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Abstract

The task of segmenting nuclei and cytoplasm in Papanicolau smear images is

one of the most challenging tasks in automated cervix cytological analysis ow-

ing to the high degree of overlapping, the multiform shape of the cells and their

complex structures resulting from inconsistent staining, poor contrast, and the

presence of inflammatory cells. This article presents a robust continuous vari-

ational segmentation framework based on convolutional neutral network and a

learned shape prior enabling an accurate analysis of overlapping cervical mass.

The shape prior is dynamically modelled during the segmentation process as a

weighted linear combination of shape templates from an over-complete shape

dictionary under sparsity constraints. We provide quantitative and qualitative

assessment of the proposed method using two databases of 153 cervical cytol-

ogy images, with 870 cells in total, synthesised by accumulating real isolated

cervical cells to generate overlapping cellular masses with a varying number of

cells and degree of overlap. The experimental results have demonstrated that

our methodology can successfully segment nuclei and cytoplasm from highly

overlapping mass. Our segmentation is also competitive when compared to the
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state-of-the-art methods.

Keywords: Overlapping cell segmentation, convolutional neural network,

feature learning, sparse reconstruction, level set evolution.

1. Introduction

Cervical cancer is the fourth most common cause of cancer death in women

worldwide, with more than 270 thousand deaths every year [1]. Fortunately,

this cancer can be easily detected and preventable in its early stage by Pap

smear test, where a sample of cells is collected from the vagina and the neck5

of the uterus, and examined under a microscope, to identify the abnormali-

ties of cell number, shape, and size. Pap test is currently a manual screening

method performed by a cytologists or pathologist, hence, it is a tedious and time-

consuming process. The accurate segmentation of cervical nuclei and cytoplasm

is the most challenging step toward developing an automatic machine-assisted10

screening and diagnosing system for cervical cancer, which is complicated by

the complex structure of cervical cells, high overlapping degree, and presence

of mucus, blood, and inflammatory cells in Pap smears [2]. Figure 1 shows a

snapshot of microscopic images obtained from the Pap smear test, and samples

of overlapping cervical cells. It is observed that there are many overlapping15

cells with fuzzy contour, making it extremely difficult and time consuming for

humans to delineate the cells, and also challenging to design a fully automatic

segmentation method.

Recently, various methods have been proposed in the literature to seg-

ment the isolated, touching, and overlapping cervical cells. These cervical20

cell segmentation methods can be classified into two main categories based on

the segmented cellular components: (1) nuclei segmentation methods to de-

tect only the nuclei boundaries in isolated or overlapping smear cells, such as

[3, 4, 5, 6, 7, 8, 9]; (2) both nuclei and cytoplasm segmentation methods to

delineate the nucleus and cytoplasm contours in either isolated or overlapping25

smear cells [10, 11, 12, 13, 14, 15].
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Several methods for segmenting nuclei of isolated or partially overlapping

cells, were proposed based on active contours [3], level set [6], watershed trans-

form [4, 9], unsupervised classification [5], deep learning with Graph Partitioning

[8], and shape modeling [7, 16]. For instance, Bergmeir et al. [6] introduced a30

semi-automatic approach to segment nuclei in high-resolution Pap images under

the expert control, in which nuclei candidates were determined by Canny edge

detector and Hough transform, and then processed by a level set evolution. A

nuclei shape modeling approach, combining local features of the nuclei bound-

ary and a priori knowledge of the expected nuclei shape trained on isolated35

nuclei images, is proposed [7] to segment the overlapping nuclei. Another shape

modeling approach is introduced in [16] to approximate the nuclei shape based

on nucleus-level information and ellipse fitting method. These approaches, how-

ever, do not segment the cell cytoplasm, whose shape and size are substantial

information for accurate diagnosis.40

A number of methods have been adopted to segment single and touched

cytoplasm from cervical smear images. Earlier researchers in this field used

thresholding techniques, such as [17], which often resulted in unsatisfactory re-

sults due to the complex structure of cervix cells from poor contrast and variable

staining. Marker-based and multi-scale watersheds have also been used to seg-45

ment the cytoplasm [12]. However, it could be difficult to find a representative

marker for each cell and result in over-segmentation. Unsupervised classification

is another option that has been applied to single cell segmentation [11]. Other

widely used segmentation methods include active contour models (ACM) with

edge- and region-based models [10, 18] due to their ability to recover closed50

object boundaries with pixel accuracy. However, all of these techniques ex-

tract the whole cellular mass consisting of a number of cells, which are however

insufficient for shape analysis.

In the last few years, the development of a complete segmentation techniques

for both nuclei and associated cytoplasm from overlapping cells has drawn the55

attention of research groups over the world. Several segmentation methods for

partially overlapping cells, have been designed based on edge enhancement tech-
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niques [19], geodesic active contour [20, 21], watershed transform [15, 13, 22],

sliding band filter [23], and cell shape formation [24, 25]. However, these meth-

ods cannot work with highly overlapping cells. The segmentation of highly60

overlapping cells is still the most challenging problem, in which further research

must be undertaken to validate automatic schemes providing precise segmenta-

tion of overlapping nuclei and cytoplasm.

Recently, the first “Overlapping Cervical Cytology Image Segmentation Chal-

lenge” [26] was held in conjunction with the IEEE International Symposium on65

Biomedical Imaging (ISBI) in 2014. The challenge covered two issues, the au-

tomatic nuclei detection, and individual cytoplasm segmentation from cellular

mass, with different numbers of cells and overlapping ratios. There are two

approaches, along with two versions of the baseline method developed by the

challenge organizers, passed the challenge with promising results. The first70

challenge winner was a Voronoi diagram-based segmentation method proposed

by Ushizima et al. [27]. In this approach, nuclear narrow-band seeding and

graph-based region growing were applied for nuclei detection, whereas Voronoi

diagrams were used to segment the cytoplasm of the overlapping cells. However,

this approach separates the overlapping cells with straight lines, which do not75

represent the true cell boundaries. The second challenge winner [28] and the

baseline methods [14, 29] were based on the regularized level set evolution with

elliptical shape assumption. An enhanced version of the second approach was

presented in [30] with a star shape prior for optimizing the segmentation perfor-

mance of overlapping cells. These approaches proved that incorporating shape80

priors into the parametric segmentation procedures can obviously enhance the

segmentation results of overlapping cells. However, these shape priors are too

simplified to represent the actual shape of the cervical cells.

In our preliminary version of the method presented in this paper [31], we

proposed dynamically generated shape prior based on sparse approximation to85

segment the overlapping cytoplasm. Sparse approximation (SA) has emerged

as an effective solution to many problems, such as pattern recognition [32], face

recognition [33, 34] and object tracking [35, 36]. Recently, SA has been applied
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to medical image segmentation [37, 38, 39, 40, 41] to infer/refine the contours

of organs with typical shapes, e.g., the lung and liver. It is more challenging90

to derive such these approaches for cervical cell segmentation due to the large

variation in shapes and sizes of cells. In [31], we design an approximated shape

prior that is incorporated into a continuous variational method and iteratively

update during evolution to generate the best representation of cells. In addi-

tion, prior to the cytoplasm segmentation stage, we employed the multilayer95

perceptron (MLP) neural network with ten hand-engineered shape and texture

features for cellular component classification. One drawback of this classifica-

tion method is that the hand-engineered features might not generalize well to

new datasets, when there are different contrast degrees, noise levels, or different

nuclei characteristics.100

In this paper, we present an automatic method based on deep learning and

dynamic shape model for segmenting the individual nuclei and cytoplasm from

a large cellular mass with overlapping cells. The proposed segmentation method

first partitions the Pap smear images into three cellular components, i.e., back-

ground, nuclei, and cytoplasmic mass, using a convolutional neural network105

(CNN); and then separates the individual cytoplasm inside each cellular mass

in a variational segmentation framework with a learned shape prior that is it-

eratively updated. Different from our conference paper [31], we enhance the

cellular component classification method with a learning-based approach. This

approach helps to promote the nuclei detection performance and address the110

drawback of sensitivity and poor generalization to new datasets. Subsequently,

the accuracy of overlapping cytoplasm segmentation is also improved and the

method could better handle the difficult cases. In addition, we also provide

more methodological details of the shape learning procedures, and more thor-

ough experimental results and discussion.115

The rest of this paper is organized as follows. In Section 2, the proposed

segmentation methodology is presented. In Section 3, the image datasets used

in our experiments and evaluation metrics are described. Experimental results

and discussion are given in Section 4. Finally, conclusions and future work are
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presented in Section 5.120

(a) (b) (c)

Figure 1: (a) Pap Smear Image, and samples of the cervical overlapping cells from two datasets:

(b) the test dataset of [14], and (c) ISBI challenge test dataset [26].

2. Methodology

The workflow of the proposed learning methodology is illustrated in Fig-

ure 2. The proposed method consists of two main phases: cellular components

classification with region clustering and learned features based on convolutional

network, and 2) individual cytoplasm segmentation from overlapping cellular125

mass with Voronoi segmentation and dynamic shape prior-based level set evo-

lution.

2.1. Cellular Components Separation

This phase aims to divide the image into initial cellular components: back-

ground, nuclei, and cellular cytoplasmic masses without separating the cyto-130

plasm of different cells. To do this, an image is first partitioned into fixed-size

patches, and then CNN-based feature learning and classification are performed

on the patches to identify the various cellular components.

2.1.1. Generation of image Patches

This step begins with region clustering, where the Pap image is tessellated135

into superpixels taking into account the intensity similarities and spatial prox-

imity. There are many clustering methods in the literature. In this article,

the simple linear iterative clustering technique (SLIC) [42] is adopted due to

6



Figure 2: The workflow of the proposed learning methodology. (I) is the 3-class cellular

components classification stage, including (1) cellular patches generation and (2) CNN-based

classification. (II) is the individual cytoplasm segmentation stage, including (3) Voronoi seg-

mentation and (4) learned shape prior-based evolution.

two reasons: 1) it can produce superpixels with approximately equal sizes and

regular shapes, 2) it is computationally more efficient compared to many other140

clustering algorithms. However, the parameter setting for this algorithm is very

important and have to be carefully tuned to get the best results. There are two

major parameters: the superpixel size (S) and the regularizer (r). S controls

the size of each superpixel, whereas r controls the shape regularity. A smaller

r leads to superpixels with more similar pixels but irregular shape, whereas a145

larger r provides smaller superpixels with regular shape (i.e., elliptical, hexago-

nal, and zigzag shape in our case). In our experiments, the S and r parameters

were set empirically to 25 and 0.01, respectively.

Figure 3 shows the importance of choosing appropriate parameters to get

more meaningful clustering. As seen, with suitable parameters, the superpixels150

of different cellular categories can be easily distinguished by its shape and in-

tensity characteristics (e.g., the nuclear superpixel has an elliptical shape and
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a lower intensity than the surrounding cytoplasm superpixels). However, we

observed that some Pap images have isolated dark pixels located at the image

border, which are gathered in separate vertical or horizontal line-shaped super-155

pixels. These superpixels should belong to the background; however, they are

not consistent with the actual background superpixels, leading to misclassifica-

tion. To ensure consistency of each cellular category, we choose to remove the

image border by cropping four pixels at each four directions of the image.

Then, to highlight the difference between Nuclei, cellular mass, and back-160

ground, a refined superpixels map is generated. Specifically, Gaussian lowpass

filter of size 20 with standard deviation of 1, and histogram equalization with

0.0005 threshold, are applied on the superpixels map to remove noise, and high-

light the intensity difference. Next, the median value of each superpixel is

assigned to all pixels in the region, thereby, all pixels belonging to the same cat-165

egory have rather similar texture. A fixed-size square patch is then generated

by bounding box and bicubic interpolation algorithm [43], with a superpixel

centralizes the patch and bordered with a clear background to highlight the su-

perpixel shape information. Finally, the generated patches are passed as input

images for feature learning and classification step. The generated patches have170

distinguishable shape and the intensity (e.g., Figure 4 (Input image)), which

helps to get an accurate prediction of the patch category.

2.1.2. Classification with Learned Features

The next step is to classify the image patches into nuclei, background, or

cellular cytoplasmic masses. The classification process is conducted using a175

convolutional neutral network (CNN) model. CNN is a type of deep learning

algorithm, that shown to be effective for many tasks in computer vision, such

as image classification [44, 45], face recognition [46], and handwriting character

recognition [47]. The main advantage of the CNN model is its reliability in

learning discriminative properties directly from the raw image and generating a180

prediction of image category, eliminating the need for traditional hand-crafted

feature extractor, which is typically computationally intensive and requires prior
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(S=30, r=0.02) (S=25, r=0.02) (S=20, r=0.02)

(S=25, r=0.001) (S=25, r=0.01) (S=20, r=0.1)

Figure 3: Influence of the SLIC parameters in cellular component clustering.

knowledge of the classification problem.

The standard CNN consists of several layers including an input layer of raw

image, hidden layers which are usually convolutional and pooling layers, and185

an output layer representing the classes. The convolutional layer is the feature

extractor consisting of a set of feature maps, computed by applying a series

of convolution kernels to its input and passing the result through a sigmoid

function. Pooling or subsampling layer reduces the resolution of the feature

maps, thus, reducing the number of parameters, the memory consumption, and190

the required computation.

We designed a 7-layer CNN for our classification problem. The input layer

contains (50×50 = 2500) neurons corresponding to the image patches. The hid-

den layers include a convolutional layer of 20 convolutional filters (feature maps)

with (5×5) pixel kernel window applied over the input patch, and Rectified Lin-195

ear Unit (ReLU) layer [48] to increase the nonlinearities in the network, making

the decision function more discriminative [49]. The next layer is a maximum

pooling (max-pooling) layer with (2 × 2) subsampling ratios without overlap.

According to [50], a maximum pooling improves generalization to data, and
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leads to faster convergence rate comparing with other subsampling operations200

by selecting superior invariant features. Next is a fully-connected layer con-

necting every neuron in the max-pooling layer to each of its neurons. Then, a

softmax layer is used to represent the categorical probability distribution over

the three cellular component categories. Finally, the classification output layer

of three neurons assigns a label, presenting one of the three cellular component205

classes , to the input patch.

Figure 4 displays the design of our CNN model, with the filter numbers and

sizes. The CNN was trained with the stochastic gradient descent (SGD) with

momentum algorithm. The training consists of 30 epochs, conducted with 45

training images, each with 441 patches. With the 3-way softmax function, the210

class of each patch is predicted. The output of the classification step is a map

of labels indicating the nuclei (Nu), cytoplasmic mass (Cy), and background

(BK) superpixels. In addition, we consider that during the clustering step, some

boundary pixels belonging to two different cellular components may be clustered

into a single superpixel. Therefore, we employed the level set evolution [56] to215

refine the regions contour, with 10 iterations for cellular mass, and 5 iterations

for nuclei regions.

Figure 4: The structure of the employed CNN for cellular component separation, with a single

convolutional (C-layer) and ReLU layer, max-pooling layer (MP-layer), fully connected (FC)

layer, softmax and classification output layer, to predict whether the input patch is likely

belonging to a nucleus (Nu), cytoplasm(Cy), or background (BK).
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2.2. Individual Cytoplasm Segmentation

In Pap smear images, there are a large number of overlapping cells with

complex structures and multiform shape, making the segmentation of individ-220

ual cells a challenging problem. The main goal of this phase is to provide the

actual contour for each individual cell inside the cellular mass. To this end,

two segmentation stages are performed for each detected nucleus: initial seg-

mentation by Voronoi diagram with Delauney Triangulation, followed by final

segmentation based on level set with learned shape prior.225

2.2.1. Initial Segmentation based on Voronoi Diagram

Extracting the initial rough contours of the individual cytoplasm is the ba-

sis for our next variational segmentation process. The initial segmentation is

performed by computing the Voronoi polygons of the image seeds, which are

determined as the intensity weighted centroids of the detected nuclei. Voronoi230

diagram (VD) [52] generates polygons of intensity values using information from

the external boundary vertices of Delaunay triangulation (DT), or so-called J-

triangle or junction triangle, between the seeds. DT are first established be-

tween the seeds (i.e., nuclei centroids), then, the convex polygon of boundary

points that have the shortest Euclidean distances to the corresponding nucleus235

centroid, are computed (see Figure 5).

More formally, Given a set of 2D points representing the coordinates of n

nuclei centroids C = {C1, C2, ..., Cn}, and Ci, Cj ∈ C where i 6= j, then, the

Voronoi cell V of a point Ci is the set of all the points that are closer to Ci than

to any other nuclei centroids. This can be written as:240

V (Ci) = ∩1≤j≤n,j 6=i{p| d(p, Ci) ≤ d(p, Cj)} (1)

where d(p, Ci) is the Euclidean distance between the pixel p and corresponding

centroid Ci. The set of all n V is called the Voronoi diagram VD of the given

2D points. To generate the rough Voronoi cells as shown in Figure 5 (c), the

boundary points between the cellular mass and background are assigned to the

nearest nucleus, and combined with the surrounding Voronoi diagram lines (i.e.,245
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black dash line in Figure 5 (b)), providing that the generated cell is completely

inside the cellular mass (i.e., the cell must be convex).

By the end of this step, the segmentation process for the isolated cells is

completed, and the Voronoi cell represents the individual cell. The Voronoi

cells of overlapping cells are dilated with a disk of radius equals 20 to increase250

the search areas for the final shape prior-based segmentation process.

(a) (b) (c)

Figure 5: The rough segmentation process: (a) the original Pap image, (b) the Delauney

triangle (red solid line) and the Voronoi polygons (black dash line) using four nuclei as seeds,

and (c) the initial segmentation for each cell, i.e., v1, v2, v3, and v4.

2.2.2. Final segmentation based on level set with learned shape prior

This stage aims to reconstruct the final accurate boundaries of the individ-

ual cells based on the initial Voronoi segmentation of overlapping cells. Figure255

6 illustrates the processes of the final segmentation stage, where (I) shows the

training phase establishing the reference shape and the shape dictionary, and

(II) represents the segmentation phase with prior-shape level set evolution based

on the obtained Voronoi cells and pre-generated shape dictionary.

260

⇒ Training Phase

The final segmentation stage starts by generating an over-complete shape

dictionary using a training set of annotated cell images. The shape vector for

each cell is represented by the coordinates of a set of boundary points P enclosing
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Figure 6: The final segmentation stage, with (I) training phase generating the shape dictionary,

(II) segmentation phase based on pre-trained dictionary and Voronoi cells obtained from initial

segmentation stage.

the cell, and given as following:265

P = {pi |(ri, θi), i = {1, ..., 360}} (2)

Here (ri, θi) indicates the polar coordinates of the point pi, ri indicates the

radian between pi and the corresponding nucleus center, θi ∈ [1, 2π] is the angle

between the radial line crossing pi and a reference radial axis. The radial line

used for contour points retrieving has a pre-defined length determined based on

the cell size. For our experiments, the line length is set to 100. There are three270

possible exceptional cases in this process. First, if the radial line crosses two or

more points, then, the nearest point to the corresponding nucleus is retrieved.

Second, if the radial line does not cross any point at some angles (this may occur

when some nuclei are missed during classification, thus, the obtained Voronoi

cell has a large size of two or more actual cells), then the last retrieved point pi−1275

is rotated by angle (θi−θi−1) to complete the missed contour portion. Third, if

the estimated contour point by the second case is located outside image border,
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then, the border point at the same angle is retrieved instead.

After forming the shape vectors, they are transformed into the coordinate

system of the mean cell shape using Procrustes analysis [51] to remove the ge-280

ometrical translation, scale, and rotation effects. The shape dictionary is then

represented by a matrix D ∈ RM×N , where each column refers to a single shape

represented by M/2 boundary points with each point denoted by its xy coor-

dinates, and N is the total number of training cell shapes in the dictionary D,

i.e., 270 cell shapes from the training dataset. The shape dictionary and the285

mean reference shape are passed to the next segmentation phase, consisting (See

Figure 6).

⇒ Segmentation Phase

In segmentation phase, three shape-driven deformation steps are repeated290

(i.e., outer deformation loop equals 2): shape re-initialization, shape prior learn-

ing, and level set evolution with the learned shape prior (see Figure 2 (4)).

• Shape re-initialization. The shape re-initialization process is important for

maintaining the shape approximation in the right track. This step generates the295

inputs for the next two steps, which are the shape vector with xy coordinates

of the test cell contour for prior learning step, and the corresponding smooth

cell mask for level set evolution step. At the beginning of this stage, the input

cell c for this step is the Voronoi cell obtained from the initial segmentation.

For the next outer iterations, the output cell from the level set evolution is the300

input of the re-initialization step. In this step, the shape vector v is generated

with Eq. (2) as described in ’Training phase’. The shape re-initialization ex-

cludes the points outside the reasonable cell area, by means of the radial line

length used for retrieving contour points. The smooth cell mask is generated by

XOR-combining of input shape points with the boundary points of the cellular305

mass that are closer to the cell-in-focus than any other cells. These shape points

are then connected by the moving average filtering (MAF) [53] and closing op-

eration to guarantee the shape regularity and connectivity. The convex mask
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generated by these connected points builds the initial level set function for next

level set evolution step.310

• Shape prior learning. In this step, the shape prior is established based on

the shape vector v and the shape dictionary D. Specifically, each shape vector

v ∈ RM is sparsely reconstructed as a weighted linear combination of a few

templates from D, as follows:315

s = arg min
s
κ‖s‖1 + ‖v −Ds‖22 (3)

where κ > 0 is a regularization parameter automatically selected, and s is a

sparse weighting vector with few significant entries corresponding to the most

representative shape templates and their weights in approximating v computed

by the temporally correlated multiple sparse Bayesian learning (T-MSBL) algo-

rithm [54]. The shape prior vector is then obtained by vP = Ds.320

Finally, the shape prior mask BP , used to build the prior level set function,

is generated and connected by MAF and closing operations, and then Procrustes

transformed to the coordinate system of the input cell c. For some cases, the

shape points of vP are not sufficient to generate a connected mask, as the dis-

tance between some sequent points in the reconstructed vector become higher325

than being padded by the earlier connection process. To handle this issue, a

binary image of vP points is used to generate a convex hull image, used as initial

mask by edge-based active contour to segment the image into foreground and

background, where the foreground represents the shape prior mask.

330

• Shape prior-based level set evolution. In this step, a separate level set

function (LSF ): φi is built for each initial cell shape i ∈ {1, ..., N}, where N

is the number of initialized cell shapes. Let φ(x, y, t) : Ω → R represents a

2D time dependent LSF on the image domain Ω. Then, the energy function

E({φi}Ni=1) is constrained by several terms including shape prior, area, data-335
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driven, regularization terms. E(φi) can be written as:

E(φi) = λ1EP(φi) + λ2EA(φi) + λ3ED(φi) + λ4ER(φi) (4)

where λ1, λ2 ∈ R and λ3, λ4 > 0 are constant weights balancing the contribution

of each energy term, with λ1=0.15, λ2=-5, λ3=4, and λ4=0.2 for 20 iterations,

for our experiments. The first term EP(φi) is the shape prior term [55] that

constrains the possible cell shape, and is defined as follows:340

EP(φi) =

∫
Ω

g(x)H(−P(φi(x)))dx (5)

where g is the stopping function defined as g(x) = 1/1 + (|∇GσI|2), Gσ is the

Gaussian kernel with standard deviation σ, and I is the image on a domain Ω.

H(.) is the Heaviside function, and P(φi) is the level set function of the shape

prior BP generated in the last step, where P(x) > 0 if the pixel x is inside BP

boundaries and P(x) < 0 otherwise.345

EA(φi) is the area term computing the segmentation area of φi < 0 used to

speed up the motion of the zero level contour in the level set evolution. EA(φi)

is defined as:

EA(φi) =

∫
Ω

g(x)H(−φi(x))dx (6)

ED(φi) is the data-driven term driving the segmenting curve to the object

boundaries by having a lower energy when the zero level contour of φi is located350

at the cell boundaries. ED(φi) is defined as:

ED(φi) =

∫
Ω

g(x)δ(φi(x))|∇φi(x)|dx (7)

where δ(.) is the Dirac delta function. ER(φi) is the regularization term [56],

which ensures the smoothness of the segmentation boundaries by maintaining

the signed distance property |∇φ| = 1, and is defined as follows:

ER(φi) =

∫
Ω

p(|∇φi(x)|)dx (8)
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where p : [0,∞) → R is a potential or energy density function, e.g., p(e) =355

0.5(e − 1)2 [56]. Finally, the energy functional E is minimized by solving the

gradient descent flow for each LSF {φi}Ni=1, as follows:

∂φi
∂t

= −∂E({φi}Ni=1)

∂φi

= −λ1
∂EP(φi)

∂φi
− λ2

∂EA(φi)

∂φi
− λ3

∂ED(φi)

∂φi
− λ4

∂ER(φi)

∂φi

(9)

where ∂E({φi}Ni=1)/∂φi is the Gâteaux derivative of the functional E with re-

spect to {φi}Ni=1. At the end of this stage, the false cell segmentation is deter-

mined based on the morphological characteristics of the cytoplasm candidates.360

In particular, the cytoplasm candidates that are smaller or larger than being a

cell (i.e., not in the range [2000, 16000] pixels for the ISBI dataset), or those

have irregular-shape (i.e., eccentricity larger than 0.95) are replaced with the

initial segmentation of the cell.

3. Materials and Experiments365

3.1. Image datasets

In this study, we used two databases from the ISBI 2014 “Overlapping Cer-

vical Cytology Image Segmentation Challenge” [26]. Both datasets consist of

synthetic cervical cytology images, with a varying number of cells and degree

of cell overlap, which were generated using isolated cells from non-overlapping370

fields of view (FOV) images. For each FOV, A stack of images from multi-

ple focal planes was acquired with a focal depth separation of 1µm, and then

converted to a single extended depth of field (EDF) image where all cellular

components are in focus. The nuclei, cytoplasm and the background regions for

isolated cells from samples of EDF images were manually annotated. Then, syn-375

thetic images of 512 × 512 pixels were constructed by applying a random rigid

transform (i.e., rotation, translation and scale) and a random linear brightness

transform on the annotated isolated cells, and located them on the synthetic

17



image using an alpha channel (sampling from 0:88 to 0:99), providing that they

were overlapped with varying overlap coefficients [2].380

The first dataset was provided by preliminary version of the baseline method

of the ISBI 2014 challenge [14]. This dataset consists of 18 gray-scale cervical

cytology images, each with 2 to 5 cells of different degrees of overlap, with

60 cells in total. The second dataset is the ISBI 2014 challenge dataset [26],

consisting of 135 synthetic cervical cytology images (i.e., 45 training images and385

90 test images, with 810 cells in total), where the number of overlapping cells

is varied from 2 to 10 and the overlap coefficient between pairs of cells is in one

of the following ranges: [0, 0.1], [0.1, 0.2],[0.2, 0.3], [0.3, 0.4], [0.4, 0.5].

3.2. Evaluation Metrics

We conducted quantitative and qualitative evaluations of the proposed method390

for nuclei and cytoplasm segmentation. In this study, the training dataset from

ISBI challenge was used to train the CNN classifier and generate the shape

dictionary, whereas the test datasets of the baseline method [14] and the ISBI

challenge were used to evaluate our method performance. The proposed method

was compared with the preliminary version of the baseline method [14] on the395

first dataset, and compared with the results of the ISBI challenge winners:

Ushizima et al. [27], and Nosrati et al [28] and their newly proposed method

[30], and the later version of the baseline method [29] on the ISBI challenge

dataset. The nuclei segmentation results were also compared with the results

of our preliminary version [31] on both datasets.400

1) Nuclei segmentation. To assess the nuclei segmentation results, we used

the criteria developed by Gençtav et al. [12] as defined in Eq. (10). The

ground truth regions (RGT ) were used to categorize all segmented regions (RSeg)

into true positive detection TPR (correctly classified as nucleus), false positive

detection FPR (classified as nucleus, but is in fact cytoplasm or background),405

or false negative detection (classified as non-nucleus, but is in fact nucleus). For

each true detection instance, the numbers of true positive pixels (TPp), false
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positive (FPp), and false negative (FNp) pixels were counted.

RSeg ∩RGT
RSeg

> 0.6 and
RSeg ∩RGT

RGT
> 0.6 (10)

Then, the object-level precision (preco) and recall (reco), and pixel-level

precision (precp) and recall (recp) were computed as:410

preco =
# of correctly segmented regions

# of all segmented regions
=

∑
TPR∑
RSeg

(11)

reco =
# of correctly segmented regions

# of all objects in the ground truth
=

∑
TPR∑
RGT

(12)

precp =
# of correctly segmented pixels

# of all segmented pixels
=

TPp
TPp + FPp

(13)

recp =
# of correctly segmented pixels

# of all pixels in the ground truth
=

TPp
TPp + FNp

(14)

2) Cytoplasm segmentation. Using the evaluation code provided by ISBI

challenge [26], the performance of cytoplasm segmentation was computed over415

the ’good’ cell segmentations [57], for which the cell segmentation has a Zij-

denbos similarity index (ZSI) above a threshold of 0.7. ZSI was computed

as:

ZSI = 2
|RGT ∩RSeg|
|RGT |+ |RSeg|

(15)

where RGT and RSeg denote the ground truth and segmented regions, respec-

tively, and |.| denotes the number of pixels in the region. In addition, pixel-based420

true positive rate (TPp) and false positive rate (FPp) were also computed. The

other segmented cells having a ZSI below the threshold were reported as false

negatives, and used to compute the object-level false negative rate (FNo).
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4. Experimental Results

4.1. Quantitative evaluation425

1) Nuclear segmentation: The nuclear segmentation of our proposed method

is assessed in terms of object-level and pixel-level, and the results are shown

in Table 1 and Table 2, respectively. Our object-level segmentation was the

best among the other methods on the two datasets. The proposed method

yielded a high improvement over [14] on the first dataset, with preco of 0.98430

and 29% improvement. Our preco is also higher than the preco obtained by

our preliminary version [31]. Moreover, the object-level recall was 0.96 with 6%

improvement compared with 0.90 obtained by [14]. Our precision and recall

on the second dataset are 0.99 and 0.91 (i.e., with on average improvement 4%

and 2%, respectively) over [27, 28, 29, 31]. Our method missed only two true435

nuclei out of 60 nuclei in the first dataset, and 48 nuclei out of 570 in the second

dataset.

Furthermore, Table 2 shows that our method had the highest pixel-based

recall recp and ZSI values on both datasets. Also, our pixel-based precision on

the first dataset, 0.97 (±0.04) is similar to the precp obtained by [14]. For the440

second dataset, Ushizima et al. [27] had the highest precision of 0.97 (±0.05),

but it however had the lowest recall. The proposed method had a 8% better

recall over Ushizima et al.’s method [27] and also a 3% better ZSI. A high

recall, indicating high true positive rate, is more important than high precision

since each nucleus represents a cell in the next stage. The pixel-based segmen-445

tation performance of our previous work and this work is rather similar due to

using the clustering technique in classification, thereby, the whole superpixel,

with the same number of pixels in both versions, is either correctly classified

or misclassified. As mentioned earlier in Section 2.1.1, the SLIC parameters

affect the performance of nuclei detection. To explain this, Figure 7 shows the450

influence of different SLIC parameters on the object-level and pixel-level nuclei

segmentation results (without nuclei contour refinement) in term of sensitivity

and Dice values. As shown, the selected parameters in our experiments provide
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the best nuclei segmentation performance.

The object-level and pixel-level segmentation results proved the effectiveness455

of the cellular component separation stage of our proposed method. Tessellating

the Pap smear image into small superpixels classified by deep learning model has

the ability to successfully differentiate the nuclei regions. Deep convolutional

neural network showed to be a reliable method to feature-learn and classify the

single-category patches in an accurate and fully automatic manner.460

(a) (b)

Figure 7: The influence of different SLIC parameters on the (a) object-level and (b) pixel-level

nuclei segmentation in term of sensitivity and Dice values.

Table 1: Quantitative object-level nuclei segmentation results.

Methods preco reco

Test dataset of [14]

Baselinea [14] 0.69 0.90

preliminary version [31] 0.97 0.96

Our method 0.98 0.96

ISBI test dataset

Ushizima [27] 0.959 0.895

Nostrati [28] 0.903 0.893

Baselineb [29] 0.977 0.883

preliminary version [31] 0.983 0.909

Our method 0.994 0.911
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Table 2: Quantitative pixel-level nuclei segmentation results (using the mean and standard

deviation result of each measure).

Methods precp recp ZSI

Test dataset of [14]

Baselinea [14] 0.97(±0.04) 0.88(±0.08) 0.92(±0.04)

preliminary version [31] 0.98(±0.03) 0.90(±0.08) 0.93(±0.04)

Our method 0.97(± 0.04) 0.91(± 0.08) 0.93(± 0.03)

ISBI test dataset

Ushizima [27] 0.97(±0.05) 0.87(±0.07) 0.91(±0.04)

Nostrati [28] 0.90(±0.10) 0.92(±0.09) 0.90(±0.05)

Baselineb [29] 0.94(±0.08) 0.91(±0.08) 0.92(±0.05)

preliminary version [31] 0.93(±0.06) 0.95(±0.06) 0.94(±0.04)

Our method 0.94(±0.06) 0.95(±0.06) 0.94(±0.04)

2) Cytoplasmic segmentation: Table 3 shows a comparison of the cytoplasm

segmentation performance with [14] on the first dataset, and with [27, 28, 30, 29]

on the second dataset. The table showed that our proposed method achieved

the highest ZSI and TPp on the both datasets. The obtained ZSI on the first

dataset was 0.93, compared with 0.88 obtained by [14]. For the second dataset,465

the obtained ZSI and TPp were 0.90 and 0.95, with 1-3% and 1-12% improve-

ment, respectively. In addition, the FNO obtained by the proposed method on

the first dataset is zero, which indicates that our method successfully segmented

all cells in this dataset. Our optimal object-level true positive detection TPo of

1.00 led to an increase of the FPp value (i.e., 0.004) over that obtained by [14],470

which was 0.002. However, this FPp is still small and has minimal impact on

the reliability of our method. The FNo value obtained on the second dataset

is also better than [29]. These high ZSI and TPp values on the two datasets

demonstrated the capability of our method to accurately segment the cytoplasm

from highly overlapping cells in different cervical image datasets.475

Table 4 shows the cytoplasm segmentation performance of the proposed
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Table 3: Quantitative results of the cytoplasm segmentation (using the mean and standard

deviation result of each measure).

Methods ZSI TPp FPp FNo

Test dataset of [14]

Baselinea [14] 0.88(±0.08) 0.92(±0.10) 0.002(±0.005) 0.21(±0.29)

Our method 0.93(±0.06) 0.92(±0.09) 0.004(±0.005) 0.00(±0.00)

ISBI test dataset

Ushizima [27] 0.87(±0.08) 0.83(±0.13) 0.001(±0.002) 0.17(±0.21)

Nosrati [28] 0.87(±0.08) 0.90(±0.09) 0.005(±0.004) 0.14(±0.17)

Nosrati [30] 0.88(±0.08) 0.93(±0.09) 0.005(±0.004) 0.11(±0.17)

Baselineb [29] 0.89(±0.08) 0.91(±0.10) 0.003(±0.005) 0.32(±0.29)

Our method 0.90(±0.08) 0.95(±0.07) 0.005(±0.004) 0.21(±0.24)

method over the range of ZSI thresholds {0.5, 0.6, 0.8}, comparing with the

results of [14] on the first dataset and [28] on the second dataset. The table

shows that our method achieved better ZSI and TPp than the other methods

at different ZSI thresholds. The proposed method had a stable improvement480

in performance on the first dataset, where the minimum obtained ZSI for the

segmented cells was 0.71. In addition, a consistent improvement in performance

was showed on the second dataset, with high ZSI and TPp rates for all ’good’

segmented cells. The best ZSI obtained by our method was 0.991 on the first

dataset and 0.997 on the second dataset, which is close to the ideal segmentation.485

Furthermore, the segmentation performance of the proposed method, in

terms of ZSI and FNo, was assessed with respect to varying number of cells

and overlapping degree, and the results were displayed in Figure 8. It is found

from Figure 8 that the performance of the proposed method was promising with

high ZSI values, i.e., above 0.90, when the number of cells in a cellular mass was490

three or less. Likewise, the segmentation of the cellular mass of four to six cells

with overlapping degree less than 0.4 was shown to be good. However, when the

overlapping ratio became more than 0.4 or the number of cells exceeded seven
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Table 4: Quantitative results of the cytoplasm segmentation at different ZSI thresholds.

Methods ZSI >0.5 ZSI >0.6 ZSI >0.8

Test dataset of [14]

Baselinea [14]
ZSI=.83,TPp=.88,

FPp=.003,FNo=0.02

ZSI=.85,TPp=.89,

FPp=.002,FNo=0.09

ZSI=.91,TPp=.93,

FPp=.001,FNo=0.34

Our method

ZSI=.93,TPp=.92,

FPp=.004,FNo=.00

ZSI=.93,TPp=.92,

FPp=.004,FNo=.00

ZSI=.93,TPp=.93,

FPp=.004,FNo=.02

ISBI test dataset

Nosrati [28]
ZSI=.87,TPp=.87,

FPp=.003,FNo=.01

ZSI=.86,TPp=.87,

FPp=.003,FNo=.02

ZSI=.90,TPp=.88,

FPp=.002,FNo=.24

Our method

ZSI=.88,TPp=.94,

FPp=.006,FNo=.15

ZSI=.89,TPp=.94,

FPp=.005,FNo=.17

ZSI=.92,TPp=.95,

FPp=.003,FNo=.33

cells in the cellular mass, the ZSI was reduced to less than 0.85. Once the num-

ber of cells in the mass exceeded eight cells, the proposed method became not495

sensitive to the changes in the number of cells, but still sensitive to the change

in the overlapping degree. Moreover, the FNo of the proposed method was less

than 0.1 as long as the overlapping ratio was less than 0.2 and the number of

cells is less than seven. However, the FNo was significantly increased when the

number of cells is increased and the overlapping ratio is higher than 0.3. This500

is due to the insufficient number of isolated boundaries to predict the cell shape

based on the training templates. In our proposed method, the number of cells,

less than nine, did not have a great influence on the FNo values, as the success

of our deformation process depends mainly on the presence of the shape of the

segmented cell in the shape dictionary. According to our observation, the ellip-505

tical shape cells in the dataset had more accurate segmentation than irregular

shape cells regardless the degree of overlap (See Figure 9 in Section 5.2).

4.2. Qualitative evaluation

The qualitative experiment consists of a visual inspection of the nuclei and

cytoplasm segmentation results. Some of our segmentation results with different510
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(a) (b)

Figure 8: Functional analysis of the proposed method in terms of Dice (in range [0:8; 1]) and

FNo (in range [0; 0:6]). The diagrams show Dice and FNo as a function of number of cells (y

axis) and cell overlap (x axis).

accuracy level, comparing with the results of Voronoi segmentation used in [27],

and the ISBI baseline method [29], were displayed in Figure 9. It can be seen

that the proposed method provided a precise estimation of the nuclei contour

and the cytoplasmic mass contour, obtained in the first segmentation stage.

The proposed method also succeeded in providing a good estimation for the515

cytoplasm boundaries inside the overlapping regions.

The visual comparison with the segmentation results of Voronoi diagram

(e.g., [27]) and the baseline method[29], demonstrated the superiority of our ap-

proach in extracting the boundaries of overlapping cells. As shown in the figure,

the Voronoi diagram yielded straight lines splitting the cytoplasm between pairs520

of cells, which obviously is not realistic. The proposed method could efficiently

correct this limitation, and constructed more realistic cell shape. Our segmenta-

tion results were also better than the ISBI baseline results, which demonstrating

that incorporating the proposed dynamically generated shape prior in a varia-

tional framework exhibited better performance than elliptical shape prior used525

by the baseline method.

Overall, the quantitative and qualitative results demonstrate that our pro-

posed learned shape prior-based variational method succeeded in improving the
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object-level and pixel- level segmentation performance of individual cytoplasm,

over the elliptical shape prior [14, 28, 29] and the star shape prior [30], hence it530

was dynamically constructed based on the most representative shape templates

from similar cells in the training dataset.

4.3. Computational complexity

Table 5 shows the computational time for the proposed method and the com-

pared approaches. Our method was implemented in Matlab with non-optimized535

code running on a PC with Intel Core i5 3.2 GHz and 8 GB RAM. The average

computational time of our proposed method was ∼30 seconds per image, with

around 8 seconds for the cellular component classification, and 22 seconds for the

individual cell segmentation. The proposed approach was 33 times faster than

the baseline method [14] whose average computational time was ∼1000 seconds540

per image. The proposed method and the baseline method needed longer time

than [27, 28]. This was mainly due to the classification step and more iterations

of level set evolution, which, on the other hand, led to better performance than

other methods.

Our cellular component separation stage took 8.81(±0.29) seconds to cate-545

gorize all patches of a single image. In general, neutral networks are computa-

tionally intensive, because of iterative updating of a large number of parameters

several times to minimize error and produce a precise model. However, CNNs

are inherently parallel algorithms, hence, Graphics Processing Units (GPUs)

can be used to dramatically reduce computation time needed for training. To550

speed up our method, we employed the CNN implementation of the MATLAB

Computer Vision System ToolboxTM , which provides a high-performance GPU-

based CNN model.

The sparse-shape segmentation stage needed 22.18(±11.06) seconds to seg-

ment all cells of a single image. For each nucleus in a single image, there are two555

loops; the outer sparse-shape segmentation loop including the re-initialization,

shape learning, and level set evolution, as shown in Figure 2 (4), and the inner

iterations for prior-based level set evolution. Lets represent the number of nuclei
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No. Pap cell Ground truth Our results Voronoi cell Baselineb

1

2

3

4

5

6

7

8

9

Figure 9: Qualitative segmentation results of overlapping cervical cells with different shapes.

From left to right: Original cervical cell image, the ground truth cell contours, our segmenta-

tion, the Voronoi segmentation used by [27], and baselineb [29] segmentation respectively.
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in the image as M , the number of outer iterations by N , and the inner iterations

by K. Then, the complexity of the second stage of our approach can be written560

in term of Big O notation as O(MNK). The complexity of our classification

stage is O(C), given that C is the number of superpixels in each image.

Table 5: Time complexity of the proposed and ISBI methods.

Methods Time/Image Computer specification

Ushizima [27] 12 sec.
Cray XC30 supercomputer, 12-core

Intel, CPU 2.4GHz, 64GB RAM

Nosrati [28] 16.7 sec. PC, CPU 3.40 GHz,16 GB RAM

Baseline [14] ∼ 1000 sec. PC, CPU 2.7 GHz, 40 GB RAM

Our method ∼ 30 sec. PC, CPU 3.20 GHz, 8 GB RAM

4.4. Failure cases

In spite of the superior segmentation results shown in Figure 9, our method

still has some failure cases, such as those displayed in Figure 10. The segmen-565

tation results of the baseline method [29] have also been displayed in Figure 10

to show that these cases are difficult for other segmentation methods as well.

The main failure segmentation cases obtained by our approach were caused by

one of three reasons; (1) the initial segmentation obtained by Voronoi segmen-

tation is not accurate (e.g., cell 1), (2) there is a lack of cell shape templates570

in the training shape dictionary (e.g., cell 2), and (3) the isolated boundary of

the cell is not sufficient to guide the shape deformation by the training shapes

(e.g., cell 3). Therefore, the segmentation results of our method can be further

enhanced by establishing more reliable rough segmentation, and including more

cell shapes in the training templates. To tackle the third issue, edge detection575

can be used to extract some robust boundaries from different directions to be

used along with the isolated boundaries in order to give a good indication of

the actual cell shape. Referring to cell 4 in Figure 10, if we are able to get a

part of the boundary from the flat side, the cell shape can be easily estimated.

These observations also show that our proposed method can get an optimizing580
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No. Pap cell Ground truth Our results Voronoi cell Baselineb

1

2

3

Figure 10: Failure segmentation because of the bad Voronoi segmentation (cell 1), the odd

cell shape (cell 2), or Non-existence of enough isolated boundary (cell 3). From left to right:

Original cervical cell image, the ground truth cell contours, our segmentation, the Voronoi

segmentation used by [27], and baselineb [29] segmentation respectively.

performance if it is applied on cells with a typical shape with small variations,

such as red blood cells which have semi-spherical shape.

5. Conclusions and Future Work

Cervical cell segmentation is a prerequisite to analyze cell-by-cell informa-

tion toward optimizing the cervix cytological examination. One of the major585

challenges here is how to segment overlapping cells, which are typically pre-

sented in Pap smear. This paper addresses this issue and introduces a learning

shape-driven variational method to provide an accurate localization and delin-

eation of both nuclei and cytoplasm of highly overlapping cells. The proposed

method employed the convolutional neural network with distinct features auto-590

matically learned from image patches to separate the nuclei, isolated cytoplasm,

and cellular patches of overlapping cells. In the next stage, a dynamic shape

prior generated from shape templates, and incorporated with regularized level

set evolution is used to delineate the contour of overlapping cells. The segmen-
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tation results of the proposed method were analyzed with both quantitative and595

qualitative evaluations, showing better results compared to the state-of-the-art

methods using two cervical cell databases with a total of 870 cells. The ex-

perimental results indicated that the patch-wise CNN-based nuclei detection is

more reliable and accurate than other state-of-the-art methods, even in pres-

ence of poor quality and similarity among different cellular patches. Moreover,600

our dynamic shape-driven variational method could successfully separate the

individual cytoplasm of a mass with highly overlapping cells. We expect our

proposed method to generalize effectively to arbitrary microscopy image types

with overlapping cells, such as blood cell images, and this will be our future

work.605

We believe that this approach is ready to support and give a great help

for the pathologist. The proposed approach provides an accurate segmentation

for the overlapping cells, which is a time-consuming and error-prone task to

the pathologists when performed manually. Our future work will include the

classification of segmented cells to normal or abnormal cells based on morpho-610

logical features such as cytoplasm and nuclei size and shape, which is another

important question in automated cervix cytological examination.
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