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Abstract  

The Global Conflict Risk Index (GCRI), which was designed by the European Commission’s Joint Research Centre 

(JRC), is the quantitative starting point of the EU’s conflict Early Warning System. Taking into consideration the 

needs of policy-makers to prioritize actions towards conflict prevention, the GCRI expresses the statistical risk 

of violent conflict in a given country in the upcoming one to four years. It is based on open source data and 

grounded in the assumption that the occurrence of conflict is linked to structural conditions, which are used to 

compute the probability and intensity of conflicts. 

While the initial GCRI model was estimated by means of linear and logistic regression models, this report 

presents a new GCRI model based on the Artificial Intelligence (AI) random forest (RF) approach. The models’ 

hyperparameters are optimized using a ten-fold cross validation.  

Overall, it is demonstrated that the random forest GCRI models are internally stable, not overfitting, and have 

a good predictive power. The precision and accuracy metrics are above 98%, both for the national power and 

subnational power conflict models. 

The AI GCRI, as a supplementary modelling method for the European conflict prevention policy agenda, is 

scientifically robust as a baseline quantitative evaluation of armed conflict risk additional to the linear and 

logistic regression GCRI.
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1 Introduction 

During the last decade, the bulk of scholarly debate in conflict and peace research has increasingly shifted 

from the view that existing quantitative modelling techniques of conflict risk are not sufficient enough to 

forecast conflicts (Weidmann & Ward, 2010) to the view that prediction is feasible and policy-relevant within 

a ‘limited spatial and temporal scope’ (Cederman & Weidmann, 2017). 

The dominant approach to forecasting the risk of a conflict is based on linear or logistic regression models, 

which are used to estimate the intensity or the probability of a violent conflict event (De Groeve, Hachemer & 

Vernaccini, 2014; Halkia et al., 2017, 2019).  

So far, the Global Conflict Risk Index (GCRI) is the only model that calculates both the probability and intensity 

of the structural risk of a country experiencing armed conflict at the national or subnational level. 

It uses open-source data from 1989 to 2018 for 191 countries worldwide as country-year observations, and 

it considers solely the structural conditions characterising a country. For this purpose, it takes 25 individual 

variables in six risk areas into account, i.e. social, economic, security, political, demographic, and 

geographical/environmental. All variables used in the models have extensively been used as explanatory or 

control variables in the literature on peace and conflict. The datasets used are all freely accessible on the 

internet and have been compiled by diverse international organizations, such as the World Bank and the United 

Nations, or academic institutions (Halkia et al., 2017, 2019). 

With the latest improvements in the fields of artificial intelligence (AI) and machine learning (ML), the GCRI has 

been extended using AI approaches such as the random forest method. RF can be used for classification and 

regression tasks similar to the already implemented techniques in the GCRI. However, given that the random 

forest model is composed of several decision trees, it allows for more flexibility in the model, which may 

capture otherwise undetected relationships between the variables of interest, and it delivers predictions with a 

higher precision than the previously applied methods. Furthermore, the random forest can estimate the 

variables’ importance to rank which has the highest predictive power.  

In this report, we present and validate the AI version of the GCRI (AI GCRI) based on the random forest approach. 

First, we give a brief description of the random forest approach and discuss its added value though the 

following sections. Next, we introduce the application of the random forest approach in the AI GCRI, the 

specification and the validation of the model. Finally, we present and discuss the results of the random forest 
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model, while we also test and present the results after using a potential new variable, which was introduced in 

the GCRI indicator basket recently, the internally displaced people (IDPs) (Halkia et al., 2018). Possible steps for 

further development of AI in the GCRI are also discussed. 

2 Random Forest models  

2.1 Introduction to random forest models  

The random forest (RF) model is an ensemble method that is based on the use of decision trees. A decision 

tree can be best understood as a tree diagram with several splits on different nodes. To illustrate the function 

of a decision tree, a highly simplified conflict prediction model is provided in Figure 1. Assume that we have 20 

observations (n=20), each with a value for regime type and the GDP per capita (rescaled from 0 to 10). At the 

initial node, the decision tree splits the data into two different groups based on the GDP per capita. If the GDP 

per capita is higher than 7, the model will predict that there will be no conflict. If the GDP per capita is smaller 

or equal to 7, the model creates a new split on the decision node for the regime type variable. The model 

hereby does not take into account the previous decisions and treats the current decision node as the new initial 

node.  

Figure 1. Simple decision tree for conflict prediction based on the GDP per capita and regime type 

 

Source: JRC, 2019. 

At each node, the tree splits the sample into two or more rather homogenous sets based on the variable that 

gives the best split. To do so, the tree calculates the possible splits for each variable and selects then the one 

which results in the most homogenous sub-nodes. The criteria to choose the best variable vary for different 
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algorithms. The most common used algorithm is the CART algorithm (Classification and Regression tree). The 

CART algorithm relies on the GINI index to decide on the best split. The Gini Index is defined as 

𝐺𝑖𝑛𝑖(𝐵) = 1 − ∑ 𝑝(𝑏𝑖)
2

1

𝑖=1

 

where B stands for the variable split in question, for instance regime type, and 𝑏𝑖 for the probability of an 

observation to be classified as either 0 or 1 at the leaves following the variable split. To calculate the Gini 

index, we sum the weighted, squared probabilities and subtract the result from 1. Like this, the Gini Index can 

be used as a measure of purity for the split. To illustrate how this works, consider the following simplified, 

fictive example of a tree, where we try to split a conflict data set based on two different variables: the relevant 

variable regime type, and a rather unimportant variable such as the language spoken in the country. Further 

assume that we have a mix of 40 conflict observations and 60 observations without conflict at the initial node 

(see Figure 2). The first option would be to split up the sample based on the regime type to see if we can split 

the data even more homogenously. Based on the divide by the regime type, we have 2 conflict observations 

and 57 observations without conflict in democratic countries (Figure 2). If we insert this values in the formula, 

we get 1 − ((
2

59
)2 + (

57

59
)2) ~ 0,07. We do the same for the autocracies and get a value of ~0.14. To account 

for the different numbers of observations, we weight the values by the number of observations and add up 

the Gini values. In our example, this is 0.14 ∗ 0.41 + 0.07 ∗ 0.59 ~ 0.1. Now, we compare this value with the 

Gini value of the original node with 40 times conflict and 60 times no conflict. For the original node, the Gini 

value is 0.48. Hence, the difference is 0.38, which is called the information gain. If we look at the second option, 

the languages, we can see that there is no difference in the Gini value, thus the information gain is 0. 
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Figure 2. Split of a decision tree for conflict prediction based on regime type and language 

 

Source: JRC, 2019. 

Based on this criteria, the tree would choose the regime type variable over the language variable. Without 

specifying any limitations, the tree will continue to split until there is no more information gain possible In other 

words, the tree will almost certainly overfit, thus it will create one final node, also called leaf for decision trees, 

per observation. For the validation, each observation of the test data goes through the tree and is classified as 

either conflict or not in our example. 

2.2 How random forest works 

Even though decision trees have a clear advantage in terms of construction and interpretation, there are several 

issues that come along when using decision trees. First, decision trees have been proven to be unstable learners 

since small changes in the data might change the entire tree (Breiman, 1996). Second, decision trees tend to 

overfit easily. This requires either a constraint in the parameters, such as a minimum number of observations 

per leaf, or to prune the tree once it is fully grown. Third, given the large availability of high dimensional data 

nowadays, a single tree will unlikely model all the information in the available data (Zhang & Wang, 2009). 

This is especially true in cases where there are only few observations (Zhang & Wang, 2009), such as in armed 

conflict.  
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One of the most commonly used techniques to stabilize unstable learners is the bootstrap aggregation, also 

known as bagging. Hereby, bootstrap samples4 with a replacement are taken from the original learning sample. 

For each bootstrap sample, a tree is grown which then classifies a given observation. The final prediction is the 

majority class of the predicted classes by the trees (Breiman, 1996). The core idea here is to overcome the 

weakness of each decision tree by increasing the number of trees and relying on the wisdom of the mass 

instead a single decision. Therefore, this method belongs to the ensemble methods, which rely on the decisions 

of several different models to reach a final output. 

The random forest model presents a special case of bootstrap aggregation. In the random forest, multiple 

decision trees are created, each based on a bootstrap sample with replacement from the original learning data. 

Different to the normal CART mechanism, which uses the full model to evaluate which variable is best to use 

for the split at a given node, the random forest relies on a random subspace selection method. For the random 

subspace selection, the random forest randomly selects a predefined number of independent variables to 

choose from for the split at each node. Each descendant node is hereby treated as a new initial node without 

knowledge of the prior selection. The criterion for the final decision of the split is the Gini criterion: the random 

forest will select the split with the highest information gain at each node.  

In the end, each tree classifies an observation according to the different variables and splits used for each tree. 

Afterwards, the number of trees voting for a certain class is counted. The final predicted class for the 

observation in question is the class with the majority of votes among all trees. 

More formally, the final vote is calculated based on the fraction of trees that voted for a certain class such 

that: 

�̂�′ =
1

𝐵
∑ 𝑓𝑏(𝑥′)

𝐵

𝑏=!

 

where �̂�′ is the share of votes, B is the number of trees, and 𝑓𝑏(𝑥′) returns as 1 if tree b predicts that x’ belongs 

to a class (here conflict), and 0 otherwise (no conflict). Afterwards a cutoff (C) is chosen so that the predicted 

class (final vote) y’ is defined as follows: 

𝑦′ = {
1 𝑖𝑓 �̂�′ ≥ 𝐶 

0 𝑖𝑓 �̂�′ < 𝐶
} 

                                           

(4)  The bootstrap sample is to the sample, as the sample is to the population. 
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The default cutoff is 0.5, thus majority voting. For example, if 51 out of 100 trees voted for 1 (conflict), the 

predicted class will be 1, since it is over 0.5. 

In sum, the method can be described as follows: 

― Sample for each of a defined number of trees a bootstrap sample with replacement from the original 

learning dataset. 

 At each initial node, randomly select a predefined number of variables from the data. 

 Find the best split for each of the variables and choose the one with the lowest impurity. 

― Repeat the steps for all descendant nodes until the impurity can no longer be lowered. 

― For the validation, each tree votes for a certain class. The final vote is the class that receive the majority 

of votes. 

Given that we rely on different decision trees with a random variable selection, we have several models that 

may capture different (i.e. non-linear) relationships; this is not possible with a single model such as logistic 

regression, which relies on a linearity assumption. Second, this ML approach chooses randomly from a 

predefined number of variables for each split. Given that the CART mechanism uses the full model for the 

selection, it will tend to use those variables that have a strong impact on the dependent variable and leave out 

weaker variables. However, this increases the correlation between the trees, which in turn lowers the predictive 

power of the model.  

To address this issue, the random selection of variables in the random forest ensures that different variables 

are chosen at each split, thereby lowering the correlation between the trees, thus increasing the explanatory 

power of the model. In the next chapter, we will describe the setup of the random forest in the GCRI in more 

detail. 

3 Hyperparameter for random forest models 

The random forest requires the specification of certain hyperparameters. Mainly, the random forest relies on a 

set of three parameters. First, the number of variables from which to randomly choose at each node, known 

as mtry. Second, the number of trees used, known as ntree. Third, the minimum number of observations in the 

final leafs, known as nodesize. The following subsections will present each parameter separately and illustrate 

how different settings of the parameters influence the output results. 
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3.1 The optimal number of variables (mtry) 

The main goal of choosing mtry is to lower the correlation between the trees by limiting the number of possible 

variables from which to choose from. In other words, mtry sets the possible variable subsets which can be used 

in the model. It can ranges from 1 to 25 which is the total number of the variables we have as input. The 

limitation of mtry ensures more randomness in each tree, which lowers the correlation between the trees. Less 

correlation between the trees implies that the trees differ in their structure, allowing for the detection of 

patterns that might not have been discovered otherwise. Furthermore, the lowered correlation leads to an 

increased accuracy which in turn reduces the generalization error (Breiman, 1996). At the same time, each tree 

has less predictive power given the reduced covariates for each tree (Palmer et al., 2007). The reason is that 

if mtry is set too low, it is possible that none or few of the relevant predictors are chosen for a split, which 

leads to a lowered predictive power. However, if we choose a large value for mtry, the variables with smaller 

effect are unlikely to be selected at a given node (Janitza & Hornung, 2018). This contradicts the idea of a 

random forest with many different decision trees, since many would look alike. It is therefore challenging to 

find the optimal trade-off between accuracy and loss in predictive power. 

Yet, the default setting of mtry for regressions is 
𝑝

3
 and for classification it is equal to √𝑝, whereby p refers to 

the maximum number of independent (explanatory) variables. The full GCRI model consists of 25 variables. 

Accordingly, the default value for the classification is equal to √25 = 5. For the regression, the default value 

is equal to 
25

3
≈ 8.  

3.2 The optimal number of trees (ntree) 

The number of trees used in the random forest is important for the stabilization of the results. The core idea 

of the random forest is to overcome the weakness of each decision tree by increasing the number of trees and 

relying on the wisdom of the mass. The lower the number of trees, the greater the influence of each individual 

tree on the final prediction. Given that the decision trees are sensitive to changes in the data, the final 

predictions are rather unstable. Thus, the number of trees should be chosen to be sufficiently high to achieve 

stable results that are rather insensitive to small changes in the input data. It could be shown that results tend 

to converge once a certain threshold of trees is reached (Guan et al., 2013). Thus, it is recommendable to use 

a rather large number of trees since an increase in trees will stabilize, but not harm the results. The default 

value for the random forest is 500. Scholars proposed different thresholds over the past decade such as 100 
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(Pal, 2005; Guan et al., 2013), 1000 (Prasad, Iverson & Liaw, 2006; Sesnie et al., 2010; Rees et al., 2014; 

Colditz, 2015), 5000 (Díaz-Uriarte & Alvarez de Andrés, 2006; Stumpf & Kerle, 2011; Adelabu, Mutanga & 

Adam, 2014; Millard & Richardson, 2015; Nitze, Barrett & Cawkwell, 2015) and up to over 6500 (Adam & 

Mutanga, 2012). 

However, there seems to be agreement that there are diminishing benefits once the number of trees is larger 

than the default value of 500. After 500 trees, the result will not change substantially, yet, the computational 

effort to calculate the results increases linearly to the number of trees chosen for the random forest (Scornet, 

2017). 

3.3 The optimal depth of trees (nodesize) 

The nodesize defines the minimum number of observations that should be on the terminal leaf of a tree. The 

lower the nodesize, the larger the tree can grow, since the tree is likely to have more splits. The default value 

is 1, i.e. the minimum number of observations per final leaf is 1 (fully grown trees). In theory, this may introduce 

overfitting for the individual tree. However, if we set the number of trees high enough, the ensemble can 

compensate for the overfitting of individual trees. In other words, a smaller nodesize should be chosen 

alongside a larger number of trees. The lower the nodesize, the better it can detect more complicated 

relationships between the independent variables and the dependent variable. In practice, the default value for 

nodesize is rarely changed (De Santana et al., 2019). 

4 The Artificial Intelligence version of the Global Conflict Risk Index 

For the optimization of our model, we performed a ten-fold cross validation for each possible parameter 

combination. Given the way we predict conflict, we optimized the random forest (RF) regression model taking 

into consideration the GCRI steering committee opinion5. For the ntree parameter, we set thresholds of 100, 

500, 1000, and 2000. For mtry, we let the value vary between 1 and 25. We set the nodesize to the default 

value of 5 as well as 1 and 20. We optimized the model by means of the RSME.  

To account for the high imbalance within our data set, SMOTE oversampling (Chawla et al., 2002) was 

performed within the cross-validation procedure (CV), as an over-sampling before the CV would lead to biased 

results (Santos et al., 2018). We first split the data into 10 stratified partitions. For each iteration of the CV, we 

                                           

(5) see 5th GCRI workshop proceedings JRC 117492 
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oversample only the training data, leaving the test data unmodified. This way, we are able to generalize from 

our training data. 

5 Results 

The results for the RF regression analysis on the national level (NP) revealed that the best performance was 

achieved under the setting mtry=2, ntree=2000, nodesize=1 (see Table 1) with an error rate of 1.148. As a 

reference, the default model with ntree=500, mtry=8 and nodesize=5 has an error rate of 1.219.  

Table 1. Models' optimal regression hyperparameters. 

 mtry ntree nodesize RSME 

NP 2 2000 1 1.148 

SN 3 1000 1 1.252 

 

For the subnational conflict level (SN), the setting of ntree=1000, mtry=3 and nodesize=1 gave the smallest 

error with 1.252 (see Table 1). As a reference, the default model with ntree=500, mtry=8 and nodesize=5 has 

an error rate of 1.299. 

Table 2. Models' statistical metrics using the optimal parameters. 

  NP Default NP SN Default SN 

mtry 2 5 11 5 

ntree 1000 500 500 500 

nodesize 5 1 20 1 

Accuracy 0.94406 0.94365 0.91608 0.91196 

Kappa 0.74224 0.73772 0.72959 0.71344 

Sensitivity 0.98992 0.9916 0.98887 0.98993 

Specificity 0.66908 0.65619 0.66361 0.64158 

Neg. Pred. 0.91789 0.92938 0.94596 0.94926 

Precision 0.94722 0.94535 0.91075 0.90553 

Recall 0.98992 0.9916 0.98887 0.98993 

F1 0.96809 0.96791 0.94817 0.94582 
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The result for the parameter tuning can be found in Table 2. On the national level, the best performance was 

achieved for the combination of mtry = 2, ntree = 1000 and nodesize = 5. The precision score was 0.947. 

However, the results did not significantly vary for the different settings. The default setting reached a precision 

score of 0.945. The lowest performance still achieved a score of 0.942. In other words, the differences between 

the various parameter settings are marginal, indicating that the final prediction results are robust across the 

entire range of parameters.  

A similar pattern can be observed for subnational conflicts. The best performance was achieved for the setting 

of mtry = 11, ntree = 500 and nodesize = 20. The precision value was 0.910. The worst performance still 

achieved a value of over 0.902. For the default setting (mtry = 5, ntree = 500 and nodesize = 1), the precision 

value was 0.905. Hence, also on the subnational conflict level, the actual impact of the tuning on the final 

prediction is marginal.  

The results and the statistical metrics of the hyperparameters’ application to the overall dataset are available 

in the following (Table 3). 

Table 3. Model's statistical metrics using a cut-off point of 5. 

  NP SN 

Accuracy 0.94796 0.91875 

Kappa 0.74966 0.73144 

Sensitivity 1 1 

Specificity 0.63597 0.63694 

Neg. Pred. Value 1 1 

Precision 0.94276 0.90525 

Recall 1 1 

F1 0.97053 0.95027 

AUC 0.81798 0.81847 
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Table 4. Confusion matrix for the NP a cut-off point of 5. 

 Actual Conflict situation 

Conflict (P) No Conflict (N) 

Predicted 

Conflict situation 

Conflict (P) 442 (TP)  0 (FP)  

No Conflict (N)  253 (FN) 4167 (TN) 

 

Table 5. Confusion matrix for the SN a cut-off point of 5. 

 Actual Conflict situation 

Conflict (P) No Conflict (N) 

Predicted 

Conflict situation 

Conflict (P) 693 (TP)  0 (FP)  

No Conflict (N)  395 (FN) 3774 (TN) 

 

Based on the results, we can further improve the models’ performance using the Receiver Operating 

Characteristic (ROC) curve. The use of the ROC curve to calculate a threshold (cut-off point) is very common in 

the literature (Weidmann & Ward, 2010; Bean, Stafford & Brashares, 2012; Hegre et al., 2013). Selecting a 

threshold where the ROC curve starts bending would maximize sensitivity (minimizing omission rate), while 

minimizing the fall out rate (maximizing specificity) (Giancristofaro & Salmaso, 2003). In the particular case of 

conflict risk prediction, high sensitivity (low omission) is preferred over high specificity (low fall out). 

Following our ROC analysis, the resulting new threshold value is equal to 4, which significantly improves our 

results for every metric (see Table 6).  
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Table 6. Model's statistical metrics using a cut-off point of 4. 

  NP SN 

Accuracy 0.98786 0.98663 

Kappa 0.94865 0.96068 

Sensitivity 1 1 

Specificity 0.9151 0.94025 

Neg. Pred. Value 1 1 

Precision 0.98603 0.98306 

Recall 1 1 

F1 0.99297 0.99146 

AUC 0.95755 0.97012 

With the tuned random forest, we can significantly improve our predictions for both the national and 

subnational level (see Table 7 and Table 8).  

Table 7. Confusion matrix for the NP using a cut-off point of 4. 

 Actual Conflict situation 

Conflict (P) No Conflict (N) 

Predicted 

Conflict situation 

Conflict (P) 636 (TP) 0 (FP) 

No Conflict (N)  59 (FN) 4167 (TN) 

Table 8. Confusion matrix for the SN using a cut-off point of 4. 

 Actual Conflict situation 

Conflict (P) No Conflict (N) 

Predicted 

Conflict situation 

Conflict (P) 1023 (TP) 0 (FP) 

No Conflict (N)  65 (FN) 3774 (TN) 

 

Recently, a new variable, the internally displaced people (IDPs), was introduced in the GCRI indicators (Halkia 

et al., 2018). To evaluate the impact of the new variable on the AI GCRI predictions, we recalculate the RF 
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models including the IDPs. In Error! Not a valid bookmark self-reference.9 and table 10 below, you can 

find the statistical metrics using the different cut-off points.  

Table 9. Model's statistical metrics using a cut- off point of 5 (including the IDP indicator). 

  NP SN 

Accuracy 0.80213 0.82723 

Kappa 0.17527 0.31614 

Sensitivity 0.99788 0.9992 

Specificity 0.12316 0.23069 

Neg. Pred. Value 0.94366 0.98818 

Precision 0.79788 0.81835 

Recall 0.99788 0.9992 

F1 0.88674 0.89978 

AUC 0.56052 0.61495 

Table 10. Model's statistical metrics using a cut-off point of 4 (including the IDP indicator). 

  NP SN 

Accuracy 0.81838 0.8624 

Kappa 0.2821 0.50621 

Sensitivity 0.99311 0.99152 

Specificity 0.21231 0.41452 

Neg. Pred. Value 0.89883 0.93374 

Precision 0.81389 0.85453 

Recall 0.99311 0.99152 

F1 0.89461 0.91794 

AUC 0.60271 0.70302 

It can be observed that the metrics are lower when the IDPs are included. The overall accuracy has decreased 

for both the national power and subnational model, as well as the precision.  

6 Conclusions 

The GCRI is a conflict risk model developed especially to support EU policy-making for conflict prevention. Based 

on linear and logistic regression models, the GCRI estimates the intensity or the probability of a violent conflict 

event. The linear regression approach (OLS) allows the researcher to investigate the marginal effect of a 

variable, holding all other variables of interest constant. The simplicity of its application and interpretation are 

the main advantages of the OLS model. However, a number of moderately strong assumptions need to be 

upheld such as normally distributed input data and homoscedasticity in the error terms. The logistic regression, 



 

16 

 

on the other hand, is a binary response method more appropriate for the conflict risk domain and does not 

present these major limitations.  

The AI RF modelling approach, which is based on a decision process, extends the initial GCRI regression models, 

and reveals country specific indicators and their importance for conflict prevention.  

The AI GCRI has been specified using the optimal hyperparameters, which were obtained through a 10-fold 

cross validation for each possible parameter combination. The models’ dataset imbalance, inherent in the 

conflict modelling domain, partly addressed with the SMOTE oversampling technique indicates that the quality 

of input data is crucial for the models’ performance. However, after the hyperparameters’ tuning, we are able 

to increase the correct predictions for both national power and subnational conflicts.  

Furthermore, we tested the internally displaced people (IDPs) variable, which has recently been introduced in 

the GCRI indicator basket. Even though there are good reasons to believe that IDPs are related to conflict, i.e. 

by providing resources for rebel groups, changing the ethnic balance and affecting the economy of the host 

area, the results of this experiment are inconclusive. The inconclusive results can be explained by the data 

quality of the IDP variable. For the IDPs variable, we have data only from 2009 to 2014 only for a small number 

of countries. Hence, the poor data availability makes reliable predictions difficult given the small number of 

cases. Moreover, most countries for which data exists, present rather small numbers of IDPs. Only in a few 

countries, such as Syria, Mexico or Colombia, the proportion of IDPs exceeds 10% of the total population. This 

high within-class imbalance may bias our results. 

Overall, it is demonstrated that the random forest GCRI models are internally stable, not overfitting, and have 

a good predictive power. The precision and accuracy metrics are above 98%, both for the national power and 

subnational power conflict models. 

Further research should however focus on (i) conducting an advanced evaluation of the variables’ significance 

in order to select the best possible set of indicators, and (ii) reviewing the conflict definition according to the 

conflict data providers’ updates. 
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Annexes 

Annex 1. Model indicators and data sources 

Recent Internal Conflict, Neighbours with HVC, Years since HVC: For all the conflict related variables we 

used the Battle related deaths, One-sided violence and Non-state conflict datasets provided by the UCDP/PRIO 

(Available online at: http://ucdp.uu.se/downloads/) 

Regime Type, Lack of Democracy: We used the Polity IV Annual Time-Series, 1800-2015 dataset provided 

by the Center for Systemic Peace (CSP) (Available online at: http://www.systemicpeace.org/inscrdata.html) 

Level of Repression: The data are provided by the Political Terror Scale Project (PTS) (Available online at: 

http://www.politicalterrorscale.org/Data/Download.html) 

Empowerment Rights: We used the CIRI Human Rights Dataset provided by the Cingranelli and Richards (CIRI) 

Human Rights Data Project (Available online at: http://www.humanrightsdata.com/p/data-documentation.html) 

Government Effectiveness, Corruption, GDP per capita, Openness, Oil Production, Homicide Rate, 

Infant Mortality, Unemployment: For these variables we used the World Bank’s indicators (Available online 

at: https://data.worldbank.org/) 

Income inequality: The Standardized World Income Inequality Database provided by Harvard Dataverse 

Network was used (Available online at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1 

902.1/11992) 

Ethnic Power Change, Ethnic compilation: The ETH Zurich provided the Ethnic Power Relations (EPR) Core 

Dataset (Available online at: https://icr.ethz.ch/data/epr/) 

Transnational Ethnic Bonds: We used the Minorities at Risk Dataset by the CIDCM Center for International 

Development & Conflict Management (Available online at: http://www.mar.umd.edu/) 

Food Security: Food security indicators by FAO were used (Available online at: http://www.fao.org/home/en/) 

Water Stress: We used the Aqueduct Country and River Basin Rankings (Raw country scores) dataset provided 

by the World Resources Institute (WRI) (Available online at: https://www.wri.org/) 

Structural Constraints: The structural constraints variable by the Bertelsmann Stiftung's Transformation 

Index (BTI) was used (Available online at: https://www.bti-project.org/en/home/)  
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Population Size, Youth Bulge: The data for the population size and youth bulge are provided by the UN 

DESA/ Population Division (Available online at: https://www.un.org/development/desa/en/)  

Climate: We used the Standardised Precipitation-Evapotranspiration Index (SPEI) dataset provided by the 

Institutional Repository of the Spanish National Research Council (DIGITAL.CSIC) (Available online at: 

http://digital.csic.es/bitstream/10261/153475/14/) 

Internally Displaced People: We used the Internally Displaced Persons (IDP) dataset provided by the Internal 

Displacement Monitoring Centre (IDMC) (Available online at: https://data.worldbank.org/) 
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Annex 2. Distribution of the IDPs  

 

Figure 3. Distribution of national power conflict for different level of IDPs. 

 

Figure 4. Proportions of national power conflict and no conflict for different levels of IDPs 
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Figure 5. Distribution of subnational conflict for different level of IDPs

 

Figure 6. Proportions of subnational conflict and no conflict for different levels of IDPs 
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