small ε case: if ε < 1/2n, explicitly compute the quantum probability p := Pr(X = 1);

(b) large ε case: if ε ≥ 1/2n, output the probability 2−(n+1) as a guess.

This algorithm is not only a poly-box over Ce but it in fact outputs probability estimates that

have exponentially small precision.

Lemma 8. For all a ∈ A∗, ε > 0 and S ∈ { 0, 1, • }n, the above poly-box can output estimates

within ε additive error of the target probability using O(poly(n, 1/ε)) resources. Further, the

absolute difference between estimate and target probabilities will be ≤ min { 2−(n+1), ε }.

Proof. We note that the resource cost of this algorithm is O(poly(n, 1/ε)). Since in the case of

small ε it is O(poly(2n)) ⊆ O(poly(1/ε)) and in the case of large ε it is O(n).

We now consider the machine’s precision by considering the case with no marginalization and

the case with marginalization separately. We restrict the below discussion to the large ε case as

the estimates are exact in the alternate case.

Let z = (z0, . . . , zn) ∈ {0, 1}n+1 be fixed and define z′ := (z1, . . . , zn). Then,

Pr(Z = z) = Pr(Z0 = z0 | Y = z′) Pr(Y = z′) = Pr(X = z0 ⊕ Par(z′))2−n . (10.1)

So for S = z (i.e. no marginalization), we have an error given by max
r∈{ p,1−p }

∣∣2−(n+1) − r
2n

∣∣ ≤
2−(n+1).

For the case where Si = • (i.e. there is marginalization over the ith bit only and k = n), we

note that the quantum marginal probability p(S) is given exactly by:

p(S) =

1∑
zi=0

Pr(Z = z) =

1∑
zi=0

Pr(X = z0 ⊕ Par(z′))2−n = p2−n + (1− p)2−n = 2−k , (10.2)

where zj := Sj for j 6= i. This implies that for all k < n+ 1, the quantum probability is exactly

2−k. Thus, in the worst case (no marginalization and ε ≥ 2−n), the error is ≤ 2−(n+1).
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This example clearly demonstrates that the existence of a poly-box for a class of quantum

circuits is not sufficient for ε-simulation. In the following, we highlight the role of the sparsity

of the output distribution in providing, together with a poly-box, a sufficient condition for ε-

simulation.

10.2 Sparsity and sampling

Despite the fact that in general the existence of a poly-box for some family C does not imply the

existence of an ε-simulator for C, for some quantum circuit families, a poly-box suffices. Here,

we show that one can construct an ε-simulator for a family of quantum circuits C provided that

there exists a poly-box over C and that the family of probability distributions corresponding to

C satisfy an additional constraint on the sparsity of possible outcomes. We begin by reviewing

several results from Schwarz and Van den Nest [82] regarding sparse distributions. In Ref. [82],

they define the following property of discrete probability distributions:

Definition 6. (ε-approximately t-sparse). A discrete probability distribution is t-sparse if at

most t outcomes have a non-zero probability of occurring. A discrete probability distribution

is ε-approximately t-sparse if it has a L1 distance less than or equal to ε from some t-sparse

distribution.

The lemma below is a (slightly weakened) restatement of Thm. 11 from Ref. [82].

Lemma 9. (Thm. 11 of Ref. [82]). Let P be a distribution on {0, 1}k that satisfies the following

conditions:

1. P is promised to be ε-approximately t-sparse, where ε ≤ 1/6;

2. For all S ∈ { 0, 1, • }k, there exists an (s, k)−efficient randomized classical algorithm for

sampling from p̂s, an additive polynomial estimator of P(S).

Then it is possible to classically sample from a probability distribution P ′ ∈ B(P, 12ε+δ) efficiently

in k, t, ε−1 and log δ−1.

We note that for every discrete probability distribution P, there is some unique minimal

function t(ε) such that for all ε ≥ 0, P is ε−approximately t−sparse. We note that if this function

is upper-bounded by a polynomial in ε−1, then a randomized classical algorithm for sampling

from estimators of P(S) can be extended to a randomized classical algorithm for sampling from

some probability distribution P ′ ∈ B(P, ε) efficiently in ε−1. This fact motivates the following

definition:

Definition 7. (poly-sparse) Let P be a discrete probability distribution. We say that P is poly-

sparse if there exists a polynomial P (x) such that for all ε > 0, P is ε-approximately t-sparse when-

ever t ≥ P (1
ε ).

Let P be a family of probability distributions with Pa ∈ P a distribution over {0, 1}ka. We say

that P is poly-sparse if there exists a polynomial P (x) such that for all ε > 0 and a ∈ A∗, Pa is

ε-approximately t-sparse whenever t ≥ P (ka/ε).
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The notion of poly-sparse is related to the notion of smooth max entropy Hε
max. In particular,

P is poly-sparse iff there exists a polynomial P (x) such that for every P ∈ P with domain

cardinality 2n, we have:

2H
ε
max(P) ≤ P

(n
ε

)
(10.3)

where Hε
max(P) := inf

P ′
log2 |Supp(P ′)|, |Supp(P ′)| is the cardinality of the support of the dis-

tribution P ′ and the infimum is taken over all distributions P ′ subject to 1
2 ||P ′ − P||1 ≤ ε. This

notion was first defined in Ref. [94] where it corresponds to the ε-smooth Rényi entropy of order

α = 0.

10.3 Conditions for ε-simulation

With this notion of output distributions that are poly-sparse, we are in a position to state our

main theorem of this section:

Theorem 10. Let C be a family of quantum circuits with a corresponding family of probability

distributions P. Suppose there exists a poly-box over C, and that P is poly-sparse. Then, there

exists an ε-simulator of C.

Proof. Let a ∈ A∗ and ε > 0 be arbitrary. Then there exist t = t(a, ε) such that Pa is ε-

approximately t-sparse. Further, due to the existence of the efficient classical poly-box over C, for

all S ∈ { 0, 1, • }ka , there exists an (s, ka)−efficient randomized classical algorithm for sampling

from an additive polynomial estimator of Pa(S). Thus by Lem. 9, it is possible to classically

sample from a probability distribution Pεa ∈ B(Pa, ε) efficiently in ε−1, t and ka. We note that

here we have removed the dependence on δ since we can make δ ≤ ε whilst remaining efficient

in ε−1, t and ka. Finally, since poly-sparsity guarantees the existence of a t(a, ε) that can be

upper-bounded by a polynomial in ka
ε , we arrive at the desired result.

As an example, consider families of quantum circuits C where each circuit of size n can only

produce outcomes from some set of size at most poly(n). Then C is poly-sparse (even if the output

distributions are uniform over the poly(n) sized support). Hence, if C also admits a poly-box,

then by Thm. 10 one can with high probability repeatedly sample from this space of poly(n)

outcomes hidden within a exponentially large space of bit-strings.

We have shown that having a poly-box and a poly-sparsity guarantee for a family of quantum

circuits gives us a ε-simulator. We emphasize that this approach allows for the ε-simulation of

families of quantum circuits for which no known weak simulation method exists. Specifically,

by combining the results from Ref. [1] with the above theorem, we conclude that any family of

quantum circuits C that both:

1. has negativity that is polynomially bounded in circuit size; and

2. has an associated family of probability distributions which is poly-sparse;

can be ε-simulated.
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We emphasize that the proof of this theorem is constructive, and allows for new simulation

results for families of quantum circuits for which it was not previously known if they were effi-

ciently simulable. As an example, our results can be straightforwardly used to show that Clifford

circuits with sparse outcome distributions and with small amounts of local unitary (non-Clifford)

noise, as described in Ref. [33], are ε-simulable.

Thm. 10 requires a promise of poly-sparsity. Since this is a property of infinite families of

probability distributions, one cannot hope to algorithmically verify (or even falsify) it through

sampling from member distributions. Nevertheless, for distributions generated by some particular

family of quantum circuits, a proof that this property holds may be possible.

In summary, the results of Thms. 10 and 7 imply that in order to construct an ε-simulator of

any particular family of quantum circuits, it is necessary to construct a poly-box and further, if

the family is poly-sparse, this is also sufficient. In Sec. 10.1, we also showed that there exists a

somewhat artificial family of quantum circuits Ce with respect to which a poly-box is insufficient

for ε-simulation. In the next section, we show that this phenomenon also occurs with much more

natural families of quantum circuits.

10.4 On lifting stronger estimators to approximate samplers

In contrast to poly-boxes, certain stronger nations of simulation based on Born rule probability

estimation can be lifted to ε-simulators (or even stronger approximate weak simulators). In

Appendices C and D we present two such efficient classical algorithms.

The algorithm presented in Appendix D uses an estimator with multiplicative precision to

construct an ε-simulator (it can in fact construct an approximate weak simulator based on the

stronger notion from Ref. [26]). This algorithm exploits the fact that ratios of multiplicative

precision estimators are multiplicative precision in order to sequentially, one qubit’s measure-

ment outcome at a time, sample from the marginal probability of the next qubit’s measurement

conditioned on the sampled measurement outcomes of the prior meaurements. This algorithm

and its variants have been presented in [19, 20, 26] and are well known within the simulation-of-

quantum-circuits community.

The algorithm presented in Appendix C uses an estimator with exponentially small additive

precision to construct an ε-simulator (it can in fact construct an approximate weak simulator

based on the stronger notion from Ref. [25]). This algorithm aims to map a bit-string r (approxi-

mately representing a uniformly sampled point from the unit interval) to a bit-string representing

the outcome of running the circuit. Such a mapping is defined for every ordering of the mea-

surement outcomes. This algorithm makes intuitive use of marginal probability estimates to do a

binary search for the measurement outcome corresponding to r. This technique avoids computing

ratios of probability estimates making it useful in regimes where additive errors are small but

larger than some of the probabilities in the target distribution. Hence, this algorithm has some

advantages compared to that of Appendix D. In particular, it can be used to lift an additive ε

precision estimator to a sampler from within L1 distance O(2nε). This can be used to construct

a ε-simulator in certain cases where the algorithm in Appendix D would fail. An example is

when one has access to an estimator with additive precision ε = 2−nκ where κ > 0 can be made

arbitrarily small in run-time O(poly(n, 1/κ)).
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Hardness results

In the previous section, we have shown that one can construct an ε-simulator for a family of

quantum circuits C given a poly-box for this family together with a promise of poly-sparsity

of the corresponding probability distribution. We also discussed a contrived construction of a

family of quantum circuits that admits a poly-box but is not ε-simulable (unless BQP=BPP).

In this section, we provide strong evidence (dependent only on standard complexity assumptions

and a variant of the now somewhat commonly used [13, 70, 71, 72, 73, 84, 76] “average case

hardness” conjecture) that a condition such as poly-sparsity is necessary even for natural families

of quantum circuits. One such family has already been identified by noting that CIQP admits a

poly-box and is hard to ε-simulate [70]. Here, we also show the hardness of ε-simulating the non-

poly-sparse Clifford circuit family CPROD (defined in Sec. 9). These results meant that at least

two (and possibly more) of the intermediate models of quantum computing have the property

that the probability of individual outcomes and marginals can be estimated to 1/poly(n) additive

error but due to non-sparsity, their ε-simulability is implausible.

Our hardness result for classical ε-simulation of CPROD closely follows the structure of several

similar results, and in particular that of the IQP circuits result of Ref. [70]. We note that this

hardness result is implied by the hardness results presented in Refs. [71, 72], however; our proof

is able to use a more plausible average case hardness conjecture than these references due to the

fact that we are proving hardness of ε-simulation rather than proving the hardness of the yet

weaker notion of approximate weak simulation employed by these references.

Despite the existence of a poly-box over CPROD, we show that there cannot exist a classical

ε-simulator of this family unless the average case hardness conjecture fails or the polynomial

hierarchy collapses to the third level. We note that the hardness of exact weak simulation of

CPROD was shown in Ref. [57]. In contrast here we show the hardness of ε-simulation for this

family. Our proof relies on a conjecture regarding the hardness of estimating Born rule probabil-

ities to within a small multiplicative factor for a substantial fraction of randomly chosen circuits

from CPROD. This average case hardness conjecture is a strengthening of the worst case hardness

of multiplicative precision estimation of probabilities associated with circuits from CPROD.

The hardness of ε−simulating CPROD circuits is shown by first noting that the existence

of a classical ε-simulator implies, via the application of the Stockmeyer approximate counting

algorithm [95], the existence of an algorithm (in the third level of the PH) for estimating the
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probabilities associated with the output distribution of the ε-simulator to within a multiplicative

factor. These estimates can then be related to estimates of the exact quantum probabilities by

noting two points:

1. that the deviation between the ε-simulator’s probability of outputting a particular outcome

and that of the exact quantum probability will be exponentially small for the vast majority

of outcomes. We show this fact using Markov’s inequality.

2. that a significant portion of outcomes associated with randomly chosen circuit in CPROD must

have outcome probabilities larger than a constant fraction of 2−n. We show this property

using our proof that these circuits anti-concentrate.

These observations are combined to show that if there exists an ε-simulator of CPROD, then there

exists a classical algorithm (in the third level of the PH) that can estimate Born rule outcome

probabilities to within a multiplicative factor for almost 50% of circuits sampled from CPROD.

This is in contradiction with Conjecture 2 thus implying that an ε-simulator does not exist.

11.1 Conjecture regarding average case hardness

We begin by stating our conjecture that multiplicative precision estimation of CPROD is #P-hard

in the average case.

Conjecture 2. There exist an input product state ρ over n qubits such that given a uniformly

random Clifford unitary U acting on n qubits, estimating p := tr
(
UρU †|0〉〈0|

)
to within a multi-

plicative error of 1/poly(n) for 49% or more of the sampled Clifford unitaries is #P-hard.

We note that this average case hardness conjecture has an analogous worst case hardness

version1. The worst case hardness can be proven by applying the result of Refs. [88, 57, 46, 89, 45]

and by an argument essentially identical to the proof of Thm. 5.1 in Ref. [76]. We omit the proof

here but note that this proof relies on three key facts:

1. that estimating Born rule probabilities for universal (indeed even IQP) circuits that use

a gate set with algebraic entries, to within any multiplicative factor in the open interval

(1,
√

2) is #P-hard [45, 46] ;

2. for gate sets with algebraic entries, all non-zero output probabilities are lower bounded by

some inverse exponential [89];

3. that CPROD circuits with post-selection (or adaptivity) are universal for quantum compu-

tation [88, 57].

We emphasize that similar conjectures are commonly used in related hardness proofs, such as

Refs. [13, 70, 71, 73, 84, 76].

1This is the same statement as per Conjecture 2 but with “49% or more” replaced by “100%”.
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11.2 Anti-concentration of outcomes for CPROD

Next, we prove that Clifford circuits chosen uniformly at random from the family CPROD satisfy

an anti-concentration property.

Lemma 11. Let d be a prime. For each n ∈ N, let cn be an n-qudit Clifford circuit chosen by

fixing an arbitrary n qudit input state ρ, applying a uniformly random Clifford unitary U acting

on n qudits and doing a computational basis measurement on all qudits. Then for all α ∈ (0, 1)

and for any fixed choice of x ∈ { 0, . . . , d− 1 }n:

Pr
U

(
px ≥

α

dn

)
>

(1− α)2

2
, (11.1)

where px := tr
(
UρU †|x〉〈x|

)
is the Born rule probability for the outcome x.

Proof. We use the unitary 2-design property of the Clifford group.

E(px) = tr
(
E(UρU†)|x〉〈x|

)
= tr (1/dn|x〉〈x|) =

1

dn
(11.2)

E(p2
x) = tr

(
E
(
U⊗U(ρ⊗ ρ)U† ⊗U†

)
|x〉|x〉〈x|〈x|

)
=

tr
(
PSym(ρ⊗ ρ)

)
trPSym

tr (PSym|x〉|x〉〈x|〈x|)

=
2tr
(
PSym(ρ⊗ ρ)

)
dn(dn + 1)

=
tr
(
ρ2
)

+ (tr ρ)2

dn(dn + 1)

≤ 2

dn(dn + 1)
, (11.3)

where PSym = 1
2(1 + SWAP) is the projection onto the symmetric subspace of Cdn ⊗ Cdn . We

use the Paley-Zygmund inequality, which states that for a non-negative random variable R with

finite variance, and for any α ∈ (0, 1):

Pr (R ≥ αE[R]) ≥ (1− α)2E2[R]

E[R2]
, (Paley-Zygmund inequality) (11.4)

Application of this inequality with Eqs. (11.2-11.3) then gives the desired result.

We point out that the property of anti-concentration is inconsistent with poly-sparsity. This

result is shown in Thm. 18 of Appendix E.

11.3 Hardness theorem

We are now in a position to prove our main theorem:
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Theorem 12. If there exists an ε-simulator of CPROD and Conjecture 2 holds, then the polynomial

hierarchy collapses to the third level.

Proof. Assuming there exists an ε-simulator of CPROD, we can treat the ε-simulator as a determin-

istic Turing machine with a random input. Let T be the Turing machine that takes as an input

ε > 0 (representing the L1 error required), r ∈ {0, 1}poly(n/ε) (representing the random bit-string)

and dc ∈ Apoly(n) (representing an efficient description of an n qubit circuit c ∈ CPROD) and

outputs an outcome Xε ∈ {0, 1}k with the correct statistics (over uniformly random r inputs) up

to ε in L1 distance in time poly(n, 1/ε). That is, the output satisfies:

||p− pε||1 :=
∑

x∈{0,1}k
|px − pεx| ≤ ε (11.5)

where px := Pr(X = x) is the probability of observing outcome x on a single run of the quantum

circuit c and pεx := Pr
r∼unif

(Xε = x) is the probability of observing outcome x on a single run of

the Turing machine T for a uniformly distributed random r and fixed ε, dc inputs.

We now note that the problem of computing the proportion pεx of bit-strings r that result in

T (ε, r, dc) = x is a problem in #P. Thus, the Stockmeyer algorithm gives us a means of estimating

pεx to within a multiplicative error in the complexity class FBPPNP.

More precisely, there exists an algorithm in FBPPNP which will output an estimate p̃εx such

that:

|pεx − p̃εx| ≤
pεx

poly(n)
(11.6)

Thus we have that for all c and for all x:

|px − p̃εx| ≤ |px − pεx|+ |pεx − p̃εx|

≤ |px − pεx|+
pεx

poly(n)

≤ |px − pεx|+
px + |px − pεx|

poly(n)

= |px − pεx|
(

1 +
1

poly(n)

)
+

px
poly(n)

(11.7)

We note that the expectation value of |px − pεx| over random choice of x ∼ unif({0, 1}k) is

upper-bounded by 2−nε. That is:

E
x
[|px − pεx|] =

1

2k

∑
x

|px − pεx| =
1

2k
||p− pε||1 ≤

ε

2k

Restricting our attention to circuits in CPROD where all of the qubits are measured i.e. k = n,

we have:

E
x
[|px − pεx|] ≤

ε

2n
(11.8)
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We apply Markov’s inequality, which states that for R a non-negative random variable and

γ > 0:

Pr

(
R ≥ E[R]

γ

)
≤ γ , (Markov’s inequality) (11.9)

we have that for all β > 0:

Pr
x

(
|px − pεx| ≥

E
x
[|px − pεx|]

β

)
≤ β (11.10)

That is:

Pr
x

(
|px − pεx| <

ε

β2n

)
> (1− β) (11.11)

Applying this to the upper bound in Eq. (11.7), we find that for all β > 0:

Pr
x

(
|px − p̃εx| <

ε

β2n

(
1 +

1

poly(n)

)
+

px
poly(n)

)
> (1− β) (11.12)

For any fixed choices of α ∈ (0, 1), β, ε > 0, let us define the following events:

• Event A: px
α ≥ 1

2n

• Event B: |px − p̃εx| < ε
β2n

(
1 + 1

poly(n)

)
+ px

poly(n) .

By Eq. (11.1), we have Pr
U

(A) > (1−α)2

2 and by Eq. (11.12), we have Pr
x

(B) > (1− β). Recall

that the intersection bound tells us that Pr(A ∩ B) ≥ max{0,Pr(A) + Pr(B) − 1} for events A

and B. Thus, we have Pr(A ∩B) ≥ (1−α)2−2β
2 . This immediately implies the following:

Pr
U,x

(
|px − p̃εx| <

εpx
αβ

(
1 +

1

poly(n)

)
+

px
poly(n)

)
>

(1− α)2 − 2β

2
(11.13)

This can be further simplified by incorporating the randomness over x into the uniform ran-

domness over the Clifford unitaries. Specifically, let y ∈ {0, 1}n be arbitrarily fixed. Further, let

Ux := ⊗ni=1X
xi . Then, noting that for all n qubit Cliffords V :

Pr
U,Ux

(UxU = V ) = Pr
U,Ux

(U = UxV ) (11.14)

= Pr
U

(U = V ) (11.15)

= Pr
U

(UyU = V ) (11.16)

where probabilities over Ux are chosen uniformly over all x ∈ {0, 1}n. Applying this to

Eq. (11.13) we find that for all y ∈ {0, 1}n and for all n qubit product states ρ;

Pr
U

(∣∣py − p̃εy∣∣ < εpy
αβ

(
1 +

1

poly(n)

)
+

py
poly(n)

)
>

(1− α)2 − 2β

2
(11.17)
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We recall that for an ε-simulator, ε > 0 can be made polynomially small efficiently in run-time

and n. Thus, as an example, we may assign the following scaling to α, β, ε:

α =
1

n
, β =

1

2n2
, ε =

αβ

n
. (11.18)

This argument shows that the existence of an ε-simulator of CPROD implies that there exists and

algorithm in ∆p
3 that can for any fixed product states ρ and measurement outcomes x ∈ {0, 1}n,

output an O(1/n) multiplicative precision estimate of px := tr
(
UρU † |x〉〈x|

)
for almost 50% of

randomly uniformly chosen Clifford unitaries U acting on n qubits. That is:

Pr
U

[
|px − p̃εx| < pxO(1/n)

]
>

1

2
− 1

n
(11.19)

By conjecture 2, this is #P-hard. This implies that a #P-hard problem is solved in FBPPNP.

By Toda’s theorem [96], this collapses the polynomial hierarchy to its third level.
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Discussion: Part 2

There is a substantial and growing body of results showing the classical “simulability” of some

quantum computers and the hardness of “simulability” of others. We hope that the results

presented here will significantly inform the interpretation of this literature in relation to the

comparison of the computational power of the relevant quantum computer to the computational

power of a universal classical computer. For some family of quantum circuits C, these results

typically make statements of the form either:

• Simulability: C can be classically “simulated” or

• Hardness: C can be classically “simulated” implies some implausible outcome

In the case of simulability proofs, our results show that whenever the notion of simulation used

is stronger or equivalent to ε-simulation, the useful computational power of C is contained within

classical. Further, if the notion of simulation is a poly-box (a weaker notion then ε-simulation),

this still applies provided that C is poly-sparse. If C is not known to be poly-sparse but admits

a poly-box then, we can still conclude that without non-trivial classical post-processing, C is

incapable of solving decision problems outside of the complexity class BPP.

In the case of hardness proofs, our results show that whenever the notion of simulation used

is weaker or equivalent to ε-simulation, it is plausible that the useful computational power of C is

beyond classical. However, for proofs of hardness based on weaker notions of simulation, it may

be possible to alter the proof such that it shows the hardness of ε-simulation (rather than a yet

weaker notion) with the added benefit that now the hardness is more plausible.

Some hardness results show the implausibility of classically simulating C with respect to a

notion of simulation much stronger than ε-simulation. Even if quantum computers can reliably

achieve such a notion of simulation, these results cannot be seen as showing the implausibility

of the existence of efficient classical devices that can be used as a perfectly good computational

substitute to C.
The perspective of efficient indistinguishability gives us a natural avenue to defining the set of

all problems solvable by a quantum device. We have seen that the minimal notion of simulation to

achieve this is ε-simulation; a significantly weaker notion of simulation than many of the notions

used in literature [25, 26, 16, 27]. Thus, the gap between classical and quantum computational

power can be closed not only by the development of more powerful classical simulation algorithms
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but also by significantly reducing the computational hurdle classical devices must overcome in

order to act as efficient substitutes to quantum computers. Our results exploit this feature in

order to show that any family of quantum circuits that both admits a poly-box and satisfies

the poly-sparsity condition can be ε-simulated. The existence of multiple known constructions

of poly-boxes (see Refs. [18, 43, 1, 2, 33]) over restricted families of quantum circuits, and in

particular Ref. [1], demonstrates the significant advantages offered by weakening the minimal

requirements on classical simulators from the stronger notions of weak simulation to that of

ε-simulation.

For any given family of quantum circuits, poly-sparsity can be trivially guaranteed by upper

bounding the number of measured qubits by log n. However, the condition of poly-sparsity per-

mits significantly more complex probability distribution families (including families with exponen-

tially growing support). Future exploration of how to non-trivially guarantee poly-sparsity offers

yet more potential for identifying interesting families of quantum circuits that are ε-simulable us-

ing the techniques outlined here.

In this paper, we have argued that ε-simulation minimally captures computational power.

However, the term “minimally” is with respect to the computational power of the referee, which

is unbounded in the setting we considered. This raises the importance of future work aimed at

defining the notion of simulation which minimally captures the computational power of a quan-

tum computer with respect to a referee that is computationally bounded to universal quantum

computation (or equivalent). In light of this observation, our work suggests that even requiring a

simulator to be capable of solving all sampling problems (as defined in Ref. [85]) solvable by the

quantum device is too strong to be minimal (w.r.t. a universal quantum bounded referee). Future

results in this direction would inform us on precisely how to further weaken the notion of sampling

problems and to define a yet weaker complexity class than SampBQP (or more generally SampC)
that (w.r.t. a universal quantum bounded referee) minimally captures computational power.

In an experimental setting where there is a constant lower bound to the noise present in the

quantum device, the minimal requirements for efficient indistinguishability become yet weaker. In

this setting, it is plausible that for IQP circuits and boson sampling circuits, classical computation

can achieve the minimal requirements for efficient indistinguishability w.r.t. a universal quantum

bounded referee. This possibility is supported by the existence of classical algorithms for simulat-

ing noisy IQP circuits [78] and noisy boson sampling circuits [79]. In the constant lower bounded

noise setting, these algorithms fail to achieve efficient indistinguishability w.r.t. a computation-

ally unbounded referee. However, whether or not they achieve efficient indistinguishability w.r.t.

a universal quantum bounded referee remains a question to be resolved.

Aiming to tighten the separation between simulability and hardness is an important goal

toward a deeper understanding of the computational power of quantum verses classical circuits.

Specifically, the aim is to move towards a full classification of simulablity by gradually reducing

the “unclassified” space (of parameters describing a quantum computer that are both outside the

range to ensure simulabilty and outside the range to ensure hardness of simulability). By focusing

on the tension between anti-concentration and poly-sparsity our work has made modest progress

in this direction with potential for further consolidation and progress with respect to this aim.

We have shown the poly-sparsity and anti-concentration properties to be mutually exclusive.

If we assume that the polynomial hierarchy does not collapse and restrict to quantum computers
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that admit a poly-box and average case hardness (some plausible candidates being CIQP, CPROD,

and their poly-sparse restricted counterparts) we see that either poly-sparsity holds ensuring

ε-simulability or anti-concentration holds ensuring hardness.

For general quantum circuit families, poly-sparsity and anti-concentration are not exhaustive.

Future work directed towards finding interesting spaces of quantum computers where the two

notions are exhaustive would help to classify more of the yet unclassified computers in Fig. 7.1

(admits a poly-box and not poly-sparse). Restricted to this setting, all quantum computers that

admit the appropriate average case hardness property would admit a hardness proof. Further,

such work can give a much needed new perspective on the peculiar nature of the transition from

ε-simulable to hardness that IQP and magic state injected Clifford circuit families undergo as

they transition from poly-sparse to non-poly-sparse. In particular, this may shed light on whether

this behavior (shared by IQP, magic state injected Clifford circuit and possibly others) is common

to intermediate models of quantum computing for a good reason or simply a coincidence.

Our work establishes the conceptual importance of a poly-box as a notion of simulation.

Through the Hoeffding inequality and powerful sampling techniques such as Monte Carlo simula-

tions, we inherit a number of important examples of poly-boxes including IQP circuits, magic state

injected Clifford circuit and circuits with polynomially bounded negativity (see also Refs. [18, 43,

1, 2, 33]). This is of immediate practical interest as admitting a poly-box is sufficient for many

useful problems such as finding certain expectation values or estimating the probability associated

with certain events.

Whether or not a family of quantum circuits C admits a poly-box significantly informs our

understanding of the computational power of C relative to classical. Simulability of a family

of quantum circuits C according to the notion of a poly-box, implies that, without additional

classical computational resources, C cannot solve decision problems outside of classical. If C is

also poly-sparse (with binary outcome circuits being a very special case) then even an agent with

universal classical computational power and access to the quantum computer C is confined to

universal classical computational power. However, when supplemented with a universal classical

computer, if C admits a poly-box but is not poly-sparse then it may be capable of solving decision

problems beyond BPP. This possibility is not ruled out by our analysis and is consistent with the

fact that CPROD and CIQP circuits both admit hardness proofs.

There is something conceptually unclear about circuit families that admit poly-boxes and

a hardness proof of the type presented in Sec. 11. In particular, it is unclear if these admit

a poly-box purely due to the restriction placed on the types of events that a poly-box can be

queried about, or if hardness of ε-simulation could manifest even in circuit families which allow

efficient classical polynomial precision estimation of probabilities associated with any family of

events decidable in BPP. In the latter case, an agent with access to such circuits cannot solve any

decision problem outside of BPP even given access to a universal classical computer. The former

case leaves open the possibility that these families of circuits will behave like Ce (introduced in

Sec. 10.1) where some appropriate classical post-processing of outcome samples will render them

more powerful than BPP (assuming BQP6⊆ BPP). This question is closely related to an open

question raised by Aaronson in Ref. [85].

It is surprising that examples of families of circuits that admit a poly-box and a plausible

hardness proof are far from rare and in fact may be typical among intermediate models of quantum
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computing. In addition to the families we have shown to be in this category (CPROD and CIQP),

we note that linear optical networks CLON and circuits with polynomially bounded negativity

CpolyN are also plausible candidates. We note that due to an algorithm by Gurvits [69] (see also

Ref. [97]), the family of linear optical quantum circuits considered in the boson sampling setting

of Ref. [13] admit additive polynomial precision estimators of individual outcome probabilities.

However, there is no known poly-box over this family since it is currently unclear how to produce

such estimators for all marginal probabilities. Alternatively, CpolyN is known to admit a poly-box

[1]. Also, for odd prime d it contains the qudit generalization of CPROD which is both universal

under post-selection and anti-concentrates. Hence an average case hardness conjecture is also

plausible implying that CpolyN admits a proof of hardness essentially identical to that of CPROD.

In light of these considerations we are optimistic that useful and computationally interesting

applications can be found for intermediate models of quantum computation.
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Hoeffding’s inequality

The original Hoeffding’s Inequality reads [52]:

Theorem 13 (Hoeffding’s Inequality). Let {Xs}Ss=1 be independent real valued random variables

such that Xs ∈ [as, bs] for all s ∈ [S]. Then, for all ε > 0 the following holds:

Pr
(
X̄ − µ ≥ ε

)
≤ exp

(
−2S2ε2∑S

s=1 (as − bs)2

)
(A.1)

where X̄ = 1
S

∑S
i=1Xi and µ = 〈X̄〉.
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Upper bounding Born rule

probabilities from estimates

In this section we derive Eq. (5.64). This equation provides a probabilistic upper bound for the

Born rule probability p in terms of algorithmic parameters s and L and an estimate p̂ produced

using our estimation algorithm from Ch. 5 with these parameters.

Let us consider a small increase on the minimal choices of s and L given by Eqs. (5.44) and

(5.46) combined with the choice δ = δ̃ = δtot/4:

s =
2(2γt/2 + 1)2(√
p+ ε−√p

)2 log
(
δtot/8e

2
)−1

, (B.1)

=
a(√

p+ ε−√p
)2 (B.2)

and

L =

(
p+ ε

εtot − ε

)2

log (δtot/4)−1 , (B.3)

=

(
p+ ε

εtot − ε

)2

b. (B.4)

where we have defined a := 2(2γt/2 + 1)2 log
(
δtot/8e

2
)−1

and b := log (δtot/4)−1.

Eqs. (B.2) and (B.4) can be rewritten as follows:

ε =

(√
p+

√
a

s

)2

− p,

= 2

√
pa

s
+
a

s
(B.5)
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and

εtot = ε+ (p+ ε)

√
b

L

= p

√
b

L
+ ε

(
1 +

√
b

L

)
. (B.6)

By substituting Eq. (B.5) into Eq. (B.6), it is easy to show that:

εtot = p

√
b

L
+

(
2

√
ap

s
+
a

s

)(
1 +

√
b

L

)
, (B.7)

≤ p
√
b

L
+

(
2

√
a

s
+
a

s

)(
1 +

√
b

L

)
. (B.8)

We note that since this is an increasing function of p on the domain of interest, we can probabilis-

tically upper bound the εtot by replacing p with a probabilistic upper bound, namely p ≤ p̂+ εtot

with high probability (w.h.p.) i.e. with probability of at least 1− δtot/2. This gives that w.h.p.:

εtot ≤ (p̂+ εtot)

√
b

L
+

(
2

√
a

s
+
a

s

)(
1 +

√
b

L

)
. (B.9)

We now simplify to get:

εtot ≤ p̂
√
b/L

1−
√
b/L

+
1 +

√
b/L

1−
√
b/L

(
2

√
a

s
+
a

s

)
. (B.10)

Adding p̂ to both sides and re-applying the probabilistic upper bound p ≤ p̂+ εtot, we find that

the LHS upper bounds p giving the desired probabilistic upper bound:

p ≤ p̂ 1

1−
√
b/L

+
1 +

√
b/L

1−
√
b/L

(
2

√
a

s
+
a

s

)
. (B.11)
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Strong simulation implies

EPSILON-simulation

In this appendix , we will show that the existence of a classical strong simulator of a family of

quantum circuits implies the existence of an ε-simulator (it can in fact construct an approximate

weak simulator based on the stronger notion from Ref. [25]). This algorithm aims to map a bit-

string (representing the outcome of running the circuit) to r, which is sampled uniformly from

[0,1]. While such a mapping is defined for every ordering of the measurement outcomes, it cannot

be efficiently computed. This algorithm makes intuitive use of marginal probability estimates to

do a binary search for the bit-string corresponding to r. This technique avoids computing ratios

of probability estimates making it useful in regimes where additive errors are small but larger

than some of the probabilities in the target distribution.

We start by giving a more precise definition of a strong simulator (than was presented in

Sec. 8.1).

Definition 8. (strong simulator). A strong simulator of a uniform family of quantum circuits

C = { ca | a ∈ A∗ } with associated family of probability distributions P = {Pa | a ∈ A∗ } is a

classical algorithm that, for all a ∈ A∗, ε, δ > 0 and S ∈ { 0, 1, • }kn, can be used to compute an

estimate p̂ of Pa(S) such that p̂ satisfies the accuracy requirement:

Pr
(
|p− p̂| ≥ ε

)
≤ δ (C.1)

and, the run-time required to compute the estimate p̂ is O(poly(n, log ε−1, log δ−1)).

We point out that much like a poly-box, a strong simulator outputs estimates of Born prob-

abilities. The key difference is that the precision of a strong simulator is exponential compared

to the polynomial precision of a poly-box. In particular, for any polynomial f , a strong simula-

tor can (efficiently in n) output estimates such that Eq. (C.1) is satisfied for ε ∈ Ω(2−f(n)) (as

opposed to a poly-box which generally requires ε ∈ Ω(1/f(n))). Hence, we note that the only

difference between the definition of a strong simulator and that of a poly-box is the scaling of

run-time in ε.

Theorem 14. Let C be a uniform family of quantum circuits. If C admits a strong simulator,

then C admits an ε-simulator.
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In fact we will prove an even stronger statement; that a strong simulator implies approximate

weak simulation in the much stronger sense of approximate weak simulation used in Ref. [25]

(exponentially small error in L1 norm).

Before proving this theorem, we introduce an algorithm that uses output from a strong sim-

ulator to approximately sample from the output distribution of a circuit i.e. to produce output

consistent with the definition of an ε-simulator. Without loss of generality, let c ∈ C be an arbi-

trary n qubit circuit with all n qubits measured. We will denote the quantum probabilities by

pS and the output of the strong simulator by pε,δS suppressing the dependence on c.

To give a rough intuition, the algorithm will first sample a polynomial length bit-string r̃ which

will be mapped to a probability r ∈ [0, 1]. This value will remain fixed and be used throughout

the algorithm until a sample X̃ is generated from the approximate output distribution. This

sample will be the output of the ε-simulator upon a single execution with the input (ε′, c). The

sample X̃ = (X̃1, . . . , X̃n) will be generated by sampling one bit at a time starting with X̃1. The

choice of the jth bit X̃j is based on the comparisons between the output of the strong simulator

pε,δS and the probability r. This n step process will require n calls to the strong simulator where

in each call, the only variation in the inputs is the events Sj . Each event Sj will be chosen based

on the previously sampled values X̃1, . . . , X̃j−1.

The algorithm will proceed as follows:

1. Fix m ∈ N and ε, δ > 0 based on C and the desired L1 error upper bound, ε′ (see later).

2. Sample r̃ uniformly from {0, 1}m.

3. Compute r =
∑m

i=1 r̃i2
−i

4. Set S := (s1, . . . , sn) = (•, . . . , •).

5. Set j = 1.

6. Set sj = 0.

7. Set Sj = S.

8. Request pε,δSj from the strong simulator.

9. If pε,δSj ≥ r, then set X̃j = 0 otherwise, set X̃j = 1.

10. Set sj = X̃j .

11. If j = n, output the string X̃ = (X̃1, . . . , X̃n) and end.

12. Reset j → j + 1 and go to step 6.

We now prove Thm. 14.

Proof. We wish to show that for all acceptable families of quantum circuits C, choices of c ∈ C
and ε′ > 0:

• there exist a polynomially bounded function f(ε′, n) which determines m and
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• there exist functions for determining ε, δ

such that given a strong simulator of C, the above algorithm can be executed in run-time

O(poly(n, ε′−1)) and produce output X̃ from a distribution P̃ satisfying P̃ ∈ B(P, ε′).
We note that the probability distribution over x ∈ {0, 1}n defines a partitioning (up to sets

of measure zero) of the unit interval into 2n intervals1 Vx labeled by x such that the uniform

measure on these intervals corresponds to the quantum probability of outcome x. That is, we fix

the partitioning such that for all x ∈ {0, 1}n:

µ(Vx) = px. (C.2)

To be specific, we can define Vx = [v−x , v
+
x ] where:

v−x =
∑
x′<x

px′ (C.3)

v+
x =

∑
x′≤x

px′ (C.4)

(C.5)

where, the above order on bit strings x′ and x is defined by lexicographical ordering.

We note that given a uniform sample p from the unit interval, p will, up to measure zero,

be strictly identified with an outcome x ∈ {0, 1}n through the mapping o : [0, 1] \ D → {0, 1}n
implicitly defined by p ∈ Vo(p) for all p ∈ [0, 1] \ D where D := { pS | S ∈ { 0, 1, • }n }. Further,

in the ideal case where the strong simulator produces output which is deterministically exact

i.e. pε,δS = pS for all S, we note that the above algorithm would, for a given r, produce output

X̃ = o(r). For r distributed uniformly on the unit interval, this ensures X̃ is sampled from

exactly the quantum distribution. We thus note that two sources of error arise. The first is

from the inaccuracies introduced by the strong simulator’s output. The second is from having to

approximate a uniform sample over [0, 1] by a uniform sample over {0, 1}m.

Let p̃ε,δx denote the probability Pr(X̃ = x). Then, we have:

p̃ε,δx =
∑

r̃∈{0,1}m
2−m Pr(X̃ = x | r) (C.6)

Given an interval V = [v−, v+] and α ∈ R, we define:

V α =

{
[v− − α, v+ + α], if α ≥ 0 or v+ − v− ≥ 2α

[v
−+v+

2 , v
−+v+

2 ], otherwise
(C.7)

If px ≥ 2ε and r ∈ V −εx then:

Pr(X̃ = x|r) ≥ (1− δ)n. (C.8)

This can be seen by noting that with probability ≥ 1− δ, each requested probability estimate in

1Here, we use a looser notion of interval by allowing points p ∈ R to constitute an intervals [p, p].
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step 8 will be within ε of the corresponding quantum probability resulting in X̃j = o(r)j .

Thus, we have:

p̃ε,δx ≥
∑

r̃∈{0,1}m

r∈V −εx

2−m(1− δ)n (C.9)

≥ lx2−m(1− δ)n (C.10)

≥ [px − 2ε− 2−m](1− δ)n (C.11)

where

lx : =

⌊ |V −εx |
2−m

⌋
(C.12)

=

⌊
px − 2ε

2−m

⌋
(C.13)

is a lower bound on the number of bit strings r̃ which under the map in step 3 must be contained

in the interval V −εx .

If r ∈ R \ V +ε
x then:

Pr(X̃ = x|r) ≤ 1− (1− δ)n (C.14)

since estimates within ε of the target probability at each of the n iterations of step 8 will result

in X̃ 6= x.

Thus, we also have:

p̃ε,δx ≤
∑

r̃∈{0,1}m
r∈V+ε

x

2−m Pr(X̃ = x | r) +
∑

r̃∈{0,1}m
r∈R\V+ε

x

2−m1− (1− δ)n (C.15)

≤ ux2−m + [1− (1− δ)n] (C.16)

≤
[
px + 2ε+ 2−m

]
+ [1− (1− δ)n] (C.17)

where

ux : =

⌊ |V +ε
x |

2−m

⌋
+ 1 (C.18)

=

⌊
px + 2ε

2−m

⌋
+ 1 (C.19)

is an upper bound on the number of bit strings r̃ which under the map in step 3 must be contained

in the interval V +ε
x .

Thus px ≥ 2ε:

[−2ε− 2−m](1− δ)n − px [1− (1− δ)n] ≤ p̃ε,δx − px ≤
[
2ε+ 2−m

]
+ [1− (1− δ)n] (C.20)
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i.e. ∣∣∣p̃ε,δx − px∣∣∣ ≤ [2ε+ 2−m
]

+ [1− (1− δ)n] (C.21)

Also, if px ≤ 2ε, then:

−px ≤ p̃ε,δx − px ≤
[
2ε+ 2−m

]
+ [1− (1− δ)n] (C.22)

thus, the bound from Eq. (C.21) also applies in this case.

This implies that:

ε′ ≤ 2n
[
2ε+ 2−m + 1− (1− δ)n

]
. (C.23)

Clearly there exist choices of polynomials f1, f2, f3 such that for ε′ = 1
poly(n) or even ε′ = 2−poly(n),

Eq. (C.23) can be satisfied by choosing ε ≤ 2−f1(n), δ ≤ 2−f2(n) and m ≥ f3(n). We complete

the proof by noting that these choices ensure that the run-time of the strong simulator and the

above algorithm are efficient in n and 1/ε′.
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Multiplicative precision simulation

implies EPSILON-simulation

In this section, we present an algorithm (very similar to Ref. [26]) which uses an estimator with

multiplicative precision to construct an ε-simulator (it can in fact construct an approximate weak

simulator based on the stronger notion from Ref. [26]). This algorithm exploits the fact that

ratios of multiplicative precision estimators are multiplicative precision in order to sequentially,

one qubit’s measurement outcome at a time, sample from the marginal probability of the next

qubit’s measurement conditioned on the sampled outcomes of the prior measurements. This

algorithm and its variants have also been presented in [19, 20] and are well known within the

simulation-of-quantum-circuits community.

Here, we claim without proof that this algorithm lifts a classical multiplicative precision sim-

ulator of a family of quantum circuits to an approximate weak simulator based on the stronger

notion from Ref. [26]. This result has been shown in Ref. [26], but we discuss it here for com-

pleteness.

We start by giving a definition of a multiplicative precision simulator.

Definition 9. (multiplicative precision simulator). A multiplicative precision simulator of a

uniform family of quantum circuits C = { ca | a ∈ A∗ } with associated family of probability

distributions P = {Pa | a ∈ A∗ } is a classical algorithm that, for all a ∈ A∗, ε, δ > 0 and

S ∈ { 0, 1, • }kn, can be used to compute an estimate p̂ of Pa(S) such that p̂ satisfies the accuracy

requirement:

Pr
(
|p− p̂| ≥ εp

)
≤ δ (D.1)

and, the run-time required to compute the estimate p̂ is O(poly(n, ε−1, δ−1)).

We claim that a multiplicative precision simulator can be used to construct an ε-simulator.

Theorem 15. Let C be a uniform family of quantum circuits. If C admits a multiplicative

precision simulator, then C admits an ε-simulator.

We omit a complete proof of this theorem as it makes straightforward use of standard tech-

niques. However, we outline the algorithms which uses output from a multiplicative precision
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simulator to approximately sample from the output distribution of a circuit. Without loss of

generality, let c ∈ C be an arbitrary n qubit circuit with all n qubits measured. We will denote

the quantum probabilities by pS and the output of the multiplicative precision simulator by pε,δS
suppressing the dependence on c.

The algorithm will proceed as follows:

1. Fix m ∈ N and ε, δ > 0 based on C and the desired L1 error upper bound, ε′ (see later).

2. Set S := (s1, . . . , sn) = (•, . . . , •).

3. Set pε,δS0
:= 1.

4. Set j = 1.

5. Set sj = 0.

6. Set Sj = S.

7. Request pε,δSj from the multiplicative precision simulator.

8. Compute cj := pε,δSj /p
ε,δ
Sj−1

9. Sample r̃ uniformly from {0, 1}m.

10. Compute r =
∑m

i=1 r̃i2
−i

11. If cj ≥ r, then set X̃j = 0 otherwise, set X̃j = 1.

12. Set sj = X̃j .

13. If j = n, output the string X̃ = (X̃1, . . . , X̃n) and end.

14. Reset j → j + 1 and go to step 5.

We note that multiplicative precision estimate can divide each other and still produce a

multiplicative precision estimate. Hence cj computed in step 8 is a multiplicative precision

estimate of the quantum conditional probability pSj/pSj−1 = Pr(Xj = xj | X1 = x1, . . . , Xj−1 =

xj−1). This ensures that for ε′ = 1
poly(n) , there exist polynomials f1, f2, f3 such that ε ≤ 1/f1(n),

δ ≤ 1/f2(n) and m ≥ f3(n) satisfy the desired accuracy.
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On poly-sparsity and

anti-concentration

In this section we will prove that poly-sparsity and anti-concentration cannot simultaneously be

satisfied by any family of quantum circuits. This result is proven in Thm. 18.

The condition of poly-sparsity forces the output distributions over exponentially many out-

comes to concentrate on polynomially many outcomes. Alternatively, the property of anti-

concentration forces the probabilities of observing any particular outcome, over random choices

of circuits, to be low. Intuitively these properties do appear to oppose each other. However,

since these properties are statements with respect to different probability spaces, we must first

translate each property into a statement about a common probability space and with a common

measure. This is done for anti-concentration and poly-sparsity in Lem. 16 and 17 respectively.

We then state and prove our main claim in Thm. 18.

First let us restate the relevant definitions is some detail.

Definition 10. (poly-sparse) Let P be a discrete probability distribution. We say that P is

poly-sparse if there exists a polynomial P (x) such that for all ε > 0, P is ε-approximately t-

sparse whenever t ≥ P (1
ε ).

Let P be a family of probability distributions with Pa ∈ P a distribution over {0, 1}ka. We say

that P is poly-sparse if there exists a polynomial P (x) such that for all ε > 0 and a ∈ A∗, Pa is

ε-approximately t-sparse whenever t ≥ P (ka/ε).

Definition 11. (anti-concentration) Let C be a family of quantum circuits with P its associated

family of probability distributions. For all n ∈ N let σn be a probability measure over An. We say

that C anti-concentrates with respect to the set of measures Σ := {σn }n∈N iff ∀n ∈ N, ∀x ∈ {0, 1}n
and ∀α ∈ (0, 1):

Pr
a∈An

(
Pa(x) ≥ α

2n

)
>

(1− α)2

2
(E.1)

where the probability is with respect to the measure σn.

Lemma 16. For each n ∈ N, let σn be a probability measure over An, let νn be any probability

measure over over {0, 1}n and let τn be a probability measure over An × {0, 1}n defined as the
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product measure σn× νn. Then C anti-concentrates with respect to {σn }n∈N implies that ∀n ∈ N
and ∀α ∈ (0, 1):

Pr
(a,x)∈An×{0,1}n

(
Pa(x) ≥ α

2n

)
>

(1− α)2

2
(E.2)

where the probability is taken with respect to τn.

Proof. For each n ∈ N, we first define the sets Sx := { (a, x) ∈ An × {0, 1}n | Pa(x) ≥ α
2n } and

S′x := { a ∈ An | Pa(x) ≥ α
2n }. Let S := ∪

x∈{0,1}n
Sx.

By the definition of anti-concentration, we have that ∀n ∈ N, ∀x ∈ {0, 1}n and ∀α ∈ (0, 1):

σn(Sx) >
(1− α)2

2
.

Let us fix νn and note that:

∑
x∈{0,1}n

νn({x })× σn(S′x) >
∑

x∈{0,1}n
νn({x })× (1− α)2

2
(E.3)

The LHS of Eq. (E.3) simplifies as follows:∑
x∈{0,1}n

νn({x })× σn(S′x) =
∑

x∈{0,1}n
τn(Sx)

= τn(S).

By the fact that νn is a probability measure, the RHS simplifies to (1−α)2

2 thus proving the

claim.

Lemma 17. For each n ∈ N, let σn be any probability measure over An, let un be the uniform

probability measure over over {0, 1}n and let τn be a probability measure over An×{0, 1}n defined

as the product measure σn × µn. Then C is poly-sparse implies that ∀β, ε ∈ (0, 1], ∃n0 ∈ N such

that ∀n ≥ n0 and ∀γ > 0:

Pr
(a,x)∈An×{0,1}n

(
Pa(x) ≥ ε

2nγ(1− β)

)
≤ γ + β (E.4)

where the probability is taken with respect to τn.

Proof. For any family of quantum circuits C, ∀n ∈ N and for each a ∈ An, a minimal function

ta : [0, 1] → N can be uniquely defined such that ∀ε ∈ [0, 1], the probability of observing an

outcome to be one of the ta(ε) most likely outcomes (when circuit ca ∈ C is run) is ≥ 1 − ε.
Poly-sparsity implies that there exists a polynomial P such that ∀ε ∈ (0, 1], ∀n ∈ N, ∀a ∈ An,

ta(ε) ≤ P (n/ε).

We apply Markov’s inequality, which states that for R a non-negative random variable and
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γ > 0:

Pr

(
R ≥ E[R]

γ

)
≤ γ. (Markov’s inequality)

For any fixed n ∈ N, a ∈ An, let us consider uniformly randomly sampling from one of the

2n − ta(ε) least likely outcomes. In this case:

E[Pa(x)] =
ε+

2n − ta(ε)
≤ ε

2n − ta(ε+)

=
ε

2n − ta(ε)− 1

where ε± are the two extremal points of the interval V := [ε−, ε+) containing ε such that ∀κ ∈ V
ta(κ) = ta(ε).

This implies that ∀ε ∈ (0, 1], ∀n ∈ N, ∀a ∈ An, ∀γ > 0, if we uniformly randomly sample from

one of the 2n − ta(ε) least likely outcomes, then:

Pr
x∈{0,1}n

(
Pa(x) ≥ E[Pa(x)]

γ

)
≤ Pr

x∈{0,1}n

(
Pa(x) ≥ ε

γ(2n − ta(ε)− 1)

)
≤ γ

Hence, for x uniformly sampled over all bit-strings:

Pr
x∈{0,1}n

(
Pa(x) ≥ ε

γ(2n − ta(ε)− 1)

)
≤ γ +

ta(ε)

2n

i.e.

Pr
x∈{0,1}n

(Pa(x) ≥ η) ≤ c (E.5)

where η := ε2−n

γ(1−ta(ε)2−n−2−n)
, c := γ + ta(ε)

2n and the probability is over the uniform measure un
over {0, 1}n.

Let us note that by the fact that poly-sparsity requires that there is a polynomial P such that

ta(ε) ≤ P (n/ε), we have that ∀β, ε ∈ (0, 1], ∃n0 ∈ N such that ∀n ≥ n0, ∀a ∈ An and ∀γ > 0:

β ≥ ta(ε) + 1

2n

implying that η ≤ ε2−n

γ(1−β) and c < γ + β.

For all n ∈ N, we define the sets:

Ta := { (a, x) ∈ An × {0, 1}n | Pa(x) ≥ η } ,
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T ′a := {x ∈ {0, 1}n | Pa(x) ≥ η } ,

and

T := ∪
a∈An

Ta.

We now note that Eq. (E.5) can be rewritten as:

un(T ′a) ≤ c.

For any fixed sequence of measures σn over An, we can define τn = σn × un to get:∑
a∈An

σn(a)× un(T ′a) ≤
∑
a∈An

σn(a)× c. (E.6)

The LHS of this equation can be simplified as follows:∑
a∈An

σn(a)× un(T ′a) =
∑
a∈An

τn(Ta)

= τn(T ).

By the fact that σn is a probability measure, the RHS of Eq. (E.6) simplifies to c thus proving

the claim.

Theorem 18. For each n ∈ N let σn be a measures over An and let C = ∪
n∈N
{ ca }a∈An be a

family of quantum circuits such that C anti-concentrates with respect to Σ = {σn }n∈N. Then C
is not poly-sparse.

Proof. We will show that the two conditions together give rise to a contradiction and hence are

inconsistent. We apply Lem. 16 and set α = 1/8 and for each n ∈ N, νn = un, the uniform

measure over {0, 1}n giving:

Pr
(a,x)∈An×{0,1}n

(
Pa(x) ≥ 1

2n × 2

)
>

1

8
. (E.7)

We apply Lem. 17 and set β = γ = 1/16 and ε = 1
64

(
1− 1

16

)
giving:

Pr
(a,x)∈An×{0,1}n

(
Pa(x) ≥ 1

2n × 4

)
≤ 1

8
(E.8)

where both Eq. (E.7) and (E.8) are with respect to the same measure τn thus implying a contra-

diction.

Thm. 18 establishes that poly-sparsity and anti-concentration are mutually exclusive proper-

ties. However, these properties can nonetheless jointly fail to be satisfied. For example, we can
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take an infinite family of circuits (growing faster than 2n) which is poly-sparse then for each n

append a single circuit with output distribution that is uniform. This change ensures that the

family now breaks poly-sparsity but is insufficient for anti-concentration to be instated. In addi-

tion, if we assume that the family admits a poly-box then we notice that by Thm. 10 this family

was ε-simulable before the change but after the change no longer satisfies the requirements for

the application of Thm. 10 despite the fact that we have only added a sequence of uniform distri-

butions which are ε-simulable. A clean mathematical characterization of when poly-sparsity and

anti-concentration can jointly fail may help inform how to best resolve this undesirable situation.

118



Bibliography

[1] H. Pashayan, J. J. Wallman, and S. D. Bartlett, “Estimating outcome probabilities of quan-

tum circuits using quasiprobabilities,” Physical Review Letters, vol. 115, no. 7, p. 070501,

2015.

[2] S. Bravyi and D. Gosset, “Improved classical simulation of quantum circuits dominated by

Clifford gates,” Physical Review Letters, vol. 116, no. 25, p. 250501, 2016.

[3] H. Pashayan, S. D. Bartlett, and D. Gross, “From estimation of quantum probabilities to

simulation of quantum circuits,” arXiv preprint arXiv:1712.02806, 2017.

[4] A. M. Turing, “On computable numbers, with an application to the entscheidungsproblem,”

Proceedings of the London Mathematical Society, vol. s2-42, no. 1, pp. 230–265, 1937.
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