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Abstract: Semivariograms have been widely used in research to obtain optimal resolutions for ground
features. To obtain the semivariogram curve and its attributes (range and sill), parameters including
sample size (SS), maximum distance (MD), and group number (GN) have to be defined, as well as a
mathematic model for fitting the curve. However, a clear guide on parameter setting and model
selection is currently not available. In this study, a Monte Carlo simulation-based approach (MCS)
is proposed to enhance the performance of semivariograms by optimizing the parameters, and
case studies in three regions are conducted to determine the optimal resolution for natural resource
surveys. Those parameters are optimized one by one through several rounds of MCS. The result
shows that exponential model is better than sphere model; sample size has a positive relationship
with R2, while the group number has a negative one; increasing the simulation number could improve
the accuracy of estimation; and eventually the optimized parameters improved the performance
of semivariogram. In case study, the average sizes for three general ground features (grassland,
farmland, and forest) of three counties (Ansai, Changdu, and Taihe) in different geophysical locations
of China were acquired and compared, and imagery with an appropriate resolution is recommended.
The results show that the ground feature sizes acquired by means of MCS and optimized parameters
in this study match well with real land cover patterns.

Keywords: optimal resolution; Monte Carlo simulation; semivariogram; natural resource survey;
remotely sensed image interpretation

1. Introduction

Remote sensing technology is developing rapidly as an efficient method for acquiring data from a
distance, usually from outer space by a satellite. It is now becoming a popular tool for natural resource
surveys, which determine the distribution and quantity of various natural resources over a specific
area, such as soil, grassland, forest, and farmland. Remote sensing is making this process quicker,
more efficient, and more economical, by providing a wide range of imageries varying in resolution
and spectral band, and with the help of land cover classification and spatial analysis techniques [1–3].
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The first task to be completed before conducting a remote sensing-based survey is choosing
an appropriate remote sensing data source to determine the imagery resolution and spectral bands,
which have a significant effect on the accuracy of land cover classifications [4]. The influence of
spectral bands on the extraction and visualization of ground features, which are physical objects on the
ground such as forest and water, is well known. For example, red and near-infrared bands are used to
calculate the Normalized Difference Vegetation Index (NDVI) for vegetation detection or different band
combinations of Landsat Thematic Mapper (TM) imagery are employed to highlight different ground
features. However, the selection of the resolution, or the size of pixels that constituting an imagery,
remains an unsolved problem. There is no “one size fits all” solution [5], because the resolution should
be determined with respect to the size of ground features, and there is one optimal resolution for each
ground feature. If a unique resolution is adopted for all the ground features, details of objects smaller
than the resolution would be lost.

Currently, several methods are used for determining the size of ground features such as
semivariograms, local variance (LV), wavelet method, and spatial autocorrelation [6–8]. Among
them, semivariograms are widely adopted because of their mathematical simplicity and ease of
interpretation. The range of a semivariogram is related to the size of the ground feature. It provides
a measure for the size of the elements in the image and has been suggested to be a useful indicator
in selecting the optimal spatial resolution [7,9]. Woodcock and Strahler analyzed and validated the
feasibility of semivariogram in determining the size of ground features in remote sensing using both
simulated and real satellite imagery [7,10]. Subsequently, semivariograms were applied in many
remote sensing based studies, for example, to obtain the structure of forests from high-resolution
remote sensing images [11–13]. Song and Liu studied the performance of semivariograms with respect
to obtaining the canopy size via IKONOS or Quickbird imagery [14,15]. Guardiola developed a new
methodology for modeling spatial variations of the relative wood density using variograms for XRCT
images [16].

One limitation of the application of semivariograms in remote sensing is that they can only
be applied to simple scenes, which merely contain one element and one background [7,10], while
real satellite imagery tends consist of complex scenes that comprise multiple elements. The studies
mentioned above mainly focused on merely one specific ground feature, such as grassland, forest,
or canopy, and to meet simple scene requirements. Two main approaches below are used to solve
this. Subimageries containing simple scenes were carefully extracted from the original imagery.
This approach is called sub-area method (SAM) in this paper. Another way to solve this issue is
separating those elements from one another using land cover classification techniques [17], which
is called direct-analysis method (DAM) in this paper. Both methodologies have advantages and
disadvantages. A more adaptive and reliable approach is needed for natural resource surveys.

Another limitation is the massive sample size introduced using imagery. In traditional domains,
such as mining and geology, the sample size for calculating a semivariogram is limited, and usually
remains under 1000 [18]. However, in the case of remote sensing, the area of interest is entirely
sampled, and each pixel in the imagery serves as a sample. As a result, the sample size can
easily reach one million (for a common 1000 by 1000 pixels image), which is overlarge and makes
building semivariogram computationally unrealistic. Apparently, the more samples included in the
calculation, the more stable and accurate the estimate will be. However, more samples also mean higher
requirements on the computing and memory capacities; therefore, not all pixels can be incorporated
and the reliability of the analysis results might thus be impaired. Finding the balance between the
sample size, computing capacity, and accuracy would facilitate the application of semivariogram in
remote sensing. Unfortunately, there is no clear guide on it.

This study proposes a Monte Carlo simulation-based approach (MCS) to enhance the performance
of semivariograms in obtaining the optimal resolution for general ground features in conjunction
with RapidEye imagery. First, the approach is compared with two other commonly used
semivariogram-based methods for optimal resolution acquirement. The MCS is then applied to
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optimize the parameters (sample size, maximum distance, and number of distance groups), as well as the
model and number of simulation. Finally, the average size and the optimal resolution remote sensing
images for three general ground features (grassland, farmland, and forest) in three counties in different
geographic locations of China are obtained using the optimized parameters. The aim of this study is
to improve the performance of semivariogram by reveling the influence of those parameters on the
estimate accuracy and providing optimized parameters, to make range estimates more accurate and
precise for the purpose of selecting appropriate remote sensing image for natural resource survey,
in spite of the size of imagery used and the capacity of the computer.

2. Materials and Methods

2.1. Study Area

Three study areas in different geographic locations of China were chosen for this study: Taihe
County in the Jiangxi Province in the mountainous area of eastern China; Ansai County in the Shaanxi
Province in the Loess Plateau in central China; and Changdu County in Tibet, which is located in the
Qinhai–Tibet Plateau of western China. The locations of these study sites are shown in Figure 1.
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Figure 1. Locations of study sites.

Taihe County is in the middle southern part of the Jiangxi Province, within 26◦27′–26◦59′ N and
114◦57′–115◦20′ ′ E, and has subtropical monsoon climate. Its annual average temperature is 18.6 ◦C
and the annual average precipitation is 1726 mm. The total area is 2667 km2; high hills account for
5.92% of the total area, low hills make up 54.52%, and plains comprise 27.6%.

Ansai County is located in the north of Shaanxi Province, within 36◦31′–37◦19 N and
108◦6′–109◦26′ E, and a total area of 2950 km2. It has a semiarid monsoon climate, annual average
temperature of 8.8 ◦C, annual average precipitation of 505.3 mm. The vegetation species in this region
gradually change northward, from broadleaved deciduous forests to shrub and grassland. This county
suffers from severe water loss and soil erosion [19,20].
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Changdu County is in the east of Tibet, within 30◦44′–32◦19′ N and 96◦42′–97◦58′ E, with a total
area of 10,652 km2. Its average altitude is more than 3500 m. Affected by the altitude and terrain, it has
a plateau subtemperate sub-humid climate. Its annual average temperature varies between 3 ◦C and
8 ◦C and the annual average precipitation is 477.7 mm.

2.2. Data

The remote sensing data used in this study are RapidEye L1B imagery with a spatial resolution of
6.5 m. The details of the RapidEye image can be found in Table 1. It contains blue, green, red, red edge,
and infrared bands [21]. Both red band and near infra-red band are sensitive to vegetation. Because
red band is common in both old and latest remote sensing sensors, and some scholars also used it for
semivariogram study [10,22], the red band is utilized for analysis in this paper.

Table 1. Image bands and sampling cell size.

Items Detail

Blue 440–510 nm
Green 520–590 nm
Red 630–685 nm

Red Edge 690–730 nm
Infrared 760–850 nm

Sampling cell 6.5 m

Table 2 shows some extra information on the images used. There are four raw images for Ansai
County, three of which were obtained in September 2010 and one was obtained in October of the same
year. Taihe County is also covered by four raw images. They were captured on different dates; one was
taken in November 2011, two in September 2012, and the last one in October 2010. For Changdu
County, five raw images are available, but only the two images that cover the majority of this region
with good quality were used in the end, which were captured in September 2010. Due to the low
quality of the remaning images, the marginal area in the northern and southeast of Changdu County is
not covered in this study. All raw images were orthorectificated and mosaicked into one image before
interpretation, which was later cut by the boundary of their corresponding county.

Table 2. Image number and capture date.

Region Number Capture Date

Ansai County 4 3 1 September 2010, 1 October 2010
Taihe County 4 1 November 2011, 2 September 2012, 1 October 2010

Changdu County 5 2 September 2010
1 The values in parentheses indicate the number of images captured on that date.

2.3. Semivariogram

There are several types of calculations of semi-variograms in remote sensing; Equation (1) is
mostly used [23].

γ(h) =
1

2|N(h)| ∑
N(h)
{Z(si)− Z(si + h)}2, (1)

where N(h) refers for the total number of pairs of points within a distance h and Z(si) and Z(si + h)
are the values at Point si and Point si + h, separated by a distance of h pixels [24]. By changing h,
an ordered set of semivariances is obtained, which constitutes the experimental semivariogram [25].

An ideal semivariogram curve is shown in Figure 2. The assumption in semivariogram theory
is that closer objects are more related than distant objects. When the distance between two objects is
small, those objects are probably similar or of low variance. In an extreme scenario, when the distance
is 0, those two objects are the same. Thus, the variance is zero. As the distance increases, the variance
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starts to increase. However, when the distance exceeds a specific threshold, the variance reaches its
maximum and will no longer change. This threshold is known as range, indicating the influence scale
of an event. In remote sensing, objects are pixels and the range represents the size of the ground feature.
The maximum variance is called sill, which is an estimator for the true variance of those pixels [7,12].
Note that, in this study, nugget is not considered, and its value is set 0. Forest, grassland, and farmland
are assumed to be isotropic.
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As the range was measured in pixel, the real size of the ground feature can be calculated using
Equation (2):

Size = Range× Resolution, (2)

where the range is the value estimated for the range and resolution is the size of the pixel, which is 6.5 in
this study.

In practice, a serial of parameters should be defined before establishing a semivariogram. Firstly,
to build the semivariogram, three parameters are needed, namely, the sample size (SS), maximum distance
(MD), and group number (GN). The sample size refers to the number of randomly selected pixels within
an image; all distances between pixels will be calculated. The maximum distance defines the radius of a
circular area; all pixels outside of this area will be excluded from the calculation. The group number
is the number of groups which the distances (from zero to maximum distance) are divided into. Then,
to obtain its attributes, range and sill, a model is needed to fit the semivariogram curve. The most
widely used models are the linear, spherical, and exponential models.

2.4. Data Processing

The workflow in this study is shown in Figure 3. It includes three data processing sessions:
(1) image interpretation; (2) method comparison; and (3) parameter optimization.

1. Image interpretation: In this session, an object-based automatic classification method, as well
as the manual visual interpretation (manually identifying ground features according to prior
knowledge on them, such as feature’s shape, size, pattern, tone, and texture), was used to
identify farmland, built area, water, barren, grassland, and forest from remotely sensed images in
eCognition software with its multiresolution segmentation algorithm [26]. First, some ground
features such as farmland, built area, and water were visually interpreted, as they either mix
easily with other adjacent ground features, such as farmland, or are hard to maintain their shape
in the image segmentation, such as river (included in water). By doing this before the image
segmentation, the shapes of those ground features could be maintained and high classification
accuracy could be ensured. Image was segmented with a scale parameter (SP) of 200 into
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unclassified objects, and then those objects were classified based on different indexes, such as
normalized difference soil index (NDSI), digital number (DN), normalized difference vegetation
index (NDVI), brightness, and normalized difference water index (NDWI). The indexes and their
value used for a specific ground feature could be found in Table 3. The value for those indexes
were optimized through incremental adjustment to get the best result. Note that, the ground
features in those counties were identified in the specific order listed in Table 3, and the order
should not be changed, otherwise, different results may be derived. For accuracy assessment,
a number of random points were generated, and Google Earth was adopted to check the points
one by one manually.

2. Method comparison: The proposed MCS-based approach was compared with the sub-area
method (SAM) and direct-analysis method (DAM) by applying them to the same area. A pilot
area in Ansai County was selected to conduct the method comparison.

• The SAM approach randomly selects 30 sample points for each ground feature (e.g., forest
and grassland) using a stratified random sampling method based on land cover map.
A rectangular area with a size of 500 by 500 pixels around each sample point was then
created, which was called sub-area and used to extract subimage from the raw image. Those
subimages in SAM are square and only cover a portion of a ground feature, they are then
analyzed and the average of their estimated ranges will be calculated. Note that land cover
map is not a must for SAM, subimages may be manually extracted from the raw image
without land cover map and just based on individual’s judgement. However, this study
used land cover map to improve efficiency of this step by automating this process.

• The raw image was divided into five subimages based on the land cover map in the DAM.
Therefore, there is one image for each ground feature. Different from the regular square
subimages in SAM, the subimages in DAM were much larger, covering the entire area of
a ground feature, and of irregular shapes. The images of different ground features are
analyzed individually.

• The MCS approach is built on the DAM. Instead of one-time analysis, MCS runs the analysis
multi times to obtain a number of parallel estimations of the range. Monte Carlo methods
are a broad class of computational algorithms that rely on repeated random sampling to
obtain numerical results [27]. One significant feature of this method is the large quantity of
repetitions. Here, each simulation outputs a value for the estimated range and the average of
all fitted ranges is considered to be the estimator of the true range. MATLAB equipped with
a parallel-computing toolbox [28,29] was used to shorten the processing time by running
several analyses simultaneously.

3. Parameter optimization: The semivariogram parameters, namely, the sample size (SS), maximum
distance (MD), and group number (GN), as well as the model and the simulation number, are to be
optimized one by one through four assessment rounds.

Table 3. Image interpretation, indexes used and values.

County Visual Interpretation Object-Based Automatic Interpretation

Ansai County Farmland, built area, and river Forest (NDVI > 0.3), grassland (NDVI > 0.05), lake (NDWI > 0.3),
barren (Brightness > 5600), others (all the rest)

Taihe County Built area and river
Lake (NDWI > 0.25), farmland (NDSI > −0.17), forest
(NDVI > 0.25 and Brightness < 4260), barren (Brightness > 5500),
grassland (NDVI > 0), other (all the rest)

Changdu County Farmland, built area and water Forest (DN < 1950), grassland (NDVI > 0.07), others (all the rest)

To make the data processing procedure more efficient, Python was introduced as a script language
for ArcGIS to conduct batch processes such as image separation and random points generation.
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In addition, a customized function was developed to generate rectangular areas with assigned sizes
(width and height), which were used to extract subimages from the raw image.ISPRS Int. J. Geo-Inf. 2018, 7, 13  7 of 19 
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3. Experiment

3.1. Comparison of Semivariogram-Based Methods

3.1.1. Sub-Area Method (SAM)

Figure 4 shows the square root semivariogram curves created via the SAM approach for the pilot
area. The square root of γ(h) is used in much the same way that a standard deviation is more easily
interpreted than a variance [7]. Each subplot contains 30 curves and the distances of each curve are
divided into 50 groups. Overall, most of the curves first increase sharply and then more or less remain
flat. The curves for the built area, forest, farmland, and grassland show clear sills, while those for
water seem to keep slowly increasing. The drawback of SAM is that, if a random point happens to be
generated close enough to or on the boundaries between feature classes, the subimage derived from it
would probably cross a boundary and contain pixels of multiple feature classes, which would contrast
the simple scene assumption.

3.1.2. Direct-Analysis Method (DAM)

Using DAM, a total of six semivariograms were derived including a curve for the raw image,
as shown in Figure 5. All curves evidently increase in the beginning and then remain stable, except for
the built area, which undergoes fluctuations. The problem with DAM is that, if the image size is overly
large, the sample size has to be controlled because of the limited computing capacity. Although the
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random sampling method is unbiased, if only a small part of the pixels can be incorporated into the
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3.1.3. Monte Carlo Simulation (MCS)

The MCS approach is based on the DAM approach, which is repeated 999 times for each ground
feature. It took 36 h to complete the MCS on a computer with a i5-2400 CPU and 16 GB memory.
In total, 4995 curves and their corresponding ranges were derived. Those curves were not displayed in
the same way as those of the SAM and DAM because of the extremely large amount. Instead, they are
presented as a customized plot for the probability distribution of ranges, with which more information
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regarding range could be revealed. As shown in Figure 6, the x-axis is the type of ground feature, the
y-axis is the range, and the z-axis is the probability.ISPRS Int. J. Geo-Inf. 2018, 7, 13  9 of 19 
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The MCS approach is an improvement of the DAM, as the result of DAM is essentially just one
possibility of results acquired by the MCS approach. It could improve the accuracy by doing more
parallel experiments, which is a usual method used in sampling to eliminate unexpected error. Since
it is based on DAM, it inherits the advantages of DAM that overcome the disadvantages of SAM by
separating the classes as well. Therefore, in general, the MCS approach is suitable for the determination
of the ground feature size in remote sensing scenarios against large datasets.

3.2. Parameter Optimization

In this section, the parameters for the calculation and fitting of the semivariogram, namely, the
maximum distance (MD), group number (GN), sample size (SS), and model, as well as the number of MCSs,
are optimized or selected based on several rounds of experiments. In each round, the estimated range
and corresponding R2 are derived. The R2 is used to indicate the fitting accuracy. The parameters
optimized in one round will be used in the next round of the test.

3.2.1. Model and Maximum Distance (MD)

Based on a pre-test, initial values were assigned to the parameters in the beginning of
experiments, that is, 500 pixels for MD, 50 for GN, 10,000 for SS, and 200 for number of simulations.
The semivariogram curves were fitted using both spherical and exponential models. The value for MD
was set to three times the average ranges in the next round of the experiment.

The value of average R2 for the exponential model is generally higher than that for the spherical
model, as shown in Table 4. This indicated that the exponential model has a higher accuracy.

Table 4. R2 values for the exponential and spherical models.

Ansai County Taihe County Changdu County

Forest Grass Farmland Forest Grass Farmland Forest Grass Farmland

Exponential 0.93 0.94 0.79 0.92 0.90 0.81 0.87 0.56 0.89
Spherical 0.56 0.61 0.49 0.36 0.38 0.50 0.38 0.27 0.39



ISPRS Int. J. Geo-Inf. 2018, 7, 13 10 of 20

3.2.2. Group Number (GN) and Sample Size (SS)

The value for GN increases from 10 to 200 at a step size of 5. For each GN, 200 simulations were
conducted and the average R2 was calculated. Figure 7 shows the scatter plot of GN versus R2 for each
ground feature in each region. Each point inside the subplots stands for a GN–average R2 pair.ISPRS Int. J. Geo-Inf. 2018, 7, 13  10 of 19 
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handle, is recommended as the optimized SS value. 

Figure 7. Relationship between the group number (GN) and fitting R2 for Ansai’s forest (a), grassland
(b), farmland (c), Taihe’s forest (d), grassland (e), farmland (f), and Changdu’s forest (g), grassland (h),
farmland (i); the x-axis is GN, and the y-axis is R2.

The R2 value of all subplots has a negative relationship with GN. As the GN increases, the R2

decreases. This means that a larger group number decreases the accuracy of the estimation. Since
no “turning point” could be observed, a specific optimized value could not be identified for GN.
Nevertheless, based on the plots trends in Figure 7, it could be concluded that the initial value for
GN, 50, is a little overlarge, and needs to be reduced; thus, 35 is used in this study, which is about
two-thirds of the original one.

In the third round, the value of SS increases from 1000 to 10,000 at a step size of 250 to reveal the
influence of SS on the estimation accuracy; for each SS, 200 simulations were conducted. The result is
shown in Figure 8.

In Figure 8, most of the plots show an increasing trend even after 10,000 such as the one in
Figure 8g for forest in Changdu County, indicating that increasing the number of sample could still
increase the accuracy, but for some plots such as the one in Figure 8c, a turning point around 2500 could
be observed, after which, the accuracy varies slightly. Similar situations could be found in Figure 8e,i.
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The numbers in Table 5 indicate that, after optimization, the standard deviations of the fitting 
ranges are generally reduced, which indicates a higher precision of the estimation, especially for the 
farmland in Ansai County. It changed the most, decreasing from 92.9 to 5.8, i.e. 93.8%, followed by 
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cause needs to be further studied. 
  

Figure 8. Relationship between sample size (SS) and R2 for Ansai’s forest (a), grassland (b), farmland (c),
Taihe’s forest (d), grassland (e), farmland (f), and Changdu’s forest (g), grassland (h), farmland (i);
the x-axis is SS and the y-axis is R2.

It can be inferred that the SS and fitting R2 have a positive relationship. When the SS value
increases, the R2 increases simultaneously. However, a threshold is assumed to exist for SS, after which
the R2 value would remain stable. By far the selection of SS has been greatly limited by the computing
capacity, especially the memory capacity. In this study, since most of the plots do not have a “turning
point” (threshold), 10,000, the maximum number of samples that the microcomputer could handle,
is recommended as the optimized SS value.

3.2.3. Comparison between the Results before and after Parameter Optimization

Another 200 simulations were run using the new, optimized parameters. The standard deviations
of the 200 ranges derived from the simulation were calculated and compared in Table 5.

The numbers in Table 5 indicate that, after optimization, the standard deviations of the fitting
ranges are generally reduced, which indicates a higher precision of the estimation, especially for the
farmland in Ansai County. It changed the most, decreasing from 92.9 to 5.8, i.e. 93.8%, followed by
farmland in Taihe County, which fell from 167.9 to 22.4 (86.7%). Compared with others, however,
the behavior for grassland in Changdu County is rather abnormal: it increased from 418.2 to >7000.
The cause needs to be further studied.



ISPRS Int. J. Geo-Inf. 2018, 7, 13 12 of 20

Table 5. Standard deviation of the ranges.

Ansai County Taihe County Changdu County

Forest Grassland Farmland Forest Grassland Farmland Forest Grassland Farmland

Before (B) 24.5 29.8 92.9 142.4 110.5 167.9 81.9 418.2 127.5
After (A) 10.9 13.4 5.8 137.9 74.9 22.4 62.4 7053.7 34.3

A−B −13.6 −16.4 −87.1 −4.5 −35.6 −145.5 −19.5 6635.5 −93.2
Percentage 55.5% 55.0% 93.8% 3.2% 32.2% 86.7% 23.8% —— 73.1%

3.2.4. Number of Simulations

Figure 9 shows the lines representing the relationship between the number of simulations and
standard deviation of average ranges in Ansai County. The number of simulations increases from 20 to
5000 at a step of 20. It can be observed that the standard deviation of the average fitting ranges first
drops obviously as the number of simulation increases. However, once the number of simulations
exceeds ~1000, the curves remain stable. In a nutshell, the number of simulations has an influence on
the precision and accuracy of the estimation; a high number is recommended.

ISPRS Int. J. Geo-Inf. 2018, 7, 13  12 of 19 

 

3.2.4. Number of Simulations 

Figure 9 shows the lines representing the relationship between the number of simulations and 
standard deviation of average ranges in Ansai County. The number of simulations increases from 20 
to 5000 at a step of 20. It can be observed that the standard deviation of the average fitting ranges first 
drops obviously as the number of simulation increases. However, once the number of simulations 
exceeds ~1000, the curves remain stable. In a nutshell, the number of simulations has an influence on 
the precision and accuracy of the estimation; a high number is recommended. 

 
Figure 9. Relationship between the simulation times and standard deviation of average fitting ranges 
for forest (blue), grassland (green), and farmland (red) in Ansai County. 

4. Results 

4.1. Image Interpretation 

Figure 10a–c shows the land cover maps of Ansai County, Taihe County, and Changdu County, 
respectively. 

 

(a) (b)

Figure 9. Relationship between the simulation times and standard deviation of average fitting ranges
for forest (blue), grassland (green), and farmland (red) in Ansai County.

4. Results

4.1. Image Interpretation

Figure 10a–c shows the land cover maps of Ansai County, Taihe County, and Changdu
County, respectively.

The classification accuracy was assessed using Google Earth images with higher spatial resolution.
In total, 256 samples were randomly selected for each region and manually checked one by one to
validate their accuracy. The overall classification accuracies and Kappa coefficients were then calculated
(Table 6). Due to the capability of object-oriented classification methods in dealing with high-resolution
images, the overall accuracy and Kappa coefficient are relatively high (almost the same).

Table 6. Accuracy assessment of the classification results for Ansai, Taihe, and Changdu.

Overall Accuracy Kappa Coefficient

Ansai County 0.89 0.87
Taihe County 0.88 0.86

Changdu County 0.89 0.87



ISPRS Int. J. Geo-Inf. 2018, 7, 13 13 of 20

ISPRS Int. J. Geo-Inf. 2018, 7, 13  12 of 19 

 

3.2.4. Number of Simulations 

Figure 9 shows the lines representing the relationship between the number of simulations and 
standard deviation of average ranges in Ansai County. The number of simulations increases from 20 
to 5000 at a step of 20. It can be observed that the standard deviation of the average fitting ranges first 
drops obviously as the number of simulation increases. However, once the number of simulations 
exceeds ~1000, the curves remain stable. In a nutshell, the number of simulations has an influence on 
the precision and accuracy of the estimation; a high number is recommended. 

 
Figure 9. Relationship between the simulation times and standard deviation of average fitting ranges 
for forest (blue), grassland (green), and farmland (red) in Ansai County. 

4. Results 

4.1. Image Interpretation 

Figure 10a–c shows the land cover maps of Ansai County, Taihe County, and Changdu County, 
respectively. 

 

(a) (b)ISPRS Int. J. Geo-Inf. 2018, 7, 13  13 of 19 

 

(c)

Figure 10. Land cover maps for: (a) Ansai County; (b) Taihe County; and (c) Changdu County. 

The classification accuracy was assessed using Google Earth images with higher spatial 
resolution. In total, 256 samples were randomly selected for each region and manually checked one 
by one to validate their accuracy. The overall classification accuracies and Kappa coefficients were 
then calculated (Table 6). Due to the capability of object-oriented classification methods in dealing 
with high-resolution images, the overall accuracy and Kappa coefficient are relatively high (almost 
the same). 

Table 6. Accuracy assessment of the classification results for Ansai, Taihe, and Changdu. 

 Overall Accuracy Kappa Coefficient 
Ansai County 0.89 0.87 
Taihe County 0.88 0.86 

Changdu County 0.89 0.87 

4.2. Ground Feature Size 

The optimized parameters, namely, 35 for GN and 10,000 for SS, and the exponential model, 
were used in the analysis of three ground features (farmland, grassland, and forest) in the Ansai, 
Taihe, and Changdu counties, respectively. The simulation was repeated 10,000 times for each 
ground feature in each study area. The simulation generated a total of 90,000 range values. These 
ranges were statistically analyzed and displayed in a customized 3D plot (Figure 11). There is a chart 
for each area, at the bottom of which is a conventional box plot, upon it is the corresponding 
probability distribution of range. The values for the maximum, minimum, median, first, and third 
quartiles are shown. 

Figure 11a shows the result for Ansai County. Overall, the probability distributions of the three 
general ground features first increase and peak at some point before they decrease. The curves are 
not completely separated; instead, they intersect, indicating that different ground features may have 
similar sizes. To be specific, the ranges for grassland vary between 10 and 65 m, while most of the 
ranges are ~35 m. The ranges for forest are between 18 and 72 m, while the majority is close to 40 m. 
The ranges for farmland are between 48 and 78 m; most of them are ~64 m. The 99% confidence 
intervals for forest, grassland, and farmland in Ansai County are (44.8, 45.3), (38.4, 39.0), and (63.3, 
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4.2. Ground Feature Size

The optimized parameters, namely, 35 for GN and 10,000 for SS, and the exponential model,
were used in the analysis of three ground features (farmland, grassland, and forest) in the Ansai,
Taihe, and Changdu counties, respectively. The simulation was repeated 10,000 times for each ground
feature in each study area. The simulation generated a total of 90,000 range values. These ranges were
statistically analyzed and displayed in a customized 3D plot (Figure 11). There is a chart for each area,
at the bottom of which is a conventional box plot, upon it is the corresponding probability distribution
of range. The values for the maximum, minimum, median, first, and third quartiles are shown.

Figure 11a shows the result for Ansai County. Overall, the probability distributions of the
three general ground features first increase and peak at some point before they decrease. The curves
are not completely separated; instead, they intersect, indicating that different ground features may
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have similar sizes. To be specific, the ranges for grassland vary between 10 and 65 m, while most of
the ranges are ~35 m. The ranges for forest are between 18 and 72 m, while the majority is close to
40 m. The ranges for farmland are between 48 and 78 m; most of them are ~64 m. The 99% confidence
intervals for forest, grassland, and farmland in Ansai County are (44.8, 45.3), (38.4, 39.0), and (63.3,
63.6), respectively.ISPRS Int. J. Geo-Inf. 2018, 7, 13  14 of 19 
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this method is limited by the computing and memory capacities of the computer and the number 
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Changdu County (c).

Figure 11b shows the ground feature sizes for Taihe County. The probability distributions of
the three ground features are normally distributed, and the curves are intersecting. The ranges for
forest are between 130 and 720 m; the ranges for the other two ground features are relatively smaller.
The 99% confidence intervals for forest, grassland, and farmland in Taihe County are (430.1, 435.6),
(214.7, 218.5), and (57.1, 58.1), respectively.

Figure 11c shows the range distribution in Changdu County. The grassland extent of the range is
extraordinarily large, from near 0 to 2700 m, while the range for farmland is between 50 and 150 m, and
forest is between 0 and 250 m. The 99% confidence intervals for the forest, grassland, and farmland in
Changdu County are (106.6, 109.4), (1293.0, 1323.7), and (97.1, 98.1), respectively.

5. Discussion

5.1. Comparison of Semi-Variogram-Based Methods

1. The SAM is a development of the inefficient manual process of choosing sub-area images.
By controlling the amount and size of subimages, the estimation accuracy of the ranges can
be guaranteed and the data size can be minimized. The advantage of SAM is that the estimation
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is unbiased and reliable because all pixels of a subimage are used to construct the semivariogram.
The drawback is that if a random point generated by the stratified random sampling method
happens to be close to or on the boundary, the subimage derived from it will probably cross the
boundary and contain pixels from other feature classes, which lead to an estimation bias.

2. The DAM deals with the disadvantages of SAM. In DAM, feature classes are completely separated
from each other and semivariogram analysis is conducted. Thus, each subimage can be treated as
simple scene. However, if the image size is overly large due to a large survey area, this method is
limited by the computing and memory capacities of the computer and the number of pixels needs
to be controlled. As a result, only a part of the pixels can be used to construct the semivariogram,
which may lead to an estimation bias.

3. The MCS is a DAM upgrade. Basically, it increases the number of simulations, from DAM’s mere
one simulation to many simulations. This helps to overcome the drawback of DAM and avoid the
potential biased result. Meanwhile, it utilizes the advantage of DAM with respect to eliminating
or minimizing the influence of neighboring feature classes. Furthermore, this method does not
depend as much on the capacity of the computer. By adjusting the sample size and amount of
simulations, MCS can obtain a reliable estimation of the range. Due to its flexibility, the MCS
approach is suitable for this study.

5.2. Impact of Parameters on the Semivariogram

The parameters (i.e., GN, SS and MD), model, and number of simulation have notable influences
on the outputs. The preliminary comparison between the outputs before and after parameter
optimization shows that the ranges of all three ground features have a lower variance after optimization.
Therefore, parameter optimization is necessary. (1) For GN, a larger value is not recommended because
it might incorporate too many details, which would consequently reduce the fitting quality. This study
suggests that the GN should be controlled at <50. (2) SS is the actual number of pixels used for the
analysis. Based on more samples, the output is supposed to be more reliable. This study reveals that
there may exist a threshold for SS, after which, the accuracy would only vary slightly, such as farmland
in Ansai County, grassland in Taihe County, and farmland in Changdu County. These thresholds
could be used as optimized values for SS. However, in most cases, as restricted by the capacity of the
computer, the sample size cannot be extended large enough in experiment to identify the threshold.
In this scenario, the maximum sample size the computer can handle should be identified and applied
to subsequent research. (3) The model selected affects the fitting accuracy. The general criterion for
an ideal model is a relatively high R2. In this study, the exponential model outperforms the spherical
model. (4) The MD is the most difficult parameter to control. Theoretically, the MD should be large
enough to reflect the true range. To obtain a qualified value for MD, two factors need to be considered,
namely, the true range and to what extent the MD should exceed the true range. While the true range
can be roughly estimated using initial tests, the second factor is the real problem. In this study, three
times the average range derived in the parameter optimization session is used as the recommended
value to make sure it is large enough to reflect the true range. This is a rough estimate and needs to be
further studied.

The authors made those recommendations mainly based on the tremendous amount of
calculations and the consequent relationship between parameters and fitting R2. Even though some of
the parameters, such as GN, cannot be clearly defined as optimized, the influence of those parameters
on the accuracy of semivariogram has be well revealed, based on which, better decisions could be
made on setting the parameter for semivariogram than before.

5.3. Differences in the Ground Feature Size in Different Regions

Figure 12 shows the average ranges for general ground features in each region.
Based on the land cover map of each region, the area for each ground feature was calculated; the

percentage is shown in Figure 13.
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Grassland is dominant in Ansai County, accounting for 64.7% of the total area. Forest accounts for
23.4% and farmland for only 0.6%, as shown in Figure 13a. Grassland comprises the largest area in
this region, but its estimated range is the smallest among the three regions, only 45 m, indicating that
the grassland in Ansai is fragmentized. This may be explained by severe soil loss in that region [20],
which results in the grassland being cut into pieces. Farmland covers the smallest area but the largest
estimated range in this region, reaching 63 m, which means that the farmland is more concentrated
than the other two ground features in Ansai. The reason is mainly that most farmland has to be
concentrated and distributed along the river for easier irrigation because of lacking water in this
area [20].ISPRS Int. J. Geo-Inf. 2018, 7, 13  16 of 19 
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Figure 13. Proportion of the area of the ground features in: (a) Ansai; (b) Taihe; and (c) Changdu.

Forest is the primary ground feature in Taihe County, accounting for up to 59.0%. Grassland
comprises only 4.9%, while farmland covers 29.7% of the total area, as shown in Figure 13b. The forest
occupies the largest area in this region and the largest average range of 433 m among those regions,
indicating that forest is widely and continuously distributed in Taihe County. This matches the real
situation well. Taihe County is located in the southeast of China where there is abundant water and
large forests [30]. The relatively small average range for farmland shows that the farmland is dispersed.
East China has a large population, which leads to a high demand on food supply. Much of the land
has been reclaimed for food production, which is why the farmland has a higher proportion than the
other two counties. However, the farmland is separated by hills, which makes the farmland relatively
small [31].
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Changdu County is located in the Qinghai–Tibet Plateau with extensive land and a small
population. The landscape there is simple. Grassland accounts for 71.9%, forest occupies 8.7%,
and farmland contributes to only 1.0% (Figure 13c). The grassland area in Changdu County is large
and continuous [32]; therefore, the estimated range is also large, reaching 1308 m. The ranges for forest
and farmland are similar; both are ~100 m, which is close to the real situation.

The scale features of ground features acquired using the proposed method for the three
representative counties of China could match well with the real local landscape characteristics, which
indicates that the proposed method could achieve more than other relevant quantitative studies.
In terms of study in other regions, Wen obtained the size of farmland, 98.5 m, for the Sanjiang Plain in
Northeast China [33]. Yang reported that 30 m is an appropriate scale for depicting built area, while
90 m for water in Baoji City in the Loess Plateau [34]. However, these studies lack description and
explanation regarding simulation accuracy, and only focus on one single region, i.e. no comparison was
conducted between different regions, which limits its universal application. This study demonstrates
the advantage of MCS on directly revealing the size characteristics of ground features in different
geographical regions, and has the potential to receive wide popularity.

5.4. Ground Feature Size and Optimal Resolution

The ground feature size is mainly confined within two dimensions in this study and can be
considered as an abstract representation of its real size. It is not real because the size of an object in the
real world should be characterized based on at least two aspects, length and width, while the “size”
calculated from the estimated range of the semivariogram is just a measure of the length. The optimal
resolution of an image for the ground feature should be smaller than that size to retain information
about that object. The finer the resolution is, the more detail is included in the imagery.

According to Woodcock, variation at a scale finer than the scale of regularization (resolution)
cannot be detected and variations less than two to three times the scale of regularization (resolution)
cannot be reliably characterized [7]. Therefore, the optimal resolution for a ground feature should be,
at most, one-third the size of that feature, for the variation within it to be reliably detected.

Table 7 recommends the maximum applicable satellite imagery for survey of general ground
features in those three counties, based on the maximum resolution that is one-third of average size of
ground feature. For example, it could be inferred that the Sentinel-2A imagery with a resolution of 10 m
could be used to survey all three areas, and Landsat 8 imagery (15 m) could meet the requirement of
almost all areas, except the grassland in Ansai County, while CBERS-2 with a resolution of 20 m could be
used to survey most of the areas. Apart from those listed in Table 7, many commercial satellite imageries
provide a resolution less than 10 m that could also be leveraged, such as WorldView-4 (0.31 m),
GeoEye-1 (0.46 m), Pleiades-1A (0.5 m), KOMPSAT-3A (0.55 m), QuickBird (0.65 m), Gaofen-2 (0.8 m),
TripleSat (0.8 m), IKONOS (0.82 m), SPOT-6 (1.5 m), SPOT-7 (1.5 m), ALOS (2.5 m), CARTOSAT-1
(2.5 m), SPOT-5 (2.5–5 m), and Dove Satellite (3 m) [35].

Table 7. Applicable satellite imagery for general ground features in pilot areas.

Ground Features Average Size (m) Maximum Resolution (m) Applicable Satellite Imagery

Ansai
County

Forest 45 15 e.g., Landsat 8 (15 m)
Grassland 39 13 e.g., Sentinel-2A (10 m)
Farmland 63 21 e.g., CBERS-2 (20 m)

Taihe
County

Forest 433 144 e.g., CBERS-2 (20 m)
Grassland 217 72 e.g., CBERS-2 (20 m)
Farmland 58 19 e.g., Landsat 8 (15 m)

Changdu
County

Forest 108 36 e.g., CBERS-2 (20 m)
Grassland 1308 436 e.g., CBERS-2 (20 m)
Farmland 98 32 e.g., CBERS-2 (20 m)
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6. Conclusions

This study uses MCS to improve the performance of semivariograms by optimizing its parameters,
for selecting remote sensing imagery with an appropriate resolution for natural resource surveys.
The main contribution of this paper is revealing the relationship between semivariogram parameters
and simulation accuracy, as well as the suggestions given on selecting appropriate values for
parameters. Apart from that, the sizes of those common ground features in three counties of China
are acquired, and satellite image for survey is recommended, which is more objective than the usual
subjective way of selecting datasets by experience. The main findings include:

(1) The proposed MCS performs better than SAM and DAM in determining the ground feature size
from large remote sensing imagery by providing more accurate and precise estimations.

(2) Optimizing the parameters for building and fitting semivariograms is necessary and strongly
recommended by the authors because they greatly affect the performance of semivariograms in
terms of precision and accuracy. The optimized parameters could improve the precision of the
estimations. A larger SS and larger number of simulations is recommended, while the GN should
not be too large.

(3) The size and corresponding optimal resolution for specific ground feature could be acquired
using the proposed MCS and the optimized parameters. In this study, three counties in China
were used as case study, and appropriate remote sensing image was recommended.

(4) The sizes of the same ground feature in different regions vary; the sizes of different ground
features in the same region also vary. That means the result is specific to a certain area.
Nevertheless, the proposed method can also be used for choosing the remote sensing imagery
resolution in other places.

There still exists some limitation which should be studied further. First, the influence of the
classification accuracy on the estimation has not been studied in this research because the overall
accuracies for the three regions are almost identical. The relation between the classification and
estimation accuracies is still unclear and needs to be further investigated. In addition, high performance
computing (HPC) could be introduced in the future study, and cost–benefit analysis would be
incorporated to assess the cost and benefit of this method, to further improve its efficiency.
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