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Abstract. Brain tumor segmentation in magnetic resonance images is
a key step for brain cancer diagnosis and clinical treatment. Recently,
deep convolutional neural network (DNN) based models have become
a popular and effective choice due to their learning capability with a
large amount of parameters. However, in traditional 3D DNN models,
the valid receptive fields are not large enough for global details from
the objective and the large amount of parameters are easy to cause high
computational cost and model overfitting. In order to address these prob-
lems, we propose a 3D large kernel anisotropic network. In our model,
the large kernels in the decoders ensure the valid receptive field is large
enough and the anisotropic convolutional blocks in the encoders simu-
late the traditional isotropic ones with fewer parameters. Our proposed
model is evaluated on datasets from the MICCAI BRATS 17 challenge
and outperforms several popular 3D DNN architectures.
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1 Introduction

Brain tumor is one of the leading causes of cancer deaths, which is difficult
to cure and remains high mortality [23]. Among all varieties of brain tumors
diagnosed in adults, gliomas account for about 70% [26]. Thus the detection and
segmentation of gliomas is a necessary task for clinical diagnosis of brain cancer.
Gliomas are caused by glial cells [8] and can be divided into high and low grade
categories. High grade gliomas (HGG) turn out to be more aggressive with a
survival time of no more than two years, while the low grade gliomas (LGG)
grow slowly and leave a longer life expectancy of several years [19].

Although surgical treatment is the most effective way to directly remove the
tumors, radiological treatment is also necessary to slow the growth of the tumors
which can not be removed. Nowadays, magnetic resonance imaging (MRI) is one
of the most common tools for radiological diagnosis since it is able to image the
brain structure with detailed information. Various imaging modalities are used
to describe the information for different subregions of the tumor, as shown in
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Fig 1. For example, T2- and Flair-weighted brain images highlight the tissues
with water content, which represent the whole tumor with edema. T1-weighted
images highlight the tumor core which contains no water, and contrast enhance
T1-weighted (T1ce) images represent the enhanced parts with hyper-intensity
in the tumor core [16].

(a) T1 (b) T1ce (c) T2 (d) FLAIR

Fig. 1. An example of one slice of a brain MR image in different modalities: T1, T1ce,
T2, and FLAIR.

However, brain tumor segmentation is challenging due to the following fac-
tors: 1) Brain tumors can appear anywhere in the whole brain with different
shapes and sizes across patients. Thus the methods based on processing the
shape or size features become less effective. 2) The gradual transition from tu-
mor to edema makes the boundaries between the edema and the tumor core
ambiguous and hard to segment. 3) Although T1ce modality is able to highlight
the enhanced tumor core, some other parts such as blood vessels and cortical
cerebrospinal fluid (CSF) are highlighted as well. In this way, a thresholding
method can not be directly applied to segment the enhanced tumor [21]. 4)
Due to the pre-processing methods and poor contrast of tumors, the boundaries
between tumors and healthy tissues are fuzzy.

In this work, we propose an end-to-end 3D convolutional neural network
(CNN) model for the brain tumor segmentation task. The contributions of our
work are three-folds. First, we apply anisotropic convolutional blocks to simulate
the isotropic blocks with less parameters for memory efficiency. Second, inspired
by 2D global convolutional network (GCN) [20], we propose a 3D large convo-
lutional block which is capable of enlarging the receptive field for the feature
maps. Third, our proposed model is evaluated on part of the MICCAI brain tu-
mor segmentation (BRATS) challenge 2017 dataset [16] and outperforms some
state-of-the-art 3D CNN models.

2 Related Work

Expert annotation for brain tumor segmentation is time-consuming and labor-
intensive, thus automatic segmentation algorithms are urgently needed for high
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efficiency. Brain tumor segmentation approaches can be categorized into gen-
erative and discriminative methods. Generative methods apply specific prior
knowledge about appearance of the brain tissues, including tumors and healthy
parts. Such approaches require little training and largely rely on encoding the
prior probability distribution of the spatial relationship between tissues [4,17]. In
[22], Prastawa et al propose a typical generative method which aligns the brain
tissues to the ICBM brain digital atlas. Then the tumor is detected by comparing
its posterior probabilities with that of the healthy tissues. Although generative
methods process the MRI image with high efficiency, the accurate probability
distribution is hard to encode and model. Discriminative methods directly learn
the characteristic differences of the appearance between tumor and healthy tis-
sues. In these methods, first the dense voxel features are extracted from the
original images [24,14]. Then the features are fed into a classifier such as de-
cision forests [30], Markov Random Field [24], or clique-based graphic model
[14].

Recently, deep neural network (DNN) based architectures have shown com-
petitive performances on the segmentation tasks for biomedical images [28,13,27].
Discriminative methods based on DNN achieve competitive performance com-
pared with other state-of-the-art methods as DNN is able to learn the feature
information in accurate details with numerous parameters. In [6], Havaei et al
proposes a dual path CNN architecture for analyzing the local and global feature
details of the brain tumors. However, the model only applies 2D convolutional
blocks, which means that it fails to process the information between different
slices. DeepMedic [9] is a dual path architecture which contains 3D convolutional
blocks and residual connections. HighRes3DNet [12] is a residual connected DNN
model with dilated convolutional blocks which is capable of getting high spatial
resolution features. However, in these single connection models, the feature in-
formation from low resolution level could easily be lost after passing through
a number of convolutional and pooling layers. In DNN, the information from
each resolution level represents different features of the original image. Losing
the low level feature information results in a lack of detailed information such as
curves and edges in the final segmentation. In order to solve this problem, skip
connections between the encoders and decoders are applied to 3D DNN such as
3D U-Net [3] and V-Net [18]. In V-Net [18], residual connections are applied on
the encoders and decoders to prevent the gradient vanishing during the training
process. Even though these methods achieve competitive performance, the com-
plexity of the model tends to be high due to the huge amount of parameters from
3D convolutional kernels, which makes the model difficult to train and easy to
overfit. Wang et al [25] decomposes a traditional 3× 3× 3 block to one 3× 1× 1
block and one 1× 3× 3 block in the proposed architecture to process the inter-
and intra- slices information respectively for a higher efficiency and lower com-
putational cost. Moreover, 3D anisotropic convolutional blocks also show their
effectiveness on the segmentation tasks for other 3D biomedical datasets, such
as membrane segmentation for electron microscopy images [11], and liver tumor
segmentation for CT scans [15].
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3 Methods

In this section, we introduce our proposed 3D large kernel anisotropic network.
Our model is composed of residual connection encoders with anisotropic convo-
lutional blocks and decoders with 3D large kernel blocks to enlarge the actual
receptive field, as shown in Fig. 2.

Fig. 2. The network architecture of our proposed network. The sizes of the last 2 Conv
blocks are 3 × 3 × 3 and 1 × 1 × 1 respectively. The size and the stride for the Deconv
at the highest resolution are 2 × 2 × 2 and (2, 2, 2). We omit the batch nomalization
and PReLU layers before each convolutional layers in this graph for brevity.
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As the pre-activation residual connections proposed in [7] are proved to out-
perform the traditional ones, we apply them on encoders. In the first residual
connection unit of the first encoder, the output feature channel of the convolu-
tional path is 16. The input image is padded fromH×W×D×4 toH×W×D×16.
In each encoder, the feature channels are doubled after passing the 3 × 1 × 1
kernel for the next residual unit. For each encoder at different resolution levels,
the number of output feature maps are 32, 64, 128, 256 and 512 respectively.
After each encoders except for the one at the highest resolution level, the output
feature maps pass through two ways: downsampling by max pooling layers with
a size of 2× 2× 2 and a stride of (2, 2, 2) for the encoder at a higher resolution
level, and feeding into a 3D large kernel convolutional block for a large actual
receptive field.

The number of output channels for each 3D large kernel is the same as the
number of feature maps from the corresponding encoder at each resolution level.
In order to have a large receptive field for the model, we set all the sizes of 3D
large kernels as 9. The output of each 3D large kernel block is concatenated with
the feature map upscaled from the decoder at a lower resolution level. Then the
result passes through another residual connected decoder block. In each decoder,
the number of feature maps reduces to 1/3 after the 3 × 3 × 3 block path and
1× 1× 1 path respectively.

Then the results of the two paths are summed together and upscaled by a
deconvolutional block with a kernel size of 2 × 2 × 2 and a stride of (2, 2, 2).
Compared with the upsampling methods applied in GCN[20] and LinkNet[2],
the deconvolutional block is able to learn about the features when upscaling,
which makes the model consider more information for the final segmentation.
The number of the output feature maps from the decoders are 256, 128, 64, and
32 respectively. After passing the last convolutional block, the output channel
number becomes the same as the input.

3.1 3D Large Kernel Convolutional Block

The work in [29] shows that in the deep CNN model, the empirical size of
the receptive field is typically smaller than the theoretical one. Thus in the
traditional segmentation models, the actual receptive fields are always smaller
than expected, which means the models are only capable of learning limited
feature information from the input image. It is thus harmful for the segmentation
result due to the lack of global details. To this end, we design a 3D large kernel
convolutional block with a large kernel size to enlarge the actual receptive field
for the model. However, if we directly apply a large 3D kernel with a size of
K × K × K, it will greatly increase the number of model parameters which is
a large computational burden. In order to reduce the computational cost, we
apply two convolutional kernels with sizes of 1×K×K and K×1×1 combined
in different orders to simulate a convolutional kernel with a size of K ×K ×K,
as illustrated in Fig. 2.
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3.2 Anisotropic Convolutional Block

Due to the large amount of parameters from the 3D DNN model, the isotropic
convolutional blocks with a size of N × N × N make the computational cost
and memory consumption high. Thus we decompose a N × N × N kernel into
one 1 × N × N kernel which fuses the features within each slice and one N ×
N×1 kernel which fuses the features between slices. Inspired by the architecture
proposed in [25] and [15], we employ the anisotropic convolutional blocks in the
encoders. We first apply two 1×3×3 kernels with residual connection for learning
the intra-slice information in sagittal and coronal directions. Then we make the
result pass through a 3×1×1 kernel for inter-slice information processing along
the axial direction. In this way, the anisotropic convolutional blocks are able to
learn the information of the dataset in all dimensions of the isotropic ones with
a higher memory efficiency.

4 Experiments and Results

4.1 Data Description and Implementation Settings

The dataset we used to evaluate our model is from 2017 MICCAI BRATS Chal-
lenge [16], which contains 210 HGG cases and 75 LGG cases. For each case,
there are four MR images in different modalities: T1, T2, T1ce and FLAIR ,
with image size 155 × 240 × 240. The organizers have already finished the pre-
processing for the dataset, which includes skull-strip and co-registering for the
four sequences. All the ground truths are labeled by experts and the results
are evaluated by the official evaluation server named CBICAs Image Processing
Portal. For each image, the segmentation ground truth contains three classes
besides the background, which is shown in Fig. 4.1: the green part is edema
(label 2), the yellow part is enhanced tumor core (label 4), and the red part is
tumor core (label 1). In this experiment, we only focus on the segmentation for
HGG brain tumor. We select 87 cases from HGG set for training and 40 from
the rest of HGG set for testing.

(a) whole
tumor

(b) tumor
core

(c) enhanced
tumor

(d) original
image

(e) ground
truth

Fig. 3. An example of the ground truth label for one HGG brain tumor case.

We use ADAM [10] as the optimiser with β1 = 0.9, β2 = 0.99, and ε = 10−8.
The learning rate for training our model is set as 0.001 and the loss function is
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Dice loss. For each model in the experiment, the training iteration is 8700. All of
our networks are trained on 2 NVIDIA 1080Ti GPUs implemented in Tensorflow
[1] with NiftyNet [5].

4.2 Evaluation Metrics

In order to evaluate the performances of the models, we apply the Dice score and
Hausdorff distance mentioned in [16] for the segmentation results of the three
tumor regions. For each part of the tumor, we obtain the binary map of the
predicted result P and ground truth T all in range [0, 1] and calculate the Dice
score:

Dice(P, T ) =
|P1 ∧ T1|

(|P1|+ |T1|)/2
(1)

where ∧ is the logical AND operation, |.| represents the size of the set and P1,
T1 mean the numbers of voxels in set P and T having a value of 1 (tumor voxels)
respectively. While the Dice score measures the segmentation overlap results,
Hausdorff distance is applied to calculate the distance from all the points on the
surface of predicted set to those of the ground truth set:

Haus(P, T ) = max{ sup
p∈∂P1

inf
t∈∂T1

d(p, t), sup
t∈∂T1

inf
p∈∂P1

d(t, p)} (2)

where d(p, t) represents the shortest least-squares distance from point p to t.
∂P1 and ∂T1 mean the surface of set P1 and T1, respectively.

4.3 Results and Comparison

Table 1 and Fig. 4 show the comparison between the result of our proposed
method and the state-of-the-art. It can be seen that our proposed method out-
performs others in most of the metrics.

Table 1. The experiment results from different models. All the results shown are the
average results on the 40 testing images. The unit of Hausdorff distance is mm.

Metrics 3D U-Net [3] V-Net [18] HighRes3DNet [12] Proposed

Dice-ET 0.7731 ± 0.1673 0.7416 ± 0.1573 0.6593 ± 0.2174 0.7930± 0.1351
Dice-WT 0.8417 ± 0.1188 0.8257 ± 0.1281 0.8032 ± 0.1619 0.8644± 0.0909
Dice-TC 0.8022 ± 0.1764 0.7546 ± 0.1876 0.7205 ± 0.2440 0.8189± 0.1465
Hausdorff95-ET 10.0988 ± 20.1343 10.2352 ± 18.5055 21.0615 ± 29.4237 10.4811 ± 21.9127
Hausdorff95-WT 15.3867 ± 21.7618 19.6240 ± 24.1664 31.9161 ± 25.6838 15.0470± 21.8504
Hausdorff95-TC 13.687 ± 21.4019 13.4893 ± 18.9466 30.0803 ± 32.3823 13.1196± 21.9502

As shown in Table 1, the standard deviations of the Hausdorff distances are
large. It is because there remain large differences of the brain tumor between
cases, which makes the difficulty of the brain tumor segmentation for each case
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(a) 3D U-Net

(b) V-Net

(c) HighRes3DNet

Fig. 4. Visual comparison between our proposed method and the state-of-the-art.

vary. In HighRes3DNet [12], although the dialated convolutional blocks produce
a large receptive field, the detailed information from low resolution levels would
be lost during training due to the lack of skip connections. From the result shown
in Fig. 4(c), HighRes3DNet fails to segment part of the details of the tumor core
and enhanced tumor, as pointed by the red arrow. As for the whole tumor, part
of the background is still misclassified as edema, as pointed by the black arrow.
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3D U-Net [3] solves the problem with skip connections and provides a better
segmentation result. However, the small actual field produced by the limited
size of convolutional blocks makes the model fail to learn the global details of
the object. From the result in Fig. 4(a), the ratio of the tumor core to whole
tumor is larger than that of the ground truth. Even though the segmentation
result of tumor core is correct in a local view, the high ratio from the global
view makes the result less accurate. From the result of V-Net [18], although
the skip connection keeps the low level details, the large amount of parameters
from the isotropic convolutional blocks causes high memory consumption and
makes the training hard to converge. In Fig. 4(b), it can be seen that some
details at the boundaries of the whole tumor and parts of the enhanced tumor
are misclassified.

5 Conclusion

In this work, we propose a 3D large kernel anisotropic network for brain tumor
segmentation in MR images. The 3D large kernels after the encoders produce a
large enough receptive field for the model to capture global information. Addi-
tionally, the simulation of 3D large kernel blocks with several 2D convolutional
kernels reduces the computational cost. The anisotropic convolutional blocks in
the encoders have the same effect as the traditional isotropic ones, and are pro-
posed for memory efficiency and low risk of overfitting. Evaluated on part of the
BRATS 17 dataset, our model is proved to be effective by outperforming some
popular 3D DNN architectures.
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