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Abstract  

Analyses of ancient micro-residues preserved on stone artefacts can potentially provide 

detailed information about how prehistoric humans used the artefacts to process materials such 

as food, pigments and/or adhesives. However, prehistoric micro-residues are likely to degrade 

and there are multiple potential sources of contamination, such as contact with sediments, 

groundwater, recent handling, storage materials or laboratory conditions, any of which can 

inhibit reliable identification of micro-residues and other traces of prehistoric use. 

In this chapter we illustrate the use of Raman spectroscopy as a primary method to identity 

ancient micro-residues preserved on stone artefact surfaces that are due specifically to 

prehistoric use as opposed to some form of ancient or modern source of contamination. Stone 

tools from Liang Bua (Flores, Indonesia) and Denisova Cave (Altai Mountains, Siberia) are 

used to demonstrate the methodology.  

  



X.1 Introduction 

Stone tools are the most common artefacts excavated at archaeological sites dating from the 

Stone Age and are in many instances the only remaining evidence of how people lived in the 

distant past. Analysis of ancient micro-residues preserved on stone artefacts can provide 

detailed information on the activities undertaken with such implements and forms a useful tool 

to reconstruct past human behaviours.  

The identification of ancient micro-residues, however, is only the first step in relating it to the 

original function of the tool, as the presence of a micro-residue may originate from multiple 

agencies other than transfer of contact material during use. For example, both organic and 

inorganic micro-residues can be transferred to stone tool surfaces via contact with sediments, 

groundwater, bacteria, subterranean invertebrates and fungi. Contamination after excavation is 

also not negligible and can occur through handling by archaeologists during excavation, contact 

with storage material, or through laboratory conditions and physical contact with analytical 

instruments and facilities used to study the tools.1  

Previously, Raman spectroscopy has been used to verify the identification of macro-residues 

on stone tools detected through optical microscopy by usewear specialists.2 In the Raman 

spectroscopic methodology presented here, artefacts were not selected based on the presence 

of any visible macro-residues attached to the tools, but applied as the primary technique for 

initially locating and analysing organic and inorganic micro-residues. This strategy was 

followed to avoid any bias that targeted preferentially larger residues or residues present only 

on polished edges and surfaces, and focus on particles less than 50 microns in size. These 

micron-sized residues can only be successfully and systematically analysed by a technique with 

high spatial resolution, such as Raman microscopy, with the added advantage that both 

inorganic and organic materials can be identified simultaneously.1 Furthermore, the technique 



is non-destructive and leaves the residues in context on the artefact, allowing for future study 

of the same artefacts. 

In this chapter we use stone artefacts from Liang Bua (Flores, Indonesia) and Denisova Cave 

(Altai Mountains, Siberia) to illustrate the use of Raman spectroscopy as a primary method to 

identity ancient micro-residues preserved on stone artefact surfaces that are specifically due to 

prehistoric use as opposed to some form of ancient or modern source of contamination.  

X.2 Archaeological background 

Liang Bua is a limestone cave located on the island of Flores, Indonesia, with a cultural 

sequence spanning the past ~190 thousand years.3 During this time, the cave was occupied 

successively by at least two human species, initially by Homo floresiensis and later by Homo 

sapiens (modern humans), currently with no evidence of temporal overlap.3,4 Denisova Cave 

was used as an occasional occupation site, initially by Neanderthals and Denisovans with some 

occupation periods overlapping,5 and later by Homo sapiens. The two sites have completely 

different climatic conditions and it is expected that the preservation of organic residues will be 

much higher at the lower average temperature in Denisova Cave (which is located in the Altai 

Mountains of southern Siberia) than in Liang Bua, which forms part of the tropical Indonesian 

archipelago. 

X.3 Experimental methods 

X.3.1 Sample preparation 

Working with micron-sized residues increases the possibility of contamination from various 

sources that can interfere with the correct interpretation of the archaeological relevance of a 

residue. For instance, during the course of this study, indigo was identified6 in fibres on 

artefacts originating from Liang Bua, attracting considerable interest, as the island of Flores 



has a long history of batik work; a prehistoric presence of native Indigofera plant material 

(which has medicinal properties) would thus not have been out of place. Unfortunately, indigo 

fibres were also identified on glass slides placed in the same Raman laboratory for a week to 

test for airborne pollution sources. The results were positive and the conclusion was that 

micron-sized indigo-coloured cotton fibres are quite common in the air, which led to the re-

classification of the indigo fibres on the stone tool as a contaminant.7  

 

Figure 1. Images of indigo-coloured fibre on Liang Bua artefact and 

Raman spectrum of indigo using 532 nm excitation. 

 

Aware of the many sources of contamination that can influence the interpretation of 

archaeological data, we requested that artefacts collected at Denisova Cave and Liang Bua 

should be excavated encased in sediment, eliminating exposure to ambient conditions at the 

excavation site. The stone tools were only removed from the sediment under clean laboratory 

conditions and for each artefact, sediment in contact and 3 cm away from the artefact surface 

was collected. The artefacts were handled with nitrile gloves (latex, powder and protein free) 



and placed on a support fashioned with Blu-Tack® (a synthetic rubber compound) to 

accommodate its shape. This enabled the positioning of each sample under the Raman 

microscope with the incident laser perpendicular to the point of analysis. The support was 

covered with a piece of nitrile glove to prevent contamination from the Blu-Tack® 

(contamination from the nitrile glove is easy to recognise). Basic precautions, such as storing 

the samples in clean bags and boxes, were taken before and after analysis. Raman reference 

spectra were recorded for any material that was in contact with the artefacts and, together with 

spectra collected from glass slides placed in strategic positions in the laboratory to screen for 

air pollution, forms a database of possible contaminants.1 

X.3.2 Raman analysis 

Raman spectra were recorded with a WITec® alpha 300R confocal Raman microscope 

(WITec® Instrument Corp., Germany) equipped with two UHTS300 spectrometers and two 

CCD detectors: (1) a visible DV401 detector for use with 532 nm excitation, and (2) a DV401 

detector for 785 nm excitation. The excitation sources were two diode lasers operated at 532 

nm and 785 nm wavelengths with 38 mW and 120 mW maximum power output respectively. 

Zeiss® microscope objectives (20X and 50X magnifications) were used, achieving a sub-

micron spatial resolution. The samples were placed on a piezo-driven, feedback-controlled 

scanning stage. 

X.3.3 Cleaning and analysis procedures 

Once removed from the sediment crust, the samples were first photographed and macro-

residues characterised using Raman spectroscopy. Samples were then cleaned by 

ultrasonication for 10 s in Milli-Q® water. A systematic search and analysis of micro-residues 

on washed artefacts were undertaken, concentrating on the edges of the artefact perimeter using 

a 50X objective, within a strip approximately 200 μm from the edge (on both ventral and dorsal 



sides). This is a time-consuming task and in general ~100 Raman spectra were recorded for 

each artefact from ~500 spots probed by the oscilloscope. On encountering potentially 

significant micro-residues, investigations of the adjacent surfaces were conducted to document 

residue distributions and, if possible, Raman mapping was undertaken on small areas. Finally, 

a random check of both surfaces, away from the edges, was conducted with a 20X 

magnification objective, to document any other residue area(s) and to confirm the extent and 

depth of micro-residue concentrations. Sediment samples taken from the sediment surrounding 

the samples and removed during ultrasonication were placed on microscope slides and also 

analysed. 

X.3.4 Reference material 

Micro-residues originating from both animal and plant material are often complex mixtures of 

nucleotides, proteins, lipids and carbohydrates and it is not expected that Raman spectroscopy 

will be able to identify all constituents, as is possible with techniques based on mass 

spectrometry.8 A first step in using Raman spectroscopy as a tool is to evaluate the range of 

residues that can be detected through their Raman spectra on artefacts with known micro-

residues.9 Addressing this need, replicate stone tools used to imitate tasks regularly performed 

in the Stone Age during food processing were used to detect the type and distribution of micro-

residues related to specific tasks (e.g. sawing, cutting, scraping) on different materials (e.g. 

meat, wood, hide, bone). Some of these tools were used nearly 30 years ago as the basis for 

documenting residue and wear patterns and were used on a variety of materials, including 

animal flesh, bone and hide.10 New tool-use experiments were undertaken for comparison with 

the 30 year-old tools. Studying samples with known residues and functions forms a reference 

base to aid interpretation of the results from archaeological tools. 

 



X.4 Results and Discussion 

X.4.1 Sediment  

It is expected that residues associated with a stone tool will also occur in the surrounding 

sediment as degradation processes and dissolution through the working of groundwater might 

detach some original residues from the artefacts. Comparing the frequency of occurrence of a 

specific residue on a tool with the three sediment samples collected for each artefact is helpful 

in deciding if a residue present in the sediment was deposited on the artefact or, conversely, if 

the occurrence of a residue in the sediment is due to dissolution from the artefact. Sediment 

from Liang Bua consisted mainly of feldspar and -quartz grains, but other common minerals 

such as calcium carbonate, goethite and anatase were frequently observed. Sediment attached 

to the artefacts from Denisova Cave consists mainly of amorphous phosphate particles 

interspersed with -quartz and feldspar grains, with varying amounts of calcite present for 

some of them. Although kaolinite clay was identified in sediments from both Denisova Cave 

and Liang Bua using FTIR spectroscopy, it was not observed in the sediment using Raman 

spectroscopy. 

X.4.2 Experimental tools 

Table 1 summarises the results obtained from the experimental tools. The most common 

residues that were detected on tools used to process animal products 30 years ago were 

identified as collagen (amide I and amide III bands), bone (PO4 stretch at 962 cm-1) and 

saturated fatty acids (SFA) with CH2 and CH3 stretching vibrations between 2800 and 2950 

cm-1, bending CH2/CH3 vibrational bands at 1463 and 1443 cm-1, a CH2 twisting mode at 1300 

cm-1, and C-C stretching at 1133, 1105 and 1067 cm-1.11,12 Collagen fibres, small pieces of bone 

and individual fatty acid residues could be recognised visually (Fig. 2). Saturated fatty acids 

and bone appeared smeared in areas where pressure was applied during the processing activity. 



 

Figure 2: Micro-residues associated with processing animal material: (A) Discrete 

saturated fatty acid, (B) Smeared saturated fatty acid, (C) Collagen micro-fibres 

and (D) Bone fragment. 

 

In animal processing experiments, where tools were analysed 1 month after use (Table 1), 

similar residues were detected, but in some cases Raman spectra of discrete and smeared fatty 

acid residues had additional peaks at 1656 and 3010 cm-1 (C=C stretch and =C-H stretching, 

respectively) and a shoulder centred at 1260-1270 cm-1 (=C-H deformation) that can be 

attributed to unsaturated fatty acids.11,12 The presence of another C=C stretch band centred at 

1679 cm-1 suggests the presence of a trans-isomer11 and a band at 1610 cm-1 (Fig. 3) might be 

attributed to a conjugated cis-isomer mode with multiple C=C-C=C modes or an aromatic 

ring.13 It can be concluded that for the older samples unsaturated fatty acids were degraded to 

their saturated counterparts during the 30 years of storage. The frequency and residue type on 

the tools used for processing animal products varied according to tool function. On artefacts 

used to saw or cut bone, bone and collagen residues were the most common; on tools used to 

cut meat, collagen fibres and smeared protein were the most common. Scraping animal skin 



resulted in mostly fatty acid residues, some as discrete residues with a specific shape and others 

spread over a larger area (Table 1). 

Table 1:  

Material worked Age Function Residue type Frequency  

Fresh possum skin 30 years Scraping Smeared SFA Common 
   Discrete SFA Common 

   Protein fibre Common 

   Protein Common 
   Starch grain Rare 

Dry animal bone 30 years Sawing Bone + collagen Very common 

   Smeared bone Very common 
   Smeared SFA + bone Very common 

   Smeared SFA Rare 

Meat 30 years Cutting Collagen fibre Very common 

   Smeared protein  
SFA fibre 

Discrete SFA 

Very common 
Uncommon 

Uncommon 

Fresh bone 30 years Scraping Bone and collagen  Very common 
   Collagen fibre Very common 

   Lipids Uncommon 

   Plant fibre Rare 

Fallow deer 3 months Cleaning 

Extracting bone marrow 

Scraping 

Smeared bone and collagen 

Bone and collagen 

Smeared SFA/UFA mixture 

Very common 

Very common 

Uncommon 

Fallow deer 3 months Sawing Bone and collagen 
Smeared bone and collagen 

Smeared SFA/UFA mixture 

Protein 

Very common 
Very common 

Uncommon 

Rare 

Fallow deer skin 3 months Scraping Smeared SFA/UFA mixture 

Discrete SFA/UFA mix 

Collagen fibre 
Protein 

Common 

Common 

Uncommon 
Rare 

Fern 2 weeks Cutting Plant fibre 

Carotenoid pigment 

Smeared carotenoid pigment 

Common 

Common 

Common 

Rowan 2 weeks Cutting and scraping Wood fibre 

Smeared wood fibre 

Oxalate 
Discrete SFA 

Common 

Common 

Rare 
Rare 

Siberian pine 1 month Cutting and scraping Smeared wood 

Wood fibre 

Plant fibre 
Smeared resin 

Common 

Common 

Uncommon 
Uncommon 

Birch bark 1 month Cutting  Smeared wood 

Wood fibre 
Plant fibre 

Common 

Common 
Uncommon 

Nettle 9 month Cutting Plant fibre 

Smeared SFA/UFA  
Discrete SFA/UFA  

Common 

Common 
Common 

Very common: Micro-residue widespread  

Common: Micro-residues occur in limited areas or with specific distributions 

Uncommon: Infrequently detected 

Rare: Only once or twice detected 

 

On most artefacts that were used to process fresh plant material (fern, rowan, Siberian pine and 

birch bark), the most common residues detected were plant fibres (high cellulose content, main 

bands at 1093 and 1121 cm-1)14, wood fibres (high lignin content, main band at 1600 cm-1)14 

and carotenoid pigments (only for fern). Although discrete fatty acids were detected on these 

tools (saturated and saturated/unsaturated mixtures) resulting in Raman spectra exactly the 



same as on tools used to process animal products, their numbers were not significant and they 

were not smeared or spatially distributed in recognisable patterns that can be linked to usewear. 

However, on the artefact used to cut nettle, a plant rich in natural oils, saturated/unsaturated 

fatty acid mixtures were commonly recorded as discrete and smeared residues (Table 1).  

 

Figure 3: Comparison between Raman spectra of saturated fatty acid and 

saturated/unsaturated fatty acid mixtures recorded on stone tools used to process fresh 

animal skin (Figure 6 from reference 15). 

 

Therefore, there is no single Raman spectrum that makes a chemical distinction between 

artefacts used on animal and plant material, so the distribution of the residues and association 

with other materials become very important. Although discrete and smeared 

saturated/unsaturated fatty acids commonly occur on the artefact used to cut nettle, they occur 

in patches interspersed with plant fibre bundles and the smeared fatty acid residues are not as 

thick as for the artefacts used to process animal products.15 

X.4.3 Archaeological artefacts 

Stone tools used repeatedly to scrape, cut or saw particular materials sustain diagnostic use 

wear, including polish associated with changes in surface micro-topography, that can be 

visually identified under a light microscope.16 It has been shown experimentally that micro-



residues are commonly found in areas with usewear17 and therefore an in-depth study of polish 

distribution for each artefact was undertaken after the Raman analyses and compared to the 

distribution patterns of the residues.15  

Three different micro-residue groups were distinguished among the artefacts so far studied. 

The first group, for artefacts from Denisova Cave, consists of smeared fatty acid residues (Fig. 

4A), similar to those obtained on experimental tools used to process animal products and some 

plants, in addition to discrete fatty acid and protein residues.7,15 In general, these fatty acid 

residues are closely associated with areas of high polish (Fig. 4B) and in some instances include 

unsaturated fatty acid residues similar to the 1 month-old experimental tools (see section X.4.2 

and Fig. 3). This indicates a high degree of preservation, as expected for the cold conditions in 

Denisova Cave. Although the very nature of a smeared residue classifies it as originating from 

the past use of a tool, a good correlation between polish and smeared fatty acid areas offers 

supporting information (Fig. 4B). A closer look at the distribution patterns on the tool shown 

in Fig. 4B shows that the correlation between polish and fatty acid distribution is very high and 

on the left long edge, smeared fatty acids and polish appear on both sides, implying that 

pressure was distributed to both sides of the tool during use, which is consistent with a 

cutting/sawing action. On the other edge of the tool, the smeared fatty acid zones and polish 

occur only on one side, corresponding to a scraping action. 

On the experimental tools used to process some animal products, small pieces of bone as well 

as areas of smeared bone were identified (Table 1). Although particles of amorphous phosphate 

(PO4 stretch at 950 cm-1, FWHM 25-35 cm-1)18 were found widespread on all the artefacts from 

Denisova Cave, they do not show any specific spatial distribution; as amorphous phosphate is 

the most common mineral identified in the sediment, it was probably transferred from the 

sediment to the artefact surfaces and on some artefacts formed a patina (phosphate skin). 

Collagen fibres associated with bone are commonly found on experimental stone tools used to 



work bone and meat, but were not found on Denisova stone artefacts in association with lipid 

micro-residues. Taking into account the prominent presence of both discrete and smeared fatty 

acid micro-residues, together with the absence of bone and collagen (which is well preserved 

in some bones excavated at Denisova Cave), a comparison with Table 1 suggests that these 

tools were most likely used to scrape animal skin.  

 

Figure 4. Map (using the strong C-H stretch band) of smeared fatty acid residue on a stone tool from 

Denisova Cave (A) and comparison of the distribution patterns of polish and saturated fatty acid residues 

on the same tool from Denisova Cave (B). 

 

Residues most common for the second group of micro-residues are discrete fatty acids and 

proteins, protein/fatty acid mixtures and plant fibres. This group is typical for some artefacts 

from Liang Bua and the fatty acid residues commonly occur on polished areas, while the 

proteins are generally more randomly distributed. Fig. 5 shows a typical distribution pattern of 

saturated fatty acids and plant fibres on an artefact and representative spectra of plant/wood 

fibres. The main chemical components of plant fibres are cellulose (including hemicelluloses), 

moisture, lignin and pectins, which vary in abundance between species and growth conditions. 

Main cellulose bands occur at 1093 and 1121 cm-1 (C-O and O-C-O stretching modes) and the 

C-H deformation mode at 903 cm-1.14 Although Raman spectroscopy is not able to identify 



specific plant species, the aryl ring stretching bands characteristic of lignin are useful to broadly 

distinguish between wood and plants richer in cellulose. For example, a higher intensity of the 

lignin aryl stretching vibration at 1597 cm-1 accompanied by a shoulder at 1654 cm-1 indicate 

that fibres probably originate from wood.14 The presence of plant fibres and the absence of a 

strong presence of fatty acids and bone suggest that these artefacts were used to process plant 

material. 

 

 Figure 5: (A) Plant fibres detected on an artefact from Liang Bua, and (B) shown in 

relation to polished edges. (C) Raman spectrum of cellulose fibre suspected to be 

contamination due to high signal-to-noise ratio (a), and Raman spectra of other 

plant fibres analysed on stone tools from Liang Bua (b, c). 

 

The third set of micro-residue types and distribution patterns is extremely rich in a variety of 

residues and an example can be seen in Figure 6, where polish distribution is also indicated. 

Small pieces of bone commonly occur and are sometimes smeared; discrete as well as smeared 

fatty acid residues are common and in some instances mixed with bone. Plant fibres occur in 



clusters and concentrations of protein residues were also detected. The dorsal distal part of this 

stone tool has the most intense polished area and also the highest number of bone apatite and 

lipid micro-residues. Plant fibres that occur in clusters were identified, but appear outside the 

main working zone, so their presence might be incidental to the main use of the tool. Artefacts 

with this group of residues are also from Liang Bua and, comparing the residue suite to Table 

1, were probably used for butchering.  

  

Figure 6. Example of the third set of residue types and distribution pattern 

in comparison with polish distribution. 

 

Bone consists of an inorganic part that is chemically similar to carbonate apatite (Ca5(PO4, 

CO3)3OH) and an organic part consisting mostly of collagen. Over time, bone undergoes 



taphonomic and diagenetic processes, influenced by environmental and burial conditions, 

which cause alteration of both the organic and inorganic components.19 Collagen deterioration, 

microbiological alteration, bioapatite dissolution and recrystallisation, ion depletion or uptake 

and the precipitation of secondary mineral phases can occur and has an influence on the Raman 

spectrum.20 

 

Figure 7: Raman spectra of bone recorded on a stone tool from Liang Bua (A, b-d) and Raman map of the 

position of the P-O stretch vibration on a small fragment of bone on the tool (B). Raman spectrum (A, a) is 

from a modern bone sample. 

 

Depletion of collagen can be seen by the disappearance of the peaks at 1254, 1451, 1675, 2880 

and 2943 cm-1 present in the spectrum of a modern bone sample (Fig. 7A, a) and absent in 

spectra recorded on a bone fragment on a tool from Liang Bua (Fig. 7A, b-d). The presence of 

rare earth elements can be identified in two of the spectra (c, d) by fluorescence bands. A closer 

look at Raman spectra recorded on the bone residue shown in Fig. 7B shows the presence two 

different phases of phosphate. In one part of the fragment, the symmetric stretch vibration of 

phosphate occurs at 950 cm-1 (FWHM 25-35 cm-1) and in other parts at 967 cm-1 (FWHM 15 



cm-1). The appearance of both types of phosphate signals on a small bone fragment firmly 

attached to the stone tool clearly illustrates the coexistence of ongoing degradation or 

recrystallisation processes of bone.  

In classifying the residues as originating from tool use, we have followed very stringent 

guidelines, as set by researchers using optical microscopy to identify residues; namely micro-

residue abundance and meaningful distributions.21-22 As all the artefacts were washed by 10 s 

sonication and the residues left on the artefacts are strongly attached, there is a high probability 

that many of the micro-residues that we rejected as possible contamination might in fact be 

archaeologically meaningful. On many artefacts we did not detect any significant numbers of 

micro-residues, but not all stone artefacts excavated at archaeological sites have actually been 

used as tools and might, instead, be stones produced during the process of lithic reduction and 

include shatter and production debris, and production rejects. 

X.5 Conclusions 

The most common residues identified on stone tools from the three different groups are quite 

distinct. This can be attributed to different degrees of preservation due to climatic differences, 

but might possibly also be linked to distinct behaviours between human species. Precise 

archaeological interpretation is not possible at this stage, due to a small sample size, but the 

results of the present study have laid an important foundation for further work on the 

identification and interpretation of micro-residues. Comparison with GC-MS results on the 

same set of artefacts and a study on bone degradation at both sites (currently being conducted) 

will also contribute to a better understanding of the nature of the micro-residues on the artefacts. 

 

 

https://en.wikipedia.org/wiki/Lithic_reduction


Acknowledgements 

We thank T. Sutikna (University of Wollongong), M.W. Tocheri (Lakehead University, 

Canada) and E.W. Saptomo and Jatmiko (Pusat Penelitian Arkeologi Nasional, Indonesia) for 

supporting our work at Liang Bua, and A.P. Derevianko and M.V. Shunkov (Institute of 

Archaeology and Ethnography, Russian Academy of Sciences) for supporting our research at 

Denisova Cave. We appreciate the input of R. Fullagar (University of Wollongong) and E. 

Hayes (University of Wollongong) regarding polish distribution. This study was funded by the 

Australian Research Council through Australian Laureate Fellowship FL130100116 to R.G. 

Roberts (University of Wollongong), and by a University of Wollongong Postgraduate Award 

and an International Postgraduate Research Scholarship to L.B., with additional funding from 

the Smithsonian Institution’s Humans Origins Program (to M.W. Tocheri) and Russian Science 

Foundation project number 14-50-00036 (to A.P. Derevianko and M.V. Shunkov). 

 

  



 References 

1.  L. C. Prinsloo, R. Fullagar, T. Sutikna, E. Hayes, Jatmiko, E. W. Saptomo, M. W. Tocheri 

and R. G. Roberts, 2017, J. Raman Spectrosc., DOI: 10.1002/jrs.5202. 

2. G. F. Monnier, T. C. Hauck, J. M. Feinberg B. Luo J. Le Tensorer. H. al Sakhel, J. Archaeol. 

Sci., 2013, 40(10), 3722. 

3. M. J. Morwood, W. L. Jungers (eds), J. Hum. Evol., 2009, 57, 437. 

4. T. Sutikna, M. W. Tocheri, M. J. Morwood, E. W. Saptomo, Jatmiko, R. D. Awe, S. Wasisto, 

K. E. Westaway, M. Aubert, B. Li et al., Nature, 2016, 532, 366. 

5. V. Slon, C. Hopfe, C. L. Weiß, F. Mafessoni, M. de la Rasilla, C. Lalueza-Fox, A. Rosas, 

M. Soressi, M. V. Knul, R. Miller, J. R. Stewart, A. P. Derevianko, Z. Jacobs, B. Li, R. G. 

Roberts, M. V. Shunkov, H. de Lumley, C. Perrenoud, I. Gušić, Z. Kućan, P. Rudan, A.  

Aximu-Petri, E. Essel, S. Nagel, B. Nickel, A. Schmidt, K. Prüfer, J. Kelso, H. A. 

Burbano, S. Pääbo, M. Meyer, Science. 2017, 356, 605. 

6. C. Coupry, G. Sagon, P. Gorguet-Ballesteros. J. Raman Spectrosc. 1997, 28, 85. 

7. L. Bordes, PhD thesis, University of Wollongong, in writing. 

8. S. Luong, E. Hayes, E. Flannery, T. Sutikna, M. W. Tocheri, E. W. Saptomo, Jatmiko, R. 

G. Roberts. Anal. Methods., 2017, 30, 4349. 

9. E. A. Carter, S. J. Kelloway, N. Kononenko, R. Torrence, Analytical Archaeometry, 

Selected Topics ed. H.G.M. Edwards and P. Vandenabeele. RSC Publishing, London, 1st 

Edition, 2012, 11,  

10. R. L. K. Fullagar, PhD thesis, Department of Archaeology, La Trobe University, Melbourne, 

1986 ; 382 pp. 

11. K. Czamara, K. Majzner, M. Z. Pacia, K. Kochan, A. Kaczor, M. Baranska, 2015. J. Raman 

Spectrosc. 46, 4. 

12. J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens, 2007. J. Raman Spectrosc. 38, 

1133. 

13. M. Melchiorre, C. Ferreri, A. Tinti, C. Chatgilialoglu, A. Torreggiani, 2015. Appl. 

Spectrosc. 69, 613. 

14. U. P. Agarwal, S. A. Ralph, Appl. Spectrosc., 1997, 51, 1648. 



15. L. Bordes, R. Fullagar, L.C. Prinsloo, E. Hayes, M.B. Kozlikin, M.V. Shunkov, A.P. 

Derevianko, R.G. Roberts. 2018, J. Archaeol. Sci. in press. 

16. J. S. Bradfield, Afr. Archaeol. Bull., 2015, 70 (201), 3. 

17. V. Rots, E. Hayes, D. Cnuts, C. Lepers, R. Fullagar, PLoS ONE. 2016, 11(3), e0150437. 

18. M. Kazanci, P. Roschger, E. P. Paschalis, K. Klaushofer, P. Fratzl, J. Struct. Biol., 2006, 

156, 489. 

19. D. B. Thomas, R. E. Fordyce, R. D. Frew, K. C. Gordon, J. Raman Spectrosc. 2007, 

38:1533. 

20. G. Dal Sasso, M. Lebon, I. Angelini, L. Maritan, D. Usai, G. Artioli, Palaeogeogr., 

Palaeoclimatol., Palaeoecol. 2016; 463,168. 

21. G. H. Langejans, J. Archaeol. Sci. 2010; 37, 971. 

22. M. Lombard, L. Wadley, In Archaeological Science Under a Microscope: Studies in 

Residue and Ancient DNA Analysis in Honour of Thomas H. Loy, ed. M. Haslam, G. 

Robertson, A. Crowther, S. Nugent and L. Kirkwood (ANU Press), 2009, 11. 

 

 

 

 

 

 


	Raman Microscopy as a Primary Technique for Identifying Micro-residues Related to Tool-use on Prehistoric Stone Artefacts
	Publication Details Citation

	Raman Microscopy as a Primary Technique for Identifying Micro-residues Related to Tool-use on Prehistoric Stone Artefacts
	Abstract
	Keywords
	Publication Details

	tmp.1576558083.pdf._Gln0

