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Abstract Abstract 
Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, 
synthesized primarily by sphingosine kinase 2 (SK2) in the brain. We have reported pronounced loss of 
S1P and SK2 activity early in Alzheimer's disease (AD) pathogenesis, and an inverse correlation between 
hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing 
influence for AD. Paradoxically, SK2 was reported to mediate amyloid β (Aβ) formation from amyloid 
precursor protein (APP) in vitro To determine whether loss of S1P sensitizes to Aβ-mediated 
neurodegeneration, we investigated whether SK2 deficiency worsens pathology and memory in male J20 
(PDGFB-APPSwInd) mice. SK2 deficiency greatly reduced Aβ content in J20 mice, associated with 
significant improvements in epileptiform activity and cross-frequency coupling measured by hippocampal 
electroencephalography. However, several key measures of APPSwInd-dependent neurodegeneration 
were enhanced on the SK2-null background, despite reduced Aβ burden. These included hippocampal 
volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and social 
novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced 
sphingosine phosphorylation in glial cells, linking loss of SK2 activity and S1P in AD to perturbed 
endosomal lipid metabolism. Our findings establish SK2 as an important endogenous regulator of both 
APP processing to Aβ, and oligodendrocyte survival, in vivo These results urge greater consideration of 
the roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of 
neurodegeneration in AD.SIGNIFICANCE STATEMENT Genetic, neuropathological, and functional studies 
implicate both Aβ and altered lipid metabolism and/or signaling as key pathogenic drivers of Alzheimer's 
disease. In this study, we first demonstrate that the enzyme SK2, which generates the signaling lipid S1P, 
is required for Aβ formation from APP in vivo Second, we establish a new role for SK2 in the protection of 
oligodendrocytes and myelin. Loss of SK2 sensitizes to Aβ-mediated neurodegeneration by attenuating 
oligodendrocyte survival and promoting hippocampal atrophy, despite reduced Aβ burden. Our findings 
support a model in which Aβ-independent sensitizing influences such as loss of neuroprotective S1P are 
more important drivers of neurodegeneration than gross Aβ concentration or plaque density. 
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Neurobiology of Disease

Sphingosine Kinase 2 Potentiates Amyloid Deposition but
Protects against Hippocampal Volume Loss and
Demyelination in a Mouse Model of Alzheimer’s Disease
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Sphingosine 1-phosphate (S1P) is a potent vasculoprotective and neuroprotective signaling lipid, synthesized primarily by sphingosine
kinase 2 (SK2) in the brain. We have reported pronounced loss of S1P and SK2 activity early in Alzheimer’s disease (AD) pathogenesis, and
an inverse correlation between hippocampal S1P levels and age in females, leading us to speculate that loss of S1P is a sensitizing influence
for AD. Paradoxically, SK2 was reported to mediate amyloid � (A�) formation from amyloid precursor protein (APP) in vitro. To
determine whether loss of S1P sensitizes to A�-mediated neurodegeneration, we investigated whether SK2 deficiency worsens pathology
and memory in male J20 (PDGFB-APPSwInd ) mice. SK2 deficiency greatly reduced A� content in J20 mice, associated with significant
improvements in epileptiform activity and cross-frequency coupling measured by hippocampal electroencephalography. However,
several key measures of APPSwInd-dependent neurodegeneration were enhanced on the SK2-null background, despite reduced A� bur-
den. These included hippocampal volume loss, oligodendrocyte attrition and myelin loss, and impaired performance in Y-maze and
social novelty memory tests. Inhibition of the endosomal cholesterol exporter NPC1 greatly reduced sphingosine phosphorylation in glial
cells, linking loss of SK2 activity and S1P in AD to perturbed endosomal lipid metabolism. Our findings establish SK2 as an important
endogenous regulator of both APP processing to A�, and oligodendrocyte survival, in vivo. These results urge greater consideration of the
roles played by oligodendrocyte dysfunction and altered membrane lipid metabolic flux as drivers of neurodegeneration in AD.

Key words: Alzheimer’s disease; myelin; neuroprotection; oligodendrocyte; sphingosine 1-phosphate; sphingosine kinase

Introduction
Sphingosine 1-phosphate (S1P) is a signaling lipid derived by
phosphorylation of the membrane lipid sphingosine, a reaction

that is catalyzed by sphingosine kinase 1 or 2 (SK1 or SK2). S1P
signals through five G-protein-coupled receptors, S1PR1–S1PR5

Received March 10, 2019; revised Sept. 19, 2019; accepted Oct. 10, 2019.
Author contributions: L.M.I., T.F., B.G., A.I., T.K., and A.S.D. designed research; M.L., J.D.T., H.S., H.P.M., J.Y.L.,

T.A.C., T.D., R.C., J.B., M.P., J.V.E., B.H., and A.I. performed research; B.H. and G.J.G. contributed unpublished re-

agents/analytic tools; M.L., J.D.T., H.S., H.P.M., J.Y.L., T.A.C., T.D., R.C., A.I., T.K., and A.S.D. analyzed data; L.M.I., T.F.,
B.G., A.I., T.K., and A.S.D. wrote the paper.

This work was supported by National Health and Medical Research Council of Australia (NHMRC) project Grants
1100626 (A.S.D., B.G., T.F.), 1102012 (T.K.), 1141789 (T.K.), 1081916 (L.I., T.K.), 1143978 (A.I.), NHMRC program

Significance Statement

Genetic, neuropathological, and functional studies implicate both A� and altered lipid metabolism and/or signaling as key pathogenic
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for A� formation from APP in vivo. Second, we establish a new role for SK2 in the protection of oligodendrocytes and myelin. Loss of SK2
sensitizes to A�-mediated neurodegeneration by attenuating oligodendrocyte survival and promoting hippocampal atrophy, despite
reduced A� burden. Our findings support a model in which A�-independent sensitizing influences such as loss of neuroprotective S1P
are more important drivers of neurodegeneration than gross A� concentration or plaque density.
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(Choi and Chun, 2013; Rosen et al., 2013), but also has important
intracellular functions and binding targets (Hait et al., 2014; Shen
et al., 2014). S1P receptor signaling is essential for vascular devel-
opment and neural tube closure during embryogenesis (Mizugi-
shi et al., 2005), and regulates vascular barrier function and
lymphocyte circulation in adults (Rosen et al., 2013; Bigaud et al.,
2014). In the nervous system, S1P potentiates glutamate and ace-
tylcholine release from presynaptic terminals (Kajimoto et al., 2007;
J. P. Chan et al., 2012a; Riganti et al., 2016). SK2 is the dominant
isoform catalyzing S1P synthesis in the brain (Blondeau et al., 2007;
Lei et al., 2017). SK2 protects against ischemic brain damage in
stroke models (Pfeilschifter et al., 2011) and maintains hip-
pocampal plasticity through S1P-mediated inhibition of histone
deacetylases (Hait et al., 2014).

We previously reported that both S1P and SK2 activity decline
with increasing Alzheimer’s disease (AD) pathology in the hu-
man hippocampus and temporal cortex (Couttas et al., 2014).
S1P loss was statistically significant at Braak stages III–IV, corre-
sponding to a pre-AD neuropathological state (Braak and Braak,
1995). He et al. (2010) showed loss of S1P in AD frontal cortex,
whereas another study showed reduced cytosolic and increased
nuclear SK2 in AD (Dominguez et al., 2018). We have also shown
an inverse correlation between S1P levels and age in the hip-
pocampus of cognitively normal females (Couttas et al., 2018),
suggesting that loss of neuroprotective S1P may sensitize to
neurodegeneration.

Familial (inherited) AD manifests from middle age, whereas
the sporadic form, which accounts for �95% of cases, usually man-
ifests after age 60 (Alzheimer’s Association, 2019). Both forms are
characterized by hippocampal atrophy, neurofibrillary tangle (NFT)
pathology, and amyloid � (A�) plaques (Holtzman et al., 2011;
Alzheimer’s Association, 2019). Familial AD is caused by muta-
tions in the amyloid precursor protein (APP) and presenilin pro-
teases that promote A� peptide formation (Holtzman et al.,
2011). An APP gene variant that impairs A� generation and pro-
tects against AD has also been identified (Jonsson et al., 2012),
strongly implicating A� generation from APP in AD pathogene-
sis. However, cognitively normal individuals often present with
high A� burden (Price et al., 2009; Chételat et al., 2013), and
therapies that clear cerebral A� or inhibit A� formation have
repeatedly failed in clinical trials (Graham et al., 2017), implying
that A� alone is not sufficient to precipitate AD. One possibility is
that age-related loss of neuroprotective factors such as S1P un-
masks A� neurotoxicity, triggering neurodegeneration.

Despite the neurotrophic properties of S1P, a previous study
showed that SK2 and S1P are required for processing of APP to
A� in cultured neurons (Takasugi et al., 2011). A� secretion was
significantly reduced following treatment of cells with sphin-
gosine kinase inhibitors or siRNA to SK2, attributed to a require-
ment for SK2-generated S1P as a cofactor for APP cleavage by
Bace1 (�-secretase). Bace1-mediated APP cleavage is the first of
two proteolytic steps that result in A� peptide formation (Holtz-

man et al., 2011). It remains to be determined whether SK2 is a
physiologically significant regulator of APP processing to A� in
vivo.

To resolve whether loss of SK2 and S1P sensitizes to neurode-
generation mediated by A�, and whether endogenous SK2 is
required for A� formation from APP in vivo, we crossed SK2
knock-out (SK2�) mice to the J20 model, which expresses hu-
man APP with Swedish (K670N/M671L) and Indiana (V717F)
familial AD mutations (APPSwInd; Mucke et al., 2000; Palop et al.,
2007). Deletion of SK2 in J20 mice greatly reduced A� deposition
and A�-dependent hippocampal epileptiform activity; but pro-
duced marked loss of hippocampal volume, myelin and oligoden-
drocytes, and created recognition memory deficits. These results
demonstrate how A� may synergize with loss of neurotrophic lipid
signaling in the aging brain to produce neurodegeneration.

Materials and Methods
Transgenic mice
SK2� (Mizugishi et al., 2005) and J20 (PDGFB-APPSwInd) transgenic
mouse lines (Mucke et al., 2000) were described previously. The
APPSwInd transgene was maintained heterozygous. SK2 �/� mice were
crossed to J20, generating J20.SK2 �/� breeders that were used to create
J20.SK2 �/� and J20.SK2 �/�. These were crossed to SK2 �/� or SK2 �/�

siblings derived from a SK2 �/� � SK2 �/� cross, to ensure that all four
genotypes (SK2 �/�, SK2 �/�, J20.SK2 �/�, J20.SK2 �/�) were on the same
C57BL/6J genetic background.

Male mice were used for these experiments. Mice were grouped
housed and kept under a 12 h light/dark schedule, with food and water
provided ad libitum. Crinkle nest and tissues were provided for enrich-
ment. Mice were 8 or 13 months of age at cull. Experiments were per-
formed in accordance with the Australian Code of Practice for the Care
and Use of Animals for Scientific Purposes and were approved by the
Western Sydney University Animal Care and Ethics Committee (A11866).
Electroencephalography (EEG) recording on live mice was performed under
University of New South Wales (UNSW) Sydney animal care and ethics
committee approval 16/48A.

S1P, sphingosine, and SK2 activity were also quantified using cortical
tissue from 6-month-old male (n � 6 per genotype) and female (n � 2
per genotype) C57BL/6J mice heterozygous for the tau (K369I) trans-
gene, and WT littermates (L. M. Ittner et al., 2008; UNSW Sydney animal
care and ethics committee approval 16/22A).

Cognitive tests
Male mice were tested at 7 and 12 months of age. All tests were conducted
during the first 5 h of the light phase to minimize the effects of circadian
rhythm on performance. Mice were first subjected to a basic physical
examination battery that included the wire-hang test, pole test, visual cliff
test, rotarod, grip strength test, and ring test. All genotypes showed no
phenotype in these physical ability tests. This was followed by the open
field, novel object recognition, social preference and social novelty,
cheeseboard paradigm, and Y-maze tests (only the 12 month cohort were
tested in Y-maze). The inter-test interval was 48 h, and the experimenter
remained blinded to genotype during testing and data analysis. Data
from the cheeseboard paradigm is not presented, as the data were highly
variable and the WT mice as a group (as well as the other genotypes)
failed to spend �12.5% of their time exploring the eighth of the board
containing the reward in the probe trial.

Y-maze. A three-armed Y-maze was surrounded by external cues that
provide references for spatial memory (tripod, large geometric shapes on
the walls and curtain). Mice were placed in the start arm with one arm
(novel arm) closed off, and allowed to explore the start and familiar arm
for 10 min. After a 30 min interval, test mice were placed back into the
maze with the novel arm open, and allowed to explore for 10 min. The
start, novel and familiar arms were quasi-randomized for each animal.
Entries into, time spent, and distance traveled in each arm of the maze
was recorded and analyzed using ANY-maze software (Stoelting). The
number of entries and distance traveled in the novel arm were expressed
as a percentage of the total for all three arms, and a one-sample (two-
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tailed) t test was used to determine whether this percentage differed from
the that expected by chance (33.33%) for each genotype.

Social preference and social novelty test. The social preference test (SPT)
and social novelty test (SNT) assess the innate tendency of a test mouse to
explore a novel mouse (Cheng et al., 2013). The apparatus consists of
three clear Plexiglas chambers separated by rectangular passageways
(Cheng et al., 2013). The test mouse was isolated for 30 min before
testing, and then subjected to a habituation trial in which the mouse was
placed in the central chamber and allowed to explore the apparatus for 5
min. In the SPT, a cylindrical cage enclosing a male, unfamiliar, weight-
matched A/JArc mouse (Animal Resources Centre, Western Australia,
Australia) was placed on one end of the outer chamber and an empty cage
in the opposite outer chamber in a quasi-randomized manner. The test
mouse was again placed into the central chamber to freely explore the
apparatus for 10 min. In the SNT, the familiar mouse encountered in the
SPT and a novel male A/JArc were positioned at polar ends of the appa-
ratus’ outer chambers. The test mouse was placed in the central chamber
and allowed to explore for 10 min. There was a 20 min intertrial interval
and bedding was changed between trials. ANY-maze software was used to
quantify the time spent in chambers and time spent nosing the enclosures
(position of the nose is �1 cm from the chamber). For statistical analysis,
the time spent nosing the inhabited cage (SPT), and time spent nosing
the cage with the novel, unfamiliar mouse (SNT) was expressed as a
percentage of time spent nosing both cages. This percentage was com-
pared with that expected by chance (50%) in a one-sample t test for each
genotype.

Novel object recognition test. The novel object recognition test (NORT)
evaluates the rodent’s innate preference of investigating a novel over a
familiar object (Karl et al., 2012). The task consists of three trials: habit-
uation, training, and test trials. The apparatus is made of gray Perspex
(35 � 35 � 30 cm). During habituation, two identical objects were
placed in opposite corners of the chamber and the test mouse was put
into the chamber for 10 min, 24 h before training and test trials. On the
following day, the test mouse was placed back into the center of the same
chamber with a new set of identical objects and allowed to explore for 10
min (training). After a 30 min interval, the test phase was initiated by
replacing one of the familiar, identical objects with a novel object. The
mouse was again placed in the center of the chamber and allowed to
explore the objects for another 10 min. ANY-maze software was used to
quantify time spent nosing the objects (position of the nose is �1 cm
from an object). The objects used were LEGO Duplo farm animals, which
were cleaned thoroughly with 80% (v/v) ethanol between tests. Statistical
significance was determined as described above for SPT/SNT.

Electroencephalography
EEG was performed on 13-month-old male mice. Wire EEG electrodes
on remote telemetric transmitters (DSI) were implanted, and data were
recorded exactly as described previously (A. Ittner et al., 2014). Record-
ings were screened manually for movement artifacts and only artifact-
free EEG passages were used in analysis. Raw local field potentials were
noise filtered using a powerline noise filter (Neuroscore, DSI). Analysis
of EEG recordings was performed using the NeuroScore software v3.0
(DSI) with integrated spike detection module, as described previously
(A. Ittner et al., 2014). Spectral analysis of intra-ictal sequences was per-
formed using the integrated fast Fourier transform spectral analysis func-
tion of NeuroScore. Frequency bands of � and � wave forms were defined
between 4 and 12 Hz and 25–100 Hz, respectively, with further distinc-
tion of low � oscillations at 25– 40 Hz and high � oscillations at 40 –100
Hz. � and � spectral contributions were quantified by area-under-curve
(AUC) analysis across the defined frequency band in at least three
artifact- and hypersynchronous spike-free sequences per recording (each
1 min in length). Cross-frequency coupling of � phase and � amplitude
(Tort et al., 2010) was performed using MATLAB, as described previ-
ously (A. Ittner et al., 2014). Phase-amplitude distributions and mod-
ulation indices were determined from at least three artifact- and
hypersynchronous spike-free sequences (each 30 s) per recording.

Lipidomic analysis by liquid chromatography-tandem
mass spectrometry
Lipids were extracted from �20 mg mouse brain tissue using a two-phase
methyl-tert-butyl ether–methanol–water (10:3:2.5 v/v/v) extraction sol-
vent procedure (Matyash et al., 2008). Internal standards (2 nmol each of
d18:1/17:0 ceramide, d18:1/12:0 sphingomyelin, d18:1/12:0 hexosylcer-
amide, and d18:1/12:0 sulfatide; and 250 pmol of d17:1 sphingosine and
d17:1 S1P) were added at the start of the extraction procedure. Lipids
were detected in positive ion mode, using multiple-reaction monitoring
on a TSQ Altis mass spectrometer equipped with Vantage HPLC (Ther-
moFisher Scientific). Lipid peaks were identified using both precursor
ion mass and diagnostic product ions (m/z 264.3 for all sphingosine-
based lipids including S1P; m/z 250.2 for 17:1 sphingosine and S1P in-
ternal standards; both m/z 184.1 and m/z 264.3 for sphingomyelin).
Sphingosine, S1P, sphingomyelin, hexosylceramide, and sulfatide were
resolved using a previously-described binary gradient (Wong et al., 2012)
with some modifications. A 2.1 � 100 mm C8 column was used (1.8 �M

particle size; Agilent), with flow rate 0.3 ml/min. Mobile phase A was
0.2% formic acid, 2 mM ammonium formate in water; and B was 1%
formic acid, 2 mM ammonium formate in methanol. Total run time was
24 min, starting at 80% B and holding for 2 min, increasing to 100% B
from 2 to 14 min, holding at 100% until 20.5 min, then returning to 80%
B at 21 min, and holding at 80% B for a further 3 min. Ceramides were
resolved on a 2.1 � 150 mm Poroshell 120 HILIC-Z column (2.7 �M

particle size; Agilent). An isocratic mobile phase comprising 97% aceto-
nitrile, 2% methanol, 1% formic acid, and 2 mM ammonium formate was
used, with run time 9 min and flow rate 0.2 ml/min. Liquid chromatog-
raphy peaks were integrated using TraceFinder 4.1 software (Thermo-
Fisher Scientific), and expressed as ratios to the class-specific internal
standard. Absolute values were determined from external standard
curves for each lipid class.

Amyloid � ELISA
Brain homogenates were prepared by homogenizing hippocampal (�25
mg) tissue in 10 volumes (250 �l) of TBS extraction buffer (140 mM

NaCl, 3 mM KCl, 25 mM Tris, pH 7.4, 5 mM EDTA, 1, 2 mM 10-
phenanthroline, 1% Igepal CA 630, complete EDTA-free protease inhib-
itor) using a Biospec mini beat beater homogenizer with 425– 600 �m
acid-washed glass beads (Sigma-Aldrich). Homogenates were centri-
fuged at 16,100 � g for 30 min at 4°C, and the supernatant was collected
as the soluble fraction. The pellet was then re-homogenized in 10 vol-
umes (250 �l) of guanidine HCl buffer (4.7 M guanidine HCl, 12.5 mM

Tris, pH 8.0) with bead beating. Homogenates were incubated on a ro-
tating wheel at 4°C for 16 h. Samples were centrifuged at 16,1000 � g for
30 min at 4°C and the supernatant was collected as the insoluble A�
fraction. Protein concentrations determined using the bicinchoninic
acid (BCA) assay (ThermoFisher Scientific). ELISA kits from Thermo-
Fisher Scientific were used to quantify A�40 (KHB3481) and A�42
(KHB3441).

Immunohistochemistry and volumetric analysis
Mice were perfused transcardially using sterile saline, brains were re-
moved, divided sagittally, and postfixed overnight with 4% paraformal-
dehyde in PBS. Tissue was transferred to 30% sucrose cryoprotectant and
stored at 4°C. Half brains were sectioned at 40 �m using a ThermoFisher
Scientific Cyrotome FSE Cryostat and stored at �30°C in cryoprotectant
consisting of 25% glycerol, 25% ethylene glycol in PBS. For immunoflu-
orescence, sections were washed with PBS containing 0.1% Tween 20
between each step. Antigen retrieval was performed in 10 mM sodium
citrate, pH 6.0, with 0.01% Tween 20, heated to 70°C for 10 min. Sections
were incubated in blocking solution (5% goat serum, 0.1% BSA, 0.1%
Triton X-100 in PBS) for 1 h, then overnight at 4°C in primary antibodies
diluted in blocking solution. Primary antibodies were as follows: anti-A�
clone 6E10 (BioLegend, 803001; 1:500 dilution), anti-Olig2 (Abcam,
Ab109186; 1:1000 dilution), anti-NeuN (Merck, MAB377; 1:500 dilution),
anti-MBP (Abcam, Ab40390; 1:500 dilution), anti-neurofilament-H (Ab-
cam, Ab4680; 1:104 dilution), and rabbit anti-ASPA (gift from Matthias
Klugmann, UNSW Sydney). To visualize the primary antibody, sections
were incubated for 2 h with AlexaFluor 488-, 546-, 633-, or 647-conjugated
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secondary antibodies (1:500 in blocking solution). Thioflavin S (Sigma-
Aldrich, T1892) staining was performed last, incubating slides for 8 min
at RT in 0.002% thioflavin S solution, followed by two washes with 50%
EtOH in TBS. Sections were mounted using ProLong Gold anti-fade with
DAPI (Life Technologies, P36935). Slides were imaged using an Olympus
Virtual Slide microscope VS1200 or Nikon C2 confocal microscope.

In all cases, the experimenter remained blinded to the treatment
groups until after quantification.

Quantification of A� plaques. Hippocampal plaque number and bur-
den (percentage of plaque area relative to total area of the hippocampus)
was quantified in four sections per mouse. The mean for each mouse was
graphed and used for statistical analysis. Plaque number and burden
were quantified only from plaques double-labeled with 6E10 and thio-
flavin S, using the binary feature extractor of the BioVoxxel plugin in
ImageJ. Immunofluorescence micrographs of 6E10 were used as the se-
lector image for the corresponding thioflavin S (object) images to deter-
mine the overlap of both stains within the hippocampus.

Estimation of hippocampal volume. Six equidistant sagittal sections
from each animal, �0.36 –2.28 mm from the midline, were stained with
mouse anti-NeuN and rabbit anti-Olig2. Hippocampal cross-sectional
area on each section was measured using ImageJ and multiplied by 320
�m to account for the distance between sections. The mean area for each
mouse was graphed and used for statistical analysis. In some cases, only
four or five sections were obtained for each mouse (because of reduced
hippocampal size). The area covered by NeuN-positive signal (as a pro-
portion of total hippocampal area) was determined using ImageJ.

Quantification of Olig2-positive cells. Counting of Olig2-positive cells
used the same sections as were used for estimation of hippocampal vol-
ume and area. Images were first processed using the automatic contrast
enhancement function, then analyzed for particles based on size (�10
�m 2) and circularity (0.25–1.0) in ImageJ. To account for variability in
staining intensity between different staining batches (7- and 13-month-
old mice), sections from WT animals were used as inter-batch staining
controls.

Cell culture
The MO3.13 oligodendrocyte cell line was obtained from N. Cashman
(University of Toronto), and cultured in DMEM medium supplemented
with 10% fetal bovine serum (FBS) and 2 mM L-glutamine. The Oli-neu
oligodendrocyte cell line was obtained from Eva-Maria Kramer-Albers
(Johannes Gutenberg-Universitat, Mainz, Germany). They were cul-
tured in Sato medium supplemented with 2 mM L-glutamine and 1%
horse serum, on plates coated with 0.01% poly-D-lysine, as described
previously (Jung et al., 1995). SH-SY5Y neuroblastoma cells were ob-
tained from Paul Witting (University of Sydney), and cultured in RPMI
medium supplemented with 10% FBS and 2 mM L-glutamine. U251 cells
were from American Type Culture Collection, and cultured in DMEM
with 10% FBS and 2 mM L-glutamine. Primary human embryonic astro-
cytes were isolated from the Human Fetal Tissue Biobank at Macquarie
University Hospital, under ethics approval #5201600719 (Guillemin et
al., 2005), and cultured in RPMI medium with 10% FBS and 2 mM

L-glutamine. Experiments with primary human astrocytes were approved
by the University of Sydney human ethics committee (#2017/270).

Cell culture media, L-glutamine, and FBS were purchased from Life
Technologies. Poly-D-lysine and reagents for Sato medium were pur-
chased from Sigma-Aldrich.

Cells were treated for the indicated times with 3 �g/ml U18666A (Cay-
man Chemical; Lu et al., 2015), 5 mM NH4Cl, or 100 �M leupeptin (Cay-
man Chemical), then extracted into RIPA buffer (20 mM Tris-HCl, pH
7.4, 100 mM NaCl, 1 mM EDTA, 0.1% SDS, 0.5% sodium deoxycholate,
1% Triton X-100, 10% glycerol, 1 mM NaF, 2 mM Na4P2O7, complete
EDTA-free protease inhibitor cocktail; Sigma-Aldrich). Protein concen-
tration was determined with the BCA assay. One-half of the RIPA lysate
was used for Western blotting, and the other half for S1P and sphingosine
quantification. S1P and sphingosine internal standards (d17:1, 250 nmol
each) were added before extraction, and endogenous S1P and sphin-
gosine were quantified as described previously (Couttas et al., 2014).

SK2 activity assay
SK2 activity was assayed as described previously (Couttas et al., 2014).
Cells or tissue samples were extracted with sonication in 20 mM HEPES,
pH 7.4, 10 mM KCl, 1 mM dithiothreitol (DTT), 3 mM �-glycerophosphate, 5
mM NaF, 2 mM sodium orthovanadate, and complete protease inhibitor
cocktail. Reactions were run for 30 min at 37°C, using d17:1 sphingosine
(10 �M) as the substrate and 5 �g of protein, and stopped with the
addition of 4 volumes of methanol. Reaction buffer was 25 mM HEPES,
pH 7.4, 500 mM KCl, 2.5 mM MgCl2, 2 mM ATP, 2 mM sodium orthovana-
date, 5 mM NaF, 1 mM 4-deoxypyridoxine, and 10 �M fumonisin B1

(Cayman Chemical). Reagents were from Sigma-Aldrich unless other-
wise specified. S1P (d17:1) product formed in the reactions was quanti-
fied using liquid chromatography-tandem mass spectrometry with d18:0
S1P used as the internal standard.

Western blotting
Tissue samples (�20 mg) were homogenized in 0.2 ml homogenization
buffer (20 mM HEPES, pH 7.4, 10 mM KCl, 1 mM DTT, 3 mM �-glycero-
phosphate, 5 mM NaF, 2 mM sodium orthovanadate, and complete pro-
tease inhibitor cocktail; Roche) using a Biospec mini bead beater with
acid-washed glass beads (425– 600 �m). The supernatant was transferred
to a new tube and the beads washed with another 0.2 ml buffer, which was
then combined with the first extract. Extracts were centrifuged at 1000 �
g for 10 min to clear debris, and the supernatant was transferred to new
tubes. Protein concentration was determined with the BCA assay (Ther-
moFisher Scientific). Protein lysates (15 �g) were resolved on 4 –12%
NU-PAGE gels (ThermoFisher Scientific), transferred to polyvinylidene
difluoride membrane, and immunoblotted with mouse anti-APP (6E10;
1:1000 dilution), rabbit anti-MBP (Abcam, catalog #ab40390; 1:1000
dilution), mouse anti-PLP (clone aa3; 1:200 dilution; gift from Eva-
Maria Albers, University of Mainz), rabbit anti-MOG (Abcam, catalog
#ab32760; 1:1000 dilution), mouse anti-�III-tubulin (BioLegend, cata-
log #TUBB3; 1:1000 dilution), chicken anti-neurofilament H (Abcam,
catalog #ab4680; 1:10 6 dilution), and rabbit anti-LC3B (Cell Signaling
Technology, clone D11, catalog #3868; 1:1000 dilution). Signal was de-
veloped using Immobilon Western chemiluminescent HRP substrate
(Merck). Membranes were stripped using stripping buffer (15 g/L gly-
cine, 0.1% SDS, 1% Tween 20, pH 2.2), and re-probed with rabbit anti-
�-actin (Abcam, catalog #ab8227; 1:5000 dilution) as a loading control.
Densitometry was performed using Bio-Rad Image Lab software.

Experimental design and statistical analyses
The project was designed to test the effect of SK2 deletion on neurode-
generation and memory deficits in the J20 mouse model at two different
ages of the mice: the first being before substantial A� plaque deposition
(7– 8 months), and the second at a time when all J20 mice were expected
to show some A� deposition but still early enough to detect potential
differences in pathology or behavior between J20 (i.e., SK2 �/�) and
J20.SK2� (i.e., SK2 �/�) mice (12–13 months). A sample size of 12 mice
per group was chosen for memory tests based on prior studies with AD
mouse models (Karl et al., 2012; Cheng et al., 2013). These were divided
into sample sizes of six for immunofluorescence and biochemical analyses.
The number of sections analyzed for each immunofluorescence measure is
reported in the Immunohistchemistry and volumetric analysis section.

All statistical analysis was performed using GraphPad Prism. Ordinary
one-way ANOVA was used to test the effect of genotype or cell treatments
in single variable measures. In most analyses, Sidak’s post-test was used
to perform four comparisons: WT-SK2�, WT-J20, WT-J20.SK2�, and
J20-J20.SK2�. For lipidomic data, ANOVA p values for individual lipids
were adjusted for multiple comparisons using the false discovery rate
approach of Benjamini, Krieger, and Yekutieli (threshold: Q � 5%), after
which only sphingosine and S1P remained significant. Dunnett’s post-
test was applied to compare levels of individual lipids to the WT control
group when a significant result ( p 	 0.05) was detected with one-way
ANOVA. Ordinary two-way ANOVA was used when a second variable
was involved (see Figs. 3C,J, 7E), with Dunnett’s post-test to compare
each genotype to the WT control.

To test for statistical significance in memory tests, the performance of
subjects in each genotype group was compared with that expected by
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chance (either 33.3 or 50%) using one-sample t tests. This method most
effectively tests each genotype for a specific preference for the novel arm
(Y-maze), novel mouse (SNT), or novel object (NORT). Unpaired, two-
tailed t tests were used to compare A� content between J20 and J20.SK2�
mice. All data are available to interested researchers upon reasonable
request.

Results
SK2 deletion alleviates A� burden
To determine the effect of SK2 deficiency on A� plaque forma-
tion and associated neuropathology, SK2� were crossed to J20
mice, generating J20.SK2� mice. We first determined the effect of
SK2 deletion and the APPSwInd transgene on levels of S1P, sphin-
gosine, and other sphingolipids in the hippocampus at 8 months
of age (Table 1). After adjusting for multiple comparisons, only
sphingosine and S1P were significantly affected by genotype.
Mean cortical S1P levels were 83% lower in SK2� compared with

WT mice, whereas the SK2 substrate sphingosine was twofold
higher, in agreement with previous results (Lei et al., 2017). S1P
and sphingosine content was not affected by the APPSwInd trans-
gene (i.e., unchanged in J20 mice). Although not statistically sig-
nificant, a trend reduction in the major myelin lipid constituents
galactosylceramide, sulfatide, and sphingomyelin was apparent
in the J20.SK2� line.

Significant A� plaque pathology was observed in 13-month-
old but not 8-month-old J20 mice (Fig. 1A). Mean A� plaque
number and hippocampal plaque burden were 56% (p � 0.033
by t test) and 75% (p � 0.003) lower, respectively, in J20.SK2�
compared with J20 (Fig. 1B,C). No plaques were detected in WT
or SK2� mice, which do not express the human APPSwInd trans-
gene. In agreement with the immunofluorescence data, soluble
and insoluble A�40 and A�42 peptide levels, as determined by
ELISA, were lower in J20.SK2� compared with J20 mice (Fig.

Table 1. SK2 deletion affects hippocampal S1P and sphingosine content

Mean 
 SEM (pmol lipid/mg tissue) ANOVA results

WT SK2� J20 J20.SK2� F p

Sphingosine 1.79 � 0.21 3.69 � 0.54** 1.72 � 0.26 3.47 � 0.31** 8.86 0.0006 #

S1P 1.19 � 0.29 0.20 � 0.05** 1.18 � 0.11 0.24 � 0.05** 11.8 0.0001 #

Ceramide
C16:0 1.03 
 0.11 1.16 
 0.19 1.39 
 0.33 1.06 
 0.09 0.64 0.60
C18:0 70.5 
 7.0 93.5 
 16.8 51.1 
 10.5 86.3 
 10.5 2.55 0.084
C20:0 0.29 
 0.03 0.27 
 0.05 0.22 
 0.05 0.24 
 0.03 0.57 0.64
C22:0 0.23 
 0.04 0.15 
 0.02 0.18 
 0.04 0.15 
 0.01 1.79 0.18
C22:1 0.41 
 0.13 0.21 
 0.04 0.31 
 0.07 0.22 
 0.02 1.44 0.26
C24:0 0.25 
 0.07 0.09 
 0.01* 0.11 
 0.02* 0.06 
 0.01** 4.84 0.011 #

C24:1 1.80 
 0.52 1.05 
 0.20 1.36 
 0.36 0.71 
 0.05 1.92 0.16
Total 74.5 
 7.23 96.4 
 17.3 54.7 
 11.2 88.8 
 10.7 2.28 0.12

GalCer
C16:0 1.17 
 0.09 1.08 
 0.26 1.68 
 0.29 1.22 
 0.11 1.7 0.20
C18:0 13.3 
 1.59 16.2 
 4.77 11.7 
 1.46 10.5 
 0.85 0.87 0.47
C20:0 3.07 
 0.48 3.52 
 1.27 3.13 
 0.50 2.21 
 0.22 0.56 0.65
C22:0 8.38 
 1.15 7.29 
 1.93 8.04 
 1.12 4.71 
 0.58 1.65 0.21
C22:0-OH 35.1 
 3.06 29.8 
 6.08 31.8 
 5.12 20.9 
 2.75 1.85 0.17
C22:1 9.71 
 0.80 9.26 
 2.17 9.6 
 1.31 7.06 
 0.46 0.86 0.48
C22:1-OH 3.66 
 0.27 4.18 
 0.85 3.68 
 0.66 3.17 
 0.34 0.51 0.68
C24:0 9.04 
 1.29 6.23 
 1.90 7.62 
 1.63 3.47 
 0.44 2.79 0.067
C24:0-OH 13.6 
 1.55 11.3 
 2.01 13.2 
 1.89 8.95 
 1.46 1.50 0.24
C24:1 73.6 
 9.68 61.3 
 15.9 55.9 
 8.20 38.3 
 3.20 2.03 0.14
C24:1-OH 20.2 
 1.68 16.5 
 4.04 16.8 
 3.38 11.6 
 1.06 1.58 0.23
Total 191 
 20.4 167 
 39.5 163 
 24.0 112 
 8.60 1.67 0.21

SM
C16:0 101 
 7.45 79.5 
 17.4 134 
 36.3 66.4 
 6.36 2.02 0.14
C18:0 812 
 126 722 
 88.2 583 
 100 463 
 59.7 2.53 0.087
C20:0 35.3 
 2.91 33.6 
 6.28 36.1 
 5.90 22.3 
 3.92 1.71 0.20
C22:0 5.16 
 0.61 6.52 
 1.39 9.79 
 1.58* 5.00 
 0.78 3.65 0.030 #

C24:0 1.99 
 0.20 2.31 
 0.42 3.10 
 0.72 1.71 
 0.20 1.86 0.17
C24:1 17.8 
 2.57 19.4 
 3.67 19.4 
 4.04 15.0 
 1.31 0.47 0.71
Total 973 
 133 864 
 114 785 
 144 574 
 70.2 2.02 0.14

Sulfatide
C16:0 6.72 
 0.81 3.76 
 1.04* 5.65 
 0.93 2.79 
 0.29** 4.72 0.012 #

C18:0 63.4 
 11.5 61.0 
 14.1 53.7 
 5.25 41.3 
 4.2 1.05 0.39
C20:0 3.83 
 0.91 3.74 
 0.67 3.64 
 0.74 2.21 
 0.19 1.28 0.31
C22:0 34.3 
 5.36 31.0 
 6.06 29.5 
 4.77 20.4 
 2.46 1.49 0.25
C22:0-OH 25.3 
 1.77 18.1 
 4.62 20.7 
 3.38 12.0 
 1.55* 3.21 0.045 #

C22:1 13.8 
 2.81 10.9 
 1.68 11.5 
 2.51 7.24 
 0.84 1.66 0.21
C22:1-OH 5.41 
 0.66 4.43 
 1.09 4.63 
 1.15 3.34 
 0.42 0.94 0.44
C24:0 71.0 
 9.00 58.7 
 14.7 61.6 
 7.38 40.4 
 4.85 1.75 0.19
C24:0-OH 16.5 
 2.05 13.2 
 2.61 15.0 
 2.24 10.2 
 1.51 1.61 0.22
C24:1 320 
 54.1 239 
 42.0 218 
 38.5 148 
 14.2* 3.14 0.048 #

C24:1-OH 21.8 
 3.39 16.8 
 3.44 17.4 
 3.29 12.7 
 1.14 1.57 0.23
Total 582 
 91.0 461 
 90.0 441 
 66.5 300 
 22.5 2.49 0.089

Levels of S1P, sphingosine, and other sphingolipids in the hippocampus of WT, SK2�, J20, and J20.SK2� mice at 8 months of age. All lipids shown have the common 18:1 sphingosine base. F and p values for one-way ANOVA are indicated;
#p 	 0.05. After adjusting ANOVA p values for multiple comparisons, sphingosine and S1P were significant at Q 	 0.05, indicated by bold font. Dunnett’s post-test was used to compare group means to the WT for individual lipids significant
at p 	 0.05 in univariate ANOVA. *p 	 0.05, **p 	 0.01.
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1D–G). Mean total A� content (A�40 � A�42) was 58% lower
(p � 0.044 by t test) in J20.SK2� mice. APPSwInd transgene ex-
pression was equivalent between J20 and J20.SK2�, indicating
that reduced A� could not be attributed to altered transgene
expression (Fig. 1H).

SK2 deletion reduces A�-dependent epileptiform activity and
neuronal network deficits
Mouse models of A� overproduction show neuronal network
aberrations in the hippocampus that can be quantified with EEG,
including spontaneous epileptiform activity, modulation of power
spectrum densities, and impaired network connectivity assessed by
cross-frequency coupling of � amplitude with � phase (Palop et al.,
2007; Verret et al., 2012; A. Ittner et al., 2014). EEG recording from
the hippocampus showed epileptiform activity with frequent spon-
taneous hypersynchronous spikes in J20 mice, which was not pres-
ent in WT or SK2� mice (F � 9.6, p � 0.0016 by one-way ANOVA;
Fig. 2A,B). The number of epileptiform events was markedly re-
duced in J20.SK2� mice (69% reduction in spikes/min, p � 0.017 by
Sidak’s post-test), consistent with their lower A� burden.

To address contributions of different wave forms, we per-
formed power spectral density analysis of inter-ictal sequences

during the wake state (Buzsáki and Moser, 2013). Spectral distri-
bution of oscillations was comparable between WT, SK2�, and
J20 mice, whereas J20.SK2� showed lower power across the en-
tire oscillation spectrum (p 	 0.0001 compared with WT by
Dunnett’s post-test following two-way ANOVA; Fig. 3C). Theta
oscillations (4 –12 Hz), a key contribution of hippocampal EEG
derived mainly from large pyramidal neurons (Buzsáki and
Moser, 2013), were 59% lower in J20.SK2� compared with WT
controls (Fig. 2D,E), although this was not statistically significant
(p � 0.075). Spectral power of low � frequencies (25–50 Hz) was
significantly regulated by genotype (F � 7.2, p � 0.005 by one-
way ANOVA) and 53% lower in J20.SK2� compared with WT
mice (p � 0.038; Fig. 2F,G).

Interactions between hippocampal � and � oscillations in
EEG recordings correlate in strength and dynamics with cogni-
tive functions such as learning and memory (Tort et al., 2009).
Cross-frequency coupling between � phase and � amplitude is a
proxy of this network modality (Tort et al., 2009; Goutagny et al.,
2013). Cross-frequency coupling was reduced in J20 mice and
restored in J20.SK2� for frequency pairs between �: 4 –10 Hz and
high �: 40–100 Hz, as evident in comodulograms (Fig. 2H) and the
modulation index, a quantitative measure of cross-frequency cou-

Figure 1. Loss of SK2 greatly reduces A� production. A, Immunofluorescence colabeling with 6E10 antibody (red), thioflavin S (ThioS; green), and DAPI (blue) in hippocampus of J20 and
J20.SK2�mice at 8 and 13 months of age. Box (closed border) shows an enlarged view of an A� plaque (dashed box). Scale bar, 200 �M. B, A� plaque burden (percentage hippocampal area covered
by plaques) and (C) A� plaque number in 13-month-old mice. D, E, A�40 and (F, G) A�42 levels in hippocampus of 13-month-old J20.SK2� or J20 mice, as determined by ELISA. A� levels were
below the limit of detection in WT or SK2� mice. H, Western blot for full-length APP in J20 and J20.SK2� mice. Statistical significance in B–H was determined by two-tailed, unpaired t tests (6 mice
per group).
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pling (Tort et al., 2010; Fig. 2I). The decrease in the modulation
index in J20 compared with WT (p � 0.075) and J20.SK2� (p �
0.070) mice was close to statistical significance as determined by
Sidak’s post-test following one-way ANOVA. Co-modulation
analysis of � amplitude along � phase showed similar phase lock
of amplitude modulation between recordings from all genotypes
(Fig. 2I). However, peak amplitude modulation was significantly
lower in J20 compared with WT mice (Fig. 2I).

SK2 deletion synergizes with the APPSwInd transgene to
produce recognition memory deficits
Familial AD mouse models such as J20 are characterized by def-
icits in spatial and recognition memory that often precede overt
A� plaque deposition (Karl et al., 2012; Verret et al., 2012; Cheng
et al., 2013; Beauquis et al., 2014). In the Y-maze, a common test
of spatial reference memory, the percentage of entries into the
novel arm (Fig. 3A) and distance traveled in the novel arm (Fig.
3B) were significantly higher than expected by chance for WT,
SK2�, and J20 mice, indicating their memory of the familiar arms
of the maze and motivation to explore the novel arm. In contrast,

the percentage of entries into, and distance traveled in, the novel
arm were not significantly higher than expected by chance for
J20.SK2� mice. The SPT assesses the preference for exploration
of a cage containing a mouse compared with an empty cage (i.e.,
sociability), while the SNT assesses the innate preference for ex-
ploring a new over a familiar mouse (social recognition memory;
Cheng et al., 2013). These tests were applied to two distinct
cohorts of mice, one 7 months and the other 12 months of age.
All four genotypes exhibited a statistically significant prefer-
ence for the inhabited over the empty cage in the SPT, with the
exception of J20 mice at 12 months of age (Fig. 3C,D). In the
SNT, J20 mice performed less well than WT, but nonetheless
spent significantly more time exploring the novel over the
familiar mouse at both 7 and 12 months of age (Fig. 3 E, F ). In
contrast, J20.SK2� mice did not spend significantly more time
exploring the novel mouse at either age. In the NORT (Karl et
al., 2012), only the WT mice showed a preference for the novel
object at 7 months of age (Fig. 3G). None of the strains showed
a statistically significant preference for the novel object at 12
months of age (Fig. 3H ).

Figure 2. Deletion of SK2 abates hypersynchronous activity and cross-frequency coupling deficits in J20 mice. A, Representative traces and (B) quantification of spontaneous hypersynchronous
events (spikes/min), in hippocampal EEG recordings from 13-month-old mice. Arrows indicate spontaneous hypersynchronous events. Means 
 SEM shown; n � 3–5 mice per group. C, Spectral
power density plot of hippocampal EEG recordings over the frequency range 0 –100 Hz. The signal at 60 Hz was eliminated by a power line filter. D, E, Spectral power density of � oscillation (4 –12
Hz) and (F, G) low � oscillation (25–50 Hz) in WT, SK2�, J20, and J20.SK2�mice. Mean (solid line) and SEM (dotted line) shown in D and F; AUC shown in E and G. H, Representative co-modulograms
(30 s) of EEG recordings. Color contour indicates strength of co-modulation of amplitude by phase at individual frequency pairs. I, Modulation index of cross frequency coupling between � phase and
� frequencies in EEG recordings. Mean 
 SEM. Statistical significance in B, E, G, and (I ) was determined by ANOVA with Sidak’s post-test. P values 	 0.05 are indicated on graphs. Data were derived
from three to five mice per group. J, Phase–amplitude co-modulation across � phase bins. Mean (solid line) and SEM shown; n � 3–5. Statistical significance was determined by two-way ANOVA
with Dunnett’s post-test. *p 	 0.05, J20 compared with WT; #p 	 0.05, J20.SK2� compared with WT.
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Loss of hippocampal volume in
J20.SK2� mice
On the basis of the cognitive deficits and
suppressed PSD in J20.SK2� mice, we in-
vestigated hippocampal volume and neu-
ronal density. The volume of the dentate
gyrus (DG) and cornu ammonis (CA) re-
gions of the hippocampus were signifi-
cantly altered as a function of genotype in
13-month-old mice (F � 4.8, p � 0.014
for DG; F � 3.5, p � 0.036 for CA by
one-way ANOVA). DG volume was 24%
lower in 13-month-old J20 compared
with WT mice (not significant), and 34%
lower in J20.SK2� (p � 0.016; Fig. 4A).
CA volume was not reduced in J20 mice
but 29% lower in J20.SK2� compared
with WT mice (p � 0.030; Fig. 4B). There
was no effect of genotype on the volume of
the DG (Fig. 4C) or CA (4D) regions in
8-month-old mice (F � 1.4, p � 0.26 for
DG; F � 0.6, p � 0.61 for CA by one-way
ANOVA). The area of staining for the
neuronal marker NeuN was not reduced
in hippocampal sections from 13-month-
old J20.SK2� mice (F � 0.21, p � 0.89;
Fig. 4E,F), suggesting that loss of hip-
pocampal volume cannot be attributed to
a loss of neurons. This was also true when
broken down into DG (F � 0.2, p � 0.92)
and CA (F � 1.3, p � 0.31). However, the
NeuN-negative area, which does not con-
tain neuronal cell bodies, decreased as a proportion of total hip-
pocampal area in J20.SK2� mice (F � 3.84, p � 0.029 by one-way
ANOVA; Fig. 4G).

Hypomyelination precedes A� deposition in J20.SK2� mice
Having observed reduced hippocampal volume in J20.SK2�
mice, we investigated the levels of neurofilament-H (NF-H), a
marker of neuronal processes, and the myelin marker myelin
basic protein (MBP), using immunofluorescence microscopy.
Although reduced MBP immunoreactivity was observed in the
hippocampus and cortex of 13-month-old SK2� mice, there was
stark loss of MBP staining in J20.SK2� mice (Fig. 5A–H). NF-H
staining was apparent in the absence of MBP staining. MBP stain-
ing was not appreciably different between the four genotypes in
the cerebellum (Fig. 5I–L). MBP staining also appeared to be
reduced in the hippocampus of J20.SK2� but not J20 or SK2�
mice at 8 months of age (Fig. 5M–P).

Western blotting was performed to provide more quantitative
data on myelin content in the hippocampus and cortex. In the
cortex of 8-month-old mice, the levels of MBP (F � 3.1, p �
0.051), myelin proteolipid protein (PLP; F � 2.7, p � 0.07), and
myelin oligodendrocyte glycoprotein (MOG; F � 6.9, p � 0.002)
were affected by genotype (Fig. 6A,B). Compared with WT mice,
MBP, PLP, and MOG were 60% (p � 0.027), 37% (p � 0.051),
and 55% (p � 0.001) lower, respectively, in J20.SK2� mice; and
MOG was 44% lower (p � 0.011) in J20 mice. Similar loss of
MBP (76%, p � 0.046), PLP (55%, p � 0.092), and MOG (55%,
p � 0.077) was observed in the cortex of 13-month-old J20.SK2�
mice. In the hippocampus, there was no notable effect of geno-
type on these myelin markers at 8 months, however, all three were
appreciably lower in J20.SK2� mice at 13 months of age. The

effect of genotype on MBP levels in the hippocampus of 13-
month-old mice was statistically significant (F � 4.1, p � 0.019),
with a 66% reduction (p � 0.009) in J20.SK2� relative to WT
mice. Mean levels of all three myelin markers were lower in the
hippocampus and cortex of both J20 and SK2� mice at 13
months of age, however, this was not statistically significant. In all
cases, myelin markers were lowest in J20.SK2� mice, indicating a
synergistic effect of SK2 deletion and APPSwInd transgene on my-
elin content. The neuronal markers neurofilament H and �III
tubulin were not depleted in J20.SK2� mice (Fig. 6C,D), indicat-
ing that demyelination is not secondary to axonal degeneration.

To determine whether myelin loss results from loss of oligo-
dendrocytes, we quantified Olig2-positive cells in the hippocam-
pus (Fig. 6E). Two-way ANOVA demonstrated a significant
effect of both age (F � 7.3, p � 0.01) and genotype (F � 3.3, p �
0.03) on oligodendrocyte density. Numbers were not signifi-
cantly different between genotypes at 8 months of age. However,
at 13 months of age, mean oligodendrocyte density was 26%
lower in SK2� (p � 0.29), 39% lower in J20 (p � 0.072), and 51%
lower in J20.SK2� (p � 0.014) compared with WT mice. Reduced
oligodendrocyte density in the hippocampus of 13-month-old
J20.SK2� mice was confirmed by quantifying cells positive for the
mature oligodendrocyte marker aspartoacylase (ASPA): ASPA-
positive cell number differed by 	10% (not significant) be-
tween WT, SK2�, and J20, but was 41% lower in the
hippocampus of J20.SK2� compared with WT mice ( p �
0.008; 4 mice per group). These results indicate that the J20
transgene and SK2 deficiency act synergistically to deplete oli-
godendrocytes and create a severe myelin deficit in the hip-
pocampus and cortex.

Figure 3. J20.SK2� mice exhibit deficits in recognition memory. A, Entries into, and (B) distance traveled in, the novel arm of
the Y-maze as a percentage of total arm entries and total distance traveled. C, D, Time spent nosing the inhabited cage, expressed
as a percentage of total time nosing (inhabited � uninhabited), in the SPT. E, F, Time spent nosing the cage with the novel mouse,
expressed as a percentage of total time nosing (novel � familiar), in the SNT. G, H, Time spent nosing the novel object, expressed
as a percentage of total time nosing (novel � familiar), in the NORT. C, E, G, Seven-month-old mice; A, B, D, F, H, 12-month-old
mice. Statistical significance in all paradigms was determined by one-sample t tests comparing the measure-of-interest to that
expected by chance (dotted line) for each genotype (n � 10 –14 mice per group). *p 	 0.05, **p 	 0.01, ***p 	 0.001; ns, not
significant.
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SK2 activity and S1P levels are affected by
lysosomal dysfunction
Although we and others have demonstrated loss of S1P (He et al.,
2010; Couttas et al., 2014) and SK2 activity (Couttas et al., 2014)
in AD brain tissue specimens, brain S1P levels were not reduced
in J20 mice at 13 months of age (Fig. 7A). In fact, SK2 activity
trended higher in the hippocampus of 13 month J20 compared
with WT mice (Fig. 7B; t � 1.69, p � 0.12 by t test). NFT pathol-
ogy is another pathological hallmark of AD, and aggregation-
prone mutant forms of tau cause pronounced neuron loss in
frontotemporal dementia. However, there was no notable differ-
ence in S1P and sphingosine levels, or the S1P:sphingosine ratio,
in cortical tissue from the very aggressive tau(K369I) mouse
model at 6 months of age, when abundant NFT pathology is
present ( L. M. Ittner et al., 2008). S1P/sphingosine ratios were
0.77 
 0.17 and 0.79 
 0.15 in tau(K369I) mice and their WT
littermates (mean 
 SEM, n � 8 per group). There was also no
significant effect of the tau(K369I) transgene on SK2 activity
(28.5 
 6.4 fmol S1P/min/�g protein in tau(K369I) and 41.9 

5.7 in WT mice). Supported by previously-published results with
the APP Sw/PS1�E9 mouse model (Couttas et al., 2014), these re-
sults suggest that loss of S1P in AD is not a direct consequence of
A� or tau pathology.

Dysfunction of the endosomal-lysosomal system associated
with enlarged endosomes and autolysosomes is another patho-
logical trait of AD that is central to A� production and deposition
(Morel et al., 2013; Nixon, 2017), particularly as mutations in
genes directly involved in endosomal and lysosomal processes
(BIN1, PICALM, SORL1, APOE) enhance the risk for late-onset
AD (Karch and Goate, 2015; Nuriel et al., 2017). Niemann–Pick
type C (NPC) disease is caused by loss of function of the late
endosomal/lysosomal cholesterol transporter NPC1, leading to

lysosomal dysfunction and lipid storage. Importantly, neurofi-
brillary tangles and A� accumulation are observed in NPC cases
and mouse models, suggestive of a similar etiology to AD (Saito et
al., 2002; Jin et al., 2004). Treating the oligodendrocyte cell line
MO3.13 with the NPC1 inhibitor U18666A reduced mean S1P
content by 59% (F � 4.5, p � 0.045 by one-way ANOVA) and
increased sphingosine levels twofold at 48 h (F � 95.2, p 	
0.0001; Fig. 7C). Thus, the S1P:sphingosine ratio decreased 46%
at 24 h, and 78% at 48 h (F � 13.4, p � 0.002). This was associated
with 41% and 59% reductions in mean SK2 activity at 24 and 48 h
of treatment (F � 5.46, p � 0.028; Fig. 7D). It has been proposed
that astrocytes are the major source of sphingosine kinase activity
in the brain (Blondeau et al., 2007). The decline in S1P–sphin-
gosine ratio with U18666A was also observed in the human as-
trocytoma cell line U251 (F � 37.6, p 	 0.0001) and primary
human astrocytes (F � 5.6, p � 0.027), as well as mouse oligoden-
drocyte cell line Oli-neu (F � 4.8, p � 0.037). A near-significant
decline was observed in the neuronal cell line SH-SY5Y (F � 3.7, p �
0.067; Fig. 7E).

De-acidification of endosomes and lysosomes with NH4Cl
(which inhibits the activity of lipases and proteases that require
acidic pH), and inhibition of serine and cysteine proteases with
the protease inhibitor leupeptin, both impede autophagosome
and lysosome flux and increase amyloidogenic processing of APP
by �- and �-secretases (Boland et al., 2010; Tamboli et al., 2011;
Cermak et al., 2016). NH4Cl treatment rapidly depleted both S1P
and sphingosine (Fig. 7F), whereas inhibition of lysosomal pro-
teases with leupeptin had no effect on either (Fig. 7G). Accumu-
lation of the autophagosome marker LC3B-II demonstrated that
all three treatments effectively impaired autophagosome turn-
over in the time frame investigated (Fig. 7H). These results indi-
cate that perturbing lipid metabolism in late endosomes, but not

Figure 4. Loss of hippocampal volume in J20.SK2� mice. A–D) Estimated volume of the DG (A, C) and CA1–3 region (B, D) of the hippocampus in 13-month-old (A, B) and 8-month-old (C, D)
mice. mth, Month. E, NeuN staining of a WT mouse hippocampus with CA and DG regions outlined. F, Mean NeuN-positive area of the hippocampus in 13-month-old mice. G, NeuN-negative area
as a percentage of total hippocampal area in 13-month-old mice. Statistical significance was determined by one-way ANOVA with Sidak’s post-test (5– 6 mice per group). ANOVA results reported
in-text with significant post-test results shown on the graphs.
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generalized interference with lysosomal function, leads to the
depletion of S1P relative to sphingosine and disruption of SK2
activity.

Discussion
This study investigated whether loss of SK2 sensitizes to A�-
mediated neurodegeneration. We show for the first time that SK2
deletion greatly reduces A� formation in vivo, and corrects A�-
dependent epileptiform activity. However, SK2 deficiency acted
synergistically with the APPSwInd transgene to cause age-dependent
loss of myelin and hippocampal volume, a significant suppression of
spectral power measured by EEG, and cognitive deficits, indicating
that SK2 is neuroprotective in the context of AD.

Our finding that endogenous SK2 is required for A� forma-
tion from APP in vivo confirms the results of a prior study show-
ing the same in cultured neurons (Takasugi et al., 2011); these
authors proposed that S1P directly stimulates Bace1 activity in
vitro. APP cleavage by Bace1 occurs in endosomes (van der Kant
and Goldstein, 2015). Both SK1 and SK2 are present in endo-
somes, where they are functionally important for recycling of
internalized macromolecules (Shen et al., 2014; Lima et al., 2017).
Marked depletion of S1P following disruption of endosomal cho-
lesterol export with U18666A, or de-acidification of endosomes

and lysosomes with NH4Cl, implies that the bulk of cellular S1P is
generated from sphingosine in acidic endosomes, where, in theory, it
can directly stimulate Bace1. NH4Cl also reduced sphingosine, sug-
gesting that acid ceramidase activity, which is increased in AD (He et
al., 2010), is the major cellular source of sphingosine. Our results
with U18666A are in agreement with a prior study showing selec-
tive depletion of S1P relative to sphingosine in NPC1-deficient
neurons (Lee et al., 2014). Intracellular S1P is rapidly turned over
by S1P lyase and S1P-specific phosphatases Sgpp1/2, so any re-
duction in SK2 activity might be expected to produce a large
effect on S1P–sphingosine balance.

A strong body of genetic and neuropathological evidence im-
plicates both impaired cellular cholesterol metabolism and al-
tered endosomal membrane composition and trafficking in the
etiology of AD (Morel et al., 2013; Karch and Goate, 2015; Nixon,
2017; Nuriel et al., 2017). Inability to properly process cholesterol
esters in endosomes (R. B. Chan et al., 2012b; van der Kant et al.,
2019) and export cholesterol to lipoproteins (Nordestgaard et al.,
2015; Yassine et al., 2016) are common features of both AD and
NPC disease. Thus, both diseases are characterized by accumula-
tion of A� and hyperphosphorylated tau (Saito et al., 2002; Jin et
al., 2004). We speculate that loss of SK2 function and S1P in AD

Figure 5. Pronounced hypomyelination in J20.SK2� mice. A–L, Immunofluorescence for MBP (green) and NF-H (red) in the cortex (A–D), hippocampus (E–H ), and cerebellum (I–L) of
13-month-old WT (A, E, I ), SK2� (B, F, J ), J20 (C, G, K ), and J20.SK2� mice (D, H, L). M–P, MBP immunofluorescence in the hippocampus of 7-month-old WT (M ), SK2� (N ), J20 (O), or J20.SK2�
mice (P). Scale bar, 200 �M.
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is attributed to the altered lipid environment of endosomal mem-
branes. This could impair SK2 recruitment to endosomes, a pos-
sibility that will be investigated in future studies, and may explain
redistribution of SK2 from cytosol to nucleus in neurons of AD
brains (Dominguez et al., 2018).

SK2 deficiency abated hippocampal epileptiform activity in
J20 mice, supporting prior research showing that this hyper-
excitatory activity is A�-dependent (Verret et al., 2012; A. Ittner
et al., 2014). Deficits in �-� cross frequency coupling were also
reduced, in agreement with recent work indicating that neuro-
toxic A� signaling at synaptic junctions impairs this measure of
network activity (A. Ittner et al., 2016). It has been reported that
abnormal EEG activity is dependent on APP overexpression
rather than A�, based on the lack of any effect of �-secretase
inhibition (Born et al., 2014). Our results argue that the epilepti-
form activity and network aberrations are dependent on A�, or
possibly the �-C-terminal fragment of APP generated by Bace1,
because APP expression was equivalent in J20 and J20.SK2�. The
statistically significant reduction in�-oscillation power in J20.SK2�but
not J20 mice indicates that this measure is uncoupled from A�

levels. Loss of spectral power could be a consequence of extensive
demyelination in J20.SK2� mice, as suggested for parvalbumin
interneurons in schizophrenia (Stedehouder and Kushner,
2017).

Marked loss of hippocampal volume, myelin, and oligoden-
drocytes was observed in 13-month-old, but not 8-month-old
J20.SK2� mice, indicating that these are age-dependent pheno-
types temporally associated with A� plaque deposition in the J20
model. Neurite markers NF-H and �III-tubulin were not re-
duced in 13-month-old J20.SK2� mice, whereas myelin markers
were, suggesting that reduced hippocampal volume is at least
partly a result of myelin loss. Myelin loss has been reported as an
early pathological feature in several AD mouse models (Desai et
al., 2009; Behrendt et al., 2013), preceding A� plaque deposition
in the 3�Tg model (APP, PS1, and tau mutant transgenes; Desai
et al., 2009). In our model, MBP and MOG were significantly
reduced in the cortex of J20.SK2� mice at 8 months, before no-
table A� plaque pathology, and sustained at 13 months. How-
ever, significant loss of myelin markers and oligodendrocytes in
the hippocampus was only observed at 13 months. Myelin mark-

Figure 6. Loss of myelin markers and reduced oligodendrocyte density in J20.SK2� mice. Western blots (A, C) and densitometric quantification (B, D) of myelin and neuronal markers in cortex
and hippocampus of 8-month-old (A, B) and 13-month-old (C, D) mice. Protein levels were normalized to �-actin in each sample, then to the mean of the control group. Graphs show mean 
 SEM;
n�5– 6 mice per genotype. Statistical significance was determined by one-way ANOVA with Sidak’s post-test. E, Olig2-positive cell density in the hippocampus (mean
SEM; n�5– 6). Statistical
significance was determined by two-way ANOVA with Dunnett’s post-test. P values for comparisons that were significant in post-tests ( p 	 0.05) are shown on the graphs.
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ers were also consistently lower in J20 and SK2� compared with
WT mice. However, with the exception of MOG in the cortex of
8-month-old J20 mice, this was not statistically significant. It is
clear that SK2 deletion and the APPSwInd transgene acted syner-
gistically in affecting oligodendrocyte number, myelin content,
and hippocampal volume. Marked loss of myelin markers (Wal-
lin et al., 1989; Han et al., 2002; Couttas et al., 2016) and Olig2-
positive cells (Behrendt et al., 2013) has been reported in AD
cases, verifying the clinical relevance of the findings in our mouse
model.

We propose that the absence of SK2 hyper-sensitizes oligo-
dendrocytes to excitotoxic A�, causing cell death; and speculate
that the level of soluble A� in J20.SK2� mice reaches a threshold
that is sufficient to precipitate oligodendrocyte attrition and
myelin loss, despite being lower than in J20 mice with functional
SK2. Although A� plaques are not common in white matter,
soluble A� levels are significantly higher in white matter of AD

cases compared with controls (Collins-Praino et al., 2014), and
oligodendrocytes are prone to A�-induced cell death (Xu et al.,
2001). Although we cannot rule out the possibility that expres-
sion of the APPSwInd transgene, in combination with SK2 defi-
ciency, adversely affects oligodendrocyte survival and myelin
through a mechanism other than A� toxicity, prior research
showed that the myelin deficit in the 3�Tg mouse model is cor-
rected when the mice are treated with an intrabody that clears A�
(Desai et al., 2010). Further experiments are needed to determine
whether the neuroprotective properties of SK2 in J20 mice are
mediated through S1P receptor signaling, intracellular actions
of S1P, or both. S1P promotes oligodendrocyte survival
through S1PR1 and S1PR5 receptor signaling (Jaillard et al.,
2005), and the S1P receptor agonist fingolimod protects oli-
godendrocyte survival in the face of proapoptotic stimuli
(Coelho et al., 2007; Kim et al., 2011). On the other hand, S1P
generated by nuclear-localized SK2 promotes neurotrophic

Figure 7. Inhibition of endosomal cholesterol export affects sphingosine phosphorylation. A, Levels of S1P and sphingosine in the cortex of 13-month-old WT, SK2�, J20, and J20.SK2� mice
(5– 6 mice per group). Statistical significance was determined by one-way ANOVA followed by Sidak’s post-test, **p 	 0.01. ANOVA results for S1P: F � 9.7; p � 0.0005; sphingosine: F � 17.7,
p 	 0.0001. B, SK2 activity in hippocampus of 13-month-old WT or J20 mice (6 mice per group). Activity is normalized to the mean of the WT group. C, S1P and sphingosine, and (D) SK2 activity,
in MO3.13 cells treated with 3 �g/ml U18666A. Levels are normalized to the mean of the zero time point. E, S1P/sphingosine ratio in U251 cells, primary astrocytes, Oli-neu cells, or SH-SY5Y cells
treated with 3 �g/ml U18666A. F, G, S1P and sphingosine in MO3.13 cells treated with (F ) 5 mM NH4Cl or (G) 100 �M leupeptin. Statistical significance in B–G was determined by one-way ANOVA
and reported in the results text. Each experiment involved four independent cell treatments. H, Western blots showing LC3B-I (top band) and LC3B-II (bottom band) protein levels, with �-actin as
a loading control, in MO3.13 cells treated with U18666A, leupeptin, or NH4Cl.
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signaling and neuronal plasticity via inhibition of histone
deacetylases (Hait et al., 2014).

The contribution of oligodendrocyte dysfunction and demy-
elination to AD pathogenesis has been under-investigated. My-
elin degeneration triggers neurodegeneration, including NFT
pathology in neurons (Griffiths et al., 1998; Anderson et al.,
2008). The pattern of NFT development in AD runs inverse to the
course of developmental myelination (Braak and Braak, 1996)
and we have shown a significant deficiency in the myelin lipid
biosynthetic enzyme CerS2 that precedes NFT pathology in the
cerebral cortex (Couttas et al., 2016). Han et al. (2002) showed
substantial loss of the myelin lipid sulfatide at the mild cognitive
impairment, pre-AD stage, and MRI studies show that white
matter changes precede gray matter atrophy in AD (Agosta et al.,
2011; Selnes et al., 2012; Zhuang et al., 2013). Oligodendrocytes
are important not only for the synthesis of myelin, but also for the
provision of essential metabolic and trophic support to neurons
(Simons and Nave, 2016).

The results of our cognitive tests support the hypothesis that
SK2 deficiency synergizes with A� to promote a neurodegenera-
tive phenotype. Only J20.SK2� mice exhibited a statistically sig-
nificant deficit in the Y-maze and SNT, the latter in two distinct
cohorts of mice (7 and 12 months old). Deficient social behavior
cannotexplainthesocial recognitionmemorydeficit, as J20.SK2�mice
showed intact sociability in the SPT. These memory deficits may
be at least partly attributed to demyelination. Single nucleotide
polymorphisms in, and expression levels of, oligodendrocyte
genes are strongly associated with cognitive speed and memory
(Fields, 2008; Voineskos et al., 2013). White matter tract integrity
is also directly associated with cognitive capability during devel-
opment, in schizophrenia, and in AD (Fields, 2008; Selnes et al.,
2012; Voineskos et al., 2013; Zhuang et al., 2013; Maas et al.,
2017).

In conclusion, our results support the hypothesis that loss of
S1P in normal aging (Couttas et al., 2018) and AD (He et al., 2010;
Couttas et al., 2014) sensitizes to neurodegeneration. Similarly,
loss of SK2 sensitizes to cerebral ischemia (Pfeilschifter et al.,
2011). We demonstrate that SK2 is an endogenous regulator of
A� formation from APP, and uncover a new role for SK2 in
maintaining oligodendrocyte survival and myelin content, urg-
ing greater consideration of age-dependent oligodendrocyte dys-
function and myelin loss in AD pathogenesis. Future research
should examine the functional significance of reduced SK2 activ-
ity for endosome flux in neurons and glia, and determine whether
the neuroprotective effects of SK2 in the context of AD are me-
diated through S1P receptors, which are established pharmaco-
logical targets for treatment of neurological diseases.
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