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Abstract    

This report presents a dynamic model of the Global Conflict Risk Index (GCRI), a conflict risk model supporting 

the design of European Union’s (EU) conflict prevention strategies developed by the Joint Research Centre (JRC) 

of the European Commission (EC) in collaboration with an expert panel of researchers and policy-makers.  

While most studies as well as the regression GCRI measure conflict intensity by counting the number of 

causalities, the proposed dynamic GCRI integrates and identifies every stage of the conflict development or 

de-escalation in its entire complexity. The emergence of conflict related event data sets offers researchers new 

ways to quantify and predict conflicts through big data. 

Using country-level actor-based event data sets that signal potential triggers to violent conflict such as 

demonstrations, strikes, or elections-related violence, the model aims at estimating the occurrence of material 

conflict events, under the assumption that an increase in material conflict events goes along with a decrease 

in material and verbal cooperation. 

Three potential datasets are tested in this report following a political event coding classification: (i) the Global 

Data on Events Location and Tone (GDELT) project, (ii) the Integrated Crisis Early Warning System (ICEWS) 

Dataverse dataset and (iii) the Phoenix - Open Event Data Alliance (OEDA)-Phoenix Dataset.  

The Artificial Intelligence (AI) methodology adopted to model the dynamic GCRI is built upon a Long-Short Term 

Memory (LSTM) Cell Recurrent Neural Network (RNN). These models are well-suited to classify, process and 

make predictions based on time series data and forecast near future events.  

Besides this AI model, we have set up an early warning alarm system to signal abnormal social unrest 

upheavals. The dynamic GCRI, through the AI and early warning alarm, seems to be able to predict the 

materialization of a conflict on a monthly basis. 

This new tool gives policy makers the possibility to observe the situation in a country on a monthly base, taking 

into consideration both the current and the predicted available information, and to implement preventive 

actions more rapidly to mitigate conflict exacerbations at an earlier stage of the conflict development cycle.
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1. Introduction 

Most of the studies that are trying to predict future conflicts consider the number of casualties as a proxy to 

measure conflict intensity, using datasets such as the Armed Conflict Location & Event Data (ACLED) and 

Uppsala Conflict Data Program/Peace Research Institute Oslo (UCDP/PRIO) (Hegre et al., 2013; Szayna et al., 

2017; Halkia et al., 2019). While a certain degree of correlation between conflict intensity and the number of 

battle casualties may be identified, it does not consider conflict development stages (Qiao et al., 2017) and 

the complexity of events like demonstrations, protests, election violence, or even tension relief events such as 

diplomatic cooperation. 

The Peace and Stability team at the European Commission’s Joint Research Centre proposes a new type of 

Global Conflict Risk Index (GCRI), which unlike the original GCRI, would integrate and disentangle every stage 

of the conflict development or de-escalation cycle.  

Using the proprietary GCRI in combination with big data and neural networks, the team is working to produce 

a model that monitors conflict risk worldwide in real time, and follows the movements and activities of 

terrorists, insurgents, illegal trade, and organized crime syndicates. 

In order to do so, however, the model must draw from a comprehensive, accurate, and reliable big data source.  

In this paper, we test three different available news media datasets based on a political event coding 

classification. At the moment, two different event-coding classifications exist, the Conflict and Mediation Event 

Observations Event and Actor Codebook (CAMEO) classification and the Political Language Ontology for 

Verifiable Event Records (PLOVER)5. Due to data availability, we rely on the CAMEO framework for classifying 

event data in four primary classes (called QuadClass): verbal cooperation (Q1), material cooperation (Q2), 

verbal conflict (Q3), and material conflict (Q4). Additionally, 20 major subcategories are identified, which are 

then divided into several sections, so as to create a detailed classification scale (Schrodt, 2012), following the 

typical evolution stages of social unrest; appeal, accusation, refuse, escalation, and finally protests/riots (Qiao 

et al., 2017). Most of the social unrest events initially start as a demonstration to the public or the government, 

and often escalate afterwards into general chaos, resulting in violent, riots, sabotage, and other forms of crime 

and social disorder.  

The datasets which are tested in this report are: (i) the Global Data on Events Location and Tone (GDELT) 

project, (ii) the Integrated Crisis Early Warning System (ICEWS) Dataverse dataset and (iii) the Phoenix - Open 

Event Data Alliance (OEDA)-Phoenix Dataset.  

To our knowledge, one paper has used the GDELT data to measure conflict intensity (Levin, Ali, & Crandall, 

2018). In their article, however, Levin, Ali and Crandall only consider the monthly time series of the absolute 

number of events occurring in the CAMEO Q4 subclasses or take a MaxMin normalization over their time series 

(i.e. normalization between zero and one based on the minimum and maximum values in the time series of 

each country). The event-based GCRI goes one step further in its conflict analysis, as it additionally evaluates 

the increase in the proportion of the various QuadClasses over the total number of events. Although the 

absolute and normalized number of events under each CAMEO QuadClass are giving important information, 

the conflict cycle development is better captured in its entire complexity when considering the analysis in 

proportions. 

The Artificial Intelligence (AI) methodology adopted to model the dynamic GCRI is built upon a Long-Short Term 

Memory (LSTM) Cell Recurrent Neural Network (RNN). This model treats the social unrest event prediction as a 

sequence classification problem and is well-suited to classify, process, and make predictions based on time 

series data and forecast near future events.  

                                           

5 PLOVER is intended to replace the earlier CAMEO classification of events and adds a new category for criminal behaviour. Unfortunately, 

it is not yet available to potential users. 
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Besides this AI model, we have set up an early warning alarm system to signal abnormal social unrest 

upheavals.  

Although the dynamic GCRI, through the AI and early warning alarm, is able to predict the materialization of a 

conflict on a monthly basis, we should further assess the different signals and various peaks as there is no 

correct model as yet to predict social unrest. This new tool gives policy makers the possibility to implement 

preventive actions more rapidly to mitigate conflict exacerbations at an earlier stage of the conflict 

development cycle. 

Section 2 presents the various datasets and Section 3 explains the model and methodology proposed for the 

dynamic GCRI, whereas Section 4 presents the results. Eventually, Section 5 concludes the report with a 

feasibility discussion. 
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2. Event Datasets Using the Conflict and Mediation Event Observations Event 

and Actor Codebook (CAMEO) Classification 

The Global Database of Events, Language, and Tone Project (GDELT), the Integrated Crisis Early Warning 

System (ICEWS) Dataverse (ICEWS)6 and the Phoenix - Open Event Data Alliance (OEDA) Dataset are arguably 

the largest event data collections in social science at the moment, which gather huge amounts of news items 

from various sources around the world. During their brief existence they have been among the most influential 

datasets in terms of their impact on academic research and policy advice. 

Due to data availability, we classify the event news databases with the Conflict and Mediation Event 

Observations (CAMEO) code, a framework for classifying event data in four primary classes (called QuadClass): 

verbal cooperation (Q1), material cooperation (Q2), verbal conflict (Q3), and material conflict (Q4). In addition, 

the 20 major subcategories are then divided into several sections, so as to create a detailed classification scale 

(Schrodt, 2012) following the typical evolution stages of social unrest; appeal, accusation, refuse, escalation, 

and finally protests/riots (Qiao et al., 2017). In order to fulfil the purposes of this report, we investigate the use 

of these three news media datasets as possible inputs for a dynamic GCRI7.  

2.1. Global Database of Events, Language, and Tone (GDELT) Project  

The GDELT project is an on-going attempt to monitor print, broadcast, and web news media in over 100 

languages from all over the world, so as to continuously be updated on breaking news worldwide. According to 

their website the ‘GDELT moves beyond the focus of the Western media towards a far more global perspective 

on what is happening and how the world is feeling about it’ (GDELT, 2019).  

It has been created by Kalev Leetaru and Georgetown University in cooperation with Google, BBC Monitoring, 

National Academies Keck Futures Program, LexisNExis Group, JSTOR, DTIC, and the Internet Archive (GDELT, 

2019). 

The GDELT Event Database records over 300 categories of physical activities around the world, from riots and 

protests to peace appeals and diplomatic exchanges. This means that the existent database consists of more 

than 2.5TB of available information per year. In absolute numbers, it contains more than a quarter billion of 

records. Supported by Google Jigsaw, the platform includes data from 1979 till present, and it is updated every 

15 minutes as of April 1, 2013.  

It is worth emphasizing that the GDELT dataset is updated every 15 minutes, meaning that there is a continuous 

flow of records inserted in the database. That tremendous amount of event records - greater than any other 

event dataset - opens up a new perspective in this research area.  

So far, works rarely aim at utilizing GDELT to make predictions about social unrest and only a few scholars 

have conducted predictions using GDELT. Alikhani attempted to use GDELT with linear regressions in 2014, 

while Yonamine studied the dataset for time series forecasting in 2013. More recent papers use GDELT for 

frequent subgraphs mining (Qiao et al., 2017) and apply artificial intelligence (Smith et al., 2018).  

2.2. Integrated Crisis Early Warning System (ICEWS) Dataverse  

The ICEWS program is a comprehensive, integrated, automated, generalizable, and validated system to monitor, 

assess, and forecast national, sub-national, and internal crises (Lockheed Martin, 2019).  

It is an early warning system designed to help US policy analysts predict a variety of international crises to 

which the US might have to respond (Ward et al., 2013). 

                                           

6 ICEWS is not updated since June, 2019. 

7 For the purposes of this report we investigate the use of three news media datasets as input datasets. There are more available datasets 

but there are also major limitations that we cannot overcome i.e. limited time series (Phoenix_RT from Oct. 2017 to today). 
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The ICEWS events are automatically identified and extracted from news articles by the BBN ACCENT event 

coder, following the above-mentioned classification (i.e. CAMEO). These events consist of a source actor, an 

event type (according to the CAMEO taxonomy of events), and a target actor.  

As stated on their official webpage, ICEWS is ‘unable to provide the story text from which events are extracted 

due to copyright reasons’ and is ‘also unable to provide URLs for the stories’ as they ‘purchase the content and 

receive it directly as opposed to via a website.’ (ICEWS Automated Daily Event Data - Integrated Crisis Early 

Warning System (ICEWS) Dataverse, 2019). The ICEWS dataset has been discussed in the conflict prediction 

research literature (Tikuisis, Carment & Samy, 2013; Ward et al., 2013; Yonamine, 2013) as well as in relation 

to the coding of political events (Schrodt & Van Brackle, 2013). 

2.3. Cline Center Historical Phoenix Event Data (Phoenix) 

The Cline Center Historical Phoenix Event Data is a daily updated event dataset with a global coverage, 

developed with the support of Linowes Fellow and Faculty Affiliate Prof. Dov Cohen and help from academic 

and private sector collaborators in the Open Event Data Alliance (OEDA). The OEDA is a consortium of for-profit 

organizations, not-for-profit organizations, and individuals committed to facilitating the development, adoption, 

and analysis of social and political event data (OEDA Datasets, 2019).  

It is updated daily and documents the agents, locations, and issues at stake in a wide variety of conflict, 

cooperation and communicative events in the CAMEO ontology framework.  

The Phoenix dataset is coded using the PETRARCH coder, a Python-based program using full parsing of news 

text, replacing the earlier and less sophisticated TABARI software (Schrodt, 2001). Phoenix’s software, like 

GDELT’s, is designed to extract major international political and social events from wire service reports 

(Halterman & Beieler, n.d.).  

2.4. Data Comparison and Evaluation 

All the above-mentioned datasets are based on the CAMEO classification, which is crucial for the modelling 

phase of this analysis. In Table 1, one can see the time, geographical and language coverage of each dataset 

as well as their updated frequency. 

Table 1. Event-based datasets coverage 

Dataset Time 

coverage 

Geographical 

coverage 

Language 

Coverage 

Update 

frequency 

Source availability 

GDELT 1979-now Global 100 languages 15 min Publicly available 

source URL 

ICEWS 1995-June 

2019 

Global English, Spanish, 

Portuguese and 

Arabic 

Monthly, daily as 

of October 2018 

Unavailable source 

URL due to copyright 

reason 

OEDA-

Phoenix 

1945-2005 

1995-2004 

1979-2015 

Global English Daily Unavailable source 

URL (only the news 

provider name) 
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There are limitations to all the three datasets. The major limitation of the GDELT project is the fact that the 

monitoring is based on simple keywords, which may lead to a collection of irrelevant records (noise). However, 

as the source URL is given, we can undertake sample validation tests8. The ICEWS program scans news on a 

daily basis solely after October 2018 and on a monthly basis since 1995. Before that date, there is no data 

available for this particular dataset. Another limitation is that we are not able to identify the source of the 

records and hence, we cannot validate the output of the dataset. According to Ward et al. (2013), who compared 

the GDELT and ICEWS data sets, ‘it is clear that both databases pick up major events remarkably well. The 

volume of GDELT data is very much larger than the corresponding ICEWS data […] It seems clear, however, that 

GDELT over-states the number of events by a substantial margin, but ICEWS misses some events as well.’ 

The Phoenix-OEDA dataset uses 14 million articles but only from the following news sources: the New York 

Times (NYT), the British Broadcasting Corporation’s (BBC) Summary of World Broadcasts (SWB), and the Central 

Intelligence Agency’s (CIA) Foreign Broadcast Information Service (FBIS) (Althaus et al., 2017). Each news 

source has a different time coverage, generating three databases instead of one. Moreover, the Phoenix-OEDA 

data has not published data after 2015. 

The CAMEO classifies these event data bases in four primary classes: verbal cooperation (Q1), material 

cooperation (Q2), verbal conflict (Q3), and material conflict (Q4). Each of the four classes is further subdivided 

in five subcategories, which consist of several sections9. In this way, one creates a detailed classification scale 

(Schrodt, 2012) following the typical evolution stages of social unrest: appeal, accusation, refuse, escalation, 

and finally protests/riots (Qiao et al., 2017). 

Most of the social unrest events initially start as a demonstration to the public or the government, and often 

escalate afterwards into general chaos, resulting in riots, sabotage, and other forms of crime and social 

disorder.  

Eventually, the social unrest event prediction is formulated as a sequence classification problem that identifies 

any possible sequence or stage of events that potentially lead to social unrest.  

The proposed event-based model built upon the CAMEO classification to predict social unrest assumes that an 

increase in material and verbal conflict events goes along with a decrease in material and verbal cooperation.  

Observing that there is a general increasing trend in the amount of news articles reported in Q3 and/or Q4 with 

respect to the total number of articles, the model is able to measure an increase in conflict related tensions. 

In order to evaluate how appropriate each one of the data sets is in predicting conflict, the following subsections 

make a visual assessment on how CAMEO classifies the news events in each of the databases respectively 

and contrast the results with ACLED data on the number of fatalities when available10 for Libya (2.4.1.), Sudan 

(2.4.2.), Egypt (2.4.3.), Maldives (2.4.4.) and Nicaragua (2.4.5.). We selected these cases as all of them are 

typical cases where the existing models were unable to predict the escalation of violence11. 

2.4.1. Case Study 1: Libya 

A highly interesting case study is Libya as almost none of the current models were able to predict the start of 

Arab Spring in the country in February 2011. Both the GDELT and the ICEWS datasets show an increase in the 

proportion of events categorized as material conflict, Q4, in February 2011 (Figure 1 and  

                                           

8 For more details about the GDELT sample validation please see Appendix I. The GDELT dataset qualitative validation. 

9 For more information about the subdivision of the CAMEO, please see Appendix III. 

10 While ACLED is widely used, its time and geographical coverage is limited. It covers Africa since 1997, Asia since 2010, the Middle East 

since 2016, and Europe since 2018.  

11 In particular, Libya and Egypt were selected to check the model’s capacity to predict the start of the Arab spring. Additionally, Sudan 

was selected as the level of violence has been high for a long period of time. Finally, Nicaragua and Maldives are countries where ACLED 

data is not available, however, both countries have an increasing geo-strategic importance.   
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Figure 2 on the next page), while an increase in the total amount of events reported can be observed in the 

OEDA-phoenix, but the increase in the events mentioned as material conflict is not significant (see Figure 3). 

The red vertical line in the following plots refers to the start of the Arab Spring in Libya in February 2011.  

Figure 1. Events per QuadClass in Libya, monthly aggregation (1989-2019 GDELT) 

 

Figure 2. Events per QuadClass in Libya, monthly aggregation (1995-2019 ICEWS) 
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Figure 3. Events per QuadClass in Libya, monthly aggregation (1989-2019 OEDA) 

 

In Figure 4, a major sudden peak can be observed in the reported number of fatalities by ACLED at the beginning 

of February 2011. 

Figure 4. Number of fatalities in Libya, monthly aggregation (1997-2019 ACLED) 
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under Verbal Cooperation (Q1), Material Cooperation (Q2), Verbal Conflict (Q3), and Material Conflict (Q4) is 

reported. However, the biggest increase in news is found under Q1 and not under Q3 or Q4. From this 

information, we solely see that more cooperation than conflict events had taken place in Libya in February 

2011. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1
9

8
9

0
1

1
9

8
9

0
8

1
9

9
0

0
3

1
9

9
0

0
9

1
9

9
1

0
3

1
9

9
1

0
9

1
9

9
2

0
3

1
9

9
2

0
9

1
9

9
3

0
4

1
9

9
3

1
1

1
9

9
4

0
5

1
9

9
5

0
1

1
9

9
5

0
7

1
9

9
6

0
1

1
9

9
6

0
7

1
9

9
7

0
1

1
9

9
7

0
7

1
9

9
8

0
1

1
9

9
8

0
7

1
9

9
9

0
1

1
9

9
9

0
7

2
0

0
0

0
1

2
0

0
0

0
7

2
0

0
1

0
1

2
0

0
1

0
7

2
0

0
2

0
1

2
0

0
2

0
7

2
0

0
3

0
1

2
0

0
3

0
7

2
0

0
4

0
1

2
0

0
4

0
7

2
0

0
5

0
1

2
0

0
5

0
7

2
0

0
6

0
1

2
0

0
6

0
7

2
0

0
7

0
1

2
0

0
7

0
7

2
0

0
8

0
1

2
0

0
8

0
7

2
0

0
9

0
1

2
0

0
9

0
7

2
0

1
0

0
1

2
0

1
0

0
7

2
0

1
1

0
1

2
0

1
1

0
7

2
0

1
2

0
1

2
0

1
2

0
7

2
0

1
3

0
1

2
0

1
3

0
7

2
0

1
4

0
1

2
0

1
4

0
7

2
0

1
5

0
1

2
0

1
5

0
7

2
0

1
6

0
1

2
0

1
6

0
7

2
0

1
7

0
1

2
0

1
7

0
7

2
0

1
8

0
1

2
0

1
8

0
7

2
0

1
9

0
1

q4% q3% q2% q1%

0

20

40

60

80

100

120

1
9

9
7

0
1

1
9

9
8

0
6

1
9

9
9

0
4

2
0

0
0

0
9

2
0

0
2

0
4

2
0

0
3

0
8

2
0

0
4

0
3

2
0

0
5

0
5

2
0

0
5

1
1

2
0

0
6

0
2

2
0

0
8

0
3

2
0

0
8

1
1

2
0

0
9

0
6

2
0

1
0

0
1

2
0

1
0

0
6

2
0

1
1

0
2

2
0

1
1

0
5

2
0

1
1

0
8

2
0

1
1

1
1

2
0

1
2

0
2

2
0

1
2

0
5

2
0

1
2

0
8

2
0

1
2

1
1

2
0

1
3

0
2

2
0

1
3

0
5

2
0

1
3

0
8

2
0

1
3

1
1

2
0

1
4

0
2

2
0

1
4

0
5

2
0

1
4

0
8

2
0

1
4

1
1

2
0

1
5

0
2

2
0

1
5

0
5

2
0

1
5

0
8

2
0

1
5

1
1

2
0

1
6

0
2

2
0

1
6

0
5

2
0

1
6

0
8

2
0

1
6

1
1

2
0

1
7

0
2

2
0

1
7

0
5

2
0

1
7

0
8

2
0

1
7

1
1

2
0

1
8

0
2

2
0

1
8

0
5

2
0

1
8

0
8

2
0

1
8

1
1

2
0

1
9

0
2

Battles (values)

Explosions/Remote violence (values)

Protests (values)

Riots (values)

Strategic developments (values)

Violence against civilians (values)

February 2011, Start of 
Arab Spring in Libya



 

10 

 

Figure 5. Absolute monthly news frequency per CAMEO QuadClass in Libya - GDELT (Jan 1989 - March 2019) 

 

Normalizing our monthly time series as in Levin, Ali and Crandall (2018) between zero and one, based on the 

minimum and maximum values, we can identify global and local maxima (see Figure 6). As it can be seen in 

Figure 6, all four QuadClasses reach a global maximum in February 2011 in Libya. This helps us see whether 

the increase in the news events under each QuadClass is more or less important over time with respect to 

preceding events, however, it does not depict the start of the Arab Spring in Libya; the increase in the normalized 

cooperation events is similar to the increase in normalized conflict events. 

If we additionally look at the increase or decrease per QuadClass in the proportion of events classified under 

Q1, Q2, Q3, and Q4 of the total reported news in Libya before and after February 2011 (see Figure 7), we can 

observe a significant increase in Q3 and Q4 whereas Q1 and Q2 decreased significantly in February 2011. In 

this way, we can have a better idea of how a conflict is escalating, stagnating or de-escalating from month to 

month. 
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Figure 6. MaxMin normalized monthly news per CAMEO QuadClass in Libya - GDELT (Jan 1989 - March 2019) 

 

Figure 7. Proportion of reported events per QuadClass in Libya - GDELT (Jan 1989 - March 2019) 
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In the following figures, one can observe that ACLED reports another major peak in November, 201412. However, 

we are not able to confirm it using other event datasets, i.e. GDELT. 

Figure 8. ACLED and GDELT comparison for Libya. The black trend in the top chart represents the total number of events 

mentioned in ACLED while the red one the total number of deaths. 

 

As it can be seen in the top chart, there is a major peak for both the total number of events and the number 

of deaths mentioned in ACLED. On the other hand, news datasets like GDELT and ICEWS did not report this 

increase. 

2.4.2. Case Study 2: Sudan 

The second case study analyses the Sudanese protests in 2018-2019. On December 19, 2018, people took to 

the streets to demonstrate against rising living costs and the deterioration of economic conditions at all levels 

of society. The protests quickly turned from requests for urgent economic reforms into demands for the 

removal of President Omar al-Bashir. Both GDELT and ICEWS show an increase in the amount of events 

categorized as material conflict, Q4, in December 2018 (see Figure 9 and Figure 10). The red vertical line in 

the following plots refers to the start of the Sudanese protests in December 2018. 

                                           

12 In November 2014, Libya’s Supreme Court declared the internationally recognized parliament of Libya as unconstitutional. In the 

aftermath, battles between loyalist forces and militias killed nearly 400 people in three weeks (Laessing et al., 2017).  
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Figure 9. Events per QuadClass in Sudan, monthly aggregation (1989- 2019 GDELT) 

 

Figure 10. Events per QuadClass in Sudan, monthly aggregation (1995-2019 ICEWS) 

 

Given that the OEDA-Phoenix database does not provide data after 2015, we are not able to evaluate and 

visualize it (see Figure 11). Comparing these observations with ACLED fatalities (see Figure 12), one can verify 

an important decrease in material collaboration translating in an increase in social tension in the same period 

of December 2018. 
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Figure 11. Events per QuadClass in Sudan, monthly aggregation (1989-2019 OEDA) 

 

Figure 12. Number of fatalities in Sudan, monthly aggregation (1997-2019 ACLED) 

 

In Figure 13, a local increase in the number of news events classified under Verbal Cooperation (Q1), Material 

Cooperation (Q2), Verbal Conflict (Q3), and Material Conflict (Q4) is reported. Notice that the biggest increase 

in news for January 2019 is found under Q1 and not under Q3 or Q4. From this information, we solely see that 

in January 2019, more cooperation than conflict events have taken place in Sudan. 
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Figure 13. Absolute monthly news frequency per CAMEO QuadClass in Sudan - GDELT (Jan 1989 - March 2019) 

 

Normalizing our monthly time series as in Levin, Ali and Crandall (2018) between zero and one based on the 

minimum and maximum values, we can identify global and local maxima (see Figure 14). In Figure 14, all four 

QuadClasses reach a local maximum in January 2019 in Sudan.13 This helps us see whether the increase in the 

news events under each QuadClass is more or less important over time with respect to preceding events, 

however, it does not reflect the Sudanese protests from January 2019, as the increase in the normalized 

cooperation events is similar to the increase in normalized conflict events. 

If we additionally look at the increase or decrease per QuadClass in the proportion of events classified under 

Q1, Q2, Q3, and Q4 of the total reported news in Sudan before and after January 2019 (see Figure 15), we 

can observe that Q3 and Q4 increased and reached a peak in January 2019, whereas Q1 and Q2 decreased 

significantly. In this way, we can have a better picture of how a conflict is escalating, stagnating or de-

escalating from month to month. 

                                           

13 In January 2019, more than 800 protesters were arrested and at least 25 people killed in clashed between anti-government protesters 

and state forces. 
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Figure 14. MaxMin normalized monthly news per CAMEO QuadClass in Sudan - GDELT (Jan 1989 - March 2019) 

 

Figure 15. Proportion of reported events per QuadClass in Sudan - GDELT (Jan 1989 -March 2019) 

 

On the other hand, there is a major peak in the GDELT dataset in March 2009 which is absent in the ACLED 

data. Indeed, in March 2009, The International Criminal Court in The Hague issued an arrest warrant for 

President Bashir on charges of war crimes and crimes against humanity in Darfur. 
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Figure 16. ACLED and GDELT comparison for Sudan. The black trend in the top chart represents the total number of 

events mentioned in ACLED while the red one the total number of deaths. 

 

2.4.3. Case Study 3: Egypt 

Next, we examine the case of the Arab Spring in Egypt, which started in January 2011. In the GDELT, there is 

a visible increase in the amount of events categorized as material conflict, Q4 (see Figure 17), and the Arab 

Spring is also clearly identifiable in the ICEWS (see Figure 18), but no conclusion can be drawn from the OEDA-

Phoenix dataset (see Figure 19) as there is no clear picture of the situation at that point in time. The red vertical 

line in the following plots refers to the start of the Arab Spring in Egypt in January 2011. 
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Figure 17. Events per QuadClass in Egypt, monthly aggregation (1989- 2019 GDELT) 

 

Figure 18. Events per QuadClass in Egypt, monthly aggregation (1995-2019 ICEWS) 
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Figure 19. Events per QuadClass in Egypt, monthly aggregation (1989-2019 OEDA) 

 

Eventually, the peak in ACLED’s reported fatalities data confirms the start of the Arab Spring and the observed 

social tension soar depicted in the GDELT and ICEWS databases (see Figure 20). 

 

Figure 20. Number of fatalities in Egypt, monthly aggregation (1997-2019 ACLED) 

 

For Egypt, ACLED and GDELT time trends seem to be very similar. 
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Figure 21. ACLED and GDELT comparison for Egypt. The black trend in the top chart represents the total number of 

events mentioned in ACLED while the red one the total number of deaths. 

 

An increase in the number of news events classified under Verbal Cooperation (Q1), Material Cooperation (Q2), 

Verbal Conflict (Q3), and Material Conflict (Q4) is reported in Figure 22. However, the biggest increase in news 

for January 2011 is found under Q1 and not under Q3 or Q4. From this information, we solely see that more 

cooperation than conflict events have taken place in Egypt in January 2011. 

Normalizing our monthly time series as in Levin, Ali and Crandall (2018) between zero and one based on the 

minimum and maximum values, we can identify global and local maxima (see Figure 23). In Figure 23, one can 

see that all four QuadClasses reach a global maximum in January 2011 in Egypt. This helps us see whether 

the increase in the news events under each QuadClass is more or less important over time with respect to 

preceding events. However, it does not reflect the Arab Spring, which started in Egypt in January 2011, because 

the increase in the normalized cooperation events is similar to the increase in normalized conflict events. 

If we additionally look at the increase or decrease per QuadClass in the proportion of events classified under 

Q1, Q2, Q3, and Q4 of the total reported news in Egypt before and after January 2011 (see  

 

 

Figure 24), we can see Q3 and Q4 increased significantly in January 2011, whereas Q1 and Q2 decreased 

significantly. In this way, we can have a better picture of how a conflict is escalating, stagnating or de-

escalating from month to month. 
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Figure 22. Absolute monthly news frequency per CAMEO QuadClass in Egypt - GDELT (Jan 1989 - March 2019) 

 

 

Figure 23. MaxMin normalized monthly news per CAMEO QuadClass in Egypt - GDELT (Jan 1989 - March 2019) 
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Figure 24. Proportion of reported events per QuadClass in Egypt before and after January 2011 - GDELT (Jan 1989 - 

March 2019) 

 

2.4.4. Case Study 4: Maldives 

In the case of the Maldives, a political crisis arose in February 2018 after President Abdulla Yameen decided 

to disobey the Supreme Court’s order to release nine political prisoners and reinstating 12 parliament members. 

Additionally, the government declared a 15-day state of emergency, which suspended constitutional 

protections, banned public assemblies, and granted security forces powers to arrest and detain protestors, 

opposition figures, and activists. 

As shown in Figure 25 and Figure 26, the increase in political tensions through an accession in the amount of 

events categorized as material conflict, Q4, is not visible in both the GDELT and the ICEWS databases; no data 

is available for that period in the OEDA-Phoenix dataset and the Maldives are not covered by the ACLED data. 

The red vertical line in the following plots refers to the start of the political crisis in the Maldives in February 

2018. 



 

23 

 

Figure 25. Events per QuadClass in Maldives, monthly aggregation (1989-2019 GDELT) 

 

Figure 26. Events per QuadClass in Maldives, monthly aggregation (1995- 2019 ICEWS) 

 

The Maldives political crisis is reported in Figure 27 by an increase in the number of news events classified 

under Verbal Cooperation (Q1), Material Cooperation (Q2), Verbal Conflict (Q3) and Material Conflict (Q4). Notice 

that the biggest increase in news for February 2018, is found under Q1 and not under Q3 or Q4. From this 

information, we solely see that in February 2018, more cooperation than conflict events have taken place in 

the Maldives. 

Normalizing our monthly time series as in Levin, Ali and Crandall (2018) between zero and one based on the 

minimum and maximum values, we can identify global and local maxima (see Figure 28). In Figure 28, all four 

QuadClasses reach a global maximum in February 2018 in the Maldives. This helps us see whether the increase 

in the news events under each QuadClass is more or less important over time with respect to preceding events, 

but it does not reflect the political crisis that arose in February 2018; the increase in the normalized cooperation 

events is similar to the increase in normalized conflict events. 
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Figure 27. Absolute monthly news frequency per CAMEO QuadClass in the Maldives - GDELT (Jan 1989 - March 2019) 

 

 

Figure 28. MaxMin normalized monthly news per CAMEO QuadClass in the Maldives - GDELT (Jan 1989 - March 2019) 

 

If we additionally look at the increase or decrease per QuadClass in the proportion of events classified under 

Q1, Q2, Q3, and Q4 of the total reported news in the Maldives before and after February 2018 (see Figure 29), 

we can see that Q3 and Q4 increased significantly in February 2018, whereas Q1 and Q2 decreased 
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significantly. In this way, we can have a better picture of how a conflict is escalating, stagnating or de-

escalating from month to month. 

Figure 29. Proportion of reported events per QuadClass in the Maldives - GDELT (Jan 1989 - March 2019) 

 

2.4.5. Case Study 5: Nicaragua 

The last case study deals with the Nicaraguan protests in April 2018. The 2018 - 2019 Nicaraguan protests 

began on April 18, 2018 when demonstrators in several cities of Nicaragua initiated protests against the social 

security reforms decreed by President Daniel Ortega that increased taxes and decreased benefits. After five 

days of unrest in which nearly thirty people were killed, Ortega announced the cancellation of the reforms. 

However, Nicaraguans continued to protest and demanded the resignation of Ortega. On September 29, 2018, 

political demonstrations were declared illegal by President Ortega. As a result of the unrest, the European 

Parliament called for an early election, despite the fact that Ortega was unconstitutionally re-elected for the 

third consecutive time in 2016 in an election without the presence of international election observers. As of 

October 2019, the protests are still on-going with more than 400 causalities. 

Analyzing the GDELT and ICEWS dataset in Figure 30 and Figure 31, an increase in the amount of events 

categorized as material conflict, Q4, can be observed. Unfortunately, no data is available in the OEDA-Phoenix 

dataset for 2018 (see Figure 32) and Nicaragua is not covered by ACLED data. The red vertical line in the plots 

refers to the start of the Nicaraguan protests in April 2018. 

In Figure 33, the protests are reported by an increase in the number of news events classified under Verbal 

Cooperation (Q1), Material Cooperation (Q2), Verbal Conflict (Q3), and Material Conflict (Q4). Yet, the biggest 

increase in news for April 2018 is found under Q1 and not under Q3 or Q4. From this information, we solely 

see that more cooperation than conflict events have taken place in Nicaragua in April 2018. 
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Figure 31. Events per QuadClass in Nicaragua, monthly aggregation (1995- 2019 ICEWS) 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 30. Events per QuadClass in Nicaragua, monthly aggregation (1989-2019 GDELT) 
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Figure 32. Events per QuadClass in Nicaragua, monthly aggregation (1989-2019 OEDA) 

 

 

Figure 33. Absolute monthly news frequency per CAMEO QuadClass in Nicaragua - GDELT (Jan 1989 - March 2019) 

 

Normalizing our monthly time series as in Levin, Ali and Crandall (2018) between zero and one based on the 

minimum and maximum values, we can identify global and local maxima (see Figure 34). In Figure 34, all four 

QuadClasses reach a local maximum in April 2018 in Nicaragua. This helps us see whether the increase in the 

news events under each QuadClass is more or less important over time with respect to preceding events, but 

it does not reflect the Nicaraguan protests, which started in April 2018. The increase in the normalized 

cooperation events is similar to the increase in normalized conflict events. 
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If we additionally look at the increase or decrease per QuadClass in the proportion of events classified under 

Q1, Q2, Q3, and Q4 of the total reported news in the Maldives before and after April 2018 (see Figure 35), we 

can see that Q3 and Q4 increased significantly in February 2018, whereas Q1 and Q2 decreased significantly. 

In this way, we can have a better picture of how a conflict is escalating, stagnating or de-escalating from 

month to month. 

Figure 34. MaxMin normalized monthly news per CAMEO QuadClass in Nicaragua - GDELT (Jan 1989 - March 2019) 

 

Figure 35. Proportion of reported events per QuadClass in Nicaragua - GDELT (Jan 1989 - March 2019) 
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3. Methodology 

3.1. Artificial Intelligence Event based Modelling 

The case studies reported in section 2 highlight the existence of social stress which can escalate to conflict. 

The historical time series of Verbal Cooperation (Q1), Material Cooperation (Q2), Verbal Conflict (Q3), and 

Material Conflict (Q4) quantify and allow us to grasp the direction in which the tensions evolve in order to 

predict future conflict events. The Artificial Intelligence (AI) methodology adopted to model the dynamic GCRI 

is built upon a Long-Short Term Memory (LSTM) Cell Recurrent Neural Network (RNN). These models are well-

suited to classify, process, and make predictions based on time series data and forecast near future events.  

Recurrent neural networks let us learn and extract patterns from sequential data (time series, music, audio, 

video frames, etc.) in which the current hidden state is a function of the previous hidden state and the current 

input. In the example of stock prices, the current stock price depends on past stock prices and today’s market 

situation.  

Applying this model to conflict prediction, our implicit assumption is that the conflict state today depends on a 

history of conflict states. We could think of it as a composite function in which the eldest events are nested 

within the more recent events.  

Mathematically speaking, past events receive in this way a smaller weight than the more recent events. To 

avoid this, and to equally ‘reweight’ all events in the model’s memory, we apply the Long Short-Term Memory 

(LSTM) to our RNN. 

In the same way a linear regression model is solved through an optimization problem of minimizing the squared 

errors between the prediction and the actual value of a dependent variable, the LSTM RNN is an optimization 

of a gradient while minimizing the model’s errors. 

Neural networks like LSTM RNNs are able to almost seamlessly model problems with multiple input variables 

and as mentioned by Sak et al. (2014), ‘LSTM is a specific recurrent neural network (RNN) architecture that was 

designed to model temporal sequences and their long-range dependencies more accurately than conventional 

RNNs’ (Sak, Senior & Beaufays, 2014). 

As previously said, LSTM RNNs are well-suited to classify, process, and make predictions based on time series 

data, since there can be lags of unknown duration between important events in a time series. This is a great 

benefit in time series forecasting and supervised time series learning (Bakker, 2002), areas in which classical 

linear methods fail to adapt to multivariate or multiple input forecasting problems. 

The main difference between the original GCRI (Halkia et al., 2017a, b, 2019) and the dynamic GCRI proposed 

in this report is the nature of the input data. While the original GCRI uses yearly data time series, which allow 

us to estimate the conflict risk of a country in the next one to four years, the use of a 15-minute or a daily 

updated dataset based on event data gives us the opportunity to have a(n) (almost) real time conflict risk 

estimation.  

Taking into account the update frequency of both the GDELT and the ICEWS datasets, we have aggregated the 

data by month for both datasets to be able to compare the results of the probability estimates of a conflict 

event for the same period14 (see 4.1).  

Using the CAMEO classification, we are able to observe changes in the trends which are crucial for the training 

of the model. We have filtered the GDELT dataset to only have the available information after 1989, which is 

the starting year of the original GCRI input values, enabling juxtaposition of the results obtained in the 

respective models. 

                                           

14 Considering the lack of available time series for the Phoenix dataset, we are not able to have an estimation of the probability of a 

conflict event based on it. For the ICEWS, the data captures events on a monthly basis until October 2018, and becomes daily as of October 

2018. 
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In a second step, we created our model by using a random sample consisting out of 50% of the available 

dataset as a training set and the remaining 50% as the testing/controlling one. Having a testing and a training 

sample makes it possible to control and validate the accuracy of the model15.  

3.2. Conflict Risk Alarm System (CRA-S) Configuration 

Through the AI model’s capacity to predict the future proportion of conflict or cooperation related events in a 

country, we have set up a Conflict Risk Alarm System (CRA-S), which signal social unrest upheavals (an 

abnormal increase in the proportion of the Q4x, Q4x+1 or in the total number of events mentioned as Q3x or 

Q4x, where x stands for point in time). This allows policy makers to implement preventive actions more rapidly 

to mitigate conflict exacerbations at an earlier stage of the conflict development cycle. First, we aggregate the 

events recorded in each of the three databases per month.  

Next, we compute the monthly amount of news articles reported in each QuadClass (Q1, Q2, Q3, and Q4) with 

respect to the total number of articles per month. 

Finally, we compute a 95% Confidence Interval (CI) to estimate the significance of the local maxima in the 

increase of the number of events in Q3 and Q4 with respect to the other events. The CI was computed setting 

a 3 and 6 month moving window. In the case of a 3-month moving window, we only take the events of the 

past 3 months into consideration to calculate the local maxima in conflict events and the CI. 

Doing so, we can have an alarm for the cases in which the prediction of our model is out of the bound of the 

95% CI, which means that the prediction is a real local max and the increase in the tension in a given country 

is significant. 

3.3. Ranking of Countries based on CRA-S 

In order to rank the countries in the most appropriate way, we compute the rate of change between the Q4 of 

the current month and the Q4 of the previous one (here called delta classification). Hence, the rate of change 

is 

𝛥𝑄4 =
𝑄4𝑥 −𝑄4𝑥−1

𝑄4𝑥−1
 

where 𝑄4𝑥 is the proportion of the Q4 for the current month and 𝑄4𝑥−1 is the proportion of the Q4 for the 

previous month. Based on this rate, we rank the countries so as the country with the highest increase in the Q4 

(𝛥𝑄4) will be first and the country with the highest decrease will be last. In case the Q4x is a local max, meaning 

that the increase in the current value of the Q4 is significant, we have set an alarm following the same 

methodology as described in the section 3.2.  

Beside this, we set another alarm when the total absolute number of the events mentioned in the Q3x and Q4x 

(current values) QuadClasses is a local max16 (significant increase in the absolute number of the events). 

 

 

 

                                           

15 We define the LSTM model with 50 neurons in the first hidden layer and with 1 neuron in the output layer for predicting the risk. We 

then use the Root Mean Square Error (RMSE) to validate the accuracy of the model. The model will be fit for 500 training epochs with a 

batch size of 72 (in the neural network terminology: one epoch = one forward pass and one backward pass of all the training examples; 

batch size = the number of training examples in one forward/backward pass). 

16 In mathematics, the maxima and minima (the respective plurals of maximum and minimum) of a function, known collectively as 

extrema (the plural of extremum), are the largest and smallest value of the function, either within a given range (the local or relative 

extrema) or on the entire domain of a function (the global or absolute extrema). 
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Cumulatively, the countries’ ranking and the CRA-S consist of the following parameters: 

 Initial ranking: The initial ranking is based on the ΔQ4.  

 Alarm 1: The proportion of the Q4 (Q4x) for the current month is a local max, meaning that the increase 

is significant and out of the 95% Confidence Interval that we have calculated for the x-month moving 

window. 

 Alarm 2: The total absolute number of the events mentioned in the Q3x and Q4x (current values) is a 

local max. 

 Alarm 3: The proportion of the predicted values of the Q4 (Q4x+1) for the next month is a local max. 

Using these parameters, we re-rank the countries according to the following rules: 

 Rule 1: If all the alarms in a country signal at the same time, this country will be re-ranked as first. 

In case there is more than one country, we keep the delta classification as described above. 

 Rule 2: If two of the alarms in a country signal at the same time, this country will be re-ranked just 

below. In case there is more than one country, we keep the delta classification as described above. 

 Rule 3: If one of the alarms in a country signals, that country will be re-ranked just after the countries 

of the previous case. 

 Rule 4: The remaining countries with no alarm signals are ranked thereafter by keeping their initial 

ranking (ΔQ4).  

 

Doing so, we create a classification method based on a system of three different alarms, taking into account 

both the absolute and the relative number of events per country. In addition, we take not only the material 

conflict events but also the verbal conflict mentions into consideration since the escalation of a verbal conflict 

to a material conflict is always possible and this information is definitely important for every policy maker. 

Furthermore, we stress the importance of both the alarms and the classification method, taking into 

consideration their internal relation, by re-ranking the countries in the aforementioned way. 
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4. Results 

4.1. Artificial intelligence Root Mean Square Error (RMSE) and Model Predictions 

The results of running the LSTM RNN model for the five case study countries and three databases are depicted 

in the last column of Table 2 for the month of March 2019. To see how accurate our model predictions are in 

estimating the percentage of material conflict events (Q4 of the CAMEO classification) in percentage of the 

overall events, we measure the Root Mean Square Error (RMSE) of the model, which is the standard deviation 

of the residuals (prediction errors). The smaller the RMSE, the more precise and accurate the model is. 

Table 2. RMSE for March 2019 per dataset17 

Country Dataset RMSE 

Libya ICEWS 0.215 

GDELT 0.089 

OEDA No data 

Sudan ICEWS 0.097 

GDELT 0.041 

OEDA No data 

Egypt ICEWS 0.119 

GDELT 0.059 

OEDA No data 

Maldives ICEWS 
0.210 

GDELT 0.071 

OEDA No data 

Nicaragua ICEWS 0.147 

GDELT 0.063 

OEDA No data 

 

As reported in Table 2, the RMSE using the GDELT data is the lowest in all the case studies. This means that 
the predictions based on this dataset are closer to the observed values. This is most probably due to the limited 
data availability (1995-2019) in the ICEWS database. Overall, this implies that the model using the GDELT data 
is most precise and accurate. 

                                           

17 Τhe Phoenix-OEDA dataset does not provide time series after 2015. 
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4.2. Early Warning Alarm System Predictions and Accuracy 

In this part of the report, the results of the early warning alarm system (an abnormal increase in the proportion 

of Q4 – material conflict events) are presented in Table 3 for the five case study scenarios and three databases. 

To validate the results, we compare them with ACLED’s total number of fatalities in the last column of Table 

3.  

The ALARM is given in case there is an extraordinary increase in the predictions out of the 95% confidence 

interval (CI) we have set for two local maxima in respectively a 3-month and a 6-month window from the case 

study event.  

In Table 3, we report whether or not the model gives us an alarm for the Arab spring in Libya and Egypt, the 

Sudanese protests, the political crisis in the Maldives, and the Nicaraguan protests. It is worth mentioning that 

we have also filtered the GDELT dataset to have more reliable input data. Based on our GDELT validation (see 

Annexes 

Annex 1. The GDELT Dataset Qualitative Validation. ), we have set a filter on 100 mentions per article. In 

other words, when the filter is applied we include only the articles that have been mentioned more than 100 

times in that part of the analyses (GDELT_100 in Table 3). This has been done to remove possible noisy 

information in the GDELT database, taking into consideration the fact that if an event really happens, it should 

be reproduced by more than one media source and in more than one article. In addition, we are aware that this 

may lead to the exclusion of important information in countries where local press is being repressed and 

international media has only a limited interest. However, the number of such countries is limited and the 

inclusion of all available information within the GDELT database would lead to greater bias than the exclusion 

of some information.  

Table 3. Sample validation of the predictions based on past events. 

Country Date Dataset 3-month 

local max 

6-month local 

max 

ACLED 

number of 

fatalities 

(Total)18 

Libya 

(LY-LBY) 

February 2011 
(Start of Arab 
spring) 

GDELT ALARM19 ALARM 99 
(+98) 

GDELT_100 ALARM20 ALARM 

ICEWS NO ALARM NO ALARM 

OEDA-Phoenix NO ALARM NO ALARM 

Sudan  

(SU - SDN) 

December 2018 
(2018–19 
Sudanese protests) 

GDELT NO ALARM NO ALARM 130  
(+82) 

GDELT_100 ALARM21 ALARM 

ICEWS NO ALARM NO ALARM 

OEDA-Phoenix NA NA 

Egypt (EGY-EG) GDELT NO ALARM NO ALARM 203 
(+197) 

                                           

18 The increase compared with the previous month number of fatalities. 

19 The percentage of predicted material conflict for LY is 14.59 %, out of the 95% CI. 

20 The percentage of predicted material conflict for LY is 14.59 %, out of the 95% CI. 

21 The percentage of predicted material conflict for SU is 41.81 %, out of the 95% CI. 
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January 2011 
(Start of Arab 
spring) 

GDELT_100 ALARM22 ALARM 

ICEWS NO ALARM NO ALARM 

OEDA-Phoenix NO ALARM NO ALARM 

Maldives (MDV-

MV) 

February 2018 
(2018 Maldives 
political crisis) 

GDELT NO ALARM NO ALARM NA 

GDELT_100 NO ALARM NO ALARM 

ICEWS NO ALARM NO ALARM 

OEDA-Phoenix NA NA 

Nicaragua (NIC-

NU) 

April 2018 (2018–
2019 Nicaraguan 
protests) 

GDELT* NO ALARM NO ALARM NA 

GDELT_100 NO ALARM NO ALARM 

ICEWS ALARM23 ALARM 

OEDA-Phoenix NA NA 

 

In Table 3, we can observe that the ALARM rang for Libya’s Arab Spring using the GDELT dataset (either filtered 

or unfiltered), while the model predicted the 2018-19 Sudanese protests and the Start of Arab spring in Egypt 

using the filtered GDELT data. Using the ICEWS data, we could solely predict the 2018–2019 Nicaraguan 

protests. As one can observe, using the filter improves the reliability of the GDELT database and forces the 

model make more accurate predictions. 

                                           

22 The percentage of predicted material conflict for EG is 42.23 %, out of the 95% CI. 

23 The percentage of predicted material conflict for NIC is 17.66 %, out of the 95% CI. 
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5. Discussion 

In this report, we presented our proposal for a dynamic GGCRI based on actor-based event data at a country 

level, signalling a potential trigger to violent conflict, including demonstrations, strikes, election violence, etc. 

We also presented potential datasets based on the CAMEO classification system, i.e. the GDELT, ICEWS, and 

the OEDA-Phoenix datasets. 

The dynamic GCRI, using an LSTM RNN model to predict the materialization of a conflict, demonstrates that 

the GDELT is potentially the most comprehensive database. Nevertheless, many provisions must be added to 

the fundaments of any program using the GDELT database in order to render it accurate and effective. The 

same applies for the other two datasets, as they are similar to the GDELT with regard to their general 

performance. However, we were only able to validate the GDELT dataset as there is not available information 

for the news source for the ICEWS and OEDA-Phoenix.  

Moreover, the LSTM RNN model we propose, which is one of the most advanced models nowadays, performs 

well and it is able to handle historical time series data and “understand” each event based on its previous 

knowledge. In addition, while the absolute number of events informs us whether something is happening in a 

given country and the normalized number of events gives us the importance of an event with respect to the 

preceding ones, the additional analysis in proportions completes the picture on how a conflict is escalating, 

stagnating or de-escalating from month to month. Finally, the local maxima modelling gives us the possibility 

to have an early warning system, which informs the policy makers in case of an abnormal increase in the 

tensions in a given country. 
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6. Conclusions 

This report presented a dynamic model of the GCRI, a conflict risk model supporting the design of EU’s conflict 

prevention strategies developed by the JRC in collaboration with an expert panel of researchers and policy-

makers.  

The proposed dynamic GCRI integrates and identifies every stage of the conflict development or de-escalation 

in its entire complexity, including internationalized contentious action. Using country-level actor-based event 

data sets that signal potential triggers to violent conflict such as demonstrations, strikes, or elections-related 

violence, the model aims at estimating the occurrence of material conflict events, under the assumption that 

an increase in material conflict events goes along with a decrease in material and verbal cooperation. 

The AI methodology adopted to model the dynamic GCRI is built upon a Long-Short Term Memory (LSTM) Cell 

Recurrent Neural Network (RNN). These models are well-suited to classify, process and make predictions based 

on time series data and forecast near future events. Besides this AI model, we have set up an early warning 

alarm system to signal abnormal social unrest upheavals.  

Three potential datasets were tested in this report following the CAMEO political event coding classification: (i) 

the Global Data on Events Location and Tone (GDELT) project, (ii) the Integrated Crisis Early Warning System 

(ICEWS) Dataverse dataset and (iii) the Phoenix - Open Event Data Alliance (OEDA)-Phoenix Dataset.  

Even though the AI and early warning alarm seem to be able to predict the materialization of a conflict in the 

near future, the analysis of the results conveys that implementing the GDELT, ICEWS or OEDA-Phoenix as an 

input to the dynamic GCRI requires overcoming certain obstacles. First, the automated codebook algorithm is 

not publically available for GDELT, which does not allow investigation on the source of potential errors in the 

news classification. Second, the ICEWS data sources are not publically available so validation is not readily 

possible. Third, the Phoenix dataset has been discontinued after 2015, so it cannot be used currently for 

forecasting. Moreover, common issues need to be resolved in all three datasets: false positive rates, duplication 

rates, urban and other geographical/socioeconomic biases, “media fatigue”, particularly in conflict zones as well 

as biases in existing event data sets primarily focusing on violent conflict. 

The Europe Media Monitor (EMM) event data set could be a promising alternative in the near future, but it could 

not be tested at this stage because it is not based on the CAMEO classification methods.  

To conclude, the dynamic GCRI methodology applied on the GDELT dataset already gives policy makers the 

possibility to observe the situation in a country on a monthly basis, but event – based systems will require 

supplementary research to offset the databases’ shortcomings, such as automated data validation and custom 

result parameters.  
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Annexes 

Annex 1. The GDELT Dataset Qualitative Validation.  

This in depth GDELT validation-analysis of a sample of eight countries uses the three most severe CAMEO 

event root codes representing actual instances of violence (18, 19, and 20). This validation can only be carried 

out for the GDELT since the ICEWS and Phoenix do not provide the URL sources of their event records.  

The eight selected countries (see Table 4) are: Bangladesh, Botswana, Chad, Colombia, Guatemala, Jordan, 

Myanmar, and Tajikistan. The Marshall Islands, a very small country belonging to the MD region “Other” and 

with a GCRI conflict probability and intensity of zero, was used as a control country, given that a query for a 

country with these characteristics would be expected to return zero results. These selected nations cover all six 

MD regions, all deciles of the GCRI conflict probability, and a wide variety of the GCRI conflict intensity level, 

population size, and economic development (aggregate PPP GDP and per capita GDP).  

Table 4. Structural conditions and GCRI probability and Intensity 

Country Region GCRI % GCRI 

Intensity 

Population GDP 

(Billion $) 

GDP Per 

Cap ($) 

English 

Bangladesh MD I 47 6  159,453,001  690.300 4,200  Yes 

Botswana MD II 1 4 2,249,104 39.010 17,000  Yes 

Chad MD II 95 10 15,833,116 28.620 2,300  No 

Colombia MD V 76 7 48,168,996  711.600 14,400  No 

Guatemala MD V 33 7 16,581,273  138.100 8,200  No 

Jordan MD IV 19 6 10,458,413  89.000 9,200  Yes 

Myanmar MD I 80 8 55,622,506  329.800 6,300  No 

Tajikistan MD III 65 7 8,604,882  28.430 3,200  No 

Marshall 

Islands  

Other 0 0 75,684  0.196  3,600  Yes 

 

At least 700 returns per country and a minimum of one complete month’s results were evaluated, with 

additional months considered if the control month of January 2019 did not return enough results. Each article 

was individually read and categorized into one of five types: usable, possibly usable, unreliable source or invalid 

link, useless, and duplicates (see Table 5).  

“Usable” returns clearly contained information relevant to the query imputed: violent events which took place 

in the specified location and time period. “Possibly usable” returns either contained relevant information about 

events which took place outside of the specified time and location, or detailed events whose relevancy can be 

questioned but not discredited. Returns categorized under “unreliable source or invalid link” contained articles 

hosted on platforms known to harbor fake news (such as Infowars) or which cannot be accessed by users in 

the European Union.  

“Usable” returns were then evaluated on the basis of whether or not they received the proper event code and 

whether or not they pertained to the correct country.
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Table 5. GDELT data validation - degree of usability 

Country Region GCRI % GCRI Intensity Date Total Usable Possible 

Usable 

Unreliable or 

invalid 

Useless Duplicates 

Bangladesh MD I 47 5.9 201901 2414 27 76 42 390 1879 

Botswana MD II 1 4.3 201901 53 3 3 1 27 18 

Botswana MD II 1 4.3 201809 176 1 1 5 45 124 

Botswana MD II 1 4.3 201703 186 3 5 5 71 102 

Botswana MD II 1 4.3 201604 177 1 4 32 54 86 

Botswana MD II 1 4.3 201308 82 0 1 21 16 44 

Chad MD II 95 10 201901 514 6 17 7 143 341 

Chad MD II 95 10 201710 464 4 16 22 97 325 

Chad MD II 95 10 201701 498 4 15 17 44 341 

Colombia MD V 76 6.7 201901 947 8 26 27 203 682 

Guatemala MD V 33 7.1 201901 318 5 13 21 61 217 

Guatemala MD V 33 7.1 201708 340 8 10 11 85 226 

Guatemala MD V 33 7.1 201611 172 4 5 12 58 93 

Jordan MD IV 19 5.7 201901 681 0 24 18 314 324 

Myanmar MD I 80 7.6 201901 776 18 21 25 111 601 

Tajikistan MD III 65 6.8 201901 67 3 9 1 12 42 

Tajikistan MD III 65 6.8 201807 287 4 10 12 45 213 

Tajikistan MD III 65 6.8 201802 69 3 4 1 15 46 

Tajikistan MD III 65 6.8 201708 113 3 4 12 14 80 

Tajikistan MD III 65 6.8 201703 81 7 6 10 17 41 

Tajikistan MD III 65 6.8 201609 241 2 17 24 37 161 

Marshall Islands Other 0 0 201901 12 0 1 1 6 4 

Total: 8668 114 288 327 1865 5990 
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The most immediate takeaway was the number of articles that were just duplicates of others previously listed. 

Duplicates accounted for 5,990 out of the 8,668 total returns, or nearly 70% (see Figure 36). This includes 

returns that display the same article, reposted identical articles, and articles chronicling the same event.  

Figure 36. GDELT data validation - degree of usability 

 

 

 

Of the non-duplicate returns, 1,865 – or nearly 72% – were found to be completely useless (see Figure 37). 

These returns were entirely irrelevant to the query, but often included individual keywords that reasonably may 

have caused them to be included in the results. 
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Figure 37. GDELT data validation - degree of usability without duplicates 

 

Another noticeable trend was the inclusion of completely irrelevant articles written by authors or naming 

subjects having the same name as the country specified in the query, such as Jordan or Chad. Returns in the 

aforementioned camp often displayed Action Geographical Location Names, Latitudes, and Longitudes of the 

queried country even though the articles tended to concern matters elsewhere – typically the United States 

where these names are common. 

From the results and the validation, it is apparent that GDELT has the potential to be the comprehensive 

database necessary to bring the dynamic GCRI, but many provisions must be added to the fundaments of any 

program using this database in order to render it accurate and effective. The first priority should be to eliminate 

the abundant duplicate returns. These redundancies clutter the dataset and make it fairly difficult for a human 

to check and more time consuming for an algorithm to process. Additionally, these empty data points could 

become a source of confusion and contaminate the data. Eliminating returns with the exact same source is as 

simple and straightforward as inputting a line of code that filters them out automatically. Weeding out 

repetitive and reposted articles may be slightly more of a challenge, but one way of doing so is having a 

program automatically follow the provided source URLs and run a simple plagiarism checking script. If the 

percentage of similarity reaches a certain threshold, for instance 65%, the article is categorized as a duplicate 

and filtered out. These methods can retain just the first instance of an event or can give priority to exceptionally 

reputable sights such as Reuters and Al Jazeera. 

Reducing the amount of useless articles will pose a challenge due to the inherent nature of GDELT’s search 

algorithm, but doing so is certainly possible. The easiest type of false return to address is the country name / 

popular name issue, which could be done by having a program check for the source author name and 

automatically remove those written by people with the same name as the queried country. Restricting the 

number of websites and publications considered could cut down the number of irrelevant results, particularly 

as it is unlikely to find pertinent event information on sports sites or tabloids, for example. 

These site filtering provisions could also include sites of dubious quality or ill reputation. Adding known fake 

news sites and automatically discrediting things like private blogs could reduce the number of unreliable 

sources and prevent results from being negatively affected. The issue of invalid links can be entirely eliminated 

by inserting a ping function into the program, which automatically checks if the link works. The ping function 

can also serve as the first step of the automated source evaluation, saving processing power by not having to 

check sites that are inutile. 
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Possibly usable sources are two-edged; they can provide useful information but also negatively impact results. 

Using a program to double check where and when the event described in a GDELT return took place could assist 

in this matter, particularly as GDELT’s location identification cannot be relied upon. In fact, GDELT’s ActionGeo 

latitude and longitude categories should be disregarded entirely as they are almost never accurate. This was 

exemplified by the fact that entirely irrelevant returns about other countries’ local affairs written by foreign 

authors with the same name as the country were still sorted into the country’s geographical identifiers. 

Refining GDELT’s results in order to obtain a ratio greater than 1.33% of usable results will require the 

implementation of a comprehensive system to ensure the quality and value of the sources GDELT provides in 

addition to the aforementioned provisions. First, there must be a method of verifying the event codes with 

which GDELT classifies sources, as 54% of the usable results from this experiment were listed under the wrong 

code. More specifically, any return with the 190 CAMEO event code, i.e. unspecified acts of violence, should 

come under extra scrutiny due to the tendency for this classification to be incorrectly prescribed. Inherently, a 

code representing unspecified acts of violence will nearly always coincide with inutile returns, as any article 

chronicling a military altercation will likely be more specific about the nature of the confrontation. This means 

that it may be worth considering to eliminate consideration of returns marked with the 190 event code entirely. 

Finally, a visible shortcoming of the GDELT system is that it does not deliberately identify or classify organized 

criminal activity. In order to attain the project goals of the Peace and Stability team, a program to identify and 

include organized criminal rackets such as drug trafficking, smuggling, poaching, piracy, and human trafficking 

in datasets must be developed as well; in an ever more globalized world, conflict and criminality are increasingly 

interwined. 
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Annex 2. Countries Ranking based on CRA-S  

Here is an example of the CRA-S classification system based on the GDELT data. The current month here is August 2019 and the predictions refer to the next month. 
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Annex 3. Conflict and Mediation Event Observations (CAMEO) Classification 

The entire CAMEO event taxonomy (Schrodt, 2012) is broken into four primary classifications. This primary 

classification allows an analysis at the highest level of aggregation. Additionally, there are 20 major 

subcategories, each one subdivided into several ones, to create a detailed classification scale.  

 

Verbal Cooperation Material Cooperation Verbal Conflict Material Conflict 

1-MAKE PUBLIC 

STATEMENT 

6-ENGAGE IN MATERIAL 

COOPERATION 

10-DEMAND 15-EXHIBIT MILITARY 

POSTURE 

2-APPEAL 7-PROVIDE AID 11-DISAPPROVE  16-REDUCE RELATIONS 

3-EXPRESS INTENT TO 

COOPERATE 

8-YIELD 12-REJECT 17-COERCE 

4-CONSULT 9-INVESTIGATE 13-THREATEN 18-ASSAULT 

5-ENGAGE IN DIPLOMATIC 

COOPERATION 

 14-PROTEST 19-FIGHT 

   20-ENGAGE IN 

UNCONVENTIONAL MASS 

VIOLENCE 
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GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the address of the centre 
nearest you at: https://europa.eu/european-union/contact_en 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: https://europa.eu/european-union/contact_en 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa website at: 
https://europa.eu/european-union/index_en 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: 
https://publications.europa.eu/en/publications. Multiple copies of free publications may be obtained by contacting 
Europe Direct or your local information centre (see https://europa.eu/european-union/contact_en). 
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