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Abstract

General Framework of the Research

This study was designed to elucidate the mineralogy and distribution of minor and trace elements
(especially the rare earth elements — REEs, scandium — Sc, gallium — Ga and vanadium — V)
during the production of alumina from bauxite ore in the Bayer process. The investigation was set
up as a case study in the Aluminium of Greece refinery (Mytilineos S.A.). Bauxites can contain up to
50 chemical elements in concentrations above 1 mg/kg, most of which can be considered as trace
elements. Of those trace elements, at least five metals or groups of metals (light REEs, heavy REEs,
Sc, Ga and V) occur in elevated concentrations in Greek karstic bauxites and at the same time have
been listed as critical raw materials by the European Commission. Bayer process accumulates those
trace elements either to process liquor or to the main by-product known as the bauxite residue.
Given the enhanced concentrations of certain trace elements, there exists an interest to extract
some of those metals as valuable by-products of the Bayer process. However, the mineralogy of
those critical metals in Bayer process materials as well as their distribution patterns during alumina
production are so far poorly constrained. Therefore, the aim of this dissertation is to (1) explain the
distribution characteristics of trace elements (especially those of the REEs, Sc, Ga, V, Th, As and U),
and (2) elucidate the mineralogical characteristics of trace elements (especially the REEs and Sc) in
the Bayer process materials including bauxite and the residues derived from it.

Methodology

Representative solid and liquid samples were collected from the complete flowsheet of the Bayer
process, including bauxites from six different sources as well as derived residues. Additionally,
minor by-products such as scales from plant piping and solids from different filters were collected
and examined. The trace element composition of the samples was mainly determined by
inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-
OES) as well as with instrumental neutron activation analysis (INAA). Trace element concentrations
were used in combination with the plant mass flow data to compile mass balance models of the
trace elements to explain the distribution patterns of the trace elements in the Bayer process.



Mineralogical characteristics of the trace elements were studied with a combination of
microanalytical techniques. General microscale characteristics were described by using scanning
electron microscopy (SEM), nanoscale investigation was performed by high resolution transmission
electron microscopy (HRTEM). Specific microscale analyses and in situ trace element quantification
were performed by electron microprobe coupled with wavelength dispersive spectrometers
(EPMA-WDS). In situ trace element analyses were also carried out by laser ablation (LA) ICP-MS and
in situ phase identification by Raman microscopy.

Main Results

The assessment of trace element distribution revealed that the elements are mainly divided into
two categories: (1) those that dissolve and accumulate into the Bayer process liquor and achieve
different saturation levels (Ga, V, Cr, As, U), and (2) those that pass through the Bayer circuit in the
composition of solid mineral matrix and do not occur in dissolved forms (Sc, REEs, Th). From the
elements in the first category, only Ga and U have the property to enter to the composition of the
aluminium hydroxide produced in the Bayer process. Namely, about 70% of the initial quantity of
Ga and about 10% of U can be found in the aluminium hydroxide product, while the rest of their
mass is separated with bauxite residue. Almost the complete mass (mostly >98%) of the other
investigated trace elements (REEs, Sc, Th, V, Cr, As) ends up in the bauxite residue.

It was found that even though the REEs pass through the Bayer process in the forms of solid phases,
their mineralogical properties and chemical composition of minerals are changed during the
bauxite digestion. The precursor REE phases in bauxites are mainly REE fluorocarbonates of the
bastnasite group and cerium oxide in the form of cerianite (CeO;). During the bauxite processing,
they interact with the caustic process liquor as well as with the dissolved Ca, Ti and Fe ions and the
resulting phases found in bauxite residue are REE ferrotitanates. They eventually form a solid
solution series between the ideal end-members (Ca,Na)(Ti,Fe)Os and (REE,Ca,Na)(Ti,Fe)Os,
depending on the extent of transformation that has taken place. It is characteristic to the REE
phases in bauxite residue that they are surrounded by calcium titanate shells, that might inhibit the
leaching efficiency of the REEs from bauxite residue.

The modes of occurrences of Sc, however, remain practically the same in the bauxite and in the
derived residue. Most of the Sc is associated with hematite, followed by goethite. Smaller amount
of Scis found in the composition of aluminium oxyhydroxide phases (boehmite and diaspore) and
zircon. In bauxite residue, hematite, goethite and zircon host respectively 55+20 %, 25+20 % and
105 % of the total Sc. Since most of boehmite/diaspore is digested in the Bayer process, the
proportion of Sc associated with those phases is assumed to be released during the digestion and
thereafter probably precipitated on the mineral surfaces of bauxite residue’s particulates.

Main Contribution of the Dissertation

The results obtained in this work provide an insight of the fate of selected trace elements in the
Bayer process in terms of their distribution and mineralogy. The obtained knowledge can be utilised
to improve and plan the extraction of trace elements that are also considered as critical raw
materials. The compiled distribution models can also be used as one of the sources in global or local
critical metals resource estimations. In addition, the elucidated mineralogical characteristics of
especially the REEs and Sc provide explanations of why very high recovery rates of those elements
are difficult to be achieved when leaching experiments of bauxite residue are performed.



NepiAnyn/Abstract in Greek

EupuUtepo ntAaioto tng épevvacg

H napouoa £épeuva oXESLACTNKE L€ GKOTIO TNV AmooadnVLon TNG OPUKTOAOYLAC KAL TNG KOTAVOUNG
SEUTEPEUOVTWV- KL LYVO- OTOLXELWY, KATA TN SLAPKELD TNE Tapaywyng aAoupivag anod Bwéltn pe
™ HEBoSo Bayer. H €peuva wg HeAETn mepinmtwong Tonobeteital otny etalpeia « AAOULLVIOV TNG
EMadoc» («Etatpeia Mutidnvaiog A.E.»). Ot Bwéiteg Suvatal va MEPLEXOUV £wE Kol 50 XNULKA
OTOLXELO. O OUYKEVTPWOELC TTAvw amo 1 mg/kg kal emMopévwg Umopolv va XOpaKTnpLoToUV
Lyvootolxeia. AT auTd Ta LYVooToLxeia, TOUAAXLOTOV 5 LETAAAQ 1] OUASEG HETANAWY (TT.X. OToLELQ
omaviwy yowwv — REEs) epdavilovtal o auEnUéVEG CUYKEVTPWOELG OTOUG EAANVLKOUG KOPOTIKOUG
Bwéiteg katL Tnv dla otyun avadépovral wg Kplolpes mpwteg VA amno tnv Evpwnaikn Evwon. H
uéBobdoc Bayer cuoowpelel aUTA Ta LYvooTolxela, eite otnv udatiky ¢adon eite ota KUpLA
TAPATPOIOVTO YWWOoTA wG KataAouta PBwéltn. Asdopévwyv Twv aUENUEVWY OCUYKEVTPWOEWV
OPLOUEVWV LXVOOTOLXELWY, UTIAPXEL evOLladEpOV yLa TNV £€aywyn OPLOMEVWV €K TWV HETAAAWV
QUTWV W¢ TIOAUTLHO Ttoparpoidvta tng puebodou Bayer. Qotdo0, N OPUKTOAOYLO QUTWY TWV
KplolUwV HETAAAWY 0€ GUVSUACOUO HE TNV KOTAVOUN TOUG KOTA TNV Tapaywyr Tt aAoupivag dev
elval emMapKkwe TEKUNPLWUEVA KOL KOTAVONTA. EMopéVWE, 0KOTIOC TG tapoloag StatplBig eivat (1)
va e€nynBouv Ta XOpOoKTNPLOTLKA KATAVOWNG TWV LyvooTtolxsiwv (t8tlaitepa twv REES, okdvéilo — Sc,
vYaAAlo — Ga kat Bavadio — V) kat (2) va Sltacadnviotolv Ta 0pUKTOAOYLKA XAPAKTNPLOTIKA TWV
xvootolxeiwv (blaitepa twv REEs kot Sc) ot Siddopeg ¢aoelg tng pebodou Bayer,
cupmnepthapBavopévou Tou Bwéltn Kot TwV MAPAYOUEVWY UTTOAELLUATWVY.

MeSoboAoyia

AVTUTPOCOWIEUTIKA OTEPEA Kal udatikd Selypata cuAMEXONKkav oto mAaiclo tou SlaypappaTog
ponc tng uebodou Bayer, cupmeplapBavopévou Bwéltn amo £€L SladopeTIkEG TNYEG KABwWC eTtiong
KoL Ttapayopeva kotaloura. EmumpocBeta, UKPOTOOOTNTEG MAPATIPOIOVTWY Ao TIG CWANVWOELG
TWV EYKATOOTACEWV Kal oteped amnod Stadopa dpidtpa cuAAEXBnkav kal e€stdotnkav. H clotaon
TwWv SelyMOTWY W TIPOC TO Lyvootolxeia mpoodloplotnke He GOAOUATOUETPiO EMAYWYLKA



ouleuyuévou MAAopatog pe ¢aopatoypddo palag (ICP-MS) kat omtikng ekmounng (ICP-OES),
KaBwg emiong pe evopyavn vetpovikn evepyomoinon (NAA). OL CUYKEVTPWOELG TWV LYVOOTOLXELWV
xpnotwdornoténkav og cuvduoouod pe ta deSopéva pong yla va ipokuouv tooluyla palag Twv
OTOLXELWV AUTWV Kal va SLEUKPLVIOTOUV T UOVTEAQ KOTOVOWUNC TwV Lyvootolxelwv otn puébodo
Bayer.

To OPUKTOAOYLKA XOPOKTNPLOTIKA TWV LYVOOTOLXELWV HEAETHONKAV HE €va cUVOUAOUO TEXVIKWV
UlKpoavaAuonc. Ta YEVIKA YOPAKTNPLOTIKA OfE HLKPO- KALHOKO Teplypddovtol UE xprnon
NAEKTPOVIKOU HUKPOOKOTIOU 0Apwanc, EVw SLEPEUVNON OE VAVO- KALLOKO TIPAYULATOTOLONKE HE
v nAng sukpivelag PIKpookomLo Slepxopevng S£oung nAektpoviwyv. E¢sldikeupévec avalloeLg o
MLKPO- KALMOKO TWV LYVOOTOlXelwv TpaypaTono|Bnkav He NAEKTPOVIKO HLKPOAVOAUTH
ouvluaouéVo e cuoTNUA SLAOTIOPAC UNKoUG KUpaTog. Eniong, in situ avaAloelg Lyvootolyeiwy
KOl TOUTOTONGN OpPUKTOAOYLKWY GACEWV TipayUatonolionkav pe ¢wroamodounon UALKWY LE
AéWlep oe pacpatoypddo palag (laser ablation ICP-MS) kat pikpookoria Raman, avtiotolya.

Kupia amoteAéouata

H ekTipnon TNG KATavounG Twv tyvootolxelwv €6etée OTL Ta otolyela autd Staywpilovral Kuplwg o
600 katnyoplieg: (1) ota otolyeia mou SlaAutonoloUvtal Kal cucocwpelOVTAL OTNV USATIKA daon
™¢ HeBb6Sou Bayer pe dadopetika enineda kopeopou (Ga, V, Cr, As, U), kat (2) ota otolxeia mou
SlEpxovtal amod to KUKAwpa Bayer kat 6ev StaAhutomololvtal (Sc, REEs, Th). Ocov adopd ta
otolxela tng 1" katnyopiag, povo to Ga kot to U elgépyovtal otn ouvBeon udpoteldiou tou
apylhiou kata tn péBodo Bayer. Tuykekpluéva, to 70% tng apxikng noocotntag Ga kat to 10% tou
U Bplokovtat oto udpoteldiou Tou apylhiou, evw n UTOAOLUTN TOCOTNTA EVIOTIIETAL OTO KATAAOLTO
Bwéitn.

AlamotwOnKe OTL MapA To yeyovog otL ta REE Si€pyovtal péow the uebddou Bayer mpog tn oteped
$Aon, oL OPUKTOAOYLKEG LELOTNTEC TOUG KAl N XNHLKY cUoTaon HetafaAlovTal Katd tn SLApKeLa TG
£KYUALONG Tou Bwéitn. OLtpodpopeg dpaoelc REE otouc Bwéiteg eival kupiwg REE-pBopoavBpakika
ahata NG opddag tou pmaotvalitn kal ofeidlo tou dnuntplov (CeOy). Kata tn Siepyaocia, ot
npoavadepBeioeg paoelg avtibpolV e To eKXUALOTIKO HECO Kal pe StadsAupéva tovta Ca, Ti kot
Fe pe anotéAeopa va npokUmTouv REE-oldnpotitaviolxes dpaoelc oto katdAowno Pwéitn. TeAlkd
oxnuotilovtat oteped  SlaAlUpato  peTofU Twv  akpalwv peAwv  (Ca,Na)(Ti,Fe)Os kot
(REE,Ca,Na)(Ti,Fe)0;, avaloya pe to PoBUd petaoynuatiopol mou Aappavel ywpa. Eival
XAPAKTNPLOTIKO OTL oL pdaoelc REE oto katdlouno Bwéitn meptBaiiovtal and GACELC TITAVLKOU
ooBeotiou (CaTiOs).

OL OpUKTONOYLKEG PACELG TOU SC MAPAUEVOUV TIPAKTLKA (Sleg¢ oto Bwéitn KAl OTO TMAPAYOUEVO
KoTdAouno. H MAeLovOTNTA TOU Sc OXETIZETAL e TOV ALUATITA KAL TOV yKOLTLTN. MiKpOTEPN MocoTNTA
anavtatal oe oEuudpoeibla Tou apyAiou (Batpitng kat Slaomopo) Kal oto {ipkovitn (zircon). Xto
kataAouto Bwéitn, o awpatitng o ykattitng kot o {ipkovitng dhoevolv 55+20%, 25+20 % and
10+5% tng apxKn G moootntag Sc, avtiotoyya. Kabwg n peyautepn moootnta Batpitn/Stacnopou
ekYUAieTal katd tn pEBodo Bayer, To PEPOC TOU Sc TOU OXETI(ETAL e AUTEC TLC dAoelg Bewpeital
OTL ameAeuBepwveTal Katd Tn SLapKela TG ekXUALONG Kol ot cuvéxela mbavwe kataBubiletal
OTLC eMLPAVELEC TWV OPUKTWV TIOU amapti{ouv to KatdaAouro Bwéitn.
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Kupia ouvelo@opd tn¢ StatpiBric

Ta anoteAéopata mou poékudav anod tnv moapovca Statpfry cUUBAAOUV OTNV KATAVONGN TNC
Sladpoung emAeyUévwy LxvooTtolyeiwv otn péBodo Bayer wg MPOC TNV KATAVOUN KAl TNV
opuktoloyia toug. H amoktnBeioa yvwon pmopel va xpnoiwponownBel yia t BeAtiwon Kal To
oxeSlaopnd NG e€aywyng TWV LYVOOTOLXELWY, Ta OToila UmopolV va XOPAKTNPLOTOUV TOGO WG
KPLOLHEG TIPWTEG UAEG, 000 Kal mopampolovia tng peBodou Bayer. E€elSikeupéva POVTEAQ
KOTOVOUNC UMopoUV EMioNG va XpNoLUomolnBolv og EKTIUAOELC TINYWV KPIOLUWY UETAANWV o€
TLAYKOOULA 1) TOTILKH KALpoKa. EMmpooBeta, To 0pUKTOAOYLKA XAPOAKTNPLOTIKA, KUPLwG, Twv REE kat
Sc mapéxouv oadeig e€nynoeLg, oxeTIKA Le Th aduvapia emiteuéng uPnAwv MOCOCTWY AVAKTNONG,
OTOV TPAYLLATOTIOLOUVTOL SOKLUEG EKXUALONG TwV KataAolmwyv Bwéitn.
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Abbreviations

AAS
ICP-MS
ICP-OES

XRF

XRD

SEM-EDS

EPMA
WDS
INAA

DSP

HMS
BSE

LOI

Atomic Absorption Spectrometry
Inductively Coupled Plasma-Mass Spectrometry
Inductively Coupled Optical Emission Spectrometry
X-Ray Fluorescence
Powder X-Ray Diffraction
Scanning Electron Microscopy with Energy Dispersive
Spectroscopy
Electron Probe Microanalyzer
Wavelength Dispersive Spectroscopy
Instrumental Neutron Activation Analysis
Desilication Product
Heavy Media Separation
Backscattered Electron (image)

Loss on Ignition
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Introduction

The technological advance of the modern society has imposed new trends in the demand of raw
materials, especially those that are required in the high-tech industry. More categories of specific
commodities are needed than ever before in the history. Such commodities are, for example, the
rare earth elements (REE), which are essential in the so-called smart devices as well as in green
technologies like the wind turbines and electric vehicles. After the beginning of the 20" century
which marks the start of a rapid growth in the exploitation of mineral resources, the usage of many
raw materials has increased faster than the growth of the world’s population and further growth
follows an exponential curve. The demand for raw materials is not only dictated by the growth of
the population, but a remarkable factor is also the proportion of the societies that are making
transfers from developing to developed statuses. Examples of such regions include China, India and
Brazil. The need for most of the raw materials in almost any industrial field is projected to increase
and there are practically very few materials for which the production is decreasing (Binnemans et
al., 2018; Christmann, 2018; Christmann et al., 2007; Frenzel et al., 2016; Vidal et al., 2017).

For the purposes of strategic planning and resource availability overviews, several economic and
geographic regions such as Japan, USA and European Union have compiled lists of critical raw
materials (Binnemans et al., 2018; European Commission et al., 2017). Criticality is generally defined
as a function of numerically quantified supply risk and economicimportance. European Commission
lists currently 26 raw materials as critical (European Commission et al., 2017). Being categorised as
a critical raw material or not, the accelerating growth of demand and relative scarcity of certain raw
materials have impacts on the market prices of the commodities. On the one hand this can impose
limitations in the accessibility of raw materials. On the other hand, it might motivate industries to
start exploiting secondary resources that have so far not possessed economic prospects.

Besides the risks in the supply of raw materials and their increasing prices, the exploitation of non-
renewable mineral resources can have an adverse impact on the ecological and environmental well-
being of our planet. Aside of the anthropogenic-driven climate change about which there at least
exists a consensus in the scientific community (Cook et al., 2013), the society has not yet adequately
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reacted to the implications that the Earth’s ecosystems are in grave danger mostly due to human
activities. The manifest that summarises the evidences in the form of a meta-study describing the
difficult situation of the world’s ecosystems and biodiversity in relation to human activities is signed
by more than 15,000 scientists (Ripple et al., 2017). From the positive side, a good example exists
which shows that if decisive actions are made, the situation of the planet can be improved. Such an
example is the depletion of ozone in the atmosphere that was reversed upon the setting of
regulations of the emissions of ozone-depleting substances (Ripple et al., 2017). Itis an encouraging
illustration that changes are possible. Unfortunately, there exist too many examples of the
potentially harmful courses of behaviour relating to the minerals industry. It is a fact that the ratio
of useful materials produced, and tailings created is in the favour of tailings as well as other by-
products. Until this day the failures of tailings and residue stocking deposits happen that can release
potentially harmful substances to the environment (Kossoff et al., 2014). Such was also the case
with the dam failure in 2010, when about 1 million cubic meters of Bayer process red mud was
spilled to the environment in Hungary, Ajka (Mayes et al., 2016). It is estimated that about 150
million tonnes of bauxite residue is being created annually worldwide (Evans, 2016), which has led
to the accumulation of about 2.7 billion tonnes of residue (Power et al., 2011). In some cases, the
environmental impact of mineral processing activities is difficult to be evaluated. However, it has
been estimated that the largest worldwide producer of the REEs, Bayan Obo mine, is probably
operating with a major impact to the environment (Ali, 2014). This indicates that there is room for
developing the responsible sourcing of critical raw materials.

Despite the named difficulties, the minerals engineering community in a broad sense is not walking
blind-folded through the current situation. Many solutions are being proposed and in general they
have a common ground which often refers to closing the value loops or transferring to circular
economy. This includes proposals and actions to obtain the virgin raw materials from the so-called
responsible sources, reducing of the waste streams, exploiting residues or tailings as a secondary
resource or recycling of the end-of-life products (Binnemans et al., 2015; Christmann, 2018; Kossoff
et al., 2014; Krook et al., 2012; Wall et al., 2017).

It should be noted that REEs are a group of chemical elements known as the lanthanides as well as
yttrium (Y). Sc is also considered often as a REE, but there is no conclusive consensus in this
guestion. Based on the chemical properties, REEs are usually divided to light REEs (LREE, lanthanum
to europium) and heavy REEs (HREE, gadolinium to lutetium and Y (Atwood, 2012), which is also
the official IUPAC definition and used in the present work.

Following the previous discussion, also the alumina industry that mainly operates by using the well-
established Bayer process has an important role to play. Bauxite that is used as the raw material of
the Bayer process can contain typically more than 50 chemical elements above concentrations of
1 mg/kg, most of which can be considered as trace elements (Authier-Martin et al., 2001). Out of
the bauxite trace elements, at least five chemical elements or groups of them are listed as critical
raw materials in the report by the European Commission and at the same time their concentrations
in Bayer process related materials occur in levels that are interesting from an economic point of
view (Borra et al., 2016; European Commission et al., 2017; Evans, 2016). Such critical materials are
the following: Ga, V, Sc, LREEs and HREEs (Binnemans et al., 2015; Borra et al., 2016; Davris et al.,
2017; European Commission et al., 2017; Frenzel et al., 2016; Okudan et al., 2015).



Based on the discussion about responsible sourcing of critical raw materials, the Bayer process by-
product bauxite residue has been highlighted as one of the potential future resources of critical
metals, out of which mainly the REEs and Sc are considered (Wall et al., 2017). The attractiveness
arises from the fact that the REEs and Sc mainly concentrate to bauxite residue after the Bayer
process, giving rise to about two-fold increase in the concentration compared to bauxite
(Derevyankin et al., 1981; Logomerac, 1971). Compared to other sources of the REEs, it should be
admitted that bauxite residue does not have a very high concentration of REEs. Nevertheless, the
competitiveness of bauxite residue has been emphasised mainly because of three reasons: (1) it
does not need additional comminution because of its fine particle size, (2) it has low radioactivity
levels compared to the conventional REE ores, and (3) it is a by-product and therefore no
exploitation of virgin ores is necessary (Wall et al., 2017). Besides, when considering a ten-year
perspective of REE demand in the context of the potential advantages of the deposit types, bauxite
residue in addition to the ion adsorption clay deposits have been deemed to offer good
opportunities to produce REEs (Goodenough et al., 2017).

The behaviour of the other critical metals occurring in the Bayer process related materials — Ga
and V — is different compared to REEs and Sc. These metals (Ga and V) are digested along with
bauxite aluminium (oxy)hydroxide minerals and tend to accumulate to Bayer process liquors. It is
well-known that Ga is worldwide mainly produced as a by-product of the Bayer process and to a
smaller extent as a by-product of the Zn production (Frenzel et al., 2016; Lgvik et al., 2015). V is also
produced as a by-product of the Bayer process to some extent (Evans, 2016; Gladyshev et al., 2015).

Dictated by the elevated concentrations of critical metals and the previously mentioned factors of
competitiveness in the Bayer process materials, there exists a growing interest in the extraction of
the relatively valuable REEs and Sc from bauxite residue by exploring various hydrometallurgical or
combined pyro- and hydrometallurgical routes (Binnemans et al., 2015; Borra et al., 2016; Davris et
al., 2017; Evans, 2016). The research and development is also taking place to recover more
efficiently higher proportions of Ga and V mainly from Bayer process liquors, but also from some
solid material streams of the Bayer process (Gladyshev et al., 2015; Habashi, 2006; Okudan et al.,
2015). It has been indicated that the full potential of Ga production as a by-product of the Bayer
process is not currently utilised and a growth of production is predicted (Frenzel et al., 2016). It was
also summarised that only about 8-21% of the full capacity of Ga extraction was realised from the
Bayer process in 2011 (Lgvik et al., 2015).

Besides the opportunities to extract critical metals from bauxite residue, this material has also a
good potential to be utilised in the extraction of Fe, Al or Ti. Other possibilities of re-use include the
production of (low-carbon) construction materials from bauxite residue or using the material in soil
amelioration, to name a few possible applications (Binnemans et al., 2015; Borra et al., 2016; Evans,
2016; Garau et al., 2007; Hertel et al., 2016; Pontikes, 2007; Power et al., 2011).

Aside of the prospects of recovering critical elements as by-products of the Bayer process, there
are additional reasons why trace elements receive attention in the alumina industry. Firstly, there
exists a need to control the levels of impurities in the aluminium hydroxide as well as alumina
products, such as in the case of V (Teas and Kotte, 1980). Secondly, some trace elements require
monitoring due to their possible impact on occupational health, which is the case for beryllium (Be)
(Eyer et al., 2005; Suss et al., 2008). Thirdly, the fate of certain trace elements like arsenic (As)
should be considered from the environmental point of view (Burke et al., 2012).
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Although the relatively elevated presence of certain trace elements in bauxites as well as their
economic potential has been acknowledged for decades (Bardossy and Pantd, 1973; Blankova et
al., 1977; Derevyankin et al., 1981; Logomerac, 1971), some gaps in the existing knowledge can be
indicated. Despite of the long history of Ga research in alumina industry (Habashi, 2006; Hudson,
1965), it is not easy to retrieve published data of the distribution of Ga in the Bayer process. It has
been emphasised that this missing knowledge in the accessible information has affected the
compilation of worldwide resource estimation exercises, as there is no source available that relates
the known Ga concentrations with actual material mass flows in the Bayer process (Frenzel et al.,
2016; Lgvik et al., 2015). Similar gaps exist for V, Cr, and the REEs. Some information can be
retrieved about the distribution patterns of La and Sc in the Bayer process (Derevyankin et al.,
1981), but given the date of this study it is useful to update and build new knowledge upon that
existing study. For the rest of the elements considered in this work, at most the fractionation
indexes between bauxite and derived residue or merely concentrations can be found (Mohapatra
etal., 2012; Ochsenkiihn-Petropulu et al., 1994; Wagh and Pinnock, 1987), and those are also often
given based on lab-scale experiments (Feret and See, 2010; Logomerac, 1971). Comprehensive
descriptions exist that provide the distribution patterns of other bauxite trace elements like
molybdenum (Mo) and zinc (Zn) (Papp et al., 1971) as well as Be in the Bayer process (Eyer et al.,
2005; Suss et al., 2008).

The mineralogical nature of the REEs in bauxite residue has so far not been established, while in
bauxites their occurrence modes are relatively well known (Borra et al., 2016; Deady et al., 2016;
Maksimovic and Pantd, 1996). The mineralogical characteristics relating to Scin bauxites have been
discussed only very briefly (Mongelli et al., 2017; Suss et al., 2017). The modes of occurrences of Sc
in bauxite residue have been established to some extent, but only in the case of Chinese residues
(Liu et al., 2018; Xiao, 1996; Zhang et al., 2017). However, the Chinese residues tend to be derived
from the sintering or Bayer-sintering processes and the properties of the residues can differ from
those of Bayer process bauxite residue (Evans, 2016; Songqing, 2017). From the other critical metals
existing in bauxite residue, V has been well speciated with advanced techniques (Burke et al., 2012;
Markus Gréafe et al., 2011b, 2011a). The same accounts for some other important trace elements
(As, Cr, Mn) existing in bauxite residue (Burke et al., 2012; Markus Grafe et al., 2011b, 2011a). The
mineralogical characteristics of Ga are also relatively well known in bauxite and bauxite residue
system, although the studies about this metal in residues are scarce (Liu et al., 2018; Maksimovic
and Panté, 1996; Shaw, 1957).

Based on the preceding, the aim of this dissertation is to (1) explain the distribution characteristics
of trace elements (especially the REEs, Sc, Ga and V), and (2) elucidate the mineralogical
characteristics of trace elements (especially the REEs and Sc) in the Bayer process materials
including bauxite and the residues derived from it. Aside of the named trace elements that are
interesting mainly due to their prospective economic value, attention is also paid to other trace
elements like Cr, As, Th and U. It is of high interest to examine in particular the karst/diasporic
bauxite trace elements distribution in the Bayer process, because these types of bauxites are
relatively more enriched in trace elements compared to lateritic/gibbsitic bauxites (Bardossy, 1982;
Valeton, 1972).

The structure of the dissertation generally follows the progression of the material through the Bayer
process, starting from raw bauxite and ending with the residue. In the major divisions, firstly the
basic characteristics of the materials are described, then the distribution patterns of the trace
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elements are explained, and finally the specific microscale characteristics of the REEs and Sc are
revealed.






1.Background

1.1 Bauxite

Bauxite is a type of alumina-rich rock, which is formed during the weathering of various kinds of
aluminosilicate source rocks (Valeton, 1972). A major division is made between lateritic bauxite
deposits (88% of the world’s resources) and karst bauxite deposits (12% of world’s resources)
(Meyer, 2004). The former types of deposits are situated immediately on the source rocks mainly
as weathered crusts. The prevailing alumina mineral there is gibbsite, in the form of aluminium
hydroxide (Valeton, 1972). Karst bauxite deposits are associated with carbonate rocks, where
bauxite bodies fill former karst cavities. Commonly, the source material of karst bauxite originates
from a neighbouring area and has been transported during the formation of the deposit. The main
alumina minerals in karst bauxite are diaspore and boehmite, in forms of aluminium oxyhydroxides.
Due to the high content of alumina in bauxite, it is the main industrial ore source to obtain
technically pure alumina and aluminium (Bardossy, 1982). More than 50 chemical elements can be
found in bauxites that occur in higher concentrations than 1 mg/kg (Authier-Martin et al., 2001).
The trace elements that remain in the composition of bauxite are those which have some
geochemical similarities mainly with the behaviour of Al, Fe and Ti. Such trace elements are, for
example Ga, V and Sc, and they remain largely immobile during the source rock weathering
(Valeton, 1972).

Parnassos-Ghiona bauxite deposit is located in Central Greece, north of the Gulf of Corinth, and
named after the prominent peaks of Mount Parnassos and Mount Ghiona, around which numerous
mining pits and mines are scattered. Tectonically, the area is controlled by the Parnassos-Ghiona
zone consisting of orogenically uplifted Mesozoic limestones and dolomites. The bauxite deposit is
of Jurassic to Cretaceous in age and consists of three consecutive horizons as layers, pockets or
irregular bodies intercalated in Mesozoic limestone sequences (Figure 1). The upper horizon — B3
— being the youngest, most prevalent and suitable from processing aspects, is the primary bauxite
exploited by AoG. The intermediate B2 layer is exploited to some minor extent. The formation of
the deposit took place over the course of several transgressions and regressions of a shallow
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lagoon, while the regression periods and concurrent uplift provided a topography allowing the
formation of karst cavities in the region. The karst cavities were further on filled with muddy
sediments from the vicinity or transported several tens of kilometres across the landscape. Once
deposited in the karst cavities, the sediments were turned into bauxite by chemical weathering,
resulting in the depletion of silica components. Because the genesis of the deposit is related to
limestones and karst phenomena, it is classified as a karst bauxite deposit. Parnassos-Ghiona
bauxite deposit is a part of a wider Mediterranean karst bauxite belt, in which all deposits are
related by their similar genesis and age (Bardossy, 1982; Laskou and Economou-Eliopoulos, 2007;
Petrascheck, 1989).

e e b,
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Upper and lower
Cretaceous
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Jurassic < A
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Triassic dolomitic

limestones

Figure 1. Stratigraphic column of Parnassos-Ghiona bauxite deposit showing the positions of first
(B1), second (B2) and third (B3) bauxite horizons between the Mesozoic limestones. Modified
after (Laskou and Economou-Eliopoulos, 2007).

Minor proportion of karst bauxite exploited by AoG and analysed also in present work is sourced
from Turkey, Western Taurides mountains Milas area. In the context of Turkish bauxites, it is
categorised as a diaspore deposit. It is explained that the Turkish diaspore deposits are associated
mainly with metamorphosed material sourced from altered tuffs and other related rocks, situated
on karst topography (Hatipoglu et al., 2010; Patterson, 1967).

Lateritic bauxites from two locations are also considered in this study. First one is Porto Trombetas
bauxite from Brazil. It belongs to the Amazonian bauxites category, which comprise 97% of total
Brazilian bauxite reserves. The bauxite formation has occurred in warm and humid climate
conditions which are typically necessary conditions for the creation of lateritic bauxite. Bauxite
blanket is situated on top of clastic terrigenous sediments that are related to the Amazon river. In
the complete bauxite profile, the principal bauxite layer (1-6 m thick) is situated between the lower
kaolinitic layer and ferruginous nodular layer (~1 m thick) (Figure 2). The profile is capped by upper
kaolinitic layer (Boulangé and Carvalho, 1997).



Upper kaolinitic layer

Nodular bauxite

Ferruginous nodules

Bauxite

Lower kaolinitic layer

Basal sediment

Figure 2. Typical profile of Porto Trombetas bauxite, showing the transition from basal sediment
to upper kaolinitic layer. Adapted after (Boulangé and Carvalho, 1997).

The second lateritic bauxite discussed in present work originates from Awaso deposit in Ghana. It
is one of the four major deposits in Ghana. Awaso deposit in particular has provided resources for
European refineries for over 70 years (Gawu et al., 2012). The deposit is situated on hilltops from
altitudes 450 to 550m above sea level. Generally, the bauxite deposits in western regions of Ghana
including Awaso are formed on different kinds of source rocks, among which are named phyllites,
tuffs, lavas and ashes, probably from Precambrian age (Patterson et al., 1986). The bauxite profile
is petrographically sub-divided into three horizons, underlain by kaolinitic gibbsite-containing clay
(Momade and Gawu, 2009).

1.1.1 REEs and Sc Geochemistry and Phase Composition in Bauxites

REEs are relatively more enriched in karst bauxite deposits compared to lateritic deposits (Valeton,
1972). In the bauxite profiles, REEs concentration increases towards the lower sections and is the
highest immediately near the footwall limestone (Maksimovi¢ and Panto, 1991). Concentrations
may differ by four magnitudes between the upper and lower parts of the profiles (Ochsenkiihn-
Petropoulou et al., 1991). In some instances, total REEs concentration near the carbonate footwall
can reach a remarkable one weight percent (Ochsenkihn-Petropoulou et al., 1991; Ochsenkiihn-
Petropulu and Ochsenkiihn, 1995). In such cases, REE minerals can even be identified by XRD
analysis (Maksimovi¢ and Panto, 1980). This pattern is explained by the partial dissolution of REEs
into the percolating pore fluids in the bauxite profile. Then, REEs are precipitated as secondary
(authigenic) minerals near the carbonate footwall, where the fluids encounter an alkaline pH
barrier. The migration is noted for both LREEs and HREEs (Maksimovi¢ and Panto, 1991). However,
some fractionation in the REEs group is also noted. Namely, Ce is sometimes more concentrated in
the upper sections of the profile. Ce can occur there in a tetravalent state under oxidative
conditions. It precipitates as cerianite, (Ce*,Th)O,, in the upper parts of some bauxite profiles, while
other Ce species like the fluorocarbonates are more often found in lower sections of the profiles
(Maksimovi¢ and Panto, 1991; Mongelli, 1997).

First efforts to elucidate the characteristics of REE mineral species in bauxites were taken up in the
1970s (Bardossy and Pantd, 1973). It was revealed that REEs can be found as detrital minerals, i.e.,
minerals in the same form as they occur in the bauxite parent rocks. In this category, mainly
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phosphate minerals like monazite ((Ce,La,Nd,Th)PO4) and xenotime (YPO,4) have been identified
(Bardossy and Panté, 1973; Laskou and Andreou, 2003). In bauxites, REEs also occur as authigenic
phases, i.e., phases that have been precipitated in situ within the bauxite profile from percolating
fluids. Such phases are commonly REE fluorocarbonates of the bastnésite (Ce(CO3)F) mineral group
or phosphates of monazite group (Maksimovic and Pantd, 1996; Maksimovi¢ and Panto, 1980).
Often, occurrences of hydroxylbastnasite are reported, in which fluorine ion is substituted with
hydroxyl ion (REE(COs3)(OH)) (Maksimovic and Pantd, 1996; Maksimovi¢ and Panto, 1991;
Ochsenkiihn-Petropulu and Ochsenkihn, 1995). Moreover, hydroxylbastndsite has been
highlighted as the most frequently identified REE mineral in karst bauxites (Maksimovic and Panté,
1996). Raman spectroscopy was successfully applied to aid the identification of authigenic
monazite-Nd and authigenic xenotime in Zagrad karst bauxite deposit (Montenegro) (Radusinovic¢
et al.,, 2017). Ce can occur in the oxide form as authigenic cerianite (Mongelli, 1997). Some
occurrences of REEs in bauxites are also attributed to the ion adsorption form on clay or diaspore
surfaces (Wang et al., 2010). It has also been reported that REE mineral composition can be highly
variable even in bauxite samples collected a few meters apart from each other (Maksimovi¢ and
Panto, 1980). This list of REE minerals in bauxites is not exhaustive as there is a wide variety of REE
phases described in bauxites. An increasing volume of research is being published about the
mineralogy of REEs in bauxite deposits worldwide in the recent years (Li et al., 2013; Proenza et al.,
2017; Radusinovi¢ et al., 2017; Wang et al., 2010). An overview and a case study of the REEs
geochemistry in European bauxite deposits as well as in the derived residues is given by (Deady et
al., 2016). As can be seen from the preceding reviews, REE minerals found in bauxite deposits are
often like the ones that are commonly exploited in the existing REE mines, namely monazite,
bastnasite and xenotime (Habashi, 2013).

Within the geochemical cycle, Sc is known to be present in mafic and ultramafic rocks rather than
in felsic rocks. Sedimentary rocks commonly exhibit a very low content of Sc. However, some
bauxites and laterites are relatively rich in Sc (Chassé et al., 2017; Ochsenkiihn-Petropulu et al.,
1994). Its average concentration in continental crust is 22 mg/kg (Rudnick and Gao, 2003). Sc
behaves as a lithophile element and is not affected by the redox conditions of the environment. Sc
does not exhibit affinity towards ore forming anions. Because of that, it can be found in small
guantities dispersed in many rock-forming minerals rather than concentrated in independent
mineral phases. Such phases exist (e.g. kolbeckite, thortveitite), but are very rare. Since Sc is
scattered in the Earth’s crust and deposits with high Sc grade are not formed in natural processes,
the production of Sc has relied on resources with Sc content around 100 mg/kg Sc (Das et al., 1971;
Samson and Chassé, 2016).

When Scis present in a bauxite deposit, its distribution is typically associated with REEs, like in south
Italian and Sardinian karst bauxite deposits. This distribution pattern is interpreted as a covariance
due to the chemical similarities of REEs and Sc rather than as an indication of the formation of any
specific Sc-bearing mineral (Blankova et al., 1977; Mongelli et al., 2017). In the Zagrad bauxite
deposit (Montenegro), Sc was enriched throughout the bauxite profiles, while some of the lower
parts of profiles were particularly enriched in Sc as well as in REEs content (Radusinovié et al., 2017).

As the result of direct investigation by electron microprobe, the first reports referring to Sc
occurrence in certain bauxite minerals date back to 1973 and indicate its presence in detrital zircon
(Bardossy and Pantd, 1973). It is a well-established fact that Sc can be found in zircon, as reported
in several bauxite deposits: Mazaugues (France), Campo Felice (ltaly), bauxites of Southern
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Apennines (Italy) (Bardossy and Pantd, 1973; Boni et al., 2013; Mongelli et al., 2017; Radusinovi¢ et
al., 2017). In Schugorsk deposit (Urals, Russia), zircon grains exhibit altered rims that contained up
to 3.5 wt % Sc (Mordberg et al., 2001). Zircon can inorporate many “exotic” chemical elements such
as Nb, Sc, U, Bi or HREEs. The multivalent substitution of Sc in zircon is commonly explained as Zr*
+Si** ¢ Sc3* + P>* (known as the pretulite type substitution). Sc3* thus accommodates the Zr** site
in zircon while P** substitutes Si** and the charges are compensated through the multivalent
substitution. Pretulite is a scandium phosphate phase (ScPQ,) that can occur in solid solution with
zircon, just as some other phosphate phases like yttrium phosphate. Such phosphate minerals are

isostructural with zircon (Breiter et al., 2006; Moélo et al., 2002).

Authigenic xenotime (YPO,) of Zagrad bauxite deposit (Montenegro) has been shown to contain
some amount of Sc (0.4—0.6 wt %) while residual xenotime did not contain any (Radusinovic et al.,
2017).

In Middle Timan bauxite (Urals, Russia), about 65 % of Sc is associated with diaspore and boehmite,
where its concentration ranges from 80-100 mg/kg. The remaining part is found in zircon and
chamosite, while the concentrations of Sc in these minerals are not known. During Bayer digestion,
Scisreleased from diaspore and boehmite and is thereafter assumed to be adsorbed on the surface
of bauxite residue particles as ScO(OH) (Suss et al., 2017).

Several additional mineral hosts of Sc have been proposed for bauxite and its residue system. A
correlation between Sc and P,0s occurrence has been reported at least in three cases. Phosphate
phases, like variscite, have been considered as Sc host minerals (Radusinovic¢ et al., 2017; Suss et
al., 2017; Wagh and Pinnock, 1987).

Derevyankin et al. (1981) deduced from their analysis of Sc behaviour in the Bayer process that Sc
is most likely bound with iron oxides and titanium dioxides in bauxite. Mongelli et al. (2017)
suggested based on established association of Sc** with Fe3* and geochemical data of several Italian
bauxite deposits that Sc might occur in detrital iron minerals like titanomagnetite.

1.1.2 Gaand V Geochemistry in Bauxite Context

Ga and V together with Sc are among the few bauxite trace elements that tend to be associated
with the main rock forming minerals such as boehmite or diaspore in bauxite deposits (Mordberg
et al., 2001). Most of other trace elements such as the REEs, Cu or Zr are more often concentrated
into discrete mineral phases that can be either detrital or authigenic (Bardossy and Pantd, 1973;
Maksimovic and Pantd, 1996). V has been shown to correlate with the distribution patterns of P,
Ba, Sr and Bi (Mordberg et al., 2001), but these associations can be specific to a certain deposit and
also depend on the source rock geochemistry. A strong positive correlation of V and Cr has been
demonstrated in some cases, which has been interpreted as an indication and a result of the extent
of bauxite formation and source rock weathering (Mordberg, 1993). In the context of multivariate
statistical modelling of a large geochemical dataset of southern Italian bauxites, V has been grouped
together with Sc, REEs and Cr (Mongelli et al., 2017). It has been assumed that because V has
typically trivalent oxidation state, it likely behaves similarly to trivalent iron and therefore occurs
either in detrital or rock-forming Fe minerals (Mongelli et al., 2017). However, thorough speciation
studies of V in bauxite deposits do not mostly exist. A preliminary speciation of V suggested that in
Parnassos-Ghiona bauxites, V appears likely in kaolinitic-type clays primarily as pentavalent V,
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whereas any occurrence together with Fe, Al or Ti minerals was excluded. However, this accounts
only for the Fe-depleted sub-type of Parnassos-Ghiona bauxite (P. Gamaletsos et al., 2016).

Gallium possesses a close relation to aluminium. Similar properties include atomic radius, trivalent
oxidation state, tetrahedral or octahedral coordination and amphotericity. Gallium is hosted in
bauxites by Al-bearing minerals like gibbsite, boehmite, diaspore and kaolinite (Gray et al., 2013).
High correlation with iron has been observed in ferruginous duricrusts and Fe-rich horizons of the
bauxitic profiles due to gallium’s different behaviour compared to aluminium under acidic
conditions. In this situation, gallium is retained in Fe-oxyhydroxides and aluminium enriched
horizons show low Ga/Al ratio (Hieronymus et al., 2001). U.S. Geological Survey (Schulte and Foley,
2014) reports that gallium concentrations in the world bauxites range from <10 ppm—812 ppm with
an average of 57 ppm Ga. They also state that there are no significant differences between lateritic
and karst bauxite deposits regarding Ga contents. Concentrations are said to be ranging from 12—
52 ppm Ga with an average of 40 ppm in bauxite districts of Greece and Turkey (Schulte and Foley,
2014).

1.2 Bayer Process Description

Bayer process is a cyclic hydrometallurgical method that utilises sodium hydroxide leaching of
bauxite ore to produce technically pure aluminium hydroxide that can be further calcined to obtain
anhydrous alumina (Al,0s) (Adamson et al., 2013; Bayer, 1892, 1888; Chin, 1988; Power et al.,
2011). Aluminium of Greece plant (Metallurgy Business Unit, Mytilineos S.A.; hereafter denoted as
A0G) uses a set of processing conditions that are known in the industrial sector as high temperature
digestion (HTD). These conditions (T >250 °C, elevated pressure) are dictated by the utilisation of
mainly karst bauxite, in which primary alumina-containing minerals are diaspore (a-AlO(OH)) and
boehmite (y-AlO(OH)) that dissolve less readily than the more commonly exploited gibbsite
minerals (Al(OH)3) (M. Grafe et al., 2011; Hudson et al., 2000).

Simplified flow diagram of AoG’s process is shown in Figure 3. Because Parnassos-Ghiona bauxite
in its natural position is situated between limestones, it is necessary to remove the contaminating
limestone from the ore that inevitably is partly mined together with bauxite. Limestone,
mineralogically composed mainly of calcite, is removed by gravimetric heavy media separation
(HMS) in ferrosilicon medium (Lavalou et al., 1999; Papanastassiou et al., 2006), also referred as
“decalcitation” (sic) process in the literature (Lavalou et al., 1999). This operation unit is shown in
Figure 3 as “HMS”, marked by a dotted line, because it is not strictly a part of the conventional
Bayer process (Lavalou et al., 1999). The primary output of this unit is mixed karst bauxite (also the
main input to Bayer process, 73% of total bauxite mass during the present case study) and
secondary output is “decalcitation residue”. Karst bauxite is ground with the presence of
concentrated leach liquor to achieve granulometry <315 um and the resulting suspension is pre-
heated at about 180 °C. Digestion of the karst bauxite suspension is performed at about 255 °C and
a pressure of about 5.8—-6.0 MPa during approximately one hour. To increase the productivity of
the Bayer process, AoG also utilises an optimisation step that is termed as the “sweetening”
process. In “sweetening” process, lateritic/gibbsitic bauxite is digested at a lower temperature aside
of karst/diasporic bauxite. Lateritic bauxite suspension passes through a pre-desilication step with
a residence time of about 24 h, to allow the formation of desilication products (mainly sodalite and
cancrinite) and avoid the problems of reactive silica (i.e. kaolinite) during digestion. In the case of
AoG, lateritic bauxite suspension is introduced to the main karstic bauxite slurry in the appropriate
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flash stage after the HTD of karst bauxite suspension. Lime is added to the process during digestion
as a reaction catalyst, as well as during causticisation step that reduces soda losses and as a filter
aid during the security filtration of pregnant leach solution after settling stage (liquor “polishing”)
(Lavalou et al., 1999; Whittington, 1996). From the leached effluent slurry after digestion, the solid
fraction is separated as red mud (bauxite residue in a slurry form) by settling and washing. To obtain
de-watered bauxite residue that helps to reduce the losses of soda and eases the stacking of
residue, AoG utilises filter pressing of bauxite residue. The clear pregnant leach liquor, rich in
sodium aluminate, passes to the next processing step where crystalline aluminium hydroxide
(AI(OH)s) is precipitated. Precipitation is initiated by the introduction of aluminium hydroxide seed
crystals. The spent liquor after precipitation unit is concentrated in the evaporation unit, to create
the necessary sodium hydroxide concentration level for the next processing cycle. Aluminium
hydroxide, which is the final product of the Bayer process by formal definition, is calcined at
>1000 °C to produce anhydrous alumina (Chin, 1988).

Sometimes, the Bayer process is divided into the “red side” to denote the units where bauxite and
its residue are present, and to “white side” to indicate the stages after residue removal
(clarification) until precipitation and evaporation stages (Banvolgyi, 2016; Power et al., 2011).

Karst
bauxite 1,2

_ : Decalcitation
Lime : itati ' i
11 Decalcitation ™ residue 8

---------------- Karst 3.4
7 g bauxite

9,18 i
40 | Karst grind Evap.
preheat Concentrated
) . spent liquor
Digestion 15
i Lateritic )
SettII!‘lg bawdite 5, (6) Spent liquor
washing 17
J7 Aluminium
10,19 Later Spent liquor hyd:{(;xide
grind < Precip. »  Calcin.
desilicate
Pregnant
Bauxite liquor =2 Aluminium Alumina
residue 14 hydroxide 13

Figure 3. Simplified flowsheet of the Bayer process in AoG. Numbers indicate the sampled
materials, while underlined numbers show samples in liquor form. Description of sampled materials
can be found in Materials and Methods section 2.1, Table 2.
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1.3 Trace Elements Behaviour Relating to the Bayer Circuit

Not all of the approximately 50 bauxite (trace) elements interact with the Bayer processing
environment, but the following can react and accumulate to processing liquor to a greater or lesser
extent: P, As, Mo, Ga, Cl, |, Br, K, Ge, Zn, U, Li,V, F, Be and Mg (Authier-Martin et al., 2001; Sato et
al., 2013; Teas and Kotte, 1980).

Impurities which concentration in processing liquor drops across the line of precipitators compared
to the concentration of impurity entering to precipitation unit, are generally unwanted, because
they decrease the quality of aluminium hydroxide. The decrease in concentration means that the
impurities are precipitated along with aluminium hydroxide. Such impurities are, for example, ZnO,
Fe,0s, Ca0, MgO and TiO; (Teas and Kotte, 1980; Whittington, 1996). In the alumina production
and marketing, only a few of the many bauxite trace elements are monitored and kept as criteria
for alumina purity, as can be seen from Table 1. Some impurities, such as Ga, are known to enter
into the composition of alumina, but they do not pose problems for consecutive processing steps
(like electrolysis to produce metallic aluminium) or other applications (Authier-Martin et al., 2001).
Table 1. Requirements for the smelter grade alumina quality as specified for Australian alumina

industries in Platt's Methodology and Specifications Guide (S&P Global Platts, a division of S&P
Global Inc., 2018).

Parameter Quantity Range
SiO2 % 0.025 Max
Fe,03 % 0.025 Max
TiO, % 0.007 Max
Na,0 % 0.55 Max
Zn0 % 0.015 Max
P.0s5 % 0.003 Max
Ca0 % 0.05 Max
V,05 % 0.005 Max
LOI (300-1000 °C) % 1 Max

Alpha phase (alumina

alpha or alpha content) % 12 Max
Specific surface aream?/g ~ 60-80 Min—Max
=45 um % 12 Max

+45 um % 88 Min

About 70% of the Ga contained in bauxite is digested during alumina refining and the remaining
part is separated with bauxite residue (Figueiredo et al., 2002; Hudson, 1965). The reaction of
digestion is described by Equation 1 (Authier-Martin et al., 2001):

Ga;0s3 + 6NaOH - 2Nas3GaOs + 3H,0 Equation 1

The recyclable Bayer liquor reaches an equilibrium concentration of Ga in the range of 60—600
mg/L, yet typically shown values remain between 100-200 mg/L Ga (Figueiredo et al., 2002; lli¢ and
Mitrovi¢, 1989; Lamerant, 1995, 1992; Riveros, 1990; Selvi et al., 2004). Some gallium enters to the
crystal structure of aluminium hydroxide from the pregnant liquor and follows further to alumina
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after calcination. It has been demonstrated, that the quantity of Ga entering to aluminium
hydroxide is basically a linear function with the concentration of Ga available in processing liquor
(Hudson, 1965). As mentioned before, this impurity is not an issue for the alumina smelters
(Authier-Martin et al., 2001). For producing gallium from Bayer liquor, a batch of it is separated
from the circulation and one or more of the routes is followed: ion exchange, selective precipitation,
electrochemical recovery or solvent extraction (Downs, 1993; Zhao et al., 2012b).

Authier-Martin et al., (2001) refer to earlier studies indicating that V is about 30 % soluble during
Bayer digestion. Variable literature data indicates that V saturation levels in Bayer circuit liquors
can range from 100-2800 mg/L (Figueiredo et al., 2002; Selvi et al., 2004; Teas and Kotte, 1980;
Zhao et al., 2012a). In process liquors, V appears in the form of VO,* (Zhao et al., 2012a). Some
vanadium ends up in alumina, but this impurity has a negative impact due to its known property of
decreasing the electric conductivity of metallic aluminium, causing a green hue in fused alumina,
and the scale it can form in the piping of a Bayer refinery when precipitated from the liquor in the
cooler parts of the circuit (Authier-Martin et al., 2001; Fenerty, 1960; Zhao et al., 2012a). The
removal of V from process liquors is generally a side benefit of process lime addition. V precipitates
as calcium vanadate, as an impurity in tri-calcium aluminate (CasAl,(OH)12), or as Na7(VO4)2F-19H,0
(Okudan et al., 2015; Smith, 2017; Zhao et al., 2012a). Sometimes, V is removed from the Bayer
liquor as vanadium cake in the evaporation unit by cooling the liquor and crystallisation on
vanadium salts (Gladyshev et al., 2015). This material has a concentration of 16—17% V,0s and it
can additionally contain other impurities such as Ga, As and Cr.

Behaviour of Sc and La in the Bayer process have been studied in two Russian alumina refineries by
(Derevyankin et al., 1981). Back in the time of compiling the research, those refineries partially also
utilised the sintering of bauxite feed, which deviates from the conventional Bayer method. It was
reported that hardly any Sc and La is dissolved during wet grinding of bauxite. Concentrations of Sc
and La are somewhat higher in the pregnant liquor compared to the spent liquor. During
precipitation, the concentrations of La and Sc in the spent liquor remain constant which indicated
to the authors that the mineralogical relations between Sc, La and Al are absent. During the growth
of aluminium hydroxide on seed crystals, Sc and La probably do not enter the crystal lattice of this
mineral. From the initial amount to the final aluminium hydroxide can enter 0—2% of Sc and up to
5% of La. These amounts depend on the thoroughness of washing of the hydroxide precipitate.
Remaining part of Sc and La exits the process in the composition of bauxite residue, whereas Sc and
La are thought to be present in both liquid and solid phases (Derevyankin et al., 1981). So far,
distribution of the whole group of REEs has not been demonstrated in the Bayer process (Deady et
al., 2016).

The radioactive element U is known dissolve and accumulate to minor extent in the Bayer process,
achieving concentrations of about 1.4 mg/Lin processing liquors. From there, U can also precipitate
to aluminium hydroxide, which is an unwanted property. If the produced alumina is used in
electronics industry the radioactivity of the material must be very low. It is known that the
precipitation of U to aluminium hydroxide can be efficiently controlled and kept low by decreasing
the quantity of organic compounds in the Bayer circuit (Sato et al., 2013). The other bauxite trace
element that causes ionising radiation, Th (Adams and Richardson, 1960a, 1960b), does not interact
with the Bayer process liquor and its bulk mass passes to bauxite residue (Sato et al., 2013).
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1.4 REEs and Sc Abundance and Mineralogy in Bauxite Residue

1.4.1 REEs

Depending on the concentration of REEs in the bauxite ore, bauxite residue can have a
concentration of total REEs up to 2500 mg/kg such as in the case of the example of Jamaican bauxite
residue (Wagh and Pinnock, 1987). In AoG’s bauxite residue, total REEs concentration ranges from
800 to 1100 mg/kg (Deady et al., 2016; Ochsenkiihn-Petropulu et al., 1994). During a 15-year
period, the REEs (including Sc) concentration in AoG’s bauxite residue has fluctuated only about 8%
(Davris et al., 2017). The noteworthy REE concentrations are commonly associated with bauxite
residue derived from karstic bauxite (Borra et al., 2016; Logomerac, 1971).

So far, the REE occurrence modes and phases in bauxite residue have not been unambiguously
explained (Borra et al., 2016). Several authors have expressed the difficulties of speciating the REE
phases (Borra et al., 2015; Ochsenkiihn-Petropulu et al., 1996). Regardless of the scarcity of
information, some observations can be summarised. Doubtful identifications of allanite and
dissakite have been reported from XRD diffractogram of an Indian bauxite residue sample. With
only about 110 mg/kg concentration of cerium in the sample (Abhilash et al., 2014), it is not realistic
that REE mineral phases result in XRD reflections. The authors also reported from EPMA analysis,
that dispersed REEs presence was correlated with aluminium- and silicate-rich areas rather than
with iron-rich areas of the sample (Abhilash et al., 2014). In a patent describing the recovery of REEs
from bauxite residue, REEs have been indicated to occur in calcium titanate phases that were
created in the Bayer process. According to the source, they correspond mineralogically to
perovskite (Sugita et al., 2012). It was noted that in a Greek bauxite residue sample (from AoG),
cerium presence might be related to the occurrence of a loparite type phase (belonging to
perovskite group). The suggestion was based on a STEM-EDS investigation, where the presence of
thorium and possibly some trace amount of cerium were identified in a mineralogically proven
perovskite form (CaosNao2TiOs) (P. N. Gamaletsos et al., 2016). In a Canadian bauxite residue
sample (Jonquiere, Québec), REE-containing particles were noted as bright spots in electron
backscatter imaging, sub-um in size. A STEM-EDS elemental mapping also showed the presence of
REE-containing particles, where cerium and titanium presence were correlated (Reid et al., 2017).
Based on the observations of bauxite residue leaching behaviour, Bayer process secondary minerals
like cancrinite and hydrogarnet have also been proposed as the possible hosts of REEs (Davris et al.,
2016). Hematite has been proven to be able to incorporate tetravalent cerium into its lattice in
experimental conditions. Based on that and the existence of cerium in hematite-enriched matrix of
bauxite residue, hematite was suggested to contain cerium in its lattice as the potentially prevailing
form of cerium occurrence in bauxite residue (Bolanz et al., 2018). In the same study, the heavy
minerals fraction was found to contain some sporadic grains of bastnasite and monazite, but they
were considered as negligible carriers of REEs. Cerium was identified to occur in its tetravalent
oxidation state in the bulk sample and therefore the common REE minerals (e.g., monazite) were
excluded as the potential hosts of cerium (Bolanz et al., 2018). The authors admitted that cerium
location in hematite lattice remains hypothetical, but they insisted that REEs occurrence in bauxite
residue should be discussed in the context of main mineral phases rather than discrete REE phases
(Bolanz et al., 2018). Summaries about the recovery of REEs from bauxite residue can be found from
different publications (Akcil et al., 2017; Binnemans et al., 2015; Borra et al., 2016; Davris et al.,
2017). In general, the methods follow a hydrometallurgical route or a combination of pyro- and
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hydrometallurgical routes. Recently developed technologies have successfully applied ionic liquid
leaching on bauxite residue to selectively recover REEs from bauxite residue (Davris et al., 2017).

14.2 Sc

Sc concentrations detected in bauxite residues worldwide range generally from 41-254 mg/kg
(Borra et al., 2016; Zhang et al., 2016). Based on various publications that used different analytical
techniques, the average concentration of Sc in AoG’s bauxite residue is 121 + 16 mg/kg (n = 24)
(Alkan et al., 2017; Borra et al., 2015; Davris et al., 2014; P. N. Gamaletsos et al., 2016; Laskou and
Economou-Eliopoulos, 2007; Lymperopoulou et al., 2017; Ochsenkiihn-Petropulu et al., 1994; Vind
et al., 2017b; Yagmurlu et al., 2017). By year 2015, the volume of bauxite residue accumulated in
Greece was estimated to be about 5 Mt, resulting from the yearly output of 0.7 Mt (Anagnostou,
2010; Deady et al., 2016). Based on the preceding information, the amount of Sc present in AoG’s
bauxite residue stocks could be about 600 tons in total.

It was hypothesized that Sc might be bound to iron oxides of bauxite residue, either by substituting
Fe3* or by its adsorption on iron oxides mineral surfaces, by analysing the behaviour of Sc during
leaching experiments (Borra et al., 2015).

Correlations between Ti and Sc behaviour during leaching tests and the assumed mineralogical
association of these metals have been reported at least three times for the case of AoG’s bauxite
residue (Bonomi et al., 2017; Ochsenkiihn-Petropulu et al., 1994; Rivera et al., 2017).

Xiao has concluded after combining the results of leaching experiments and electron microprobe
analyses of BR from Guizhou Alumina Production (China) that Sc in bauxite residue is associated
with anatase, rutile, ilmenite, zircon and monazite by isomorphic substitution while other forms
were excluded ((Xiao, 1996) cited in (Zhang et al., 2017)). On the other hand, Zhang et al., (2017)
concluded based on bauxite residue from Shandong Alumina Refining Plant (China), that Sc is
exclusively associated with iron oxides represented by hematite and goethite in the residue. In that
assessment, no distinction is made between the two iron oxide phases (Zhang et al., 2017). The
deficiencies in the explanations of the experimental setup might hinder the reproducibility of their
work. In another bauxite residue sample from China (Chalco aluminium refinery, Shangdong), it was
concluded based on Time of Flight Secondary lon Mass Spectrometry and EPMA analysis that Sc is
mostly bound with TiO; phases, followed by associations with Fe, Al and Si phases, ordered in the
magnitude of occurrence intensity (Liu et al., 2018). Relatively frequently, the alumina plants in
China deploy the Bayer-sintering process, which might produce residues with different
characteristics compared to bauxite residue derived from the conventional Bayer process
(Songging, 2017).

The identified quantity of about 55-60% of Sc in Middle Timan (Urals, Russia) bauxites is in
aluminium oxyhydroxide minerals. During Bayer digestion, Sc is thought to be released from
diaspore and boehmite and is thereafter assumed to be adsorbed on the surface of bauxite residue
particles as ScO(OH) or Sc(OH)s. The remaining proportion of Sc in bauxite residue remains in the
same form as in bauxite, namely in the composition of zircon and chamosite, while Bayer process
specific solid phases like hydrogarnet do not capture Sc, for the case of this specific bauxite residue
(Suss et al., 2017).

It can be concluded that Sc occurrences in bauxite residue are rather diverse in different locations
and further development in the understanding of Sc mineralogy in this question is necessary.
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2. Materials and Methods

2.1 Sampling and Technological Data

Sampling took place over a three-day period and materials were collected from key points in the
process flow sheet to provide a snapshot of the whole process. The precondition of such sampling
procedure is that all the input constituents should appear in the output materials of the process
and sampled output material corresponds to the sampled input material. The sampling points are
shown on Figure 3, and sample descriptions are detailed in Table 2. AoG uses largely two types of
bauxite feed: locally mined karst (diasporic/boehmitic) bauxite and imported lateritic (gibbsitic)
bauxite. The Greek karst bauxite samples originate from the Parnassos-Ghiona B3 stratigraphic
horizon (Figure 1), which is the youngest and most exploited horizon of the deposit (Laskou and
Economou-Eliopoulos, 2007). Minor amount of B2 stratigraphic horizon Parnassos-Ghiona bauxite
was also used at the time of sampling, but the exploitation of this material is currently suspended.
Another minor source of karst bauxite at the time of sampling was diasporic bauxite from Turkey,
Milas area. The lateritic bauxites used at AoG originate from Brazil (Porto Trombetas) and Ghana
(Awaso), while only Brazilian bauxite was processed in the period of sampling campaign.

Bauxite samples were collected from the one-tonne test batches to provide the best representation
of the feed material. Bayer liquors, aluminium hydroxide, alumina and lime samples were collected
from the appropriate sampling points according to the internal protocols of AoG. A composite
sample of bauxite residue was collected after the filter pressing of the residues. Fresh sodium
hydroxide addition to the process was negligible during the sampling period and was therefore
excluded from the analysis. Process data for both solid and the liquid mass flows were acquired for
the same period as the sampling took place.
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Table 2. Description of sampled materials. Refer to Figure 3 to find the sampling points on the

Bayer process flowsheet.

Solid samples

Parnassos-Ghiona bauxite from B3 horizon. Extracted by company Delphi-Distomon

1 DD-BX S.A., asubsidiary of Mytilineos S.A. In the plant jargon termed as "Delphi-Distomo"
L bauxite. This material is subjected to limestone removal before the Bayer process.
:
B Parnassos-Ghiona bauxite from B3 horizon. Extracted by S&B Industrial Minerals S.A.
~ 2 ST-BX Inthe plant jargon termed as "standard" bauxite. This material is subjected to
g limestone removal before the Bayer process.
N~
3 HS-BX Parnassos-Ghiona bauxite from horizon B2. It represents a minor input (1%) to the
process. At present day, it is no longer exploited.
@ 4  TU-BX Bauxite from Turkey, western Taurides range and Milas area.
£ .
E S Bauxite from Brazil, Porto Trombetas deposit. It represents the main input of lateritic
= 2 5 TR-BX bauxite to the process (21 % of total bauxite input). Input of lateritic bauxite alters
oo . .
g' > between this (Trombetas) and Awaso bauxite.
§ 6 GH-BX Bauxite from Ghana, Awaso deposit. At the time of the case study, this material was
3 not exploited.
Decalcitated karst/diasporic bauxite, from which limestone is separated. Inputs to this
7 DC-BX unit are DD-BX and ST-BX. Represents the main bauxite input (73 % of total bauxite
g input during the case study) to the Bayer process as a mixture of karst bauxite from
£ two different mining locations that exploit B3 horizon Parnassos-Ghiona bauxite.
T
HMS residue. Limestone residue that is separated from Parnassos-Ghiona B3 bauxite.
8 DC-RE ; : . - . . )
Besides limestone, contains also a significant proportion of bauxite material.
‘;Ej 9 BE-DG Solid fraction of karst bauxite slurry, from grinding and preheating unit of karst
g § bauxite.
{.ﬁ § 10 SW-DS Solid fraction of lateritic/gibbsitic bauxite slurry from desilication unit.
E ~
£ 11 CA-OX Lime, CaO.
4 12 HY-AL  Aluminium hydroxide, Al(OH)s, output from precipitation unit.
Q2 u
8 § 13 CA-AL Calcined alumina, Al,03, output from calcination unit.
=]
T s
& 14 RM-FP  Bauxite residue (red mud) after the filterpressing of thick bauxite residue slurry
Liquid samples
15 cL Concentrated spent liquor, from the output of evaporation unit, routed to karst
» bauxite grinding
o
E— 16 PL Pregnant liquor, from the outlet of settling and security filtration
-
17 sL Spent liquor, from the outlet of precipitation. Largest proportion is routed to
evaporation and a small proportion to lateritic bauxite grinding.
“ 18 BF Liquid phase from grinding and preheating unit of karst bauxite, corresponds to
2 sampling point 9 and solid sample “BF-DG”
=}
@ 19 SW Liquid phase from grinding and desilication unit of lateritic bauxite, corresponds to

sampling point of 10 “SW-DS”
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2.2 Compiling of the Mass Balance

The results from chemical analysis were used in combination with mass flow data of the plant and
normalised to the mass of produced aluminium hydroxide (on dry calcined basis) according to
Equation 2. The mass balance approach to describing trace element distribution were based on the
method given by Papp et al. (Papp et al., 1971). Original mass flow data was corrected only for the
output units of “grinding and preheating of karst bauxite” and “grinding and desilication of lateritic
bauxite”, assuming a constant Fe,0; total mass in solids (Papp et al., 1971).

CXml

= Equation 2
m;

Where: C normalised concentration of trace element, mg/kg;
¢ measured concentration of trace element in solid, mg/kg; or liquid, mg/L;
m: mass flow of material on dry basis, kg/d; or liquor flow m3/d;

m, mass flow of aluminium hydroxide on dry calcined basis, kg/d.

2.3 Analytical Methods for Bulk Material Characterisation

Solid samples were prepared for the analysis using standard techniques (drying, crushing, splitting,
grinding). Elemental compositions of the samples were determined by a combination of techniques
listed in Table 3. Lithium borate fusion was chosen as the appropriate method prior to inductively
coupled plasma mass spectrometry (ICP-MS) that ensures with high efficiency the total dissolution
of bauxite and bauxite residue mineral matrix (Adam and Kriiger, 2017; Feret and See, 2010).
Instrumental neutron activation analysis (INAA) has been outlined as a good analytical technique
for determining trace element concentration in bauxite and bauxite residue as it is a non-
destructive method and does not require any sample pre-treatment. Also, chemical interferences
such as matrix effect are avoided (Feret and See, 2010; Ochsenkiihn-Petropoulou et al., 1991). On
the other hand, INAA is a relatively slow technique and not all the trace elements can be measured
by this method. The quality of the trace element analysis was assessed by measuring certified
bauxite reference material BX-N (Govindaraju, 1982; Govindaraju and Roelandts, 1989) with both
methods, ICP-MS and INAA. INAA measurements were also verified with certified reference
material DMMAS 120.

Bayer liquors were prepared for analyses either by (1) simply dilution, (2) acidification with
concentrated HNOs (Singh and Mishra, 2012), or (3) dewatering the liquors to obtain dry pulps of
the liquor (Table 3). The latter method also provides a guarantee that trace constituents are not
precipitated out from the liquid phase during sample preparation. Besides, dewatering enhances
the concentration of each component contained in the sample.
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Table 3. Analytical methods and preparation techniques used for the determination of main and

trace elements in the Bayer process solid and liquid samples.

Abbr.

Method

Preparation and specifications

Solid samples

XRF-st

ICP-MS

INAA

X-ray fluorescence, standardised

Inductively coupled plasma mass spectrometry

Instrumental neutron activation analysis

Fusion of solids with Li,B40/LiBO, (66:33) flux,
sample to flux ratio 1:11 (Yamada, 2010).
Standardised with appropriate standard materials.

Fusion of solids with Li,B40/LiBO; (66:33) flux,
sample to flux ratio 1:20, glass bead dissolved in
10% v/v nitric acid

About 2 g of sample is inserted in a polyethylene
vial

Liquor samples

titr.

AAS

ICP-MS

ICP-OES

INAA

XRF

uv

Thermometric acid-base titration

Atomic absorption spectroscopy

Inductively coupled plasma mass spectrometry

Inductively coupled plasma optical emission
spectroscopy

Instrumental neutron activation analysis

X-ray fluorescence, no standardisation, semi-
quantitative

UV Photometer

Details given in method description (Metrohm,
2018). Metrohm 855 Robotic Titrosampler

Appropriate dilution with deionised water.

Sample is diluted with deionised water and then
acidified with concentrated nitric acid while gently
heating the sample in proportions 1:10:1,
additional dilutions are made

Sample is diluted with deionised water and then
acidified with concentrated nitric acid while gently
heating the sample in proportions 1:10:1,
additional dilutions are made

Dewatering of liquor until the creation of dry
pulps (Blchi Syncore, vacuum pump Blichi V-700,
controller Bichi V-850; Flawil, Switzerland). Then,
about 2 g of sample is inserted in a polyethylene
vial.

Dewatering of liquor until the creation of dry
pulps (Blchi Syncore, vacuum pump Blichi V-700,
controller Buchi V-850)

Acidification with conc. HCl and dilution with
deionised water in proportions 1:3:20; only for
analysing Fe.

Mineralogical composition of the samples was determined by X-ray diffraction (XRD, Bruker, USA)

with Bruker D8 Focus. Identification and phase quantification of mineral phases was performed

with XDB Powder Diffraction Phase Analytical System version 3.107 that is specifically designed for

analysing bauxite and bauxite residue (Sajd, 2008, 2005).

2.4 Microanalytical Methods

The parts of samples subjected to microscale investigation were embedded in resin, polished and

coated with carbon (qualitative investigations) or platinum (quantitative investigations), all in

duplicate. Bauxite residue “as is” was attached to sample holder and coated with gold for secondary

electron imaging. Bauxite residue subsample (~0.5 g) that was analysed in nanoscale, was

suspended in acetone and treated with ultrasound to disaggregate the coagulated particles. The

sample was then placed on a 300-mesh carbon coated copper grid and air-dried overnight.
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Qualitative microscale investigations were performed by electron probe microanalysis (EPMA) with
energy dispersive spectroscopy (EDS) with (1) EVO MA15 (ZEISS, Oberkochen, Germany) coupled
with AZtec X-MAX 80 (Oxford Instruments, Abingdon, UK), and (2) JEOL 6380 LV (JEOL, Tokyo,
Japan). EMPA-EDS instruments were operated at 20 kV. Microscale quantitative analyses were
performed with a field emission microprobe JEOL JXA-8530F (JEOL, Tokyo, Japan) coupled with
wavelength dispersive spectrometers (WDS): (1) TAP/LDE1, (2) LIF/PET, (3) LDE2H/TAPH, (4)
LIFH/PETH, (5) LIFH/PETH. It was operated at 15 kV with a probe current of 30 nA. The standards
used are listed in Table 4. For a regular WDS quantification, counting time on peak was 60 s and on
background 10 s. For the case of Sc WDS quantification, different operational parameters were
used. Long counting times (60 s), high beam current (100 nA) and usage of the H-type
spectrometers resulted in an estimated detection limit of Sc of about 10 mg/kg.

Table 4. Standards used for the wavelength dispersive spectroscopy (WDS) quantification.

Element Name Formula

Al Albite Na(AlSizOs)

Ca Diopside CaMgSiz 06

Ce Monazite (Ce,La,Nd, Th)PO4
Cr Chromium (lIl) oxide Cr,03

Fe Hematite Fe,03

Hf Internal standard

La Monazite (Ce,La,Nd, Th)PO4
Mg Periclase MgO
Mn Willemite (Zn,Mn),Si04

Na Albite Na(AlSis0s)

Nd Neodymium glass Si0,-Ca0-Al;,03-Nd,03
Pr Praseodymium glass Si0,-Ca0-Al;,03-Pr;0;
Sc Scandium metal Sc

Si Diopside CaMgSiz 06

Zr Ziconia cubic ZrO;

Th Monazite (Ce,La,Nd, Th)PO,
Ti Rutile TiO,

U Internal standard

\Y Vanadium (lll) oxide V,03

Nanoscale investigation of bauxite residue was performed with a high resolution JEOL JEM-2100
LaB6 transmission electron microscope (HRTEM) (JEOL, Tokyo, Japan), operating at 200 kV. Grain
microstructure was also studied using a bright field detector in scanning (STEM) mode of JEM-2100
instrument. Elemental analyses were carried out using an Oxford X-Max 100 Silicon Drift Energy
Dispersive X-ray spectrometer (Oxford Instruments, Abingdon, UK), connected to TEM, with a probe
size ranging from 2 to 5 nm in STEM mode.

Microscale in-situ Raman spectroscopy was performed using Renishaw inVia confocal Raman
microscope (Renishaw, Wotton-under-Edge, UK), operated with a 532-nm or a 785-nm laser at a
power of 25—-50 mW at the laser source. Raman spectra were processed with Spectragryph 1.0.7
software. For presenting purposes, some EDS spectra were smoothed with Spectragryph 1.0.7
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(Menges, 2017). Retrieved Raman spectra were compared with reference data from RRUFF
database (Lafuente et al., 2015).

Complementary in-situ Sc and Ga content quantification was performed by laser ablation (LA) ICP-
MS (Cetac LSX-213 G2+ LA, HelEx 2-volume ablation cell, coupled to Agilent 8800 ICP-MS). Helium
was used as carrier gas at combined flow of 0.8 L/min. USGS GSD-1G standard was used for
qguantification and BHVO-2G and NIST612 were used for quality control measurements. Fe was used
as an internal standard element for the analysis of hematite matrices and Al in the case of Al
oxyhydroxide matrices. Internal standard element concentrations were determined by SEM-EDS
guantitative measurements as average values of the representative sample areas. Single spot
analysis with spot size of 40 um, laser energy output of 1.46—1.48 J/cm? at a frequency of 10 Hz
were used.

2.4.1 Challenges in the Microanalysis of Bauxite Residue

When performing microscale analysis of bauxite residue, some limiting conditions should be
considered. First, the particle size of bauxite residue is very fine. In AoG’s bauxite residue, 80 % of
the particles are below 1 um in dimensions (Borra et al., 2015). The fineness of the residue material
is partly caused by the crushing and milling of bauxite during the pre-processing of bauxite feed
(e.g. Chin, 1988). The need for fine particle size is crucial during the exploitation of especially karst
(diasporic/boehmitic) bauxites (Lavalou et al., 1999). The minimum particle size that can readily be
studied in EPMA is about 1 um. Therefore, about 20 % of the particles can be analysed with this
technique. It is reported, however, that there is no significant partitioning of mineral phases
between the different size fractions in AoG’s bauxite residue. A slightly higher amount of gibbsite
and diaspore may be present in the coarser fractions and a higher amount of hydrogarnet group
phases in the finest fractions (<32 um) (Pontikes, 2007). Besides, it has been reported from the
beneficiation experiments of different bauxite residues that there is only a slight enrichment of Sc
in the finest fraction (<20 um) of the material while the other fractions have relatively even
distribution of Sc (Gu et al., 2016; Petrakova et al., 2014). To partly overcome the problem of
fineness of bauxite residue, bauxite samples were studied which have not undergone crushing and
grinding and therefore are not disturbed materials like the residue is. To analyse larger crystals of
the specific Bayer process secondary minerals, a sample of scale from the digester autoclave was
collected, which contained perovskite and cancrinite phases. Perovskite-based scales, for instance,
have been previously shown to contain trace elements like Y, Nb and Zr (Zhong-Lin and Song-Qing,
1995). It has been also shown in other studies, that the investigation of Bayer process scales can
provide advantageous information regarding the various properties of the secondary Bayer process
mineral phases (Banvolgyi, 2016; Kawashima et al., 2016). Besides that, bauxite was preliminarily
investigated with transmission electron microscopy (TEM), which has the capability to make
observations of nano-scaled materials. Unfortunately, the EDS device attached to TEM did not
provide the required sensitivity to detect the low quantities of Sc in bauxite residue’s fine
particulates.

The second limiting condition for analysing bauxite residue is that it can be a mixture of raw
materials from different origins, as in the present case of AoG. Thus, it can be difficult to distinguish
the origin of a particle. Also, for this reason were the significantly Sc-enriched source bauxites
examined that provide the characteristics of the source material of bauxite residue. Considering
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the preceding reasoning, it is concluded that current analysis is mostly representative for the bulk
of AoG’s bauxite residue.
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3. General Characteristics of the Materials

3.1 Chemical and Mineralogical Composition of Solid Materials

The analysed karst bauxite samples are dark brown with an oolitic/pisolitic texture (DD-BX, ST-BX,
HS-BX, TU-BX; Figure 4). Sample ST-BX is vesicular (porous), while DD-BX, HS-BX and TU-BX are more
massive than porous. Lateritic bauxite samples (TR-BX, GH-BX) are brownish red in colour and their
texture is earthy, while Porto Trombetas bauxite is more lithified than the Ghanaian Awaso bauxite.
Both lateritic bauxites exhibit segregation of darker brown or reddish (probably hematite-
predominant) and whitish fragments (probably gibbsite-predominant).

Figure 4. Macroscale photographs of bauxite samples: (a) first Greek Parnassos-Ghiona B3 horizon
bauxite, DD-BX; (b) second Greek Parnassos-Ghiona B3 horizon bauxite, ST-BX; (c) Greek
Parnassos-Ghiona B2 horizon bauxite, HS-BX; (d) Turkish bauxite from Milas area, TU-BX; (e)
Brazilian bauxite from Porto Trombetas deposit, TR-BX; and (f) Ghanaian bauxite from Awaso
deposit, GH-BX.
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Bauxite samples are chemically mainly composed of aluminium, iron, silicon and titanium oxides,
while aluminium and iron oxides embody most of the materials (Table 5). Lateritic bauxites have a
higher proportion of LOl compared to karstic ones, which reports mainly to the crystalline water of
gibbsite mineral. Calcium oxide is present in the Greek karstic bauxite sample and not in the
Ghanaian and Brazilian lateritic bauxites. The mixed karst bauxite after HMS unit (where the
limestone is separated) has an increased concentration of Al,O3 and decreased concentration of
CaOo.

Bauxite residue is a dark red thick muddy material with moisture content about 26 % in its initial
state after exiting the Bayer process (Figure 5). As a contrast to bauxite samples, bauxite residue’s
main chemical components are iron oxides, but there is also present an appreciable amount of
unrecovered aluminium oxide (Table 5). The relatively high amount of calcium oxide is mainly
attributed to lime addition in the Bayer process. Sodium oxide content appears from the losses of
sodium hydroxide that binds with secondary minerals created during bauxite processing, due to
transformation of clay minerals to desilication products and reaction of quartz resulting in the same
(M. Gréfe et al., 2011).

Figure 5. Appearance of bauxite residue shown on (a) macroscale photograph of a sample

prepared in the manner of XRF pressed pellet impregnated with resin and polished, and (b) BSE
composite image of a polished section of residue sample in resin. The images do not correspond
to each other. On image (b), brighter particles are generally Fe oxides and greyish areas are
generally composed of Al-Ca-Si-Ti matrix while black colour represents resin.

Aluminium hydroxide (Al(OH)s, HY-AL) and calcined alumina (Al,Os, CA-AL) are regular products of
the Bayer process with some common detectable impurities, such as Fe,03; SiO, CaO and NaO,
while TiO; is not detected.
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Table 5. Main chemical composition of the major materials interacting with the Bayer process.
Description of the materials can be found in Table 2 and the sampling points with respect to the
Bayer process in Figure 3.

si;'::e Code 1;3;% ‘:';;3 F;f& SiO;wt%  TiO,wt% CaO wt% "J\f‘tf;: ivut';
DD-BX 12.80 60.62 19.59 2.17 2.9 0.86 - 98.94
o ST-BX 14.28 56.54 19.79 2.33 2.64 3.78 - 99.36
£ HS-BX 12.88 61.40 20.04 1.04 2.91 0.5 - 98.77
2 TU-BX 11.24 53.88 24.72 4.59 2.99 0.97 - 98.39
§ TR-BX 26.59 53.73 11.19 4.96 1.35 <0.01 - 97.82
2 GH-BX 26.48 52.73 13.54 4.29 1.49 <0.01 - 98.53
- DC-BX 12.87 61.94 19.21 1.62 2.77 1.25 - 99.66
DC-RE 17.85 52.04 12.88 3.14 2.26 9.67 - 97.84

[0}
g BF-DG 19.41 50.41 17.02 1.30 2.24 4.94 6.11  101.43

Q

£
g swos 248 46.67 13.22 4.82 1.69 1.09 532  97.63
E g HYAL 39.2% 60.8* 0.0104°  0.0037° <0.0016°  0.0123% - 100.00
§ g oA 1.15¢ 98.41 0.0115  0.0044  <0.0016  0.0018  0.3610 100.00
& S RMFP 10.38 20.64 41.65 6.76 5.32 10.07 2.87  97.69

* on wet hydrate basis
§ on calcined basis

1 on dry basis

I calculated

An overview of some of the key trace elements in the main Bayer process materials is presented in
Table 6. An extended overview of the trace elements in Bayer process solid materials can be found
in Appendix A, Table A 1 and Table A 2. It can be noted that higher concentrations of Ce, La and Y
can be found in Turkish Milas bauxite, when comparing the different karst bauxites. Lateritic bauxite
samples and especially the one from Porto Trombetas have low concentrations of Ce, Laand Y. The
concentrations of Ga are similarin all bauxites, but again the Turkish Milas bauxite displays a slightly
higher value. Ga is also the only detectable trace element in this selection of analytes that is
enriched in aluminium hydroxide and oxide products compared to bauxites. Karst bauxites contain
approximately 6 times higher quantity of Sc compared to lateritic bauxites, implying their high
importance in the influx of Sc to the system even without presenting detailed mass balance
calculations. The higher abundance of the REEs in karst bauxites coincides with the higher quantity
of Th in the analysed samples. The most prominent trace elements, or even secondary elements
depending on the definition, are Cr and V. There is about two times higher concentration of V found
in karst bauxites compared to lateritic ones, but this does not render the amount of V in lateritic
bauxite insignificant. Present data supports the relative enrichment of trace elements into karst
bauxites as opposed to lateritic bauxites (Valeton, 1972) and the indicated similarities in Ga
concentrations independent of the bauxite type (Schulte and Foley, 2014).
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Table 6. Concentrations of selected trace elements (mg/kg) in the main Bayer process solid
materials, based on a combination of ICP-MS, ICP-OES, XRF-st and INAA data. Extended overview
of trace element concentrations can be found in Table A 1 and Table A 2.

Description Name Ce Cr Ga Lla Nd Sc Th Vv Y
DD-BX 208 693 58 58 53.5 537 51.2 398 47.5

B3
- ST-BX 177 588 60 63 53.8 431 53.0 558 46.7
S B3mix DC-BX 195 768 60 67 425 50.0 512 471 44.8
x
B2  HS-BX 177 590 66 46.7 319 43.1 544 650 46.1
Turkey TU-BX 265 442 69 145 923 56.0 449 487 927
Y TR-BX 9 138 60 50 <5 7.1 247 258 114
£ GH-BX 29 521 57 191 120 84 167 247 17.2
-
S RM-FP 363 1429 41 135 86.5 97.7 1050 1020 89.5
T
i
o DC-RE 137 450 55 56 453 273 37.7 179 399
€ AIOH)3 HY-AL <3 <5 85 <05 <5 <01 <02 <10 <10
©
2 AR203 CAAL <2 <5 83 <05 <5 <01 <02 <10 <10

The chondrite-normalised plot of REE-enriched Bayer process materials is given in Figure 6 (Anders
and Grevesse, 1989). Such plotting is often used in geochemistry to eliminate the so-called Oddo-
Harkins effect according to which the even-numbered chemical elements are more abundant than
the odd-numbered ones and therefore the plots would otherwise possess a zig-zag pattern
(Rollinson, 1993). It can be seen from the graph that in Parnassos-Ghiona bauxites there is a positive
Ce anomaly. This is in accordance with a previous case study (Deady et al., 2016). The authors of
that study proposed that it could be an artefact of the samples originating from the upper parts of
the bauxite profiles with relatively oxidising conditions that favour the abundant occurrence of
tetravalent Ce (Deady et al., 2016). However, present case study suggests the Ce positive anomaly
to be a more systematic effect in the Parnassos-Ghiona deposit, observed both in B2 and B3 horizon
bauxites. Ce anomaly is not observed in the Turkish Milas bauxite and in the lateritic bauxite
samples. Bauxite residue in both samples from 2010 and 2016 has inherited the positive Ce anomaly
from bauxite feed. All karst bauxites display a minor negative Eu anomaly, but the Brazilian Porto
Trombetas bauxite seems to have a positive Eu anomaly. Small enrichment of Gd, can be seen in all
karst bauxite as well as bauxite residue samples, which is also consistent with previous observations
(Deady et al., 2016). Bauxite residue is clearly enriched in REEs compared to Parnassos-Ghiona
bauxite, but the enrichment level of Turkish Milas bauxite is practically the same as for the current
bauxite residue. The HMS residue from limestone separation unit is slightly depleted in REEs
compared to the bauxites from which it is derived from and the Ce anomaly is less pronounced.
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Figure 6. Chondrite-normalised plot of bauxites and bauxite residue. In the positions with gaps,
the REE concentrations are below detection limit. Chondrite data is adapted from Anders and
Grevesse, (1989). Gaps mark the analyses where the analyte concentration is below the available
detection limit.

Main mineral phases of the karst bauxites are diaspore, boehmite and hematite, while for the
lateritic bauxites they are gibbsite, goethite and hematite (Figure 7, Table 7). Brazilian Porto
Trombetas bauxite has also a relatively high kaolinite content, 10.5%.

a) B Measured B —boehmite A — anatase
) D — diaspore R — rutile
—— Simulated He — hematite =~ Ca — calcite
B G — goethite Ka — kaolinite
B B
D B
H
~ He A T o oo N HeB e
5 | Ka D G Rllca Dlg fw HeDY B Afl B "°,DD B HepB B
©
210 20 30 40 50 60 70
UC) b) Measured H Hg — hydrogarnet Po — portlandite
B . e Cn — cancrinite P — perovskite
< —— Simulated

Ch — chamosite Gb — gibbsite

He He

10 20 30 40 50 60 70

Figure 7. Examples of diffractograms and simulated patterns of (a) Greek Parnassos-Ghiona B3
horizon bauxite, DD-BX; and (b) bauxite residue. Intensity scale is linear.

While bauxites are composed of well crystallized phases judging by the narrow peaks of XRD scans,
the crystallinity of bauxite residue phases is less developed as seen from the wider XRD peaks
(Figure 7). The most abundant mineral phase in bauxite residue is hematite (31%), followed by
hydrogarnet group phases (14.5%). These are then followed by diaspore (13%), cancrinite (11%)
and goethite (7.5%), while diaspore represents the unrecovered alumina. Several minor mineral
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phases exist in the residue in addition to the major ones, such as calcite, perovskite, chamosite (a
chlorite group phase), gibbsite, boehmite, portlandite, rutile and anatase. According to a previous
work, about 10 % of AoG’s bauxite residue could be XRD amorphous (Hertel et al., 2016). Chamosite
was detected only in the bauxite residue and intermediate karst bauxite slurry samples (BF-DG),
but its presence has been reported earlier in Parnassos-Ghiona bauxite, based on microanalysis
(Laskou and Economou-Eliopoulos, 2007). Generally, chamosite is a commonly encountered
chlorite group phase in bauxites (Bardossy, 1982; Valeton, 1972). The 20 positions of kaolinite and
chamosite main peaks coincide in diffractograms of bauxites. Chamosite reacts very slowly in the
Bayer process and does so at temperatures above 280 °C (Songging and Zhonglin, 2016). Therefore,
its presence in bauxite residue is expected. In the intermediate karst bauxite slurry (BF-DG),
kaolinite has already been reacted, supported by the existence of Si-containing hydrogarnet phases
(9%) and minor amount of cancrinite (1%) in this material. Kaolinite starts to react in the
temperature 95—-100 °C (Songging and Zhonglin, 2016), therefore its absence in the solids in the
preheating stage is expected.

Bauxite processing results in the formation of secondary minerals like hydrogarnet group phases.
In the present bauxite residue sample it was identified being an iron substituted hydrogarnet
(Cas[Al,Fel2(SiO4)n-(OH)12-4n) (Sajd, 2005; Smith, 2017). Nevertheless, it is reasonable to assume that
several of the hydrogarnet group endmembers exist in bauxite residue since their XRD peak
positions are similar. Perovskite phase (CaTiOs) is the result of titanium dioxides, mainly anatase,
reacting with NaOH and then with lime (Smith, 2017; Suss and Rydashevsky, 1996). The reaction
between sodium aluminate and dissolved silica forms cancrinite (Nag(Al,Si)12024(0OH)2:3H,0) (Sajo,
2005; Whittington, 1996).

A rough indirect estimate of zircon phase quantity in the studied materials resulted in a value of
0.1% in bauxite and 0.2% in bauxite residue. This estimate was based on bulk zirconium (Zr)
elemental concentration (0.12% Zr in bauxite residue) (P. N. Gamaletsos et al., 2016), assuming that
all of the elemental Zr is attributed to zircon mineral phase. Zircon phase quantity becomes
important in the context of estimating trace element inventory (especially Sc) in different mineral
phases.

Aluminium hydroxide is mineralogically mainly composed of gibbsite. Alumina sample is mainly
composed of theta alumina, which is one stage before the alpha alumina in the decomposition
reaction series from aluminium hydroxide to alumina (Hudson et al., 2000).
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Table 7. Mineralogical composition of the main Bayer process materials, excluding products. The
phase quantities represent the XRD-crystalline phases. In jtalics are indicated the Bayer process
specific phases.

Sample Phase
Q
g 2 5
9} ) = S 2 ] :
h= o CU ) ‘@ S = = N
I= 5] pet b= = b ) N = 3 S £ 3 SN
< a 2 g = 8 2o = = £ e S 3 = 3
Bauxite S & = § % & § 2 5§ ° = ¥ 5 § & £
auxite @ a [G) T [G) < & @) g ~ O T O a = N
DD-BX 53 145 175 3 22 07 08 6.5 98.2
ST-BX 32 36 177 45 2 07 3 05 35 99.2
HS-BX 59 10 21 35 2 1 06 2.5 99.6
TU-BX* 58 19 5 08 2 3 1 5 100.3
TR-BX 76 6 55 09 04 10.5 99.3
GH-BX® 15 1 80 35 9 04 12 03 2 99.4
DC-BX 28 42 13 9 2 07 06 4 99.3
Intermediate
BF-DG 10 43 15 10 6 12 08 1 4 9 1 25 900t
SW-DS 05 1 63 11 2 12 05 1 1.5 3 10 94.71
By-products
RM-FP 2 13 25 31 75 06 07 5 03 37 145 11 4 95.8
DC-RE 30 28 9 45 15 08 17 7 97.8

* Also 5% illite/illite-montmorillonite and 1.5% corundum.

§ Also 0.5% lithiophorite.

1 Missing proportion could account to non-crystalline sodium in the sample as chemical and mineralogical analysis
cannot be matched with Na,O concentration.

Bauxite residue phase composition was compared in samples collected from 2010—-2016 (Figure 8).
The diffractograms that were used for phase quantification originate from: 2010 — present; 2011a
— C. Bonomi & C. Cardenia; 2011b — P. Tam; 2015 — present; 2016a D. Arifio Montoya, 2016b —
present. It can be therefore indicated that hematite content varies in AoG’s bauxite residue from
26 to 35%, hydrogarnet phases varies from 14 to 18%, chamosite from 3 to 7%, goethite is quite
stable and varies from 7.5 to 9%, cancrinite has quite high variations from 6 to 11%. It should be
noted, though, that the method used for current phase quantification can inherit the errors in the
chemical analysis of the samples, if they are present (Sajé, 2008). Figure 9 depicts the average phase
concentration of AoG’s bauxite residue based on the data described previously.
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Figure 8. Comparison of AoG’s bauxite residue phase composition deposited in different years.
Abbreviations: hematite (Hema), hydrogarnet (Hgr), diaspore (Dias), Chamosite (ChmA), goethite
(Goet), cancrinite (Canc), perovskite (Pero), boehmite (Boeh), rutile (Ruti), calcite (Calc), gibbsite

(GibS), quartz (Quar), anatase (Anat).

Portlandite Rutile Anatase
0.8 15 0.5

Boehmite
3
Gibbsite
2

Chamosite
5

Hematite
31

Perovskite
45

Calcite
4

Goethite
8

Cancrinite

9
Hydrogarnet

Diaspore 16

115
Figure 9. Average AoG’s bauxite residue mineralogical phase composition based on 6 residue
samples.
The chemical and mineralogical composition of bauxite materials is quite typical with respect to

both analysed bauxites, karstic and lateritic, compared those described in the literature (Bardossy,
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1982; Valeton, 1972). It can be said that also the bauxite residue from AoG is with a typical
composition, but different residues around the world have quite varying ranges of compositions
(Evans, 2016).

3.2 Basic Microscale Characteristics

3.2.1 Bauxites

Greek Parnassos-Ghiona bauxites are dominated by oolitic/pisolitic textures (Figure 10, a—c). Three
principal textures are commonly present: (1) Al-dominated ooids/pisolites that are dark gray on BSE
images, (2) Fe-dominated ooids/pisolites that are bright and whitish in the BSE images, and (3)
matrix that fills the areas between the ooids/pisolites that has about equal content of Al and Fe and
appears light grey in BSE images. Second Parnassos-Ghiona B3 horizon bauxite (ST-BX, Figure 10, b)
has distinct hollow vesicles or pores and it is more fractured than the other two Parnassos-Ghiona
bauxites. Turkish Milas diasporic karst bauxite is more massive and homogeneous with rather
distinct Al- and Fe-dominant formations compared to Greek bauxites (Figure 10, d). Brazilian Porto
Trombetas bauxite has rather diverse textural characteristics, with relatively large areas dominated
by Al as well as large areas dominated by Fe oxides. It is more compact compared to the other
lateritic bauxite from Ghana. In the image in Figure 10 (e), the depicted area is dominated by Al-
rich matrix, whereas on the left side of the image, some globular formations of Fe oxides are
present. As indicated from the macroscale characteristics of Ghanaian lateritic bauxite, also its
micro-texture is fractured, implying to poor lithification (Figure 10, f). Al- and Fe-rich areas are
relatively homogeneously distributed, while Fe oxides have the tendency of seemingly filling the
fractures. Some minor phases are also seen in the images shown here, like a Ti phase in Figure 10
(a) and a zircon grain in Figure 10 (f).

Figure 10. Microstructure of bauxite samples shown on BSE images: (a) first Greek Parnassos-
Ghiona B3 horizon bauxite, DD-BX; (b) second Greek Parnassos-Ghiona B3 horizon bauxite, ST-BX;
(c) Greek Parnassos-Ghiona B2 horizon bauxite, HS-BX; (d) Turkish bauxite from Milas area, TU-BX;

(e) Brazilian bauxite from Porto Trombetas deposit, TR-BX; and (f) Ghanaian bauxite from Awaso

deposit, GH-BX. Ti — titanium dioxide particle, Zr — zircon particle. Generally, the darker greyish
areas are Al-dominant and brighter areas are Fe-dominant.
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3.2.2 Bauxite Residue

Although bauxite residue is generally a very fine material, it does not prevent from making
distinction between its main as well as minor mineral phases in microscale analysis. This can be
seen in Figure 11, where examples of practically all bauxite residue’s main mineral phases also
detected with XRD are shown. Commonly, relatively large fragments (10—100 pum) of Al-rich, Fe-rich
or Ca-Al-Si containing particles found embedded inside a matrix of the residue’s fine particulates
(Figure 11, a). Al-rich fragments generally correspond to undigested diaspore/boehmite, Fe-rich
particles to hematite or goethite and Ca-Al-Si particles are probably hydrogarnet group phases,
when comparing the XRD phase quantification and microscale analyses and the known occurrence
of such phases in bauxite residue (M. Grafe et al., 2011; Smith, 2017; Zoldi et al., 1987).

Fe oxide/oxyhydroxide particles occur in very wide range of sizes, as emphasised in Figure 11 (b).
Sometimes, hematite particles are attached with goethite (Figure 11c). The identity of such Fe oxide
occurrences was identified with Raman microscopy (refer to section 7.1.2). It is characteristic to
goethite phases analysed in bauxite residue that the sum of total oxides measured by WDS is
around 90 wt%, from where the missing 10 wt% accounts for crystalline water of goethite (refer to
section 7.1.2, Table 19). Both evidences, based on Raman spectroscopy and WDS, will be addressed
more thoroughly in further chapters (section 7.1.2). Also, the Al-rich particles, corresponding to
boehmite/diaspore, can be relatively large, exceeding 50 um-s. Differently from Fe oxide particles,
Al oxyhydroxide particles tend to be fractured, probably because of bauxite grinding (Figure 11d).
In the example of Al oxyhydroxide in Figure 11e, the rims of the particle are eroded as a result of
the caustic leaching, but the dissolution has not been finished, leaving most of the particle intact.
Particles composed almost exclusively of Ca can be linked with calcite phase identified in XRD
(Figure 11f). Ti dioxide phases, such as shown in Figure 11g, that have comparatively large sizes
(>20 um) are encountered in SEM analysis quite rarely. It was noted that some Ti phases exhibit
properties indicating that a reaction has occurred (Figure 11h). Ti dioxide phase, probably anatase,
is attached in Figure 11h to a calcium titanate phase that is likely a reaction product of anatase
reacting with caustic soda and the dissolved Ca ions (discussed further in section 5, Figure 32). In
Figure 11i is shown a Ca-Al-Fe-Si phase that could correspond to iron substituted hydrogarnet
identified by XRD and discussed in several publications (Smith, 2017; Whittington, 1996; Zoldi et al.,
1987).
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Figure 11. Microscale BSE images of bauxite residue’s main mineral phases: (a) particles of Fe
oxides (Fe) and undigested boehmite/diaspore (Al) particles as well as calcium aluminate particle
in fine homogeneous Fe-Al-Ca-Si-Ti matrix of the residue, (b) fragment of an Fe oxide particle, (c)
two Fe phases attached to each other, corresponding to hematite and goethite as identified by p-
Raman spectroscopy, (d) undigested boehmite/diaspore, (e) undigested boehmite/diaspore which
edge areas are affected by the caustic leaching, (f) Ca phase corresponding to calcite, (g) titanium

dioxide corresponding to anatase or rutile, (h) titanium dioxide, likely anatase, and a newly
formed calcium titanate phase on the account of reacted anatase, and (i) calcium aluminium
ferro-silicate phase probably corresponding to iron substituted hydrogarnet.

3.2.3 Aluminium Hydroxide and Alumina

In addition to bauxite and bauxite residue, also the Bayer process products aluminium hydroxide as
well as calcined alumina were examined microscopically (Figure 12). It is the purpose of the Bayer
process to produce technically pure alumina, therefore significant impurities are not present in the
products, as seen in the homogeneous character of BSE images in Figure 12 (a), (d) and (e). Those
impurities which were detected, are all silicate-based. They include Fe-Al-Mg-Si particles, Na-Al-Si
particles that could correspond to cancrinite and K-Al-Si particles. However, such impurities are
very scarce which is in accordance with the chemical analysis of Bayer process products (Table 5,
Table A 3).
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Figure 12. Microstructure of alumina (a—c) and aluminium hydroxide (d—f) with impurities. Cor —
corundum (or other forms of Al,03), Gb — gibbsite.

3.3 Chemical Composition of the Bayer Liquors

Bayer liquor from various production stages is relatively enriched in the concentration of Ga, V, As
and K (Table 8, Appendix A Table A 4). Ga, V, As and K concentrations in various Bayer plants are
relatively well known, while K is considered highly soluble in the process liquors and Ga, V as well
as As medium soluble (Teas and Kotte, 1980). Note that the concentration of some analytes, like
GaandV, is higher in the spent liquor compared to pregnant liquor. This is because the total volume
of spent liquor is smaller than the total volume of pregnant liquor and therefore the concentrations
appear higher. At the same time, the mass balances of these elements are in equilibrium, as
explained further (section 4.1). The same accounts for the concentration of total caustic. Mo was
also accumulated to process liquor, but the behaviour and mass balance of this element in Bayer
process is already given by Papp et al. (Papp et al., 1971). Detectable concentrations of Cr and Ni
are also presentin Bayer liquor, but these metals are not particularly accumulated into Bayer liquor
compared to their concentration in bauxite feed. Other metals, such as Ce, La or Y that were of high
interest within the scope of this study, do not occur in dissolved form in Bayer liquor in detectable
concentrations (Table 8). This is a possible result as the REEs are not predicted to have soluble
species in highly alkaline conditions (pH >14) (Brookins, 1988, 1983), which is further supported by
the mineralogical observations indicating the REEs remain in solid forms during the Bayer digestion
(section 6.3). For the case of Sc, ICP-MS indicated the presence of some dissolved Sc in process
liquors (0.2-0.4 mg/L), but INAA did not confirm its presence in these samples. Suss et al. report
that Sc concentration in Bayer liquor remains <1 mg/L (Suss et al., 2017). Bayer liquor also contains
low concentrations of U (about 1.3 mg/L), which is in accordance with previously known facts (Sato
etal., 2013). It is interesting to note that 20-30 mg/L concentration of tungsten (W) was also found
in process liquors by INAA and XRF. Previous studies that have compared W concentrations in
bauxite and derived residue have indicated a depletion of W in bauxite residue compared to bauxite
feed, suggesting that current detection of W in Bayer liquor is realistic (Feret and See, 2010;
Gamaletsos, 2014).
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Table 8. Composition of Bayer process pregnant (PL) and spent (SL) liquors. Extended overview of

Bayer process liquor composition is available in Appendix A Table A 4.

ALO:;*  Na,O° As Br Ca Ce Cr Fe Ga Gd K
g/l g/l mg/L mg/L mg/L  mg/L mg/L mg/L  mg/L mg/L g/l
. . ICP- ICP- ICP- ICP-
titr. titr. INAA INAA AAS uv AAS
MS MS OES MS
PL 192.2 159.4 110.8 33.6 14.9 <0.04 1.4 9.6 267.2 <0.04 13.7
SL 108.6 171.7 99.6 314 16.5 <0.04 1.3 3.4 279.7 <0.04 13.8
La Mg Mo Ni Sc Si Th U \' w Y
mg/L mg/L mg/L  mg/L  mg/L mg/L mg/L mg/L mg/L mg/L mg/L
ICP- ICP- ICP- ICP-
AAS INAA AAS INAA AAS INAA INAA
MS MS OES MS
PL <0.04 <0.1 318 4.8 <0.05 544 <0.1 1.28 295.2 27 <0.04
SL  <0.04 <0.1 273 <4 <0.05 520 <0.1 1.27 314.7 21 <0.04

* The aluminate content of the liquor, expressed as Al,05; (Wellington and Valcin, 2007).

$ Total caustic, the sum of the free Na(OH) and Na bound with sodium aluminate, expressed as Na,O
(Wellington and Valcin, 2007).
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4. Distribution of Trace Elements in the
Bayer Process

Chapter 4 is based on the following publication: Vind, J., Alexandri, A., Vassiliadou, V., Panias, D.,
2018. Distribution of selected trace elements in the Bayer process. Metals 8 (5), 327.

Based on the information about trace element concentrations in process liquors (Table 8), the mass
distribution descriptions of the trace elements were divided into two main categories. The first one
describes the metals (and metalloids) that accumulate to Bayer liquor or dissolve sparingly (V, Ga,
As, Cr, U) while the second one describes the metals for which the distribution is controlled only by
solid materials (REEs, Sc, Th).

Full data describing the distribution and mass balance inventory of all analysed trace elements is
given in Appendix A (Table A 5, Table A 6, Table A 7). Processing steps are divided into seven
principal units: (1) heavy media separation (HMS), (Il) grinding and preheating of karst bauxite, (ll1)
grinding and pre-desilication of lateritic bauxite, (IV) digestion, settling and washing, (V)
precipitation, (VI) evaporation and (VII) calcination. Overall mass balance is summarised in “internal
balance” which includes the process liquors in addition to solids and “external balance” that
includes only solid materials input and output. For the metals which do not occur in process liquors,
units V=VII are omitted, because the metal concentrations relating to those units were below
detection limits (which are specified in Table A3).

4.1 Metals (and Metalloids) that Accumulate to Processing Liquor

There was insignificant difference in the Ga concentrations when comparing lateritic and karst
bauxites (Appendix A, Table A2). This is in line with the report by U.S. Geological Survey, where they
concluded a similar presence of Ga in karstic and lateritic bauxites. They summarise the world
average Ga concentration in all analysed bauxite deposits as being 57 mg/kg (Schulte and Foley,
2014), which is comparable to present analysis — 57 to 66 mg/kg in all currently analysed bauxites.
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Concentrations are said to be ranging from 12 to 52 mg/kg Ga with an average of 40 mg/kg in
bauxite districts of Greece and Turkey (Schulte and Foley, 2014).

Gallium possesses a close relation to Al and therefore occurs prevalently in Al-minerals. Similar
properties include atomic radius, trivalent oxidation state, tetrahedral or octahedral coordination
and amphotericity (Gray et al., 2013; Shaw, 1957). The mass distribution of Ga is mainly controlled
by process liquors (Figure 13). During bauxite digestion, Ga is released from aluminium-bearing
minerals like gibbsite, boehmite and diaspore (Gray et al., 2013). The Ga digestion reaction is
described by Equation 1 (Authier-Martin et al., 2001).
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Figure 13. Mass distribution of Ga (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS (solids) and ICP-OES (liquors) data.

Ga accumulates in process liquors, achieving saturation at levels exceeding 300 mg/L. This is about
the average of that reported across earlier publications (60—600 mg/L Ga), yet typically shown
values remain between 100-200 mg/L Ga (Figueiredo et al., 2002; Ili¢ and Mitrovi¢, 1989; Lamerant,
1995, 1992; Riveros, 1990; Selvi et al., 2004). The present Ga saturation levels are prospective for
economic extraction given that Frenzel et al. suggest a conservative cut-off concentration for
profitable production of Ga from process liquor being 240 mg/L (Frenzel et al., 2016). Ga is about
25 times enriched into pregnant liquor compared to bauxite input. Even though the highest
concentration of Ga was detected in concentrated spent liquor, the highest relative amount of Ga
(allowing for volumetric changes from gibbsite precipitation and liquor evaporation) was found in
pregnant liquor. This is because freshly leached Ga in digestion is present in pregnant liquor, while
some Ga is precipitated along with gibbsite during precipitation and so removed from the
concentrated spent liquor stream.

From the pregnant liquor, 68% of Ga entering the process is precipitated with aluminium hydroxide,
resulting in the concentration of 85 mg/kg. This impurity, however, has no adverse effect on the
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quality of smelter grade alumina (Authier-Martin et al., 2001). A smaller proportion of 29% reports
to bauxite residue (36 mg/kg on product-normalised basis). The mass difference between the
entering and exiting portion of Ga is negligible (3%). Note that the normalised concentration of Ga
in liquid fraction decreases from spent liquor to concentrated spent liquor and then to the slurry
after preheating stage. In the latter, the decrease of concentration in liquid fraction is accompanied
by the simultaneous increase in the solid fraction. Since this is a systematic observation occurring
also in the distribution of other trace elements, it will be discussed further in the text.

For the purposes of theoretical modelling of Ga distribution, Hudson (Hudson, 1965) has indicated,
and Frenzel et al. (Frenzel et al., 2016) have applied the partitioning of Ga as 35% going to bauxite
residue and 65% to hydrate product (Frenzel et al., 2016; Hudson, 1965). From this analysis, the
partitioning is more in line with that reported by Figueiredo et al., (2002), suggesting 30% of Ga
going to bauxite residue, and 70% to hydroxide product, although Figueiredo et al., (2002) do not
refer to the source of their data. This case study therefore supports the literature that suggests
about 70% of bauxite Ga is digested in the Bayer process, and this part is subsequently precipitated
into aluminium hydroxide. About 30% of Ga is separated from the process with bauxite residue.

Almost twice as much V is contained in the karst bauxite (336-650 mg/kg) compared to the lateritic
bauxite (201-258 mg/kg). Given the different proportions of bauxites in the feed, the major input
of V is therefore from karst bauxite (87%). Mass distribution of V is given based on XRF-st data since
it provided considerably better fit in the mass balance model compared to ICP-MS data (Figure 14).
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Figure 14. Mass distribution of V (mg/kg) normalised to mass of aluminium hydroxide produced,
based on XRF-st and ICP-OES data.

The mass distribution of V is again mainly regulated by process liquors, where the concentration of
V exceeds 400 mg/L in concentrated spent liquor. This is in accordance with the range of V
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saturation levels in Bayer liquors reported elsewhere in publications (100—-2800 mg/L V) (Figueiredo
et al., 2002; Selvi et al., 2004; Teas and Kotte, 1980; Zhao et al., 2012a). Authier-Martin et al. refer
to earlier studies indicating that V is about 30% soluble during Bayer digestion (Authier-Martin et
al., 2001). Compared to bauxite feed on alumina normalised basis, V is enriched in pregnant liquor
up to 4 times in this study. In process liquors, V appears in the form of VO,* (Zhao et al., 2012a).
This impurity is unwanted in hydroxide and metal production due to its known property of
decreasing the electric conductivity of metallic Al, causing a green hue in fused Al, and the scale it
can form in the piping of a Bayer refinery when precipitated from the liquor in the cooler parts of
the circuit (Authier-Martin et al., 2001; Fenerty, 1960; Zhao et al., 2012a). The removal of V from
process liquors is a side benefit of process lime addition. V precipitates as calcium vanadate, as an
impurity in tri-calcium aluminate (CasAlx(OH)12), or as Na7(VOa),F-19H,0(Okudan et al., 2015; Smith,
2017; Zhao et al., 2012a). Present study as well as the regular monitoring in the plant materials did
not detect any V in the aluminium hydroxide product (<10 mg/kg). Therefore, lime addition that
mainly reduces soda losses among other beneficial effects, is simultaneously providing a way to
remove excess V from the Bayer cycle and preventing V precipitation to product. Besides, V
impurities that pass to product are more commonly related to the existence of V in the fuel used
to calcine aluminium hydroxide (Teas and Kotte, 1980). In the existing case study, V is separated
from the process and is accumulated in the bauxite residue.

The input of As to the system from lateritic bauxite is negligible compared to karst bauxite. Once
again, the accumulation of As to the liquor-based circuit is evident, as seen from the diagram in
Figure 15. The saturation of As to process liquor is achieved at about 130 mg/L concentration. In
earlier studies, As has been detected in the alkaline liquor of bauxite residue suspension as well as
in Bayer liquors (Burke et al., 2012; Teas and Kotte, 1980). Teas & Kotte have classified As as a
medium soluble impurity in the Bayer process with a similar behaviour to V (Teas and Kotte, 1980),
which is evident also from this case study.
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Figure 15. Mass distribution of As (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS (solids) and INAA (liquors) data.

Higher than usual discrepancies in the input and output masses of As in different units are noted
compared to other analysed elements. This could be an indication to the need of further developing
analytical techniques relating to As in Bayer process materials. However, dissolved As must exist in
the system when we observe the “karst bauxite grinding and preheating” unit. It is apparent from
there that As concentration increases significantly when comparing the solids entering and exiting
the unit. This implies that the entering of As to solid fraction must originate from the concentrated
spent liquor. In any case, in the end of the processing cycle, all As in found in bauxite residue and
in the context of available detection limits does not enter to aluminium hydroxide product (<0.5
mg/kg).

The majority of Cr input (95%) originates from karst bauxite. A minor fraction of Cr, about 1% of
input, can be dissolved into process liquor giving rise to a concentration of 1.4 mg/L (Figure 16).
During precipitation, Cr was not detected to enter product (<5 mg/kg), or it does in a very small
quantity (~ 2 mg/kg), as could be suggested from difference in the balance of precipitation stage
and the small deficiency (1%) of Cr mass in the output material. An earlier study has pointed out a
5 mg/kg concentration of Cr in hydroxide product (Mohapatra et al., 2012). All the quantity of Cr
that entered to the process is found in bauxite residue as the sole output carrier of this metal.

Karst
bauxite
Lime
1234 Concentrated
<2.5 spent liquor
Karst 10.6
< grind. [ Evap.
preheat
Digestion L aterit Spent
settling atertic liquor
. bauxite
washing 13.2
123 J7 60 T?pent
iquor
_<0.1 Later. 9
| . 0.3 .
grind. g Precip.
desilicat.
1265 Prggnant
liquor <5
15.6
Bauxite Alumini'um
residue hydroxide

Figure 16. Mass distribution of Cr (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS (solids and liquors) data.

Uranium is another bauxite trace element that occurs in bauxite deposits in very low quantities (in
present bauxites 3—8 mg/kg) but is known to dissolve to some extent in Bayer liquor (Figure 17).
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Approximately an equal quantity of product-normalised U is introduced to the process via the
composition of bauxite as well as concentrated spent liquor. After digestion stage, additional
quantity of U is dissolved into the liquid phase and the pregnant liquor achieves the highest level
of normalised quantity (14.3 mg/kg Al(OH)s). As far as the measured concentration is concerned,
the saturation level of U in pregnant liquor is 1.28 mg/L, which is comparable to that reported in
the literature — 1.4 mg/kg U (Sato et al., 2013). It can be therefore indicated that about one-to-
one ratio of product-normalised U exists in the system when comparing the input bauxite feed and
the process liquor. In the precipitation stage, approximately 8% of the initial quantity of U exits the
process in the composition of aluminium hydroxide which then passes also to calcined alumina. It
has been reported previously that 10% of initial U can end up in aluminium hydroxide (Sato et al.,
2013). The rest of the U is separated from the system in the composition of bauxite residue, while
present mass balance has a small deficiency of 4% in the end of the process when comparing the
input and output solid materials. U is an unwanted impurity in certain applications of alumina, such
as some electronical applications, because of its property to produce ionising radiation and the
emitted alpha particles can therefore affect memory devices (Sato et al., 2013). The main
controlling factor of U precipitation to aluminium hydroxide is primarily the surface area of the seed
crystals and then the precipitation temperature. Therefore, increased surface area of seed and
higher precipitation temperature decreases the quantity of U precipitating to hydroxide product.
Another way to reduce U in product is explained to be the removal of organic compounds from the
pregnant liquor (Sato et al., 2013).

Karst
_ bauxite
Lime
13.1
<0.003
19.3
n/a K"?"St 12.9
<———  grind. <— Evap.
preheat
Digestion Lateritic
settling bauxite
washing 3
e 14 Aluminium
hydroxide
na Later. | g3 _ 1.2
grind. |« Precip. 0o Calcin.
desilicat. '
12.7 J
0.3
Bauxite 143 o
residue
Aluminium  Ajumina
hydroxide
to stock

Figure 17. Mass distribution of U (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS (solids and liquors) data.

-46 -



In the mass balance models of Ga, V, As, Cr as well as U it can be noted that during the “karst bauxite
grinding and preheating” as well as in smaller scale during “lateritic bauxite desilication”, a
pronounced increase in trace element concentration is observed in the solid fraction flows. This
increase of trace constituents is occurring with the simultaneous decrease in concentrations in
liquid flows. Thus, the trace constituents appear to precipitate during these processing phases.
Probably, the trace elements precipitate in the composition of Bayer process characteristic solid
phases, that are a group of Ca-, Al-, Na- and Si-containing phases, including desilication products
(sodalite and cancrinite), hydrogarnet (hydrogrossular) type phases as well as calcium titanate in
the form of perovskite (CaTiOs) (M. Grife et al., 2011; Smith, 2017). Calcium vanadate or
CasAl;(OH)i; are already known species that contain V in Bayer process specific solid phases (Smith,
2017; Zhao et al., 2012a). As mentioned before, lime addition position on the schemes is a
simplification and it is added in more processing steps, including the preheating, thus the possibility
of forming Ca-containing species is not limited to the digestion stage. Therefore, during the
preheating stage, the trace elements occurring in the spent liquor (Ga, V, As and Cr) are thought to
precipitate in the composition of Bayer process characteristic solid phases. While this effect occurs,
the trace element concentration in the liquid fraction decreases and in the solid fraction increases.
At the same time, the mass balance equilibrium of the trace elements is maintained. During
digestion, the pregnant process liquor becomes saturated again in the trace elements on the
account of leaching of the newly added bauxite feed.

Another characteristic that can be observed from the mass distributions of Ga, V, As and Cr is that
their product-normalised content shows a decreasing trend from pregnant liquor to spent liquor
and then to concentrated spent liquor. Only for Ga it is evident that part of its mass is removed
from the liquor during precipitation. Since it is observed in the distribution patterns of all the named
trace elements, it can be concluded being a systematic behaviour. The working hypothesis is that
minor deposition of the trace constituents occurs throughout the mentioned production steps in
the form of secondary precipitates or solid formations like scales in the cooler parts of piping orin
the solids of filter cakes (e.g. from security filtration of pregnant liquor, “liquor polishing”)
(Banvolgyi, 2016; Lavalou et al., 1999; Teas and Kotte, 1980). Like already mentioned, some trace
elements (Y, Nb, Zr) have been detected in perovskite-based scales in the Bayer circuit (Zhong-Lin
and Song-Qing, 1995). Enhanced concentrations of trace elements like Ni, Cr and V in the range of
700-4900 mg/kg were detected in perovskite-dominated matrix of a scale sample formed in the
AoG’s digestion autoclave. The cancrinite-dominated matrix of the same sample was, however,
relatively depleted in trace elements (e.g. 140-170 mg/kg V) (Vind et al., 2017a). Sometimes,
enhanced concentrations of V (112 mg/kg) and Ga (28 mg/kg) have been identified in the alumina
dust from calciner electrostatic filters, making this material an attractive source of V and Ga
(Gladyshev et al., 2015). The former examples therefore support the hypothesis that a proportion
of trace elements is deposited to minor by-products of the Bayer process. Scales, filter cakes and
electrostatic filter dust are regularly cleaned during the production. The volumes of these materials
being created are not easily quantifiable, but an assumption can be made that the decrease in the
trace element concentrations in the liquor stream can account to the passing of the trace elements
to the formerly mentioned minor by-products of the Bayer process as result of the described
systematic behaviour.

For the previously discussed elements (Ga, V, As and Cr), it can be concluded that they first
accumulate to Bayer process liquor (although Cr in very small extent) and once their saturation level
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in liquor is achieved, their input and output flows equilibrate. Minor output of those trace elements
probably occurs into minor Bayer process by-products from the liquor-based circuit as the
concentrations in liquors drop systematically in the consecutive production steps.

4.2 Metals that do not Accumulate to Liquor

Distribution of Ce is presented as the representative of LREE elements due to its highest
concentration in analysed materials and good analytical stability (Figure 18, Appendix A Table Al).
The rest of the mass balances of REEs can be found in Appendix A, Tables A5 and A6. The input of
Ce from lateritic bauxite is practically insignificant and almost the sole source of it is karst bauxite.
Cerium distribution is dictated by solid materials only. On the “white side” of the Bayer process, all
the analysed concentrations of Ce are below detection limits (aluminium hydroxide <3 mg/kg,
process liquors <0.04 mg/L). Ce content remains steady from bauxite to intermediate suspension
solid fraction and then to bauxite residue. In the end of the process, there is only 1% difference in
the input and output quantities.
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Figure 18. Mass distribution of Ce (mg/kg) normalised to mass of aluminium hydroxide produced,
based on INAA (solids) and ICP-MS (liquors) data.

The distribution of Y is presented as the representative of HREEs given its highest concentration
among this group of elements (Figure 19). Except for the quantities, the distribution of Y is identical
to the one of Ce. In all processing stages, its distribution follows the solid materials and Y does not
dissolve in the process liquor and thus does not enter to aluminium hydroxide product. The
difference in the quantity of input and output of Y (4%) is higher than for most of the REEs, but still
acceptable for presenting its mass balance model.
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Figure 19. Mass distribution of Y (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS (solids and liquors).

The distribution of Sc is presented in Figure 20. Note that the concentrations of Sc were analysed
by INAA method.

Suss et al. (2017) report that Sc is expected to occur in dissolved form during Bayer digestion, but,
it probably precipitates rapidly in an unknown form that might be ScO(OH) or Sc(OH)s (Suss et al.,
2017). The progression of Sc through the process is once more regulated by solid material matrix
from bauxite to intermediate solids and then to residue. There is no missing quantity of Sc in the
end of the cycle. Present result is slightly different from previous results of Sc distribution patterns,
where 0.6-1.5 mg/kg bauxite-feed-normalised concentration of Sc was detected in aluminium
hydroxide products in Alumina Plant of Urals and Bogoslovski Alumina Plant (Derevyankin et al.,
1981). It can be noted, though, that the processing conditions between the Russian alumina plants
and AoG are different, since the former also partly included sintering of the bauxite ore, although
it was not performed for the total amount of bauxite feed.
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Figure 20. Mass distribution of Sc (mg/kg) normalised to mass of aluminium hydroxide produced,
based on INAA (solids and liquors).

Analogously to the REEs, the transportation of Th through the Bayer process takes place in the
composition of solid mineral matrix so that Th is found only in the “red side” of the process (Figure
21). This is in accordance with previous studies that considered the fate of radioactive elements in
the Bayer process. However, the publication did not discuss the behaviour of Th further than
reporting its concentration in Bayer process materials, because no ionising radiation related to Th
was detected in the hydroxide product (Sato et al., 2013). Practically all Th is recovered in bauxite
residue and the measured mass balance model has an insignificant 1% of Th mass loss.
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Figure 21. Mass distribution of Th (mg/kg) normalised to mass of aluminium hydroxide produced,
based on ICP-MS data (solids and liquors).

For most the REEs, Sc as well as for Th distribution, a deficiency in the mass balance in the output
of limestone separation HMS unit is noted (-8% on average). This can be regarded as a problem of
material representativeness. However, since this is a pre-processing step, it does not affect the
mass balance models of the Bayer process.

Besides the REEs distributions presented graphically (Figures 18-19), all the mass balance
inventories of the REEs (except for Tb, Ho and Tm due to low concentrations) are available in the
compiled dataset (Appendix A, Tables A5 and A6). Even lutetium (Lu), the last chemical elementin
the lanthanides group, mass balance was possible to be quantified given the very low detection
limit available in INAA method for this element (Figure 22). The data shows consistently that all the
analysed REEs behave similarly during bauxite processing and at least 95 % of the REEs entering to
Bayer process are transferred in the composition of solid matrix to bauxite residue. Even more, in
most of cases the transfer rate of REEs to bauxite residue is more than 98 %. None of the REEs or
Sc enter to aluminium hydroxide, following the available detection limits, e.g., La <0.5 mg/kg, Sm
<0.1 mg/kg or Sc <0.1 mg/kg (Appendix A Table A2). The fact that REEs and Sc are transferred to
bauxite residue only in the composition of solid material is also supported by mineralogical studies.
Present thesis explains (Paragraph 1), that the form of Sc occurrence mainly in the composition of
hematite remains the same after bauxite processing. On the other hand, the precursor REE phases
found in bauxite are affected by the Bayer process conditions and REE ferrotitanate type
compounds are created, but the transformations taking place seem to occur in situ on mineral grain
surfaces without the dissolution of the precursor REE phases (Paragraph 6). Present case study was
not able to repeat the result that up to 5 % of total La content can be passed to aluminium hydroxide
product (Derevyankin et al., 1981). This difference can be again explained by the differences
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between the operational conditions of refineries, as mentioned above. It can be noted, however,
that low La presence has been semi-quantitatively found in some 2 w/v% aluminium hydroxide
suspensions (Chemtrade Rehydragel® LV and SPI Pharma Aluminum hydroxide wetgel VAC 20; 0.14
and 0.72 mg/L La, respectively) that are used as adjuvants in vaccines by applying very sensitive
ICP-MS techniques. At the same time, the concentrations of Ce, Nd and Sc were below detection
limits, <0.0005 mg/L, <0.002 mg/L and <0.01 mg/L, respectively (Schlegl et al., 2015).
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Figure 22. Mass distribution of Lu (mg/kg) normalised to mass of aluminium hydroxide produced,
based on INAA (solids and liquors).

Inconsistencies in the mass balance of some REEs such as Ce can be noted in the “lateritic bauxite
grinding and desilication” unit (Figure 18). Such situation is best explained with the possibility that
during sampling, some contribution of the other lateritic bauxite from Ghana was also present in
the lateritic bauxite slurry. Presently sampled Ghanaian bauxite contains higher concentration of
REEs and Sc compared to the existing Brazilian bauxite and by hypothetically replacing the two
bauxites in the mass balance calculation resolves the inconsistency. However, in broad sense this
discrepancy is not an issue because total input and output flows are well in acceptable balance and
besides, the input of REEs and Sc from lateritic bauxites has a minor magnitude regardless of the
two lateritic bauxite types.

4.3 Fractionation Indexes and Systemic Predictions

All the analysed elements except for Ga are enriched by more than a factor of two to bauxite
residue. This can be emphasised by calculating the fractionation indexes by dividing trace element
concentration in bauxite residue with the same parameter in the bauxite feed (Figure 23). The
fractionation indexes of all the elements except for Ga are like the (1) ratio of bauxite feed mass to
bauxite residue mass created during sampling period (2.33), (2) fractionation index of Fe,03 during
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sampling period (2.34), and (3) fractionation index of Fe,0s during one-year period (2.31). Iron oxide
fractionation index is considered for a comparison here because it represents a largely inert oxide
in the Bayer process, as well as because it has been used for a similar comparison before (Feret and
See, 2010). All the indexes of trace elements (except Ga) differ from the three major indexes by a
maximum of 6% and for most of cases less than 2%. The differences are essentially negligible and
probably account for errors in sample representativeness and/or analytical variations. This
similarity of indexes is well-reasoned, because raw-material-to-residue ratio or Fe,0s fractionation
index set a logical boundary, what can be the maximum possible fractionation index of a constituent
in the process. Basically, new material cannot be created during the process and if the constituent
does not fraction to aluminium hydroxide product, then the fractionation index must be like the
one of Fe,03 or the bauxite-feed-to-residue coefficient. Present result is similar to what was
concluded in lab-scale testing of trace element enrichment from bauxite to bauxite residue,
although higher variations were noted in lab testing (Feret and See, 2010).
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Figure 23. Fractionation indexes of trace elements calculated as trace element concentration in
bauxite residue divided by trace element concentration in bauxite. Fractionation indexes are
compared to the one of Fe,03 during sampling period (horizontal dashed line).

The former reasoning provides opportunities for predicting the trace element concentrations in
bauxite residue based on existing information about bauxite feed. First option is based on Fe;03
concentration in bauxite and bauxite residue, as shown in Equation 3. It is not uncommon, that the
conditionally inert Fe,0s is used as an aid in mass balance estimations relating to the Bayer process
(Santana and Tartarotti, 2012; Sato et al., 2013).

_ CreBr Cpx Equation 3

Where: Cgr Predicted concentration of trace element in bauxite residue, mg/kg;
Cre sr  Fe,03; concentration in bauxite residue, %;
Cre sx  Fe,0; concentration in bauxite, %;
Cex  Average concentration of trace element in bauxite feed, mg/kg.

Another option is to consider just the mass flows of bauxite feed and the resulting residue created,
as shown in Equation 4 and combine it with trace element concentration in bauxite feed. In any
case, care must be taken on the representativeness of the bauxite trace element concentration
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values, because considerably high variations can occur in some bauxite deposits (Ochsenkihn-
Petropulu et al., 1994).

_ Mootnx % Equation 4

Where: Cgr Predicted concentration of trace element in bauxite residue, mg/kg;
Mt sx  Total dry mass of bauxite fed into system (t);
Mt g Total dry mass of bauxite residue leaving the system (t);
Cex Average concentration of trace element in bauxite feed, mg/kg.

The Equations 3 and 4 can be used only for the trace elements which do not fraction to aluminium
hydroxide product, therefore it is not applicable for such metals as Ga or U.

4.4 Trace Elements Distribution in Minor By-Products (Scales, Filtered Solids)

Itis well known that scales can be formed in several parts of the Bayer plant piping and tanks. These
are unwanted materials, because they can cause clogging and other negative effects like bad heat
transfer during the production of alumina (Banvolgyi, 2016; Zhong-Lin and Song-Qing, 1995).
However, from research perspective, scales can be considered as useful materials in the
investigation of several phenomena relating to the Bayer process, for example for specifying
parameters of Bayer process derived secondary minerals or the mechanisms of scale formation
(Banvolgyi, 2016; Kawashima et al., 2016). The composition of scales can be very diverse and
include several Na, Al, Si, Ti and Fe oxide and hydroxide phases as well as phosphates in crystalline
or amorphous form. Scaling mechanisms are complex and include multiple reaction steps.
Commonly, aluminium hydroxide-based scales are found in precipitators. DSP-based scales are
found in pre-desilication units, preheaters, digesters and evaporators. Calcium titanate
predominant scales are more often related to preheaters and digesters in the high temperature
processes. In relation to trace elements, it has been reported that some amounts of Zr, Y and Nb
(concentrations not reported) have been found in calcium titanate scales, implying the
isomorphous substitution of these metals into calcium titanate structure (Zhong-Lin and Song-Qing,
1995). In addition to scales, other minor by-products of the Bayer process have been examined to
propose new alternative material flows for recovering minor metals like Ga and V from alumina
dust accumulated to electrostatic filter or V from secondary precipitates (Gladyshev et al., 2015).

Based on the former indications relating to trace elements in such materials, it was investigated,
whether any minor Bayer process solid could act as a sink or a point of accumulation for trace
elements. In addition, indications to the mineralogy of trace elements in relation to Bayer process
specific solid phases were examined. Samples were collected from both the “red side” as well as
“white side” of the process. Generally, sections prone to scaling as well as filters are cleaned
regularly in the plant or upon need. Calciner dust accumulated in electrostatic filter is not a by-
product in the sense that it is usually recycled in electrolysis plant along with calcined alumina, if it
meets the required quality, or is fed again to calcination. The following materials were sampled to
fulfil present sub-task:

(1) evaporator scale from Escher-Wyss evaporator, divided into two sub-samples based on
colour hue (white and red);
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(2) digester autoclave scale, line 1, digester no. 9;

(3) precipitation tank scale;

(4) solid cake from security filtration of pregnant liquor (“polishing”), after settling and
washing;

(5) dust from calciner electrostatic filter.

(b)

2 G

U

Tt

Figure 24. Macroscopic photographs of minor by-products: (a) evaporator scale shown from the
side that has been in contact with process liquor, (b) evaporator scale shown from the side that
has been in contact with the plant tubing, (c) fragment of the red fraction of evaporator scale, (d)
cross section view of the white fraction of evaporator scale, (e) digester autoclave scale, and (f)
solids from security filtration embedded in resin (prepared for microscale analysis).

Minor by-products are characterised by high concentrations of Al,03 and NaxO, except for alumina
dust and precipitator scale which do not and are not expected to contain a notable quantity of Na,O
(Table 9). In addition, materials deposited as scales tend to have a high concentration of SiO,. This
is because dissolved silica and its depositions as DSP in Bayer circuit is one of the main reasons of
scale formation in Bayer process (Banvolgyi, 2016). The most diverse chemical composition is noted
in the scale collected from digester autoclave. In addition to Al,03 and Na0O, it contains also Fe;0s,
TiOz, Ca0 as well as SOs. This is because during bauxite digestion, many reactions take place and
due to the saturated state of the Bayer liquor, lower temperature near the digester wall and a lower
flow rate, several compounds deposit on the digester walls (Banvolgyi, 2016; Whittington, 1996;
Zhong-Lin and Song-Qing, 1995). Sulphur trioxide content in the scale samples is explained by the
fact of the partial dissolution and accumulation of sulphur compounds to Bayer liquor. In scales,
sulphate ions are captured commonly to the composition of cancrinite and/or sodalite due to the
ability of these phases to incorporate anions like CI°, SO4%> and CO3* into their lattice (Whittington,
1996). Security filtration solids have the highest concentration of Ca0O, because of the usage of lime
as a filter aid (Whittington, 1996). It is an expected conclusion that alumina dust as well as scales
from precipitator are mainly composed of Al,05, and other major oxides occur as minor impurities
in these materials.
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In calciner dust, 96.2% of particles are <106 um and 53.0 % of particles are <45 um. For a
comparison, calcined alumina has only 9.2% of the particles <45 um, thus the categorisation of this
material as ,,dust.”

Table 9. Main oxide composition of minor Bayer process by-products (in wt%).

Oxide Digester Evaporator fsili (r::trilrrlm Calciner Precipitator
scale scale . dust scale
solids
white red
Al,03 25.77 29.93 31.16 27.13 92.85%* 66.72*
Fe20s 7.55 0.17 0.18 2.07 0.0121 0.105
SiO, 25.60 33.19 32.48 1.53 0.0094 0.194
TiO, 4.39 0.02 0.02 0.32 0.003 0.011
Ca0o 3.67 0.07 0.06 25.20 0.0161 0.146
Na,O 19.67 24.11  23.92 15.47 0.2957 0.3977
SOs 4.30 3.68 2.75 0.13 <0.006 0.015
MgO 0.40 0.20 0.17 0.31 - -
K:0 0.44 0.60 0.57 0.71 0.0069 0.016
MnO 0.02 0.01 0.01 0.01 <0.0017 <0.0017
P.Os 0.02 0.01 0.01 0.08 <0.0012 <0.0012
LOI 7.79 8.59 9.21 25.48 6.80 32.40
Total 99.62  100.58 100.54 98.44 100.00 100.00
*calculated

Mineralogically, scales are mainly composed of cancrinite and sodalite (76-99%), i.e. DSPs (Table
10). Like the chemical composition, also the mineralogical constituents of digester scale are diverse,
including perovskite, hematite and hydrogarnet. Security filtration solids are composed of
hydrogarnet, portlandite and bayerite, but it was not feasible to quantify these phases due to
complex diffraction patterns and deviations from available reference patterns. The dominating
contents of Al,0s, Na;O and SiO; are consistent with the prevailing presence of hydrogarnet.
Precipitator scale as well as calciner dust are mainly composed of gibbsite, while for precipitator
scale this is practically the only mineralogical phase. Calciner dust phase composition indicates that
aluminium hydroxide in this material has been calcined only to a minor extent, given the low
corundum concentration of 9%. Two fractions of evaporator scale, white and red, differ mainly with
the very low content of hematite and diaspore in the red fraction, that do not occur in white
fraction. The red hue of this sample can be thus attributed to the small presence of hematite.
Because there were no other considerable differences in these two fractions, and the chemical
composition was also very similar, only the white fraction of evaporator scale was subjected to
further trace element analysis.
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Table 10. Mineralogical composition of minor Bayer process by-products (in %). For security
filtration material, only relative abundance is indicated.

Evapo- Evapo- Digester Calciner Security Precipi-
Phase rator rator . . tator
scale scale scale dust filtration scale
white red
Cancrinite 88 85 74
Sodalite 11.5 11 2.5
Hematite 0.2 6.5
Diaspore 1 1.5
Boehmite 3
Gibbsite 0.7 85 98
Bayerite +
Corundum 9
Portlandite ++
Perovskite 7.5
Hydrogarnet 4 +++
Na,S04-10H,0 3.5
CasAl;06(S04)-14H,0 2 2
Total 99.5 97.2 100.2 99 100

General microstructure of the minor by-products is shown in Figure 25. Both analysed evaporator
scale sub-samples have a homogeneous microstructure composed of cancrinite/sodalite matrix
(Figure 25 a and b). The difference is that in white scale (a), the crystal morphology is fibrous and
for red scale (b), it is rather massive and compact. The scale from digester autoclave (Figure 25, c)
is composed of finely intergrown crystals of cancrinite/sodalite and perovskite with sporadic
individual Fe oxide particles that appear as bright spots in the backscattered electron image. Solid
material from security filtration (Figure 25, d) is the only minor by-product, where discrete mineral
particles exist that contain considerable content of bauxite trace elements, namely Cr. Within the
very fine matrix of the filtered material composed mainly of hydrogarnet and portlandite phases
occur the particles with the presence of Fe, Cr and Mn. From the previously known observations of
bauxite it can be suggested that these particles could possibly be grains of chromite (Laskou, 2001).
The presence of Cr-containing grains in this sample is in accordance to the bulk analysis of the
security filtration solids (186 mg/kg Cr, Table 11). The microscopic view of calciner dust is
dominated by crystals of gibbsite and corundum grains (or other forms of Al,03) can be discerned
more scarcely (Figure 25, e). The two phases can be distinguished from each other by the difference
in relative brightness level, because brightness level in the backscattered electron imaging mode
corresponds to the weight of atoms, and gibbsite contains crystalline water that makes the particles
to appear relatively darker. The morphology of electrofilter dust particles is irregular with several
different shapes and fractured particles (compare with Figure 12 that depicts alumina and
aluminium hydroxide). On the second image of calciner dust (Figure 25, e) are shown prismatic or
elongated particles that are uncommon for both aluminium hydroxide and calcined alumina
products (compare with Figure 12). The formation of elongated prisms during aluminium hydroxide
crystal formation has been linked with the presence of organic compounds, they can also grow from
potassium aluminate solutions or can be caused by other factors (Sweegers et al., 2001).
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15 68 BEL

Figure 25. Microstructure of Bayer process minor by-products shown in BSE images: (a) white
evaporator scale, (b) red evaporator scale, (c) digester scale, (d) security filtration solid material
with Fe-Cr-Mn particle in the middle, (e) calciner electrofilter dust overview image, and (f)
elongated particles of calciner dust that are irregular compared to aluminium hydroxide or
calcined alumina. Abbreviations: Cn — cancrinite, So — sodalite, P — perovskite, He — hematite,
Hg — hydrogarnet, Po — portlandite, Gb — gibbsite, Cor — corundum (or other forms of Al,03).

Some areas of digester autoclave scale are particularly intergrown with calcium titanate crystals, as
can be seen in Figure 26. From the XRD analysis it is known that calcium titanate in this sample
corresponds to perovskite. It appears that acicular and dendritic perovskite crystals have been
formed into a matrix of Na, Al and Si, corresponding to cancrinite and/or sodalite, also known from
XRD. The formation of perovskite as seen in this scale sample likely corresponds to the reaction
mechanism, in which titanium dioxide (especially anatase) phases react with Bayer liquor and lime
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under high temperature digestion conditions. As a result, perovskite crystals form from the
dissolved Ti and Ca ions (Smith, 2017). Presently observed morphology of perovskite clearly
indicates to the deposition of the newly formed phase from dissolved Ca and Ti ions. Perovskite
also contains a small amount of Mg. Some Al also occurs as individual spots that could be
undigested particles of diaspore or boehmite. The presence of Fe is mainly seen as individual spots
in its distribution map. This is in accordance with the previous reports that Fe occurs in digester
scales mainly as entrapped Fe particles that were formerly suspended in digestion suspension
(Banvolgyi, 2016). However, a part of Fe is also found in the composition of perovskite, which is in
accordance with the perovskite composition quantification further in the text (Table 12). This
implies to partial incorporation of dissolved Fe into perovskite composition.

Figure 26. SEM-EDS elemental mapping of digester autoclave scale, where calcium (ferro)titanate
(perovskite) crystals have intergrown into Na-Al-Si matrix, corresponding to cancrinite/sodalite.

Trace element concentrations in Bayer process minor by-products are given in Table 11. Higher
trace element concentrations are associated with the ,red side” (represented by materials like
digester scale or security filtration solids, for terminology refer to paragraph 1.2) of the Bayer
process, represented here by digester scale and security filtration solids. To the ,white side”
(represented by materials evaporator scale, calciner dust or precipitator scale) of the process can
migrate such metals like Ga, V and Cr that have been identified to occur in dissolved form in Bayer
liquor and can deposit further in the composition of precipitator scale, calciner dust and evaporator
scale (section 4.1). Other metals like the REEs, Th and Sc don’t migrate to the “white side” of the
process because of their limited or absent property of dissolving in processing liquor (section 4.2).
Thus, it can be assumed that their presence in digester scale and security filtration solids could be
controlled by deposition and/or capture of very fine solid particles.
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Table 11. Trace element concentrations in minor Bayer process by-products (mg/kg).

Digester Securit Evaporator Calciner Precipitator
Analyte  Method :::ale fiItratio‘rl\ scalep(white) dust scr::\le
As INAA 39.3 - 10.3 - -
ICP-

Ce OES/MS 760 27514 <20 - -
Ce INAA 79 - <3 - -
Cr XRF 256 123 - - -
Cr ICP-OES 398+4 1861 <40 47+0 -
Cr INAA 376 - 33 - -
Ga ICP-OES 92+1 302+2 58+0 9510 69
La ICP-OES 65+0 51+1 <50 <25 -
La INAA 22.9 - <0.5 - -
Nd OE';:;;A s 25+1 <50 <20 <25 -
Nd INAA 5 - <5 - -
Sc INAA 19.7 - 0.2 - -
Sm INAA 3.5 - 0.1 - -
Th INAA 12.1 - <0.2 - -
U INAA 6.2 - 0.6 - -
Vv ICP-OES 2251 143+3 82+2 <10* <10*
Y OI;(S:;I\-/IS 25+0 65+1 <20 - -
Yb INAA 3.0 - <0.2 - -

* based on standardised XRF

In the cake from the security filtration is found the highest concentration of Ga across all sampled
solid materials (302 mg/kg Ga) relating to Bayer process. This is about five times higher than in
bauxite, three times higher than in alumina, and comparable to the concentration of Ga in Bayer
liquor. Since the material under discussion is mainly composed of hydrogarnet, it can be assumed
that this mineralogical phase might capture dissolved Ga** to its composition by isomorphously
substituting AI®*, given the notable similarity of these metals (Gray et al., 2013; Shaw, 1957). In
aluminium hydroxide analysed in present work, Ga concentration is much lower (85 mg/kg), thus
the property of gibbsite to include Ga to its composition might be lower than that of hydrogarnet.
Also, the use of lime as a filter aid in security filtration might facilitate the more intense precipitation
of Ga compared to other parts of the Bayer process. Ga is also present in evaporator scale (58
mg/kg), where its concentration is higher than in bauxite residue (41 mg/kg), but lower than in
aluminium hydroxide and security filtration solids. This provides an indication that Ga could be
potentially incorporated to cancrinite and/or sodalite, as these are almost the only mineral phases
in evaporator scale. In naturally occurring cancrinite, a mean concentration of 59 mg/kg Ga has
been reported (Shaw, 1957), which is notably similar in currently analysed cancrinite-dominant
evaporator scale (58 mg/kg). Again, the likely form is the isomorphous substitution of AI** with Ga®".
The former reasoning leads to a conclusion that the affinity of Al-containing Bayer process
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secondary phases to incorporate Ga into their composition follows the relative intensity of
hydrogarnet >gibbsite >cancrinite.

What can be seen in Figure 27 (a) is a part of the cross section of digestion autoclave scale sample,
cut at a right angle with scale layering for demonstrating the trace element distribution patterns in
this material. Considerable concentrations of Cr and V can accumulate to digester autoclave scale,
while Cr concentration can be about twice the amount of V concentration, as seen from the LA-ICP-
MS profiles measured in the scale sample (Figure 27, b). The trends of Cr and V in the distribution
profiles are roughly similar, both element concentrations increase towards the upper parts of the
profile. At the same time, the trend is the opposite for Al concentration, implying that Cr and V do
not accumulate in association with Al minerals. However, the trends are similar for Ga and Al
distribution, indicating once again the close association of these metals (Gray et al., 2013).
Therefore, Ga seems to have been deposited into this scale sample within the composition of Al
minerals. There is no considerable presence of Sc in this material, its concentration is consistently
low in all analysed spots, ranging from 16—37 mg/kg, which is consistent with the bulk concentration
of Sc in this sample (19.7 mg/kg). The indicated concentration is lower than Sc content in bauxite
and its residue. However, the lower Sc concentrations are consistent with the lower Al,O; presence.
Similar trend is noted in all Bayer process solid materials, where Sc is present, which is further
explained in following paragraphs where the occurrences of Sc are discussed in the context of
microanalysis (paragraph 7). Considering main oxides in this sample, the concentrations of TiO, and
Fe,0s also remain low in the analysed profile section.

( b) Trace element (mg/kg)
0 100 200 300 400 500 600

1

20
Main oxide (wt%)
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--o--Fe,0,-1 --&--Fe, 0,-2 —e—Cr-1 —a— Cr-2
V-1 V-2 —o— Ga-1 —&— Ga-2
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Figure 27. Digester autoclave scale depicted on (a) optical microscope image with indicated points
of LA-ICP-MS analysis spots. In graph (b) are given the main and trace elements distribution
profiles, obtained by LA-ICP-MS. White spots on image (a) correspond to concentration values on
graph (b). Standard element for LA-ICP-MS quantification was Fe.
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Given the indications that Sc might be associated with titanium phases including perovskite in the
bauxite residue (Bonomi et al., 2017b; Ochsenkiihn-Petropulu et al., 1994), it was examined
whether Sc can be detected in the perovskite intergrowths in the digester scale sample (Figure 28).
Perovskite-dominant matrix did not detect any presence of Sc, while cancrinite-dominant matrix
indicated 20-90 mg/kg of Sc, based on EPMA-WDS (Table 12). There is a partial overlap in the WDS
energy lines of Ca and Sc. To overcome that, the scale sample was also subjected to LA-ICP-MS
measurements, as already shown before (Figure 27). It provided evidence for the same conclusion
that perovskite and cancrinite are depleted in Sc, but still the detected quantities ranged from 12
to 37 mg/kg Sc on different spots. Unfortunately, the LA-ICP-MS spot size (40 um) is larger than the
individual perovskite crystals (about 5 um), therefore a single crystal cannot be targeted with this
experimental method. The analysed minerals (perovskite and cancrinite) might contain only a minor
amount of Sc (<30 mg/kg), as suggested by the bulk (Table 6) as well as spot Sc analysis (Table 12)
of the scale sample, whereas cancrinite is a more probable host for Sc. However, the detected
guantities can also be attributed to the presence of minute iron oxide particles in the scale sample
(“Fe” in Figure 28). It can be noted that other minor and trace elements such as Mg, Cr, V and Ni
are significantly enriched into the perovskite-dominant matrix compared to cancrinite matrix (Table
12). The concentrations can be as high as about 0.6 wt% on the example of NiO. This indicates that
perovskite can entrap several minor and trace metals that are introduced to the Bayer process. The
evidence has been also presented that the named elements, Mg, Cr V and Ni, also occur in the
dissolved form in process liquor (Table 8), therefore their migration to newly formed perovskite
includes them being dissolved in the Bayer liquor and then precipitating into perovskite
composition. It is a well-known fact that perovskite structure in a broad sense is very versatile and
can incorporate a wide number of cations into its lattice (Mitchell et al., 2017).

Figure 28. Micro-areas of digester autoclave scale with (a) prevailing presence of perovskite (P)

with cancrinite/sodalite (Cn) and some Fe particles as well as (b) cancrinite-dominant area.
Perovskite area (a) corresponds to quantification shown in Table 12.
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Table 12. EPMA-WDS quantification of perovskite-dominant and cancrinite-dominant areas of
digester autoclave scale sample.

Analyte Perovskite-dominant Cancrinite-dominant
Fe,03 wt% 9.69 10.18 9.30 2.30 4.41
TiO, wt% 34.39 30.71 36.19 0.55 2.19
Al,O; wit% 14.18 15.83 13.21 34.72 28.30
SiO; wt% 1.61 2.07 0.84 22.54 19.62
Na,O wt% 2.07 1.97 1.72 12.84 18.42
Cao wt% 17.83 16.81 18.05 1.35 3.61
MgO wt% 2.26 1.95 2.34 0.00 0.05
K20 wt% 0.04 0.07 0.05 0.40 0.52
Cr,0; wt% 0.256 0.220 0.211 0.031 0.036
V.03 wt% 0.186 0.128 0.130 0.025 0.031
NiO wt% 0.619 0.565 0.630 0.052 0.038
Sc mg/kg 0 0 0 90 20
Total wt% 83.13 80.50 82.67 74.80 77.23

4.5 Summary of the Trace Elements Distribution

A summarising comparison of selected trace element concentrations in different Bayer process
solid materials is shown in Figure 29. It depicts a general trend that the investigated karst bauxites
are more enriched in trace elements among bauxite samples and typically the highest
concentrations in solid materials are found in bauxite residue. For Ga, the trend is different as
bauxite residue is relatively depleted in the element and the products collect the highest proportion
of Ga. A minor material that shows a relative enrichment of some trace elements (Ce, Ga) is the
solid cake from security filtration (liquor “polishing”).
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S OHY-AL
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Ce Ga La Sc Th Vv Y

Figure 29. Trace elements distribution in different Bayer process materials. A reminder of sample
names: SE-FI — security filtration solids, DG-SC — digester scale, TR-BX — Porto Trombetas
bauxite, DC-BX mixed Greek Parnassos-Ghiona B3 horizon bauxite, RM-FP — bauxite residue, HY-
AL — aluminium hydroxide, EL-DU — calciner dust from electrostatic filter.
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Bauxite trace elements under the focus of this study were divided into two main categories: (1)
those that dissolve completely or sparingly in the process liquor (Ga, V, Cr, U), and (2) those that
pass through the process in the composition of solid material flows (REEs, Sc, Th).

The trace element analysis of Bayer process scales and minor by-products showed that these
materials are not particularly significant collectors of trace elements. Even more when considering
that the quantity of production of these materials, though difficult to estimate, is substantially
smaller than the quantity of bauxite residue produced. However, since they do contain several trace
elements such as Ga, V and Cr, they can be used to explain the effect seen in the mass balance
models of the trace elements distribution where a decrease of concentration was observed in the
consecutive processing steps (section 4.1). An interesting material for further extraction
experiments could be the solid cake from security filtration of pregnant liquor with respect to its
Ga content (Figure 29). With its concentration of 302 mg/kg of Ga, it represents a significant
enrichment point of Ga compared to about 60 mg/kg Ga concentration in bauxite feed. Further
work is encouraged for investigating Bayer process scale samples in relation to trace elements or
other aspects, because it is possible to find isolated crystals of Bayer process specific solid phases
that are challenging to be analysed directly in bauxite residue.
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5. Minor and Nano-Scaled Phases in Bauxite
Residue

A range of minor mineral phases have been observed in bauxite residue, as depicted in Figure 30.
Oxidic phases have been identified where the metallic components are Ca and Mg as well as Ca,
Mg and Al (Figure 30 a, b). Notably, there is no or very low presence of Si in these phases. It could
be that the Ca-Mg-containing phases are dolomite, since minerals with these two constituents are
commonly carbonates (Gregg et al., 2015). Besides, carbonate phases in the example of calcite do
occur in bauxite residue, based on current and literature information (M. Grafe et al., 2011). On the
other hand, the typical rhombohedral habit of dolomite cannot be seen in present electron image
(Figure 30a) (Gregg et al., 2015). In any case, it seems that these Ca-Mg-Al oxidic phases together
with chamosite (chlorite group silicate) type phases (Figure 30 e) are the main carriers of Mg in
current bauxite residue. The Ca-predominant particle in Figure 30 (c) can be identified as
portlandite (Ca(OH),), based on the positive identification of this phase from XRD diffractogram and
its hexagonal habit that is photographed and indicated in the electron image. Portlandite has been
reported to occur sometimes in bauxite residue (Evans, 2016). Some AI-Si-K particles were
discerned also in bauxite residue (Figure 30 d). In the literature, the presence of muscovite has been
reported in bauxite residue, which roughly corresponds to such Al-Si-K composition, while other
phases with similar composition especially with respect to K have not been noted to occur in bauxite
residue (M. Grafe et al., 2011; Newson et al., 2006; Santini, 2015). Muscovite is categorised in the
context of bauxite residue as a residual phase inherited from bauxite (Santini, 2015). More rarely,
another K-containing phyllosilicate phase, biotite, has been identified in bauxite residue (Markus
Grafe et al., 2011a). Phases having major compositions of Fe-Al-Si-Mg should correspond to the
chamosite phase identified by XRD. Higher localised microscale concentrations of Mg are usually
associated with chlorite phases such as chamosite in bauxite deposits (Bardossy and Panto, 1971).
As already mentioned, chamosite largely endures Bayer digestion and can occur in the residues
(Songging and Zhonglin, 2016). Occurrences of Mn phases are also noted in bauxite residue (Figure
30 f). Following the presence of Co and Ni in addition to Mn, the phase could correspond to
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asbolane (Mn(0O,0H),(Ni,Co)x(0,0H),-nH,0) (Manceau et al., 1992). Note that Ce is also associated
with this Mn phase. This phenomenon will be discussed further in the text (section 6.3.3). Zircon
(ZrSi04) grains (Figure 30 g) are encountered relatively frequently in bauxite residue, given that they
are discrete phases with relatively high atomic weight and therefore they stand out bright in the
BSE mode of SEM analysis, which is sensitive to atomic weight of chemical elements. Zircon
concentrate is one of the many proposed possible value-added products that could be derived from
bauxite residue (Logomerac, 1971; Mohapatra et al., 2012). As a rare representative of sulphide
phases, Cu-Fe sulphide was discerned in bauxite residue (Figure 30 h). It could likely correspond to
chalcopyrite. Chalcopyrite has not been found in Parnassos-Ghiona bauxite knowingly to the author
of this work. However, in other bauxite deposits (e.g. bauxites form Northern Urals and Mazaugues
deposit in France), chalcopyrite has been noted as the only Cu-enriched mineral phase (Bardossy
and Panté, 1973, 1971). Therefore, chalcopyrite can be regarded as a phase that endures Bayer
process and represents a Cu carrier phase in bauxite residue. Some grains of pyrite have also been
encountered in bauxite residue (not shown here). The Fe-Cr particles seen in the residue probably
correspond to chromite type phases, that are known to be present in Parnassos-Ghiona bauxite
deposit (Gamaletsos, 2014; Laskou, 2001). Commonly, the trace elements speciation studies
(focussing mainly on Cr, As, Ti, Mn and V) of different bauxite residues have not noted the presence
of chromite in bauxite residue (Burke et al., 2012; Markus Grafe et al., 2011a). Perhaps this is
because chromite is more abundant in Parnassos-Ghiona ores given the close association with basic
and ultrabasic rocks via its genesis, compared to other bauxite deposits (Bardossy and Panto, 1973;
Laskou et al., 2010; Valeton et al., 1987). In any case, chromite is certainly not the only location of
Crin present bauxite residue.
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Figure 30. Electron images of bauxite residue’s minor phases: (a) Ca-Mg phase (dolomite?), (b) Ca-
Mg-Al phase, (c) Ca phase that is likely portlandite (Ca(OH).), (d) Al-Si-K phase that could be a
feldspar group phase, (e) Fe-Al-Si-Mg phase that could correspond to chamosite group phase, (f)

Mn phase associated with minor cerium (Ce), (g) zircon, (h) copper sulphide that might
correspond to chalcopyrite, (i) Fe-Cr phase that could correspond to chromite. All except for
image (i) are BSE images from polished sections, but (i) is a secondary electron image of bauxite
residue “as is”, i.e. not in a polished condition.

Certain Cr-containing Fe particles were seen in the residue (Figure 31). They are unlike the common
Fe particles because they do not exhibit oxygen energy peaks in the EDS spectra, compared to
typical Fe oxide particles (Figure 31c). Therefore, they seem to be fragments of metallic Fe. They
probably come from metal bars and/or balls of the grinding mills. Therefore, Bayer process
equipment might act as an additional input of Cr to the system.
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Figure 31. Backscattered electron images of (a) a fraction of metallic Fe containing Cr (denoted as
Fe) compared with (b) typical bauxite residue’s Fe oxide particle (denoted as FeO) and (c) their
respective EDS spectra. Denotation of matrix refers to bauxite residue’s Fe-Ca-Al-Si-Ti matrix.

Note that the EDS spectrum of the metallic Fe particle does not possess the oxygen energy peak
that Fe oxide particle has.

It is worth pointing out that during microscale characterisation of bauxite residue, a titanium
dioxide particle was located that exhibited indications to a specific reaction behaviour (Figure 32).
Titanium is considered being a major constituent of bauxites, but it’s interactions with minor
elements necessitate its mentioning here. The principal titanium minerals in bauxites are TiO;
isomorphic forms anatase and rutile. Titanium poses many challenges to alumina refineries, like
scale formation, inhibition of boehmite extraction and titanium impurities in alumina (Chester et
al., 2009). The currently observed particle is composed mainly of two principal phases. The first
one, located on left in Figure 32, is with a major composition of titanium dioxide (Figure 32b). The
second one, located on right, is with a major composition of calcium titanate. The first one
corresponds probably to anatase, although XRD has identified also rutile in current bauxite residue.
The reason for assuming it is anatase is derived from the fact that anatase reacts more favourably
in HTD conditions and rutile almost doesn’t (Chester et al., 2009; Suss and Rydashevsky, 1996). The
second phase likely corresponds to perovskite, as it is also detected in XRD and it is a generally
acknowledged titanium phase to occur in Bayer process system (Chester et al., 2009; Smith, 2017).
From the elemental mapping of the particle (Figure 32) it seems that perovskite has been formed
in situ on the account of titanium dioxide particle as they are attached to each other. In the left side
of the particle, the concentration of Ti is relatively lower than on the left side while Ca is clearly
present only on the right side. Calcium has also penetrated the small fractures of titanium dioxide
particle (Ca map in Figure 32). The EDS measurements (Figure 32b) indicate an almost pure titanium
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dioxide on the left side and almost pure calcium titanate on the right side with some impurities of
Na, Al and Si are also detected. The newly formed perovskite contains also partly Na and Mg, while
the locations of these two elements do not coincide. Generally, all the previous explanations of Ti
phases reactions in the Bayer process describe the formation of perovskite through the reaction of
dissolved ions in the liquor (Chester et al., 2009; Riley et al., n.d.; Suss et al., 2002; Suss and
Rydashevsky, 1996). In general, titanium phases are explained to react first with sodium aluminate
liquor and then with lime added to the process. Different interpretations have proposed various
intermediate phases before the formation of perovskite, which is most commonly amorphous
sodium titanate (indicative stoichiometry Na,0-3TiO,-2.5H,0) (Smith, 2017 and references therein).
There are indications also to calcium hydroxy-titanate type as well as titanium substituted
hydrogarnet type intermediate phases that further form the perovskite end-product (Smith, 2017).
In any case, an in-situ transformation of titanium dioxide to perovskite has not been described to
occur in the Bayer process. The described transformation is in broad terms analogous to the in-situ
reaction of kaolinite to sodium aluminium hydrosilicate DSP at 100 °C without the dissolution of the
components to process liquor (Banvolgyi et al., 1991).
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Figure 32. Reacted titanium dioxide attached to calcium titanate (perovskite) reaction product,
shown in (a) BSE image with EDS elemental maps and (b) respective EDS spectra.

Since bauxite residue from AoG is a fine material with about 80% of the particles having particle
sizes <1 um (Borra et al., 2015), the material was subjected to HRTEM investigation that provides
superior nanoscale magnification conditions (Figure 33). This approach has been applied also earlier
to investigate bauxite residue from different sources and with different objectives (Burke et al.,
2012; P. N. Gamaletsos et al., 2016; Gelencsér et al., 2011; Gu and Wang, 2013). In nanoscale,
bauxite residue particulates can occur as a complex of agglomerated particles (Figure 33 c), but
clear distinctions can be made between different mineral phases by applying EDS chemical analysis
as well as electron diffraction method. In most of the cases, the particles are anhedral, while some
euhedral particles also occur (e.g. Figure 33 e and f). Much of the material is composed of Fe
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particles (Figure 33 a, Figure 33 b), as suggested also by bulk phase quantification of current
material (31% hematite). The electron diffraction patterns of Figure 33 a and Figure 33 b suggested
them to correspond to hematite. In Figure 33 ¢, a complex of small particles is shown, which
resemble cancrinite or sodalite phases based on their chemical composition (Al-Na-Si as well as
minor S). In Figure 33 d an aluminium oxyhydroxide phase is shown that corresponds either to
boehmite or diaspore. Hexagonal hydrogarnet type phase observed in bauxite residue is shown in
Figure 33 e. Due to hydrogarnet group highest level symmetry of cubic class it is possible for
hydrogarnets to appear in hexagonal shape. Hexagonal hydrogarnets were also observed in the
experiments of (Kanehira et al., 2013). Chemical analyses of this mineral type show consistently the
presence of Al and Si as well as Fe, but there is always a higher concentration of Ca present
compared to Ti (Ti:Ca ratio 0.3 to 0.6). The described chemistry as well as the morphology of the
phases does not allow to identify them as calcium titanates. In fact, the phase is likely a titanium
andiron substituted hydrogarnet (Suss et al., 2002; Zoldi et al., 1987). The euhedral titanium dioxide
particle in Figure 33 f was matched with rutile reference card (PDF 000-01-1292) based on electron
diffraction pattern. The particle in Figure 33 g can be termed broadly as a phyllosilicate phase. Itis
largely composed of Al and Si without a significant presence of other components. In the last image
(Figure 33 h), a Mg-containing chlorite group phase is shown, that was matched with a chamosite
(berthierine) reference card (PDF 07-0315). There were no obvious clues relating to trace element
occurrences in the nano-scaled fraction of the sample besides Ce and La that were associated with
calcium titanates. These forms, however, are thoroughly discussed in a further chapter (section
6.3.2).
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Figure 33. HRTEM images of bauxite residue particles: (a) and (b) Fe particles corresponding to

hematite, (c) agglomeration of Al-Na-Si particles corresponding to cancrinite or sodalite, (d)
boehmite or diaspore together with Fe particles, (e) hexagonal Ca-Al-Si-Ti-Fe-Si phase that could
correspond to titanium substituted hydrogarnet, (f) euhedral titanium dioxide particle
corresponding to rutile based on electron diffraction pattern, (g) phyllosilicate phase and (h)
chlorite group phase corresponding to chamosite.
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6. REEs Mineralogy in Bauxite and Bauxite
Residue

Chapter 6 except for 6.2 is based on the following publication: Vind, J., Malfliet, A., Blanpain, B.,
Tsakiridis, P.E., Tkaczyk, A.H., Vassiliadou, V., Panias, D., 2018. Rare Earth Element Phases in Bauxite
Residue. Minerals 8, 77.

6.1 Precursor REE phases in bauxite feed

In Table 13 are shown the REE phases that are likely to be introduced to AoG’s production line via
the composition of bauxite feed. In Parnassos-Ghiona bauxite profiles (Prossorema and Frussia),
detrital rhabdophane and florencite have been identified as LREE phases, whereas detrital
churchite and xenotime represent HREE phases (Laskou and Andreou, 2003). Hydroxylbastnasite-
(La) and -(Nd) were identified in the lowermost bauxite profile samples of Parnassos-Ghiona deposit
(Mandri Tsakni) as the only contribution that deployed WDS quantification (Ochsenkiihn-Petropulu
and Ochsenkiihn, 1995). Authigenic bastnasite and parisite group phases were further reported as
representatives of authigenic fluorocarbonate LREE minerals in Parnassos-Ghiona bauxite (Pera
Lakkos) (Gamaletsos, 2014; P. N. Gamaletsos et al., 2016). As it is not clear on what basis was the
distinction of parisite group from the rest of calcium-bearing REE groups made, it is categorised
together with other calcium containing LREE fluorocarbonates, synchysite and rontgenite (Grice et
al., 2007). A recent report questions the earlier identifications of cerium-predominant REE phases,
that they could be rather cerium oxides or carbonates, because of the absence of phosphorus and
fluorine. Due to the absence of other lanthanides, even the identification as hydroxylbastnasite-Ce
is being questioned (Evangelos Mouchos et al., 2017).
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Table 13. REE phases identified in the bauxites exploited by AoG.

Phase Formula Parnassos-Ghiona, Greece Awaso
Ghana
* § 1 I Present  Present
LREE
rhabdophane-(Ce) (Ce)(PO4)-H,0 +
florencite-(Ce) CeAl3(P0O4),(OH)s + + +
bastnasite group Ce(CO3)F +
parisite/
synchysite/ Ca1-»REE;13(CO3),-sF1-3 + +
rontgenite
hydroxylbastnasite-(Nd)
Nd,L. H
o (L) (Nd,La)(COs)(OH) +
cerianite CeO, ? +
HREE
churchite YPO4:2H,0 +
xenotime YPOq, + +

* (Ochsenkiihn-Petropulu and Ochsenkiihn, 1995)

§ (Laskou and Andreou, 2003)

1 (Gamaletsos, 2014; P. N. Gamaletsos et al., 2016)

I (Evangelos Mouchos et al., 2017)
In the studied Parnassos-Ghiona bauxite samples, some areas are particularly rich in REE phases
(Figure 34). Authigenic cerium-predominant LREE phases in sizes over 10 um are concentrated into
iron and aluminium oxide matrix rather than to alumina-rich pisolitic textures. This is in line with
the observations made by Mongelli, (1997), where he noted that Ce is more fractioned to the
bauxite matrix as opposed to ooids (pisolites). However, the ooids described by Mongelli (1997) are
controlled by hematite matrix which is different from present observation. This textural
fractionation has not been reported in the case of Parnassos-Ghiona bauxite deposit. The LREE
phases were identified by p-Raman spectroscopy being cerianite (Ce0;), following the main band
at 457 cm™, when comparing with the reference spectrum R050379 from RRUFF database and
those spectra given in the literature sources (Figure 34 b) (Lafuente et al., 2015; Zaitsev et al., 2011).
Based on the analysis of synthetic and natural cerianite specimens, this band can be attributed to
the symmetric breathing mode of Ce—O—Ce bond (Cui and Hope, 2015; Zaitsev et al., 2011). The
band at 396 cm™ present on the reference spectrum R050379, but missing in current experimental
spectrum, is rarely noted in different cerianite Raman spectra (Cui and Hope, 2015; Zaitsev et al.,
2011). The band at 396 cm™ could also be hidden due to the broadening of 457 cm™ band.
Broadening as well as shifting of cerianite main band is noted to occur along with decreasing particle
size (Weber et al., 1993). Notably, the acquired spectrum lacks the presence of Raman bands that
could be associated with the occurrence of carbonate (around 1100 cm™) or hydroxide ions (3400—
3600 cm™) (Yang et al., 2008; Zaitsev et al., 2011). The matrix where cerianite is situated, is mainly
controlled by hematite, following the Raman bands at 225, 293 and 409 cm™ (De Faria et al., 1997;
Lafuente et al., 2015). Zaitsev et al., (2011) have demonstrated that F can also be present in
cerianite, and F is also present in cerianite of Parnassos-Ghiona bauxite (Figure 34a). Some of the
previously reported REE phases might have been erroneously identified as bastnasite group phases
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on qualitative basis when judged only by the presence of F. Thus, current results support the doubts
of Mouchos et al., (2017) regarding the cerium-predominant phases and evidence is provided for
the identification of cerianite in Parnassos-Ghiona bauxite.
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Figure 34. Cerianite rich area in the second Parnassos-Ghiona B3 horizon bauxite sample (ST-BX)
shown on (a) BSE image with respective EDS elemental maps, and (b) Raman spectra of cerianite
and its surrounding matrix compared to reference Raman spectrum obtained from RRUFF
database (Lafuente et al., 2015), with permission from RRUFF™. Raman spectrum is collected with
a 532-nm wavelength laser.

Authigenic cerium-predominant REE phases were noted to be associated with fissures filled with
aluminosilicate matrix that is likely kaolinite (Figure 35). Kaolinite-associated authigenic REE phases
have not been reported before, but their presence has been assumed in Parnassos-Ghiona bauxite
due to the easily leachable proportion of REEs (E. Mouchos et al., 2017). It was noted previously,
however, that some detrital florencite crystals were encased within clay fragments (Laskou and
Andreou, 2003).
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Figure 35. REE phase in first Parnassos-Ghiona B3 horizon bauxite sample (DD-BX) associated with
aluminosilicate (Al-Si).

Regardless of the low REEs concentration in Ghanaian bauxite (e.g. 29 mg/kg Ce), distinct detrital
REE phases are also contained within this lateritic bauxite (Figure 36). The REE minerals have a
prevailing content of aluminium, followed by cerium, phosphorus and then other LREEs. Thus, these
REE phases can be identified as belonging to the florencite group. In addition, detrital xenotime was
identified in the Ghanaian bauxite. Florencite grains are significantly larger (20-60 um) than
xenotime grains (1-3 um). The presence of florencite and xenotime group phases in Ghanaian
lateritic bauxite implies granitic origin of the bauxite parent material. The other analysed lateritic
bauxite from Brazilian Porto Trombetas deposit did not contain any detectable REE phases. This is
in line with the low REEs concentration in this sample (e.g. 9 mg/kg Ce), which is even lower than
that of the Ghanaian bauxite.
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Figure 36. In sub-figures (a-c) are shown florencite group LREE phases (Fl) and a zircon grain (Zr)
and in (d) is a xenotime/churchite particle with a major composition of Y phosphate (YP), all
contained in Ghanaian Awaso lateritic bauxite matrix.

The main input of LREE phases introduced to the Bayer process in AoG along with the bauxite feed
therefore appear to be LREE fluorocarbonates of the bastnasite group as well as cerianite. Minor
LREE input is from phosphate phases. Heavy REEs enter the process as phosphate-based groups.
Elucidating the REE mineralogy in the Parnassos-Ghiona bauxite deposit deserves a thorough
investigation in terms of clearly defining the mineral phases and their spatial distribution along the
bauxite profiles. The currently existing information is scattered and not uniform.

6.2 Preheating Stage

In this production stage, karst bauxite has been ground and suspended in caustic soda. Additionally,
the suspension has passed through the preheating stage, where a temperature of 180 °C has been
reached. In this material, La-Nd as well as Ce predominant REE phases were observed (Figure 37,
Figure 38). The La-Nd particle Figure 37 (a) contains F, providing an indication that its form could
be a bastnasite group phase. It can be proposed that REE phases in this production stage resemble
mostly bauxite REE phases and they might correspond to bastnasite group phases on the example
of La-Nd phases and cerianite following the Ce-predominant particles. The La-Nd predominant
particle in Figure 37 (a) also contains Y and P, indicating to minor contribution from
xenotime/churchite phase. The Ce-predominant particles in Figure 37 (b) and (c) are mostly without
the presence of other elements, suggesting possibly an oxide or oxyhydroxide form. All the
observed REE phases in this production stage are with a free surface or surrounded by crushed
bauxite matrix. The particle in Figure 37 (c) appears to be fractured, likely because of the crushing
and grinding phase of bauxite in the beginning of bauxite processing. Other observed particles are
mostly intact without a clear sign of mechanical destruction. Presumably, all the REE particles in
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Figure 37 occur in the original forms like in bauxite, because no chemical alteration was noticed

compared to precursor REE phases.

Intensity (a.u.)
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Figure 37. Backscattered electron images of (a) La-Nd predominant REE particle, (b) intact Ce
particle, (c) cracked Ce particle. In figure (d) is given the EDS spectrum corresponding to La-Nd
particle (a).

Besides the unaffected REE particles, an observation was made that revealed a chemically changed
Ce predominant REE phase, as can be seen in Figure 38. Besides Ce, this particle also contains Ti

and Fe whilst it is surrounded mainly by undigested crushed Al and Fe phases matrix. The
characteristics of such REE ferrotitanate species are further discussed in the chapter explaining REE

phases in bauxite residue (section 6.3.2).

Low Relative intensity High

Figure 38. Ce ferrotitanate phase observed in the karst bauxite preheating stage. The particle is
mainly surrounded by the undigested Al phases matrix.
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The former observations (Figure 37, Figure 38) provided insight, that while the majority of REE
phases seem to occur in their original form, some chemical transformation of REE minerals already
starts during the preheating of karst bauxite suspension at 180 °C under atmospheric pressure.

6.3 REE Phases in Bauxite Residue

In bauxite residue, REE mineral particles appear in the BSE imaging mode as bright particles. They
are contrasting in their brightness from other bauxite residue phases like hematite,
diaspore/boehmite, hydrogarnet, titanium dioxides, cancrinite or perovskite (e.g. Figure 11). At a
similar brightness level as the REE particles, occur other heavy mineral particles such as for instance,
zircon, chromite and chalcopyrite (chapter 5, Figure 30).

6.3.1 REE Carbonate and Phosphate Species

In the investigated bauxite residue sample, a Nd and La predominant particle with the presence of
C was revealed (Figure 39). Other LREEs like Pr and Gd are also present. The specific particle is
notably large, more than 40 um in its longest dimension and exhibits a blocky crystal habit.
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Figure 39. An ancylite group LREE carbonate phase depicted on (a) BSE image with its (b) EDS
spectrum and (c) Raman spectrum compared to a reference spectrum of kozoite-(La) obtained
from RRUFF database (Lafuente et al., 2015), with permission from RRUFF™. Raman spectrum is
collected with a 532-nm wavelength laser.

Raman investigation of this grain resulted in a spectrogram showing a major peak at 1088 cm™,
that can be attributed to symmetric C-0 stretching of CO3?" (Figure 39c) (Buzgar and Apopei, 2009;
Zhuk, 2017). Comparison with reference data from RRUFF database resulted in a notably similar
match with the kozoite-(La) (La(COs)(OH)) Raman spectrum (Lafuente et al., 2015). The observed
peak at 1088 cm™ is the most characteristic one for the ancylite group phases (Lafuente et al., 2015;
Zhuk, 2017). Kozoite, belonging to the ancylite mineral group, is dimorphous with
hydroxylbastnésite. In other words, it has identical chemical composition, but different mineral
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structure. The former occurs in orthorhombic crystal system and the latter in hexagonal (Miyawaki
et al., 2000). The kozoite-(La) reference spectrum given in the RRUFF database has not yet been
confirmed by other identification methods. Therefore, the present identification cannot be
regarded as conclusive. However, the absence of other matching spectra and the relative similarity
with other ancylite group minerals Raman spectra (Lafuente et al., 2015) allows at least suggesting
that the investigated particle belongs to ancylite mineral group.

The formerly described evidence shows that a part of LREEs can occur as carbonate phases in
bauxite residue. Ancylite group minerals have not been identified in any bauxite sample. It could
be that they have been reported as hydroxylbastnasite species because of their identical chemical
composition. Generally, REE carbonate phases are expected to be dissolved during sodium
hydroxide digestion (Habashi, 2013). Based on the abovementioned evidence, it is difficult to define
whether the LREE carbonate phase is a primary mineral inherited from bauxite that withstood Bayer
digestion conditions or is a secondary precipitate form created in the Bayer process. In any case, it
is a very rare occurrence type in bauxite residue.

In a few cases, LREEs are found as calcium containing phosphate phases in bauxite residue, more
specifically as Ce phosphates. It can be seen from the EDS spectrum of an analysed particle,
exhibiting a pronounced P X-ray peak (Figure 40). This and other similar observed grains are Ce-
predominant. The low amount of LREE phosphate species in bauxite residue is in line with the
relative scarcity of phosphate phases in the AoG’s bauxite feed. The composition of these grains
resembles rhabdophane-(Ce) that has been detected in Parnassos-Ghiona bauxite (Table 13)
(Laskou and Andreou, 2003). It is an indication that REE phosphates endure, at least partly, the
Bayer process. This is an expected behaviour as REE phosphates do not dissolve easily in sodium
hydroxide, although there are processes that apply sodium hydroxide leaching to recover REEs from

phosphate minerals like monazite and xenotime (Habashi, 2013). In such processes, sodium
hydroxide is more concentrated (40%—50% NaOH) (Habashi, 2013) than in the Bayer process (12%—
22% NaOH) (Authier-Martin et al., 2001).

Cs

Intensity (a.u.)

Figure 40. Ce phosphate in bauxite residue matrix, shown on (a) BSE image with its (b) EDS
spectrum.

6.3.2 LREE Ferrotitanate Species, (REE,Ca,Na)(Ti,Fe)O;

In bauxite residue, LREE mineral particles that contain Ca, Ti, Fe and Na (Figure 41, Figure 42, Table
14, Table 15) are also found. They further divide into Ce-predominant (Figure 41, Table 14) and Nd-
La-predominant particles (Figure 42, Table 15). The number of ions in the mineral formula shown
in Table 14 and Table 15 have been calculated based on a perovskite stoichiometry with three
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oxygen atoms (ABOs). Alternatively, the number of ions could be calculated by adopting the double
perovskite structure with the composition A,B,0s (Mitchell et al., 2017). Division of the ions
between A and B sites is based on previous literature, considering their charges and relative ionic
radii (Campbell et al., 1997; Mitchell et al., 2017). The chemical composition of these particles is
variable, for instance Ce,0;5 content ranges from about 34 to 51 wt% while TiO, content ranges from
9 to 24 wt% (Table 5). It can be noted that measurements 1-6 in Table 15 are relatively depleted in
Fe,0s content, although the title of this section refers to ferrotitanate species. This effect is
explained further in the text below. Such chemical composition which is uncommon for REE phases
in bauxite, especially the appreciable presence of Na, clearly indicates that the LREE ferrotitanates
are formed during the Bayer process.

Figure 41. BSE images of Ce ferrotitanate grains in bauxite residue matrix, (a), (b) and (c). The

indicated quantification spots are reported in Table 14.

-81-



Table 14. EPMA-WDS quantification (in wt %) of Ce-predominant ferrotitanate grains (Figure 40).
Lower section of the table shows the number of ions in the mineral formula, following the ABO3

perovskite structure.

Oxide Figure 41 Quantification

No. 1 2 3 4 5 6 7 8
La;0; 165 121 131 009 010 0.11 128 1.10
Ce;03 51.25 45.36 48.13 47.22 44.67 34.48 4552 47.27
Pr.0s 1.30 082 08 000 0.10 0.07 131 1.24
Nd,0; 248 193 200 141 154 100 330 299
TiO, 9.00 9.16 9.44 14.84 21.78 1856 21.37 23.86
Fe,03 17.85 22.33 21.98 14.84 877 2287 7.80 7.32
Cao 434 401 413 656 878 991 793 9.59
MgO 0.02 005 003 001 002 022 003 001
SiO; 098 097 098 100 121 209 153 159
Na,O 090 132 092 092 149 216 201 3.21
Al;O3 1.39 143 130 113 1.12 201 150 1.39
ThO, 268 199 221 136 136 121 0.02 0.02
Total 93.83 90.58 93.28 89.36 90.94 94.70 93.60 99.58

No. of ions per ABOsformula
La 0.03 002 002 000 0.0 000 0.02 0o0.01
Ce 081 073 075 071 061 044 061 058
Pr 0.02 001 001 000 0.00 000 0.02 0.02
Nd 0.04 003 003 002 002 001 0.04 0.04
Ti 029 030 030 046 061 049 0.58 0.60
Fe 058 073 071 046 025 060 0.21 0.18
Ca 020 019 019 029 035 037 031 0.35
Mg 0.00 000 0.00 000 0.00 001 0.00 0.00
Si 0.04 004 004 004 005 007 0.06 0.05
Na 0.08 011 0.08 007 011 015 014 021
Al 0.07 007 0.07 006 0.05 008 0.06 0.06
Th 0.03 002 002 001 001 001 0.00 0.00
Structural formulas following the ABOs structure

A (REE, Ca,Na, Th) 120 111 111 111 110 099 114 1.20
B (Ti, Fe, Al, Si) 099 115 1.12 102 095 124 092 0.9

Figure 42. Nd-La predominant LREE particles, of which (a) is partly reacted, and (b) exhibits a
zonation (I-lll) relating to reaction stages with Bayer liquor. Within zone Il of (b), deposition of a
sodium aluminosilicate phase (Na-Al-Si) is indicated. Denoted measurement spots refer to Table
15.
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Table 15. EPMA-WDS quantification (in wt %) of a Nd-La predominant partly reacted LREE grain
(1-4) (Figure 42a) and a LREE ferrotitanate grain (5—10) (Figure 42b). Lower section of the table
shows the number of ions in the mineral formula, following the ABO; perovskite structure.

Oxide Figure 42 Quantification
No. 1 2 3 4 5 6 7 8 9 10
La;0s 23.21 2493 2599 2549 23.89 23.89 10.25 13.87 1.06 7.41
Cex03 7.87 8.87 10.57 10.47 599 546 271 3.49 0.58 1.29
Pr20s 2191 20.56 20.79 2190 22.02 20.78 9.41 8.45 1.03 5.60
Nd.03 35.10 33.73 33.59 34.02 3492 3419 1437 17.22 171 8.53
TiO2 3.87 5.85 0.83 3.08 1.44 2.03 27.48 24.13 32.60 40.35
Fe,0s 2.61 2.35 2.20 3.27 6.67 4.07 1071 12.21 4244 12.26
Ca0 2.11 3.07 1.93 2.56 146 1.12 442 564 17.92 14.16
MgO 0.00 0.00 0.01 0.00 0.11 0.08 0.99 0.02 0.03 0.03
SiO, 0.16 0.29 0.17 0.20 038 054 293 125 1.57 2.30
Na,O 0.16 0.62 0.00 0.14 0.00 000 565 446 2.87 6.93
Al,0; 0.28 0.34 0.33 0.25 0.66 088 321 136 1.07 2.13
ThO, 0.00 0.00 0.00 0.00 0.09 007 0.05 0.02 0.01 0.04
Total 97.28 100.62 96.40 101.37 97.62 93.11 92.17 92.12 102.89 101.02
No. of atoms per ABOs formula
La 0.44 0.43 0.52 0.46 045 047 0.12 0.18 0.01 0.07
Ce 0.15 0.15 0.21 0.19 0.11 011 0.03 0.05 0.01 0.01
Pr 0.41 0.35 0.41 0.39 041 041 011 o011 0.01 0.05
Nd 0.64 0.57 0.65 0.60 0.64 065 0.17 0.22 0.02 0.08
Ti 0.15 0.21 0.03 0.11 0.06 008 0.67 0.65 0.67 0.81
Fe 0.10 0.08 0.09 0.13 026 0.16 0.26 0.33 0.87 0.25
Ca 0.12 0.16 0.11 0.13 0.08 006 0.15 0.22 0.52 0.40
Mg 0.00 0.00 0.00 0.00 0.01 001 0.05 0.00 0.00 0.00
Si 0.01 0.01 0.01 0.01 0.02 0.03 0.09 0.04 0.04 0.06
Na 0.02 0.06 0.00 0.01 0.00 000 035 031 0.15 0.36
Al 0.02 0.02 0.02 0.01 0.04 006 0.12 0.06 0.03 0.07
Th 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Structural formulas following the ABOs structure
A (REE, Ca, Na) 1.76 1.72 1.90 1.79 1.72 171 099 1.08 0.72 0.98
B (Ti, Fe, Al, Si)  0.27 0.32 0.15 0.27 037 033 1.15 1.08 1.61 1.18

Some LREE particles were observed that have a relatively small percentage of Fe, Ti and Na oxide
content (Figure 42a, Table 15). Others showed distinct zonation expressed in wide variation in
chemical composition as well as in morphological features (Figure 42b, Table 15).

The texture of LREE ferrotitanate grains is mostly anhedral. Secondary electron imaging of bauxite
residue “as is” revealed that LREE ferrotitanate grains are partly covered with submicron-sized
bauxite residue matrix particulate (Figure 43). At most, aggregates of anhedral globular crystallites
can be observed when examining larger particles that exhibit different reaction stages. This can be
seen in Figure 42b, especially in the zone Il.
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Figure 43. Ce ferrotitanate particle shown on (a) secondary electron image with its (b) EDS
spectrum; gold (Au) peak is from the coating layer on the sample.

In addition, LREE-containing globular Ca ferrotitanate particles were discerned in nanoscale
investigation with HRTEM (Figure 44, Appendix B Table B 1). The morphological variations of
anhedral to subhedral and euhedral Ca titanate phases are shown in Figure 45. The maximum
concentrations of REEs measured in EDS were about 3 wt % of cerium and about 2.5 wt % of
lanthanum (Appendix B, Table B 1). The quantities of REEs below 1 wt % were regarded as unreliable
due to the poor ability of EDS to measure trace constituents. Selected area electron diffraction
(SAED) of a LREE bearing particle resulted in a reflection pattern indicating to a well crystallised
character. The d-values (d = 0.2564 nm) measured form the patterns resemble the ones of
conventional perovskite reference (d = 0.2710 nm) from [121] direction (Figure 44). Most of the Ca
ferrotitanate particles were, however, REE-depleted. The nanoscale Ca ferrotitanates observed
here are similar to those analysed in the work that elucidated the characteristics of Th contained in
perovskite structure found in bauxite residue (P. N. Gamaletsos et al., 2016). Other REE-containing
phases were not confidently discerned among the fine particulates of bauxite residue during
nanoscale HRTEM investigation.
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Figure 44. LREE-bearing Ca ferrotitanate observed in the bright field imaging mode of HRTEM.
SAED pattern of the particle is inserted to the upper right corner. The pattern is collected from

[121] direction and corresponds to perovskite structure.

(a)

Figure 45. Morphological variations of Ca ferrotitanate (CTO) particles in nanoscale: (a) subhedral
particles and a Fe oxide particle, (b) subhedral particles, (c) anhedral particle and (d) euhedral
particles.
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From the previously noted observations, an important conclusion should be made. Ca ferrotitanate
species, likely corresponding mineralogically to perovskite, with low LREE concentration, should not
be confused with the REE-barren perovskite sensu stricto (CaTiOs) that is also found in bauxite
residue, as detected in XRD phase quantification (Table 7). Such perovskite is created by a different
reaction route. Namely, titanium dioxide phases, especially anatase, react partially with sodium
hydroxide and then with lime added to Bayer process and as a result form perovskite sensu stricto
(Smith, 2017).

When the LREE ferrotitanate particles are relatively large (20—30 um), the variations in their
chemical composition can be drawn out by elemental mapping (Figure 46). It is seen in Figure 46,
that the highest REEs concentrations are found in the core of the particle. REE concentration
decreases towards the edges of the particle. In the bauxite residue matrix surrounding the particle,
there are no presence of REEs. The trend is the opposite for Ti, Ca and Na. Their concentration
increases towards the edges of the particle. While the change in Ti concentration is quite gradual
from core to edge, there is a more sudden increase of Ca concentration on the rim of the particle.
The gradual change of the chemical composition refers to the existence of a solid solution between
the LREE predominant and Ca-predominant end-members. Another characteristic feature of the
reacted LREE ferrotitanate particles is that the outer layer tends to form a distinct Ca ferrotitanate
shell around the particle, where LREEs concentrations are low (Ti, Ca and Fe maps on Figure 46).
The zone that contains about an equal amount of Ti and REEs (corresponding to zone Il on Figure
42b, or silica rich area in Figure 46, indicated with Na-Al-Si), is also intergrown with a sodium
aluminium silicate phase. This likely corresponds to a secondary Bayer process phase, sodalite or
cancrinite.
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Figure 46. EPMA-WDS quantitative elemental mapping of a reacted LREE particle. The intensely
reacted area is also intergrown with sodium aluminosilicate phase (indicated with Na-Al-Si).
Mapped area corresponds to Figure 42b.

Raman spectroscopy of LREE ferrotitanate particles did not provide easily interpretable
spectrograms, as shown on an example in Figure 47. It has been noted that certain loparite minerals
result in anomalously wide Raman scattering peaks (Popova E. A. et al., 2015). In other resources
such as the RRUFF database (RRUFF id: R070251), the wide wave-like features in loparite-(Ce)
Raman spectra have been interpreted as fluorescence that has been induced by the laser beam.
Nevertheless, the measurements made with Raman microscope provide the means to exclude that
these kind of phases are not carbonates, as there is no peak observed in the range of about 1000-
1100 cm™, where the carbonate C-O stretching usually occurs (Buzgar and Apopei, 2009; Yang et
al., 2008). A conclusion can also be made that the occurrences termed here as LREE ferrotitanates
do not contain hydroxyl ions because of the absence of characteristic bands in the region of 3200-
3800 cm™, that are present for example in hydroxylbastnasite phases (Yang et al., 2008). The minor
band seen in 286 cm™ could be attributed to hematite from a nearby area as in this region is
commonly located the most intense band of hematite (293 cm™) (De Faria et al., 1997).
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Figure 47. Raman spectrum collected from zone Il of LREE ferrotitanate particle that is shown in
Figure 42.

A few considerations can be given about the formation mechanism of such LREE ferrotitanate
phases. As mentioned before, the LREE ferrotitanate phases are clearly formed during the Bayer
process. The primary LREE phases interact with the Bayer process liquor. The precursor phases
possibly belong to the bastnasite mineral group of REE fluorocarbonates or cerianite as they are
the most frequently encountered LREE phases in bauxite feed. Bayer liquor consists mainly of
sodium aluminate and free sodium in the form of sodium hydroxide (Wellington and Valcin, 2007).
There is commonly, at least in the high temperature process, also a small proportion of dissolved
iron (3—-50 mg/L Fe;03) and titanium (1-10 mg/L TiO,) present (Authier-Martin et al., 2001; Singh
and Mishra, 2012; Teas and Kotte, 1980). In the current process, Fe concentration ranges from 2—
10 mg/L and Ti concentration is about 1 mg/L (Table 8). The reaction appears to take place in-situ
on the outer part of the REE particles (1l on Figure 42b). There is no indication if the newly formed
phases would be precipitated from the process liquor. The ions taking part in the reaction (Na, Fe,
Ti, Ca) diffuse into deeper parts of the particles as the reaction progresses. Ti ions diffusion seems
to be the most intense. The inner part of the particle (I on Figure 42b) seems to be only slightly
affected by the reaction, as there is only a minor part of Ti and Fe present while no Na is detected.
Similarly, the particle on Figure 42a has very low content of Ti and Fe as well as Na. The presence
of Ca might be already inherited from the precursor mineral (Table 13). Thus, the complete particle
on Figure 42a as well as inner part (l) of Figure 42b are neither entirely a primary REE phases nor
newly created LREE ferrotitanates, but intermediate phases with a deficiency of titanium and iron.
The intensely reacted zones Il and Ill (Figure 42b, Figure 46) are also intergrown with sodium
aluminium silicate phases. This might indicate to a gel-like state in the reaction front that allows
also other mineral species to be nucleated and formed.

The morphology of the inner part of Figure 42b resembles the fibrous or acicular radiating
morphology described in the case of authigenic LREE phases in bauxites (Mongelli, 1997). The
middle and outer parts (Figure 42b Il and Ill) exhibit a different morphology with globular
crystallites, which are characteristic to the newly formed LREE ferrotitanates. They indicate also to
a newly formed mineralogical character. The outer part (Figure 42b, Ill) of the particle represents
the last stage of the transformation, where a high amount of Ca and Ti have been deposited with
4-23 wt% of REEs also present (Table 15). This latest deposition forms a distinct (ferro)titanate shell
around many of the observed LREE particles, which is also emphasised in Figure 48. The shells are
present in La- as well as Ce-predominant particles.
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Figure 48. Various occurrences of Ca-Ti rims surrounding REE particles (a—c) with respective
elemental maps and (d) EDS spectra.

Considering that the grains in Figure 42 are relatively large, it can be assumed that smaller REE
particles react entirely and their final products should be something like what is observed in the
zone lll on Figure 42b, with Ca prevailing ferrotitanates alongside some presence of REEs. Evidences
have been shown in support of this claim from the nanoscale HRTEM investigation, where the
maximum REE concentrations per particle did not exceed 5 wt%. The particles seen in nanoscale
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have a similar composition as well as morphology to the area seen in highly reacted zone Ill on
Figure 42b.

In support of the in-situ transformation of LREE minerals in the Bayer process stands the fact that
LREEs do not possess soluble species in highly alkaline conditions (Brookins, 1988, 1983). In a broad
sense, an analogous in situ transformation of kaolinite to sodium aluminium hydrosilicate has been
described to take place during Bayer process (Banvolgyi et al., 1991).

It was observed that the LREE species containing Na, Ca, Ti and Fe in variable proportions form a
solid solution. The characteristics of the solid solution are expressed on Figure 49, where the ionic
proportions of the cations are plotted. Region denoted with | on (a) refers to the measurements
reflecting the real solid solution. Region denoted with Il on (a) are the measurements performed
on the transitional phases that are not the final LREE ferrotitanate products. The solid solution
characteristic is the most recognizable on A site, where Ca and Na substitute REEs. The correlation
coefficient between the substituting cations is 0.947 (b on Figure 49). The endmembers of the series
have ideal compositions of (Ca,Na)(Ti,Fe)Os and (REE,Ca,Na)(Ti,Fe)Os. Because the measured
compositions are highly variable, it is not reasonable to report any average chemical composition
or formula of the LREE ferrotitanates. Some examples of the formulas can be shown that approach
the ideal stochiometric end-members of the series. For the neodymium-lanthanum predominant
phases they can be (Cao4oNao.3sREEo.22)50.98 (Tio.s1F€0.25)51.0503 (spot 10 in Table 15) and (REEgse
Nao.31Ca0.22)51.08(Tio.65F€0.33)50.9703 (spot 8 in Table 15).
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Figure 49. Solid solution character of LREE ferrotitanate series, depicted as ionic proportions of
the (a) substitutions of Ca and Na with REE on A site and (b) complete transformation, where (REE
+ Na + Th) + (Fe + Al) = Ca + Ti. Region annotated with | on (a) refers to the area of real solid
solution, region annotated with Il on (a) indicates to the measurements on transitional phases.
Adapted after (Campbell et al., 1997; Nickel and McAdam, 1963). The equation is changed for a
best description of present situation (i.e., Nb is left out of the equation whilst Th and Al are added
to A and B sites, respectively). Figures are based on data from Table 14 and Table 15.

The only mineral group containing species corresponding to the currently presented chemical
composition (Table 14, Table 15) is the perovskite sensu lato. Perovskite group, also termed as the
perovskite supergroup refers to the basic structure of ABXs3, where A is a relatively large cation, B is
relatively small cation and X is oxygen or another anion (Mitchell, 1996; Mitchell et al., 2017). It’s
aristotypic mineral structure is cubic. However, due to the extremely wide compositional variations,
many structures are possible. Perovskites exhibit extensive solid solutions, where diverse cations
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can occupy the A and B sites. REE-containing perovskites are well known from the natural systems
and there have been many REE perovskites synthesized for several applications (Atta et al., 2016;
Mitchell, 1996; Mitchell et al., 2017). The compositions measured in present work resemble the
end-members of the perovskite sensu stricto (CaTiOs) and loparite ((REE,Na,Ca)(Ti Nb)Os) (Castor
and Hedrick, 2006) solid solution series (Mitchell et al.,, 2017). Loparite typically occurs in
peralkaline igneous rocks, especially in nepheline syenite (Castor and Hedrick, 2006). As in the
peralkaline rocks, there is an excess of sodium in the present investigated system of Bayer process.
It can be noted from Table 14 and Table 15, that the currently calculated mineral formulas don’t
have an ideal stoichiometry as there are deficiencies and excesses of ions on A and B sites. This is a
regularly encountered observation for perovskites, as they are considered “defect” structures
(Campbell et al., 1997; Mitchell et al., 2017). Excess and deficiency are compensated with the
different ion proportions on A and B sites considering the charge balance as well as excess or
deficiency of oxygen molecules (Campbell et al., 1997; Mitchell, 1996; Mitchell et al., 2017). As
many of currently analysed spots show approximately 1:1 ratio of A:B sites, oxygen deficiency can
be hypothesised to exist. One of the deviations compared to perovskite-loparite natural system,
however, is that in current observations, there is no presence of niobium detected. Typically,
niobium is a ubiquitous constituent in the natural occurrences of loparite (Mitchell et al., 2017).
This is explained by the fact that present LREE ferrotitanates are formed in-situ and thus inherit
partly the chemical composition of their precursor phases. In the precursor minerals, there is no
niobium present (Table 13). Thus, niobium is not expected to appear in the reaction product either.
A second slight deviation is, that the presence of iron was also observed in the discussed particles.
However, iron can generally exist together with titanium on the B site of perovskite/loparite
(Campbell et al., 1997), but the nomenclature of iron containing perovskites has not yet been
established (Mitchell et al., 2017). Regardless of the incomplete nomenclature, perovskites with
composition LaFeOs have been synthesized and characterised (Thirumalairajan et al., 2013). Since
the currently investigated system is a technogenic and not a natural one, it is not uncommon to
find some rarely encountered mineral types. Perovskites matching with the currently defined
chemical composition have not yet been synthesised, but similar ones are for example NalLaTi,0s
or NaCeTi,0¢ (Mitchell et al., 2017). Moreover, endmembers of perovskite-loparite series with
formulas NaopsCeosTiOs and NagsLaosTiOs have been identified as thermodynamically stable (Feng
et al., 2016). Among a variety of perovskite synthesizing methods, there exist the wet chemical
processes, such as hydroxide-based sol-gel process (Atta et al., 2016). Cerium titanates (CeTi20g)
with brannerite structure have been also synthesized (Vales et al., 2014). Those titanates, however,
do not match with the stoichiometry of current REE ferrotitanates because they have two moles of
Ti per one mole of Ce while in the present case the A and B sites have approximately one-to-one
ratio.

Present findings can also be related to some of the previously existing knowledge about REE phases
in bauxite residue. During a nanoscale investigation, a perovskite phase with a general composition
of CagsNap,TiO3 was described to contain trace amounts of Th as well possibly Ce and some other
trace elements (P. N. Gamaletsos et al., 2016). The authors proposed a minor contribution from a
loparite phase related to perovskite to explain the observations. That information compares well
with the present analysis. The mentioned perovskite was also crystallographically characterised and
matched with perovskite structure reference with some deviations from the conventional data,
possibly due to the incorporation of sodium on the A site of perovskite (P. N. Gamaletsos et al.,
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2016). Ce and Ti correlating presence was found in a Canadian bauxite residue sample (Jonquiére,
Québec) (Reid et al., 2017). Bayer process derived REE-containing titanate compounds were
mentioned in a patent describing the recovery of REEs from bauxite residue (Sugita et al., 2012). A
recent contribution that investigated strictly the forms of Ce in bauxite residue, did not refer to any
relations between Ce and Ti (Bolanz et al., 2018). The former comparison allows to suggest, that
the observed LREE ferrotitanate phases presented in this study are not isolated cases for only AoG
(Greek) bauxite residue, but instead seem to be a more generic characteristic that occurs in bauxite
residues originating from different alumina refineries. The exception presented by Bolanz et al.,
(2018) who hypothesize that the main carrier of Ce is hematite, indicates to the need of examining
rare earth phases in relation to Bayer process conditions as well as in relation to bauxite feed and
REE occurrence forms within bauxite.

Current data supports the existence of Th in perovskite type phases contained in bauxite residue
(P. N. Gamaletsos et al., 2016). In fact, compared to the 700 mg/kg Th concentration estimated in
the report by Gamaletsos et al., (2016) based on EDS analysis, current WDS quantification results
show that Th concentration in cerium predominant LREE ferrotitanates can reach as high as 2.7 wt%
ThO, (Table 14). Also, Th is mainly associated with Ce predominant phases instead of Nd and La
predominant ones. This can be explained by the possible existence of Ce in tetravalent oxidation
state, which is the same as for Th. At the same time, practically all the other REEs occur only in the
trivalent oxidation state. That inhibits the incorporation of Th to the mineral structure of Nd and La
predominant phases. The amount of Th incorporated to LREE ferrotitanate phases is probably
highly dependent on the precursor REE phases in bauxite and the content of Th within them.

Present observations deviate with the work of Gamaletsos et al., (2016) in the fact that no Nb or Zr
were detected in the LREE ferrotitanate particles analysed in this work. Considering the reaction
mechanism that forms the LREE ferrotitanates, it is a reasonable observation that the
aforementioned elements are not present in the reacted REE particles since neither of them is a
component of the precursor REE phases. Current work also disagrees with the statement of
Gamaletsos et al., (2016), that bauxite residue is a very homogeneous material, for which
microscale investigations, especially with regards of trace elements, are not feasible to be
conducted. As shown in present work, microscale investigations, combined with nanoscale analysis,
provide very detailed information about the fate of REE minerals in the Bayer process.

6.3.3 Manganese-Associated Ce Oxide or Oxyhydroxide

A part of LREE phases were found to be associated with Mn in bauxite residue. In Figure 50 and
similar observations, LREEs occur as surface adsorbed phases on manganese mineral particles. It
may be assumed that they are manganese oxyhydroxides. In the case of the particles depicted on
Figure 50 as well as Figure 51, the Mn particle is also associated with Co and Ni as well as some Mg.
Following its chemical composition, the Mn phase could be asbolane
(Mn(0O,0H),(Ni,Co)x(0O,0H)2:nH,0) (Manceau et al., 1992).
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Figure 50. Ce oxide/oxyhydroxide phase associated with Mn particle shown on (a) EDS elemental
map with (b) respective spectra.

It is common that the mentioned LREE formations have a circular morphology that follows the
circular cavities of Mn particles or they surround the Mn grains. The referred LREE phases contain
Ce as the prevailing element, but other lanthanides as well as Ca were discerned to be present also
(Figure 50). Based on semi-quantitative EDS estimation, Ce concentration in this LREE occurrence
form is about 35-40 wt%.

Individual Mn-associated LREE particles are small, about 1 um in size, but agglomerated particles
are over 10 um in dimensions. On occasions, Mn-associated LREE phases exhibit remarkable sizes
exceeding 50 um (Figure 51). On the example of the particle depicted on Figure 51, it may be
assumed that the growth of this LREE particle was nucleated on a Mn-Ni-Co particle and continued
to form a Ce- and Ca-predominant particle. The fine acicular morphology of the particle on Figure
51 indicates that the growth rate of this particle has been relatively fast.
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Figure 51. Ce oxide/oxyhydroxide phase associated with Mn shown on EDS elemental map.

LREE phases of this category do not exhibit the presence of phosphorus or carbon (measured in Pt-
coated sample). Therefore, the occurrence form as phosphate or carbonate can be excluded. The
absence of titanium, iron or sodium and a different morphology compared to LREE ferrotitanates
(section 6.3.2) rules out the linkages between the LREE ferrotitanate forms. As a conclusion, these
LREE phases can be termed as oxides or oxyhydroxides, which might correspond to cerianite.

Laskou and Andreou (Laskou and Andreou, 2003) have referred to the existence of minor amounts
of Mn oxyhydroxides, as well as lithiophorite and brindleyite, in the Parnassos-Ghiona bauxite
profiles. It is possible that these are the precursor Mn phases for the kinds observed in bauxite
residue in present study. Higher REE concentrations have been noted to occur together with higher
Mn concentrations in Parnassos-Ghiona bauxite profiles (Eliopoulos et al., 2014), while some
authors have noted a negative correlation between the REEs and manganese contents (Laskou and
Andreou, 2003). Nevertheless, relations of these Mn phases with specific REE minerals in Parnassos-
Ghiona bauxites have not been noted. Even more, such Mn-associated REE occurrences have not
been referred in any bauxite deposit.

Mn and REEs are chemically similar and in natural systems, Mn-adsorbed REEs are not uncommonly
encountered, especially in marine environment (Pourret and Davranche, 2013). There, REEs occur
in the form of adsorption onto ferro-manganese crusts and nodules (Astakhova and Sattarova,
2012; Dubinin, 2004). It is worth mentioning that similar Ce occurrence form has been revealed in
Ni laterites in the Dominican Republic. Rings of cerianite in the sizes of about 5 um or larger
aggregates up to 30 um were associated with Mn oxyhydroxides (Aiglsperger et al., 2016). The
morphology of those Ce occurrence forms resembles the morphology seen in present work.

Considering that the described LREE occurrence form has only been observed in bauxite residue
and its morphology indicates to a relatively fast crystallisation, it is assumed that this might be a
secondary form of LREE occurrence, created during the Bayer process. An easily leachable REE
occurrence form by ion-adsorption, related possibly to kaolinite, illite or chamosite, has been
speculated to exist in Parnassos-Ghiona bauxites (E. Mouchos et al., 2017). This claim has some
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support from present investigation (Figure 35). It might be that the ion-adsorbed REEs are leached
during the Bayer digestion and are thereafter precipitated in association with Mn particles. From
the relative abundance of Ce compared to other lanthanides in these specimens, it can be assumed
that Ce occurs in the tetravalent oxidation state. Similarly, the most common oxidation state of
manganese is 4* (also 2*), allowing a more favourable co-occurrence of these metals.

6.3.4 Heavy REE Phosphates

Heavy REE phosphates with the major constituent being Y were found in bauxite residue (Figure
52). Other HREEs like gadolinium, dysprosium and erbium are also present. These phases
correspond to xenotime or churchite. Xenotime particles are a few um in size. They can be either
contained in a diaspore/boehmite particle (Figure 52) or with a free surface inside bauxite residue
matrix. Either way, shielded by another particle or not, xenotime/churchite endures the Bayer
digestion conditions. It appears in bauxite residue in its original form just as in bauxite ores (Laskou
and Andreou, 2003).
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Figure 52. Xenotime or churchite in undigested diaspore/boehmite matrix, depicted on (a)
backscattered electron image with its (b) EDS spectrum.

6.3.5 Mixed REE Occurrences

Some REE particles were found as mixtures of different REE species. One example of such particle
is depicted in Figure 53. It contains Ce as the prevailing REE, while it also contains Nd, La, Ca as well
as minor Y and Th (Figure 53b). The particle could be either a LREE carbonate or an
oxide/oxyhydroxide phase. What makes it different from the formerly described observations is
that it also contains phosphorus, indicating to the presence of REE phosphate phases within a mixed
type of REE particle.
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Figure 53. A mixed type REE particle shown on (a) backscattered electron image with respective
EDS elemental maps and (b) EDS spectrograms corresponding to indicated spot analyses.

Another example of a mixed REE particle is depicted in Figure 54. The important characteristic of
this particle is that the REEs are contained within the pores and fissures of a large Fe particle. The
Fe particle has acted as a protective shield from the Bayer liquor and therefore the REE phases
contained within it are thought to be primary ones, inherited from bauxite. In present case, Nd is
the prevailing metal in the regions of REEs presence, seconded by La. Like the previously described
particle in Figure 53, this particle (Figure 54) also exhibits the partial presence of phosphorous. The
total area with Nd presence does not coincide with the presence of phosphorus, but all areas shown
to contain phosphorus, coincide with the occurrence of Nd. Therefore, the primary LREE phases
contained within the fissures and pores of the Fe particle are LREE phosphates and possibly
carbonates.
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Intensity (a.u.)

Figure 54. Mixed LREE phases entrapped in Fe grain depicted on (a) BSE and respective EDS
elemental maps and (b) the corresponding EDS spectra. Element maps are monochromatic, thus
there is no colour intensity scale.

Both previously described particles share the characteristic that they are partially surrounded by a
calcium ferrotitanate shell or a rim, where minor LREE content is also present (Figure 53, Figure
54b). This indicates that the particles passing through the Bayer process are slightly affected by the
caustic digestion. It also concludes that the majority of LREE particles found in bauxite residue are
surrounded by a calcium ferrotitanate rim that has been formed during the Bayer process.

6.4 Summary of the REE Phases Physical Parameters

It is not feasible to quantify how much of each REE phase is present in bauxite residue. However,
hereby the observations are summarised in Table 16 and classified according to previously
presented categories (section 6.3). The most frequently encountered REE particles are LREE
ferrotitanates. This concludes that the majority of REE particles entering to the process are affected
by Bayer digestion. The typical sizes of the LREE particles are 5-10 um. HREE particles tend to be
smaller, 2-3 um. Low REEs content ferrotitanate category refers to observations with REE
concentration below 5 wt %. They are mainly encountered in the very fine particulate (<1 um) of
bauxite residue, revealed by HRTEM-EDS.
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Table 16. Summary of the physical parameters of the encountered REE particles in bauxite

residue.
Phase Count Typical size (um) Free Surface/Total
Count
LREE carbonate 1 20-30 1/1
Y phosphate (xenotime/churchite) 3 2-3 2/3
Ce phosphate 3 5-10 2/3
Partly reacted LREE ferrotitanate 4 10 4/4
High LREE content (>5 wt %) ferrotitanate 16 5-10 15/16
Low LREE content (<5 wt %) ferrotitanate 6 <1 6/6
Ce oxide/oxyhydroxide 1 5 0/1
Ce oxide/oxyhydroxide associated with Mn 3 irregular 2/3
Mixed 3 20-40 1/3

The proportions of the REE particles having a free surface were also summarised. This excludes the
fact that many of the observed particles are surrounded by a calcium ferrotitanate rim. It was
concluded that the majority of REE particles have a free surface. The particles might be covered
only by a fine bauxite residue particulate coating, but this is likely not a chemical association.
Occurrences that are categorized as “mixed” tend to be more entrapped in some other major
mineral particle, such as seen in Figure 54.

Microscale investigation resulted in finding a remarkable number of discrete REE particles with
substantially higher REEs concentration in relation to their bulk concentration in the sample.
Nanoscale assessment discerned the existence of calcium ferrotitanate phases with several weight
percent REEs concentrations, that also surpass REEs bulk concentration in bauxite residue. Current
work does not provide support for the suggestion by Bolanz et al. (Bolanz et al., 2018) who
speculated that tetravalent cerium could theoretically be located in bauxite residue within hematite
lattice. Neither does present work disprove the existence of such occurrence forms.

6.5 Considerations for the Recovery of REEs from Bauxite Residue

Since the mineralogical character of REEs in bauxite residue has been elucidated, some
considerations for the recovery of REEs can be suggested. The most abundant REE type identified
in this work is LREE ferrotitanate. It resembles mostly the naturally occurring loparite mineral,
(REE,Ca)(Ti,Nb)Os. Loparite is currently exploited only in the Lovozero massif (Kola peninsula,
Russia) (Castor and Hedrick, 2006). This mineral is being beneficiated there with the combination
of density and magnetic separation methods (Jordens et al., 2013). Thus, additional physical
beneficiation methods could be explored also for bauxite residue, based on the existing knowledge
about loparite beneficiation. In support of this proposal is the fact that the majority of REE particles
in bauxite residue are not attached to other mineral particles, i.e., they have a free surface.
However, the beneficiation trials so far have not been very encouraging (Borra et al., 2016) and a
likely restriction is the similar density of hematite (5.26-5.30 g/cm?) and loparite (4.77 g/cm3)
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known from natural systems. The recovery of REEs from Lovozero loparite is performed via
pyrometallurgical route by chlorination (Castor and Hedrick, 2006). Chlorination has been trialled
in the case of bauxite residue (Borra et al., 2016), but this route could be developed further.

On the one hand, the observed REE particles have commonly a free surface, therefore they should
be immediately affected by any treatment performed targeting the leaching of REE phases from
bauxite residue. Nevertheless, the newly formed LREE ferrotitanate particles tend to have a calcium
ferrotitanate shell surrounding them. The named shells might hinder the effectiveness of leaching
performance due to the need of dissolving the titanate shell before the reaction reaches to the area
with high REEs concentrations.

Another approach for discussing these matters is to compare REE phases found in bauxite and in
bauxite residue. In metallurgical terms, the REE fluorocarbonates that are found in bauxites should
be easier to be processed compared to the complex LREE ferrotitanate phases in bauxite residue.
Thus, the route of recovering REEs from crushed bauxite before Bayer digestion is encouraged to
be tested. In support of the latter, it has been demonstrated that between 19% and 47% of REEs in
bauxite are easily leachable, in fact ion exchangeable, using ammonium sulphate. The authors also
proposed an option to selectively mine the REE-enriched lower parts of bauxite deposits and thus
recover REEs prior to the Bayer process (E. Mouchos et al., 2017). Present mineralogical assessment
supports such an approach, as the REE phases in bauxite are less complex than in bauxite residue.

The fact that Th is associated with LREE phases, particularly with Ce predominant ferrotitanates,
indicates to a possible route of removing Th from the system. If REE leaching from bauxite residue
is performed, Th should also be leached because of its presence in the same mineral phases as the
REEs. The simultaneous dissolution of REEs and Th is a well-documented behaviour in the REEs
industry (Habashi, 2013). This so far has not been identified in the case of bauxite residue (Borra et
al., 2016). The possible leaching of Th along with REEs could be potentially beneficial for the use of
leached bauxite residue in construction materials. Naturally occurring Th with its radionuclide series
is the main source of ionising radiation related to bauxite residue, that puts certain limits to the re-
use of this material in construction applications in its raw form (Goronovski et al., 2018; Nuccetelli
et al., 2015).
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7. Modes of Occurrences of Sc in Bauxite
and Bauxite Residue

Chapter 7 is based on the following publication: Vind, J., Malfliet, A., Bonomi, C., Paiste, P., Sajo, I.E.,
Blanpain, B., Tkaczyk, A.H., Vassiliadou, V., Panias, D., 2018. Modes of occurrences of scandium in
Greek bauxite and bauxite residue. Minerals Engineering 123, 35-48.

Based on the elevated Sc concentration of karst bauxites (43—-56 mg/kg Sc; Table A 1) compared to
the currently assessed lateritic bauxites (7-8 mg/kg Sc), a detailed microscale speciation of Sc was
focused on the Sc-enriched Parnassos-Ghiona bauxite samples representing the major input of Sc
to the Bayer process system (96% of total Sc). Once again, bauxite residue was subjected to detailed
microscale speciation of Sc that represents the major output carrier of Sc from the Bayer process
(refer to section 4.2).

7.1 ScHosted in Hematite and Goethite

7.1.1 Bauxite Samples

Iron phases are represented by hematite and goethite in the assessed Parnassos-Ghiona bauxite
samples, as detected by XRD (Table 7). It was determined qualitatively and quantitatively by EPMA-
WDS that iron oxide matrices contain Sc in elevated concentrations when compared to the bulk Sc
concentrations of the respective samples (Figure 55, Table 17, Table 18). The rest of the mineral
matrix measurements shown in Figure 55 will be addressed further on in the text. The analysed
areas containing mainly iron phases were chosen as those with the highest possible purity (e.g.
Figure 56 showing the area of LA-ICP-MS measurements). However, minor contribution from other
compounds might have occurred because Al;0s, TiO; and SiO; impurities were also detected with
both EPMA-WDS and LA-ICP-MS techniques. Al,0s; content might be from finely dispersed
aluminium oxyhydroxide phases, SiO, because of kaolinite group phases contribution, and TiO, can
be either because of the occurrence of Ti in hematite mineral lattice or due to the occurrence of
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nanoscale titanium dioxide phases in the matrix. The latter have been proven to exist in the
diaspore matrix of Parnassos-Ghiona Fe-depleted bauxite (Gamaletsos et al., 2017).

5 Zircon
8
ﬂ —— Anatase/rutile
C
3 —— Goethite
]
—— Hematite
—— Boehmite/diaspore
f A~
95.5 96 96.5 97 97.5 98 98.5

PETH spectrometer position (mm)

Figure 55. Qualitative identification of Sc peaks (in positions 97.05-97.20 mm) in different mineral
matrices with PETH spectrometer of the EPMA-WDS instrument. Spectrum of goethite is retrieved
from bauxite residue sample; the rest are from Parnassos-Ghiona B3 horizon bauxite samples.

A representative area of the iron oxide dominant matrix was identified to be hematite-dominant
by u-Raman spectroscopy (Figure 57). It is possible to conclude that Raman bands at wavenumbers
225,245, 292, 411, 496 and 610 cm™ are attributed to hematite, when comparing the spectra with
those presented in the literature and reference patterns measured with the same exciting laser
wavelength (785 nm) reported by different authors (De Faria et al., 1997; Gamaletsos et al., 2007,
Lafuente et al., 2015). Minor band at 450 cm™ could represent diaspore (Gamaletsos et al., 2007;
Ruan et al., 2001) and a band at 661 cm™ could be attributed to magnetite. Because of its gaussian
shape, the latter could also be a fluorescence peak. Magnetite has not been confirmed to appear
in the bulk sample by XRD, but it might occur under the detection limit of this technique.
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Figure 56. Optical microscope image of bauxite DD hematite-dominant matrix area surrounded by
multiphase bauxite matrix. The numbers indicate LA-ICP-MS measurement spots (Table 18) and
“a)” is the spot of u-Raman measurement depicted in Figure 57.
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Figure 57. Raman spectrum of an example hematite matrix area of bauxite DD in relation to
hematite reference. D — diaspore, Mgt — magnetite. Peaks with only numeric indexing are
attributed to hematite. Reference spectrum is from RRUFF database (Lafuente et al., 2015).

The average Sc concentration in the DD-BX sample hematite-dominant matrices was higher (260
mg/kg) than that of the ST-BX sample (170 mg/kg) (Table 17), measured by EPMA-WDS. Full data
of the quantification are displayed in Appendix B, Table C 1 and Table C 2. The standard deviation
(S.D.) in Table 17 and in the following tables is calculated as the sample standard deviation for a
better representation of the whole sample, considering the small number of performed
measurements. The occasional high S.D. values in Table 17 and in following tables are due to the
high spread of the measured values.

The presence of Sc in hematite matrices of bauxite was further confirmed by LA-ICP-MS
measurements (Table 18). The two methods produced constant values for both samples. Sample
DD-BX with higher Sc contents in hematite areas yields also higher bulk concentration of Sc (Table
A 1). When comparing two methods, the average concentration of Scin the hematite matrix of 200
mg/kg measured by EPMA-WDS was almost identical to the average value determined by LA-ICP-
MS on both bauxite samples, 199 mg/kg (n = 9). The average Sc concentration contained in the
hematite matrix equals to that of an Australian laterite deposit, where Sc content in hematite was
also shown to be 200 mg/kg on average (Chassé et al., 2017). The most probable form of occurrence
of Sc in hematite is by the known substitution of Fe3* with Sc* (Chassé et al., 2017; Horovitz, 1975;
Samson and Chassé, 2016). The occurrence of goethite was not revealed during microscale analysis
of bauxite samples. Therefore, it was not possible to establish whether goethite hosts any Sc in
bauxites or not. It could be that goethite occurs in these samples in sub-um size. Laskou and
Economou-Eliopoulos, (2007) as well as Laskou and Economou-Eliopoulos, (2013) have noted the
presence of goethite in Parnassos-Ghiona bauxites in association with pyrite and diaspore in veins
crosscutting the bauxite matrix as well as in small (~10 um) cavities.
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Table 17. Chemical composition of hematite-dominant matrices of bauxite samples determined
by EPMA-WDS. In the category “Greek bauxite overall”, measurements of the two Greek

Parnassos-Ghiona bauxite samples are combined.

Parnassos-Ghiona overall

Analyte Bauxite DD-BX (n =12) Bauxite ST-BX (n = 16) (n=28)

Median Average S.D. Median Average S.D. Median Average S.D.
Fe,0; (wt%) 88.12 85.84 7.66 96.13 95.97 1.32 94.13 91.63 7.14
TiO2 (wt %) 2.82 2.82 0.51 2.52 2.53 0.38 2.57 2.66 0.46
Al,0; (wt %) 9.58 11.83 8.36 1.98 2.47 1.82 3.00 6.48 7.25
SiO; (wt %) 1.12 1.14 0.11  0.57 0.64 0.33 0.80 0.85 0.36
Na,O (wt %) 0.00 0.01 0.01 0.02 0.02 0.01 0.01 0.01 0.01
Cao (wt %) 0.15 0.15 0.03 0.11 0.11 0.04 0.13 0.13 0.04
Cr03 (Wt %)  0.22 022 0.04 0.18 020 0.06 0.20 021  0.05
V203 (wt %) 0.09 0.09 0.01 0.23 0.24 0.04 0.20 0.18 0.08
Sc (mg/kg) 260 260 20 180 170 40 200 200 60
Total (wt%) 102.11 102.16 0.92 102.18 102.21 1.37 102.14 102.19 0.04

-104 -



Table 18. LA-ICP-MS analysis of bauxite hematite matrix sites. Fe was used as a standard element.
Therefore, its content appears constant in all the analysed spots (see Materials and Methods
section 2.4). SiO, measurements are from SEM-EDS.

. Bauxite ST-
Analyte Bauxite DD-BX
BX
Ave- S.D
1 2 3 4 5 6 7 8 9
rage
Fe203
91.86 91.86 91.86 91.86 91.86 91.86 91.86 91.99  91.99 91.89  0.06
(wt %)
TiO,
2.61 2.65  2.47 2.62 2.59 2.57 2.71 3.27 3.19 274 0.29
(wt %)
Al,03
3.11 3.97 4.37 8.81 4.66 5.23 5.81 4.35 9.66 5.55 2.23
(wt %)
SiO,
0.60 0.60 0.60 0.00 0.60 0.60 0.00 0.30 0.30 0.40  0.26
(wt %)
Cr203
0.25 0.26  0.25 0.30 0.26 0.25 0.27 0.33 0.37 0.28 0.04
(wt %)
V,03
0.19 020 0.19 0.18 0.19 0.19 0.17 0.24 0.26 0.20  0.03
(wt %)
3¢ 220 220 214 204 214 209 205 146 157 199 28
(mg/kg)
Total
(Wt %) 98.62 99.54 99.74 103.77 100.15 100.70 100.82 100.48 105.76 101.06 2.26
(o]

7.1.2 Bauxite Residue Sample

As in bauxite samples the most commonly encountered Sc-containing particle type in its residues is
hematite-dominant (Figure 58, Table 19). Two populations of hematite-dominant particles were
categorized as Sc-hosting and Sc-depleted (Table 19). The population of Sc-depleted material
(average 30 mg/kg) was defined by categorizing Sc concentrations below the lowest measured
content of Scin bauxite samples hematite matrices, <100 mg/kg (Table C1). This category is thought
to represent material derived from lateritic bauxite feed, which has a negligible bulk Sc content (7-
8 mg/kg). It is not possible to propose any other sources for this population of Sc-depleted
hematite. The Sc-hosting category has a similar average Sc concentration (190 mg/kg, Table 19) as
the examined population of Greek bauxite hematite matrices (200 mg/kg, Table 17). The bauxite
feed proportion in the production is 80 % karst and 20 % lateritic and the hematite input is
therefore 90 % from karst and 10 % lateritic bauxite (calculated by combining phase quantities in
Table 7 and the feed proportions). This reasoning allows an overall estimation of average Sc content
in hematite-dominant particles of bauxite residue to be reported as 170 mg/kg.
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Figure 58. BSE image of a selection of analysed spots of hematite-dominant grains in bauxite
residue. Measurements are summarized in Table 19 and individual measurements are reported in
Table A.4.

Table 19. EPMA-WDS quantification of iron phase matrices of bauxite residue.

Sc-hosting hematite Sc-depleted hematite . _
Analyte (n = 24) (n =32) Goethite (n =12)
Median  Average S.D. Median  Average S.D. Median  Average S.D.
Fe20s 93.55 92.02 4.06 93.93 93.81 3.49 84.86 85.89 4.84
(wt%)
TiO;
3.52 3.98 2.17 0.94 1.02 0.82 0.72 2.36 3.34
(wt%)
Al,03
1.82 1.79 0.60 1.66 1.91 1.47 0.61 0.75 0.72
(wt%)
SiO;
0.45 0.71 0.60 1.14 1.11 0.68 1.76 1.84 0.43
(Wt%)
Na20
0.21 0.29 0.26 0.40 0.43 0.27 0.37 0.36 0.23
(Wt%)
Cao
0.42 0.49 0.32 0.42 0.44 0.17 0.20 0.29 0.20
(Wt%)
Cr203
0.18 0.24 0.12 0.03 0.05 0.05 0.03 0.05 0.04
(wt%)
V203
0.14 0.17 0.11 0.03 0.07 0.12 0.04 0.05 0.03
(wt%)
S 180 190 70 30 30 20 300 330 240
(mg/ke)
Total
(Wt%) 101.05 99.74 3.39 99.26  98.99 2.28 90.80 91.73 3.15
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In the bauxite residue sample, another iron phase was distinguished from hematite by its darker
hue in the backscattered electron imaging mode (Figure 59), its distinctively high WDS peak in
qualitative scanning (Figure 55), and its higher Sc content (Table 19, Table 20, Table C 5).
Quantitative EPMA-WDS analysis resulted in a deficiency of about 10 % in total oxide values, and
this is attributed to hydroxyl content. This iron oxyhydroxide phase was identified as goethite in p-
Raman spectroscopic analysis (bands 204, 221, 240, 296, 396, 472, 546 cm™), sometimes associated
with hematite in the same particle (bands 224, 246, 291, 410, 495, 609 cm?) (Figure 59, Figure 60)
(De Faria et al., 1997; Lafuente et al., 2015). Raman identification of Sc-bearing goethite was
repeated on several particles. The claimed goethite phase contains 330 mg/kg of Sc on average and
maximum values exceed 800 mg/kg while the standard deviation is high because of the high spread
of the measured values. Often, but not always, goethite is associated to Sc-depleted hematite
containing no or very low amounts of Sc (Figure 59, Table 20).

A potential scenario explaining the observed complex goethite/hematite structures as the one
shown in Figure 59 assumes that the mixed goethite/hematite particles originate from the lateritic
bauxite instead of the karstic one and therefore are initially Sc-depleted. During the bauxite
digestion stage, Sc might be partially dissolved from some Sc-bearing minerals into the Bayer
process liquor and subsequently adsorbed on the goethite surface giving rise to goethite particles
with high Sc concentration. The above hypothesis is not uncommon as Chassé et al. (2017) have
revealed in a high Sc grade Australian laterite deposit that Scis adsorbed on the surface of goethite,
giving rise to an average concentration of about 1300 mg/kg associated with this phase. By contrast,
in hematite Scis held in the mineral lattice with a lower concentration of approximately 200 mg/kg
(Chassé et al., 2017). In broad terms, a similar partitioning between hematite and goethite with
regards to Sc contents is also evident in our investigated system of Bayer process derived residue.
If this analogy holds true, the occurrence mode of Sc in goethite of present study could also be
attributed to Sc adsorption phenomena.

Another scenario explaining the formation of complex goethite/hematite structures is based on the
transformation of goethite to hematite that is induced through a reaction with lime. The reaction
path includes the formation of iron hydrogarnet as an intermediate product which is further
decomposed into hematite (Smith, 2017). During the transformation of the originally Sc-contained
goethite phases to iron hydrogarnets, Sc is liberated because it cannot enter to the intermediate
hydrogarnet phase, as indicated below (section 7.3.2) and also reported in the literature (Suss et
al., 2017), giving rise to the formation of a new Sc-depleted hematite phase.
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Figure 59. Micro-area of Sc-rich goethite and Sc-depleted hematite contained in bauxite residue
shown on backscattered electron image. Numbers 1-5 indicate to EPMA-WDS measurements
(Table 20); letters “a)” and “b)” indicate the approximate areas of p-Raman measurements

(Figure 60).
Table 20. EPMA-WDS quantification of goethite (1-3) and hematite (4-5) areas corresponding to
Figure 59.
Analyte Goethite Hematite
1 2 3 4 5

Fe 03 (wt%) 88.91 80.13 83.07 101.11  100.80
TiO2 (wWt%) 0.33 7.81 9.33 1.56 1.52
Al,0;3 (wWt%) 0.15 0.51 0.69 0.11 0.15
SiO; (Wt%) 1.70 1.39 1.59 0.07 0.10
Na,O (wt%) 0.20 0.15 0.46 0.03 0.01
CaO (wt%) 0.14 0.10 0.17 0.10 0.13
Cr,0s (Wt%) 0.00 0.02 0.07 0.08 0.09
V,0; (wt%) 0.01 0.08 0.11 0.28 0.28
Sc (mg/kg) 300 400 290 0 10
Total (wt%) 91.47 90.26 95.53 103.34  103.08
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Figure 60. Raman spectra of a) goethite area and b) hematite area contained in bauxite residue in
relation to reference spectra. Analysed locations are indicated in Figure 59. He — hematite, D —
diaspore, Mgt — magnetite; peaks with only numeric indexing are attributed to a) goethite, b)
hematite. Reference spectra are from RRUFF database (Lafuente et al., 2015).

7.2 Aluminium Oxyhydroxides as Minor Sc Hosts

Diaspore and boehmite, the respective aluminium oxyhydroxide phases contained in bauxites as
well as in the residues, are relatively depleted in Sc (Figure 55, Figure 61, Table 21, Table 22). As in
the case of iron oxide matrices, it is considered that the analysed spots are not completely pure
aluminium oxyhydroxides, but rather matrices of different phases with a high and prevailing
content of Al,0s. Minor peaks of Sc could be identified on some of the qualitatively analysed spots
(Figure 55). The Sc amount that could be quantified was right on or slightly above the detection
limit of EPMA-WDS method with an average of about 10 mg/kg (Table 21) in both bauxite (Table C
6) and bauxite residue aluminium oxyhydroxide particles (Table C 7). LA-ICP-MS measurements on
the bauxite ST-BX aluminium oxyhydroxide locations indicated an average of 16 mg/kg Sc (Table
22).
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Figure 61. BSE image of an aluminium oxyhydroxide dominant particle observed in bauxite
residue. Quantification of spot “2” is shown in Table C 7.

The results of this work prove once more the preference of Sc substitution towards iron phases
instead of aluminium ones, due to the relative similarity of Sc** with Fe3* rather than with AI**. The
latter should not be excluded as the substitution of AI®* by Sc** has also been described to take
place (Horovitz, 1975) and in Middle Timan bauxite (Urals, Russia), this is the primary form of Sc
occurrence (Suss et al., 2017). Consequently, a small proportion of Sc could possibly be released
from diaspore/boehmite minerals to processing liquor during Bayer digestion.

Table 21. EPMA-WDS quantification of aluminium oxyhydroxide matrices of bauxite samples (n =

14).

Analyte Median Average S.D.
Fe,0; (wt %) 3.53 4.03 1.88
TiO2 (wt %) 0.18 0.42 0.46
Al03 (wt %) 88.40 89.02 2.18
SiO; (wt %) 0.45 0.44 0.25
Na,0 (wt %) 0.01 0.01 0.01
Cao (wt %) 0.04 0.06 0.09
Sc (mg/kg) 10 10 10

Total (wt %) 94.87 93.98 291
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Table 22. LA-ICP-MS quantification of aluminium oxyhydroxide matrices of bauxite sample ST-BX.
Al was used as a standard element. SiO> is from SEM-EDS.

Analyte 1 2 3 4 5 6 7 Average S.D.
Fe0s 5520 266 321 243 315 322 351 296 042
(wt %)
o
'00/20)(Wt 191 1.8 1.8 153 011 012 013 107  0.89
AlL,O;

8214 8213 8213 8213 8138 8251 8251 8213  0.38
(wt %)
%% 500 000 000 000 107 08 08 040 050
(wt %)
Cr,03

002 002 002 002 001 001 002 002 000
(wt %)
V,0s

004 004 005 005 003 003 003 004 001
(wt %)
> 23 20 20 15 10 10 11 16 6
(mg/ke)
Total
(i 8668 8674 8733 8620 8579 8678 8709 8666 052

7.3 Minor and Secondary Phases

7.3.1 Sc-Hosting

Zircon (ZrSiO,), detected in bauxite and its residue samples, was found to contain the highest
concentration of Sc throughout the analysed mineral species with an average of about 3600 mg/kg
(Table 23). Sc peaks were also identified both in WDS (Figure 55) and in EDS spectra (Figure 62). In
the observed grains, zones with higher Sc and Ca contents can be detected, visualized in
backscattered electron imaging by darker tones (Figure 62). Very high heterogeneity of Sc contents
in zircon is evident, probably because of Sc-depleted zircons originating from lateritic bauxite
and/or because of the zonation of the Sc presence in zircon. This results also in a very high standard
deviation. Sc bearing zircon, containing also Hf, U and Ca consistent with present observations, was
detected in karst bauxite in the Southern Apennines, Italy (Boni et al., 2013). It seems that in bauxite
residue, the highest values of Sc in zircon are correlated with the higher concentrations of Ca, Al as
well as U when comparing with the measurements with low Sc concentration. However, the Sc
concentration does not seem to be dependent on Hf concentrations. This regularity is also
emphasised in the relative elemental concentration profiles shown in Figure 62c, where higher
concentrations of Sc and Ca coincide with the decreased concentrations of Zr and Si. The former
example is another case of the heterogeneity of Sc presence inside zircon. Therefore, a multivalent
substitution in zircon involving Ca, Al, U and Sc can be hypothesized to exist in these occurrences
of zircon in bauxite and its residue. Resulting from the preceding, it can also be inferred that parts
of Hf and U in bauxite residue are associated with zircon. The zonation of zircon with Sc-enriched
areas has been explained to occur as a result of zircon alteration in some bauxite deposits, giving
rise to a partly amorphized structure (Mordberg et al., 2001). In present case, such features
indicating to alteration or amorphousness of zircon were not observed, but the morphology of the
crystals rather indicates to fracturing and a subsequent filling of the fractures with Sc-enriched
zircon. More insight into zircon occurrence in bauxite and its properties in relation to Sc content
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can be found from Mordberg et al., (2001). The Bayer process is expected to have no or minimum
effect on zircon because of its well-known high chemical durability (e.g. Hanchar, 2015), which is

also evident from current observations.
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Figure 62. BSE images of zircons observed in (a) Greek Parnassos-Ghiona bauxite (DD-BX), (b)
bauxite residue, with (c) relative concentration profile measured on the dashed line shown in (a),
and (d) respective EDS spectra corresponding to zircons in bauxite as well as in residue.
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Table 23. Sc concentration in zircons of bauxite (1-4) and its residue (5-10), quantified in EPMA-

WDS*.
Ana- . . .
lyte Bauxites ST and DD Bauxite residue
Ave-
1 2 3 4 5 6 7 8 9 10 S.D.
rage
Zr02
(Wt %) 56.80 59.02 55.06 61.10 56.53 61.82 57.73 57.98 62.52 57.45 58.60 2.46
i
(;S’;) 24.78 26.01 30.20 31.86 30.07 32.65 30.37 30.53 32.70 30.23 29.94 2.61
0
F6203
3.82 3.05 4.30 3.20 3.97 3.52 4.10 3.95 3.27 3.98 3.72 0.43
(wt %)
HfO,
n/a n/a n/a n/a 1.14 1.48 1.14 1.15 1.50 1.16 1.26 0.18
(wt %)
Cao
0.50 0.02 0.42 0.02 0.64 0.00 0.54 0.65 0.01 0.69 0.35 0.30
(wt %)
UO,
n/a n/a n/a n/a 0.82 0.33 0.79 0.86 0.21 0.87 0.65 0.29
(wt %)
Al, O3
n/a n/a n/a n/a n/a n/a n/a 0.72 0.02 0.82 0.52 0.44
(wt %)
Sc
(mg/kg 1860 350 3100 540 7240 80 7180 7230 50 8400 3600 3500
)
Total
(Wt %) 86.20 88.14 90.45 96.27 94.28 99.82 95.77 96.94 100.24 96.48 94.46 4.73

* For a part of the measurements, Al,0s3, HfO, and UO, contents were overlooked, but for a wider overview of Sc
contents in zircon, these measurements were included as a part of this summary.

7.3.2 Sc-Depleted

Titanium dioxide polymorphs anatase and/or rutile do not contain a significant amount of Sc (Table
24). Anatase and rutile can’t be distinguished from each other in EPMA-WDS because of their
identical chemical composition (Figure 63a). The concentrations of Sc in titanium dioxides of
bauxite and its residue materials were similar, a summarising concentration of about 40 mg/kg (n
=9) can be given for the two phases combined. Iron titanates, corresponding to either ilmenite or
titanomagnetite (not detected in XRD) show variable contents of Sc from 0 to 260 mg/kg, but are
commonly completely barren in Sc content (Figure 63b, Table 25). They were identified only in DD-

BX sample.

Figure 63. Backscattered electron images of a) titanium dioxide (anatase/rutile) and b) iron
titanate observed in Greek bauxite DD. The indicated quantification spots are reflected in a) Table
24, and b) in Table 25.
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Table 24. EPMA-WDS quantification of TiO, (anatase/rutile) particles in bauxite (ST-BX no. 1, DD-
BX no.-s 1-7) and bauxite residue samples (8-9).

Ana- Bauxite Ave-
ST-BX DD-BX .
lyte residue rage
1 2 3 4 5 6 7 8 9
TiO,
(Wt %) 9394  92.39 89.75 9290  84.59 86.52 8801  100.85 9341 9137 4.84
FeZOg
1.43 0.93 1.03 1.25 6.12 1.40 1.68 1.92 453 2.25 1.81
(wt %)
Al, O3
n/a 0.56 0.80 0.55 5.33 0.59 1.14 0.94 2.03 1.49 1.63
(wt %)
SiO,
1.04 0.95 1.37 0.22 0.42 0.32 0.57 0.29 1.34 0.72 0.46
(wt %)
NazO
0.07 0.02 0.04 0.01 0.00 0.06 0.01 0.04 0.07 0.03 0.03
(wt %)
Cao
1.28 0.06 0.07 0.06 0.10 0.08 0.11 0.74 0.70 0.35 0.45
(wt %)
I
Cra05 n/a n/a n/a n/a n/a n/a n/a 0.03 0.03 0.03 0.00
(wt %)
V,03
n/a n/a n/a n/a n/a n/a n/a 0.63 0.45 0.54 0.13
(wt %)
Sc
40 70 150 10 40 0 0 30 20 40 50
(mg/kg)
Total
(Wt %) 97.75 94.93 9307 9498 9658 8897 9155 10544 10257  96.20 5.19

Table 25. EPMA-WDS quantification of iron titanite particles in bauxite DD sample.

Analyte 1 2 3 4 5 Average S.D.
TiO2 (wt%) 32.32 53.59 53.75 58.78 52.54 50.20 10.28
Fe,Os (wt%) 34.37 43.55 42.08 37.11 42.43 39.91 3.96
Al,Os (wt%) 10.64 0.33 0.10 0.74 0.17 2.40 4.61
SiO; (Wt %) 0.62 001 001 0.04 o0.01 0.14 0.27
Na,O(wt%) 0.00 001 0.02 0.01 0.01 0.01 0.01
CaO (wt %) 0.14 0.04 0.02 0.05 0.02 0.05 0.05
MgO (wt %) n/a n/a n/a n/a 0.08 0.08 n/a
MnO (wt %) n/a n/a n/a n/a 3.61 3.61 n/a
Sc (mg/kg) 260 0 0 10 0 50 120
Total (wt%) 78.1 97.5 96.0 96.7 98.9 93.44 8.63

There are no indications suggesting to the existence of any discrete phases of Sc in bauxite or its
residue. Rare earth phases and aluminosilicate phases, latter corresponding to kaolinite group clay
minerals, did not reveal any content of Sc (Table 26). Sometimes, kaolinite-associated Sc has been
referred to occur (Lavrenchuk et al., 2004). The chlorite group phase chamosite, detected in XRD
scan of bauxite residue, was not discerned during EPMA investigation. Neither observation derived
any conclusions about the relations between phosphates and Sc.
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Table 26. EPMA-WDS quantification of Sc-depleted mineral phases. Aluminosilicate,
corresponding to kaolinite (1-6), is measured in Parnassos-Ghiona B3 sample (DD-BX).
Hydrogarnet type phases (titanium- and iron-substituted; 7—8) and Ca-based phases (possibly
calcite; 9-10) are measured in bauxite residue sample.

Analyte Aluminosilicate (kaolinite) Hydrogarnet Ca-based phase
1 2 3 4 5 6 7 8 9 10

SiO; (wt%) 25.85 25.11 25.64 26.39 27.31 26.59 9.73 9.94 2.08 0.27
MgO (wt%) 037 037 037 040 020 0.79 0.01 0.02 0.07 0.66
AlL,O; (wt %) 35.48 35.48 35.48 38.16 39.22 39.57 13.07 11.22 3.81 1.52
Na;,O(wt%) 005 0.05 005 005 005 011 0.73 0.22 0.35 0.04
Fe;0s5 (wt%) 1.65 1.65 1.65 1.74 1.47 4,03 11.07 12.24 15.48 2.14
CaO (wt %) 005 005 005 005 005 012 36.78 33.62 5053 56.31

Tio, (Wt %) - - - - - - 2121 1848 151 012

Cr0s (Wt %) - - - - - - 031 030 008 0.0
Vo0s (Wt %) - - - - - - 256 224 017  0.02
Sc(mg/kg) O 0 0 0 0 0 0 10 0 0

Total (Wt %) 63.44 62.71 63.24 66.79 68.30 71.21 9547 98.27 74.08 61.08

The Bayer process secondary minerals of the hydrogarnet group, cancrinite or perovskite did not
detect the presence of Sc, when analysing them in bauxite residue samples or scales (Table 12,
Table 26). Note that the analysed hydrogarnet type phases contain substantial quantities of Ti and
Fe. This makes it possible to identify them as Ti and Fe substituted hydrogarnet phases that are also
noted in other studies, sometimes given with the formula Cas(Al,Fe)2[(Si,Ti)O4]n(H20)(6-2n) (Suss et al.,
2002; Zoldi et al., 1987). They may also contain a considerable quantity of V (about 2.5 wt% V,0s).
This is the highest V concentration per spot analysis detected in this study. Only a few small
perovskite grains were possible to be analysed by EPMA-WDS in bauxite residue sample. Therefore,
due to the very fine size of cancrinite and perovskite grains in bauxite residue, these phases were
investigated on a sample of scale formed in the Bayer process autoclave (74 % cancrinite, 7.5 %
perovskite, 6.5 % hematite, 12 % other; 19.7 mg/kg Sc; Table 6, Table 7). For the full description of
this material, the reader is referred to paragraph 4.4 (Table 12, Figure 28), which discusses the
characteristics of minor Bayer process by-products, such as scales. In the studied autoclave scale,
the crystals exhibit larger sizes while representing Bayer process secondary mineral phases (Figure
28). It was concluded previously from the investigation of the scale sample (paragraph 4.4) that
perovskite is not a likely host of Sc, while cancrinite can be associated with minor quantities of Sc
(20-90 mg/kg, Table 12). Nevertheless, this indication cannot be regarded as conclusive because
the analysed cancrinite-predominant matrix also contains sub-micron sized grains of iron oxides,
thus the indicated quantity of Sc might be related to those Fe particles. If Sc presence in cancrinite
or perovskite is to be assumed, then cancrinite is a more probable host for Sc than perovskite. To
confirm whether cancrinite can incorporate Sc to its composition, a purer source of cancrinite phase
should be isolated. In any case, even if cancrinite contains roughly about 30 mg/kg of Sc, it cannot
account for more than 3% of the total Sc budget in bauxite residue, rendering its importance as a
Sc host minimum.

7.4 Distribution of Scandium Between its Host Minerals

Having quantified the phase compositions (Table 7), Sc bulk concentrations (Table 6) and the
contents in its host minerals (sections 7.1, 7.2, 7.3), we can compile the data into a mass balance
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estimation to indicate the amount of the total Sc each phase contains. Higher and lower limits are
determined by the standard deviations of Sc quantification. The estimation is based on EPMA-WDS
data, values of major phases are rounded to a multiple of 5. For the bauxite residue, the most
significant Sc host is hematite, containing 55 + 20 % of total Sc, followed by goethite with 25 + 20 %
of contribution (Table 27). A lesser amount is associated with zircon and a quantity of 10 +5 % Sc
hosted by this mineral can be estimated. The primary change from bauxite to bauxite residue is that
boehmite/diaspore lose their role of hosting Sc, because they are dissolved in the Bayer process
(e.g. Authier-Martin et al., 2001). Other authors have arrived to the same conclusion, that some Sc
is released from diaspore/boehmite, but in their case the boehmite/diaspore-associated proportion
of Sc in bauxite is reportedly substantially higher (100-110 mg/kg Sc; 55—60 % of total Sc) than in
present case (Suss et al., 2017). The released proportion of Sc could be scattered in bauxite residue
in the form of adsorbed ions on mineral surfaces or on the goethite surface. Goethite was not
distinctively observed in bauxite samples and the presence of Sc in them could not be identified.
Therefore, goethite related mass balance figure can only be given for bauxite residue.

Table 27. Distribution of Sc between its host minerals. Titanium phases refer to anatase and rutile

combined.

Phase Bauxite Bauxite residue
% of total Sc

Hematite 70+ 20 55+20
Goethite ? 25+ 20
Diaspore/boehmite 15+ 15 2+2
Zircon 10£5 10£5
Titanium phases 212 1+1
Cancrinite 3?

7.5 The Route of Scandium Enrichment into Bauxite Residue

There are two main parent lithologies from where Parnassos-Ghiona bauxite material is thought to
originate. First are the ultramafic and mafic rocks. They are linked to the bauxite deposit primarily
by relating the contents of chromium and chromite mineral species as well as other compatible
elements (P. Gamaletsos et al., 2016; Laskou, 2001; Petrascheck, 1989; Valeton et al., 1987). Second
are felsic rocks of igneous origin, linked to the bauxite deposit by the elevated content of REEs and
incompatible elements of the high field strength elements group (e.g. Th) as well as the presence
of detrital zircon (P. Gamaletsos et al., 2016; Valeton et al., 1987). Scandium source in the analysed
system can be assumed to be associated with the mafic and ultramafic rocks rather than the felsic
ones because of the known relative abundance of Sc in mafic types of rocks (Jaireth et al., 2014;
Samson and Chassé, 2016). The proportion of Sc reporting to zircon could be originating from the
felsic rocks.

During source rock weathering, Sc** is released from its initial host minerals. Sc then often follows
the behaviour of Fe3* because of the similarities in the Eh-pH stability field of hematite and Sc,0;
(Brookins, 1988; Hoatson et al., 2011; Jaireth et al., 2014). Furthermore, the ionic radii of six-
coordinated Sc3* and Fe3* are similar, but still different enough to limit the maximum amount of Sc
entering to hematite lattice (Chassé et al., 2017). Sc** and Fe3* isomorphous substitution is a
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common scenario in various lithologies and expected also in present case (Samson and Chassé,
2016).

During the Bayer process, the concentration of Sc in bauxite residue compared to material feed is
further increased by a factor of 2.37 (Figure 23), achieving its maximum concentration in the
investigated system, while the mineralogical occurrence remains practically the same as in bauxite.

7.6 Linkages Between the Sc Occurrences and its Leaching Behaviour

As already mentioned in the Introduction, several experimental studies have been carried out for
exploring the opportunities of recovering Sc from bauxite residue (Akcil et al., 2017; Borra et al.,
2016; Davris et al., 2017; Zhang et al., 2016).

Borra et al. (2015) reported that during mineral acid leaching of bauxite residue, recovering 30—
40 % of Sc results in the leaching of only a minor part of Fe whereas recovering more than 50 % of
Sc unavoidably results in the dissolution of a major part of Fe. From the leaching correlation curves,
they proposed that Sc is not homogeneously distributed between the iron phases. Eventually, the
recovery of Sc does not exceed 80 % (Borra et al., 2015). During functionalized hydrophobic ionic
liquid leaching of bauxite residue, Sc recovery reaches up to 45 % while less than 3 % of Fe is leached
(Davris etal., 2016). The former examples agree with the conclusion of the present assessment that
Scis distributed mainly between goethite and hematite. The more easily leachable proportion of Sc
(30-40 %) is probably associated with goethite. Recovering the proportion of Sc that is
accompanied with leaching a major part of Fe is most likely concentrated in the mineral lattice of
hematite. The remaining part of Sc (~20 %) that is resistant to leaching is presumably associated
with the chemically durable zircon mineral.

On the other hand, over 50 % of zirconium (Zr) recovery has been reported during 0.6 M H,SO04
leaching of AoG’s bauxite residue. It was accompanied by 55 % of Sc and only 3 % of Fe recovery
(Lymperopoulou et al., 2017). Another study suggests that zircon, when it is present in partly
amorphous fine-grained form in bauxite deposit, decomposes during sodium bicarbonate digestion
of bauxite residue and therefore Sc is released from its structure (Suss et al., 2017). Therefore, it is
possible that some leaching conditions also liberate Sc from zircon. The limiting factor for drawing
any further conclusions is that Zr recovery has been reported only a very few times in the literature.
It is suggested that future studies should take into consideration to also analyse this parameter in
the leachates to confirm the fate of zircon during the recovery of Sc from bauxite residue.

Indications to the correlating leaching behaviour of Sc and Ti with regards to AoG’s bauxite residue
(Bonomi et al., 2017b; Ochsenkiihn-Petropulu et al., 1994; Rivera et al., 2017) did not acquire any
mineralogical support in the context of present work. Only about 1 % of total Sc could be found in
titanium dioxides contained in bauxite residue.

Hereby further evidences are provided to explain Sc leaching behaviour during an imidazolium ionic
liquid [Emim][HSOQ,] leaching of bauxite residue (prepared in cooperation with C. Bonomi; Bonomi
et al., 2017a, 2017b). After 3 hours of leaching at 150 °C, about 31 % of Sc and 7 % of Fe were
recovered. It can be observed from the diffractogram of leaching residues, that the first Sc-bearing
phase to be almost dissolved is goethite, when compared to raw bauxite residue (Figure 64). At the
same time, practically all the hematite has remained in the residues. This supports the hypothesis
that the easily extractable proportion of Sc in bauxite residue is associated with goethite phase. As
already explained before, Sc concentration associated with goethite is substantially higher than the
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hematite-bound Sc (section 7.1, Table 19, Table 20). Other phases leached during the early stages
of the experiment are gibbsite, calcite and hydrogarnet, but Sc is not found in these phases. The
newly formed phase is anhydrite (CaSO,4). Maximum recovery of Sc, 78 %, is achieved at 200 °C
together with the complete dissolution of Fe, indicating to the major part of Fe occurring in
hematite. Once again, the remaining unrecovered Sc is possibly fixed in zircon.
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Figure 64. Diffractogram of raw bauxite residue compared to diffractogram of residue after 3 h of
leaching.
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8. Conclusions

The fate of selected trace elements in terms of their mineralogy and distribution in the Bayer
process was investigated, based on the case study in Aluminium of Greece refinery. It is evident
that Bayer process materials, whether they are bauxite residue or process liquors, are enriched in
certain trace elements (Ga, V, As in liquors; REEs, Sc, Cr, Th, etc. in residue). Together with the
continuous development and improvement of extraction technologies, the trace elements could be
recovered as valuable by-products of the Bayer process. Specific conclusions are summarised in the
following three sections.

8.1 Distribution of Trace Elements

Bauxite trace elements introduced to the Bayer process studied in this work are roughly divided in
two categories: (1) those that are at least partly soluble in the caustic leaching and accumulate to
an extent into processing liquor, namely Ga, V, As, U as well as Cr, and (2) those that are not soluble
in the caustic leaching, namely Sc, Th and the REEs. The trace elements in the first category
accumulate to process liquor until the specific saturation level of each metal, and then the input
and output flows equilibrate. In the Bayer process output flows, only Ga and U possess the property
of entering to the composition of aluminium hydroxide product. In the case of Ga, 70% of the initial
quantity of the metals ends up in aluminium hydroxide and in the case of U it is 10%. The rest of Ga
and U are separated from the process with bauxite residue. With respect to the second category,
those metals (Sc, Th, REEs) are transferred through the process mostly only in the composition of
solid material flows. Sc, Th and REEs are not found in aluminium hydroxide product and their mass
transfer to bauxite residue is typically at least 98%.

The investigation of Bayer process scales and other minor products led to a conclusion that the
affinity of Al-containing Bayer process secondary phases to incorporate Ga into their composition
follows the relative intensity of hydrogarnet > gibbsite > cancrinite. It was also revealed from the
analyses of minor Bayer process materials, that perovskite can capture significant amounts of trace
elements such as Mg (2 wt%), Cr (0.2 wt%), V (0.1-0.2 wt%) and Ni (0.6 wt%) into its lattice. The
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highest concentrations of V per mineral phase are associated with hydrogarnets, where V level can
reach up to 2.5 wt% V,0s.

8.2 REE Phases

A careful and dedicated investigation of bauxite residue by EPMA and HRTEM revealed that there
are several types of discrete REE phases contained in bauxite residue. The relatively most abundant
of them is a LREE ferrotitanate ((REE,Ca,Na)(Ti,Fe)Os) phase, that chemically resembles the
naturally occurring loparite except for the absence of niobium. However, plenty of synthetic REE
perovskite compounds exist that are like the LREE ferrotitanates observed in the present study.
LREE ferrotitanates form a solid solution between the ideal end-members (Ca,Na)(Ti,Fe)Os and
(REE,Ca,Na)(Ti,Fe)0s. These occurrences further sub-divide into Ce predominant and Nd-La
predominant  types. The Ce predominant  form also contains up to
2.7 wt % Th. Calcium ferrotitanate particles with low LREE concentration (<5 wt %) seem to be
rather concentrated into the very fine (<1 um) particulates of bauxite residue. LREE ferrotitanates
are formed during the Bayer process digestion by an in-situ transformation of the precursor bauxite
LREE minerals contained in the bauxite feed. Thus, the composition of the newly formed phases
depends on (1) the chemical composition of the precursor REE phases and (2) the extent of
incorporation of Na as well as dissolved Fe and Ti ions into their composition. The latest reaction
products are those with the prevailing concentration of Ca and with a low (<5 wt%) LREE
concentration and they are mostly found among the nano-scaled bauxite residue particles.

Minor amounts of LREEs are found as carbonates and phosphates, referring to the partial resistance
of these phases to Bayer process digestion conditions. A part of Ce and minor presence of other
lanthanides were found to be associated with manganese phases in the form of adsorption on their
surface or in manganese particle cavities. These occurrence forms are thought to be secondary,
created from the fast precipitation of a small proportion of dissolved lanthanides.

Heavy REEs are found in bauxite residue in the same form as in bauxite, namely as Y phosphate
phases (xenotime/churchite). Their major constituent, Y, is seconded by other HREEs like Gd, Dy
and Er. Some Y is incorporated into mixed REE phases.

The presence of Bayer process derived calcium ferrotitanate shells around LREE particles probably
hinders the immediate solubility of LREE grains during REEs leaching from bauxite residue. It can be
assumed that the complex LREE ferrotitanates dissolve less readily than LREE fluorocarbonate
minerals found in bauxites.

Present work concludes that REEs are found among bauxite residue’s microscale particulate as
discrete phases with a high REE concentration and among nano-scaled particulate in the
composition of calcium ferrotitanate phases. It is anticipated that bauxite residue or bauxite ore
could become a sustainable and responsible source of REEs.

The findings presented here are currently the only explanation of REE, except for cerium,
occurrences in bauxite residue. However, further work is necessary to enhance the understanding
of how REEs occur in bauxite residue.
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8.3 Sc Occurrences

The present work sets a first benchmark in characterizing the modes of Sc occurrences in European
bauxite residue. The close association of Fe phases and Sc in bauxite and its residue, as indicated
by previous authors, has been clearly confirmed. The claim was complemented with the
guantification of Sc in its host minerals. Confirmed distinction of goethite hosting appreciable
amount of Sc in addition to hematite was made. The average Sc concentration in the hematite
matrix of the analysed Greek Parnassos-Ghiona bauxite samples is 200 mg/kg and in the hematite
matrix of AoG’s bauxite residue it is 170 mg/kg. The latter is due to the dilution effect of Sc-depleted
lateritic bauxite feed in the production flowsheet of AoG. In bauxite residue, hematite hosts
55+ 20 % of total Sc while goethite accounts for about 25 + 20% of total Sc. Zircon hosts about
10 + 5 % of the total Sc budget in bauxite residue.

The probable Sc occurrence mode in hematite is the isomorphous substitution of Sc3* and Fe3*.
Minor hosts of Sc are titanium dioxides and aluminium oxyhydroxides, the latter represented by
diaspore and boehmite. Since diaspore and boehmite are digested in the Bayer process, about 10%
of Sc contained in them could be released from their lattice and transferred through surface
adsorption to goethite or other particles of bauxite residue. The rest of the mineral phases in
bauxite and bauxite residue system are not associated with Sc, concluding from the present
evidences.

Sc concentrations in the main mineral matrices were cross-checked using two methods, EPMA-WDS
and LA-ICP-MS and the quantification results of the two methods were in excellent agreement. It is
evident that Sc occurs in different forms in different bauxites and their residues. It is necessary to
investigate the nature of Sc occurrence in various materials case-by-case.

New evidence of Sc leaching behaviour from bauxite residue shows that Sc is first released from
goethite, then from hematite and the unrecovered proportion of Sc is likely associated with zircon.

The characterization of Sc in the worldwide bauxite inventory deserves thorough geochemical
surveying, because the literature review revealed the relative scarcity of information. The thorough
understanding of the characteristics of Sc in bauxite deposits is crucial, because a large proportion
of this valuable metal with an increasing demand on the market is thought to be associated with
bauxites. Further work is encouraged to characterize Sc in the <1 um fraction of bauxite residue.
Also, it could be of high interest to speciate further the properties of Sc in bauxite residue by
performing advanced analyses such as the X-ray absorption near-edge structure (XANES)
spectroscopy, UXRF and uXRD methods.
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Appendix A

Table A 1. Trace element composition of the bauxites in the feed of AoG (mg/kg). If multiple
options are available, then the measurements indicated with bold are used for mass balance
calculations. Asterix (*) marks a measurement in an alternative sub-sample.

Ana- Mixed
lyte  Method  Karst karst Lateritic
DD-BX ST-BX HS-BX TU-BX DC-BX TR-BX GH-BX

As INAA 74.7£5.5 160.0+13.0 218+17.0 64.0£3.9 109.048.0 11.540.3 26.6+1.5
As ICP-MS 128+5 122+6 99+2 70+14 111+9* na 57+3
Ce ICP-MS 2080 177+2 17743 2654 19510 <10 29+0
Ce INAA 21748 17745 180+4 26713 20045 910 34+1
Cr ICP-MS 693164 588150 590451 442+35 768+10* 138 52145*
Cr INAA 1170450 92051 942+38 670146 1145455 10917 264+12
Dy ICP-MS 10.2+0.1 10.940.9 <10 22.2+0.5 8.6+0.0* <10 5.6+0.4*
Er ICP-MS 5.9+0.4* 7.2+0.8* <10 10.6+0.2* 5.6+0.0* <10 3.8+0.5*
Eu ICP-MS <2%* 2.4+0.9* <10 4.2+0.5* <2%* <10 <2*
Eu INAA 2.7+0.3 2.4+0.4 1.4+0.1 3.4+0.3 2.0+0.1 0.5+0.2 0.8+0.2
Ga ICP-MS 580 60+1 66+1 69+4 600 60+1 57+1
Gd ICP-MS 11.4+0.1 10.8+0.8 <10 25.2+1.2 8.5+0.0* <10 <10
Ho ICP-MS <2* 2.2+0.1* <10 3.2+0.0* <2%* <10 <2*
La ICP-MS 58+1 6343 <50 145+15 67+2 <50 <50
La INAA 51.3%£1.6 60.3+2.4 46.7+1.7 129.0+1.0 46.6%1.3 5.0+0.4 19.1+1.3
Lu ICP-MS <2* <2* <2* <2* <2* <10 <2*
Lu INAA 1.26+0.19 0.98+0.01 0.92+0.02 1.61+0.01 0.95+0.07 0.37+0.04 0.39+0.00
Nd ICP-MS 53.5+3.8 53.8#4.1 31.9+0.4 92.3+3.4 42.5+0.9 <10 12.0+0.1
Nd INAA 4242 385 2343 700 32+0 <5 13+1
Pr ICP-MS 13.2+0.1 12.7+0.5 <10 23.1+1.1 10.3+0.1 <10 <10
Sc INAA 53.710.9 43.1+0.7 43.1+0.6 56.0+0.8 50.0+0.8 7.1+0.0 8.4+0.2
Sm ICP-MS 11.1+0.1 10.9+0.9 <10 20.1+4.0 10.2 <10 5.9+0.0*
Sm INAA 10.4+0.9 8.710.4 5.7+0.6 17.2+0.5 9.2+0.0 0.6+0.1 2.0+0.2
Tb ICP-MS <2* 2.3+0.5* <10 2.8+0.0* <2* <10 <2*
Tb INAA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
m ICP-MS <2* <2* <2* <2* <2* <10 <2*
Y ICP-MS 47.5+0.4 46.7+0.8 46.1+0.6 92.7+2.7 44.8+0.3 11.4+1.3 17.2+0.3
Yb ICP-MS 6.2+0.4* 7.0£0.4* <10 11.4+0.2* 6.0+0.0* <10 3.6+0.3*
Yb INAA 7.210.7 6.1+0.4 5.9+0.4 11.5+0.2 6.910.6 2.1+0.3 2.5+0.3
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Table A 2. Trace element composition of Bayer process intermediate solids and by-products
(mg/kg). If multiple options are available, then the measurements indicated with bold are used for
mass balance calculations. Asterix (*) marks an alternative sub-sample.

Intermediate By-product
Analyte Method

BF-DG SW-DS RM-FP RM-2010 DC-RE

As INAA 769.0 60.2+4.1  238.0t34 - 98.916.1
As ICP-MS 1007+2 99+23 214+34 228123 774
Ce ICP-MS 15510 47+1 36316 382117 13744
Ce INAA 177 4743 377+2 - 118+1
Cr ICP-MS 658+1 33511 1429197 1931+19 450150
Cr INAA 7651345 304415 1570+120 - 483134
Dy ICP-MS <10 <10 16.9+0.0* 18.3%0.6 8.2+0.1
Er ICP-MS <10 <10 12.4+1.3 12.2+0.2 5.5+0.1
Eu ICP-MS <10 <10 4.6+1.1* 4.1+0.9 <2

Eu INAA 1.310.2 0.8+0.3 4.0+0.4 - 1.8+0.2
Ga ICP-MS 11317 93+2 41+0* 38+1 5545
Gd ICP-MS <10 <10 17.5£0.0* 19.8+0.2 9.1+0.1
Ho ICP-MS <10 <10 4.1+0.1* 3.7+0.0 <2

La ICP-MS 51+1 <50 135+1* 12547 5615
La INAA 44.2+7.0 15.31#0.8 104.0+1 - 52.0+0.2
Lu ICP-MS <10 <10 2.2+0.0* 2.0+0.0 <2
Lu INAA  0.78+0.12 0.4510.01 1.90+0.05 - 0.70+0.07
Nd ICP-MS  38.9+0.2 12.0+0.0 86.5+0.9 97.4+9.5 45.3+0.3
Nd INAA 26.0 <5 6512 - 55+17
Pr ICP-MS <10 <10 21.740.1 26.3+0.6  12.1+0.5
Sc INAA 41.5 149104 97.7+0.1 - 27.310.3
Sm ICP-MS <10 <10 20.4+2.6  18.4+2.0 8.1+0.1
Sm INAA 8.1+0.4 2.210.1 17.9+1.0 - 9.1+0.1
Tb ICP-MS <10 <10 3.3+0.0* 3.0+0.1 <2
Tb INAA <0.5 <0.5 <0.5 - <0.5
Tm ICP-MS <10 <10 <2* <2 <2

Y ICP-MS  38.3%0.1 17.2+0.4 89.5+0.4* 98.8+3.5 39.9%1.7
Yb ICP-MS <10 <10 12.6+£0.0* 12.9+0.2 5.9+0.1
Yb INAA 6.5+0.4 2.7+0.2 13.5+0.0 - 5.410.1
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Table A 3. Trace element composition of Bayer process products and lime (mg/kg). Asterix (¥*)
marks an alternative sub-sample.

Products Lime
Analyte Method

HY-AL CA-AL CA-OX

As INAA <0.5 <0.5 4.0
As ICP-MS <61 <12%* na
Ce ICP-MS <10 <2* <10
Ce INAA <310 <3 <3
Cr ICP-MS <64 na na
Cr INAA <5 <5 <5
Dy ICP-MS <10 <2%* <10
Er ICP-MS <10 <2* <10
Eu ICP-MS <10 <2* <10
Eu INAA <0.2 <0.2 <0.2
Ga ICP-MS 85+1 830 <50
Gd ICP-MS <10 <2* <10
Ho ICP-MS <10 <2* <10
La ICP-MS <50 <50 <50
La INAA <0.5 <0.5 2.5
Lu ICP-MS <10 <2* <10
Lu INAA <0.05 <0.05 <0.05
Nd ICP-MS <10 <10 <10
Nd INAA <5 <5 <5
Pr ICP-MS <10 <2* <10
Sc INAA <0.1 <0.1 0.8
Sm ICP-MS <10 <2* <10
Sm INAA <0.1 <0.1 0.2
Th ICP-MS <10 <2* <10
Th INAA <0.5 <0.5 <0.5
Tm ICP-MS <10 <2* <10
Y ICP-MS <10 <10 <10
Yb ICP-MS <10 <2* <10
Yb INAA <0.2 <0.2 0.3
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Table A 4. Composition of Bayer liquors.

Analyte Unit Method Repetition CL PL SL BF SW
Al,0; g/l titr. A 143 188.3 115.3
Al,0O3 g/l titr. B 137.6 192.8 109.7
Al,0O3 g/l titr. C 192.3 105 125.4 51.3
Al,0O3 g/l titr. D 136.2 195.3 104.4
Al,03 g/l titr. A-D 138.9 192.2 108.6
average
Na,O g/l titr. A 213.4 162.2 174.6
Na,O g/l titr. B 215.3 158.7 171.1
Na,O g/l titr. C 157.3 171.1 209.9 113.1
Na,O g/l titr. D 217.7 159.5 170.1
Na,O g/l titr. A-D 215.5 159.4 171.7
average
As mg/L XRF D 181 146 129
1316+ 110.8 £ 99.6 +
As. mg/L - INAA D 16.2 5.4 5.4
Ba mg/L XRF D <17 22 26
Br mg/L XRF D 53 43 35
33.6% 314+
Br mg/L INAA D 40.7£0.0 05 08
Ca mg/L AAS-1 A 14.9 16.5
Ca mg/L AAS-1 C 0.9
Ca mg/L XRF D 32 64 49
Ce mg/L  ICP-MS B <0.04 <0.04 <0.04
Ce mg/L XRF D <36 <35 63
Ce mg/L INAA D <2 <2 <2
Co mg/L XRF D <1 <1 <1
Cr mg/L AAS-2 A 1.7 1.5 <0.3 <0.3 <0.3
Cr mg/L  ICP-MS B 1.42 1.4 1.3
Cr mg/L XRF D 28 33 16
Cs mg/L XRF D 15 12 27
Cs mg/L INAA D <0.5 <0.5 14+1
Cu mg/L XRF D 2.2 0.8 0.4
Eu mg/L INAA D <0.1 <0.1 <0.1
Fe mg/L uv A 9.6 3.39
Fe mg/L AAS-2 A 2.7 2.15 0.33
Fe mg/L uv C 9.2
Fe mg/L XRF D 54 70 43
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Table A 4 continued.

Analyte Unit Method Repetition CL PL SL BF SwW
Ga mg/L  ICP-OES B 367 267.2 279.7
Ga mg/L  ICP-OES C 303.2 300.4 295.3 216.1
Ga mg/L  ICP-OES B-C 367 285.2 290.05

average

Ga mg/L XRF D >281 >253 >208
Gd mg/L  ICP-MS B <0.04 <0.04 <0.04
Hf mg/L XRF D 4 5 3
Hg mg/L XRF D <1 0.3 0.7
Hg mg/L INAA D <0.5 <0.5 <0.5

| mg/L XRF D 301 212 225
In mg/L XRF D 2 1 1

K g/l AAS A 14.4 13.7 13.8
La mg/L  ICP-MS B <0.04 <0.04 <0.04
La mg/L XRF D <26 33 19
La mg/L INAA D <0.3 <0.3 <0.3
Lu mg/L INAA D <0.03 <0.03 <0.03
Mg mg/L  AAS-2 A <0.1 <0.1 <0.1
Mg mg/L XRF D 926 790 562
Mn mg/L AAS A 1.05 1.05 0.15
Mo mg/L XRF D 622 471 438
Mo mg/L INAA D 394 £58 318 £ 26 2;34i
Nb mg/L XRF D <2 <2 <2
Nd mg/L  ICP-MS B 0.1095 0.0949 0.2173
Nd mg/L INAA D <3 <3 <3
Ni mg/L AAS-2 A 4.15 3.8 0.59
Ni mg/L AAS-2 C 4.8 <4 4.4 <4
Ni mg/L XRF D 2 1 1
Rb mg/L XRF D 58 43 42
Sb mg/L XRF D 5 3 7
Sc mg/L  ICP-MS B 0.4261 0.2751 0.2195
Sc mg/L INAA D <0.05 <0.05 <0.05
Si mg/L AAS-1 A 544 520
Si mg/L AAS-2 A 578.5 457 120.2
Si mg/L XRF D 448 1154 446
Sm mg/L INAA D <0.05 <0.05 <0.05
Sm mg/L INAA D <0.05 <0.05 <0.05
Sn mg/L XRF D <3 <3 <2
Zn mg/L AAS A 1 0.35 <0.04
Zn mg/L AAS C <0.8 <0.8 0.8 1.4
Zn mg/L XRF D 4 8 2
Zr mg/L XRF D 1996 1957 1455
Ta mg/L XRF D 5 <2 <1
Tb mg/L INAA D <0.3 <0.3 <0.3
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Table A 4 continued.

Analyte Unit Method Repetition CL PL SL BF SW
Th mg/L XRF D 2 2 1
Th mg/L  ICP-MS B <0.2 <0.2 <0.2
Th mg/L INAA D <0.1 <0.1 <0.1
Ti mg/L AAS B ~1 ~1 ~1
Ti mg/L XRF D <3 <3 <3
U mg/L  ICP-MS B 0.2254 1.28 1.27
u mg/L XRF D <1 <1 <1
U mg/L INAA D 0.4 0.3 %ﬁf
Vv mg/L XRF-st A 263 292
Vv mg/L AAS-2 A 251.5 524.75 62.6
Vv mg/L  ICP-OES B 426.1 304.4 329.1
Vv mg/L  ICP-OES C 285.9 300.3 127.3 3143
Vv mg/L  ICP-OES B-C 426.1 295.15 314.7

average

Vv mg/L XRF D 494 377 383
w mg/L XRF D 65 51 45
w mg/L INAA D 34+1 275 21+1
Y mg/L  ICP-MS B <0.04 <0.04 <0.04
Y mg/L XRF D <5 <5 <5
Yb mg/L INAA D <0.1 <0.1 <0.1
Yb mg/L XRF D 18.2 14.2 11
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Table A 5. Distribution of trace elements that accumulate to process liquors. In mg/kg, normalised
to the mass of aluminium hydroxide produced.

Cr As \'/ Ga U
I HMS
In: B3 Standard (ST-BX) 155+14 34+2 164 1740 2.1+0.2
B3 Delphi-Distomo (DD-BX) 57853 1074 332 4810 5.8+0.4
sum 733 141 496 65 7.9
Out: B3 Mixed bauxite (DC-BX) 734110 10619 450 57+0 7.610
Decalc. Residue (DC-RE) 3744 20+1 36 11+0 0.6x0
sum 771 126 486 68 8.2
difference 5% -11% -2% 5% 4%
Il Grinding, preheating of karst bauxite
In: B3 Mixed bauxite 734110 10619 450 57+0 7.610
B3 Mixed from stock 42916 6215 263 3310 4,510
Turkish bauxite 4514 7+1 49 710 0.810.1
B2 bauxite 10+1 210 11 110 0.1+0
Concentrated liquor 11 978+120 3168 2729 12.9
sum 1229 1155 3941 2827 25.9
Out: Karst solid fraction 123412 1443 3366 212+13 19.3%#4.3
Karst liquid fraction <2.5 n/a 1052 2441 n/a
sum 1234 1443 4418 2653 19.3
difference 104% -24% 12% 11% -6%
Il Grinding, desilication of lateritic bauxite
In: Lateritic bauxite 60+1 5+0 112 26+1 1.4+0.1
Spent liquor 0.3 24+1 75 67 0.3
sum 60.3 29 187 93 1.7
Out: Later. solid fraction 12314 2242 109 34+1 1.610.1
Later liquid fraction <0.1 n/a 101 69 n/a
sum 123 22 210 103 1.6
difference 104% -24% 12% 11% -6%
IV Digestion, settling, washing
In: Karst solid fraction 1234+2 1443 3366 212+13 19.314.3
Karst liquid fraction <2.5 n/a 1052 2441 n/a
Later. solid fraction 1234 2242 109 34+1 1.610.1
Later liquid fraction <0.1 n/a 101 69 n/a
Lime <0.3 0.3 4 <3 <0.03
sum 1357 1465.3 4632 2756 209
Out: Bauxite residue 1265186 189+30 903 3615 12.7+0.7
Pregnant liquor 15.6 1236160 3292 2981 14.3
sum 1280.6 1425 4195 3017 27
difference -6% -3% -9% 9% 29%
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Table A 5 continued.

Cr As \'/ Ga U
V Precipitation
In: Pregnant liquor 15.6 1236x60 3292 2981 14.3
Out:  Aluminium hydroxide <5 <0.5 <10 8511 1.2
Spent liquor to evap. 13.2 1012451 3199 2843 12
Spent liquor to later. 0.3 24+1 75 67 0.3
sum 13.5 1036 3274 2995 13.5
difference -13% -16% -1% 0% -6%
VI Evaporation 0
In: Spent liquor 13.2 1012+#51 3199 2843 12
0
Out: Concentrated liquor 10.6 97850 3168 2729 12
difference -20% -3% -1% -4% 0%
VIl Calcination
In: Aluminium hydroxide <5 <0.5 <10 85+1 1.2
0
Out: Calcined alumina <4 <0.4 <8 6710 0.7
Aluminium hydroxide to stock <1 <0.1 <2 1610 0.3
sum 83 1
difference -2% -17%
Internal balance
In: Karst bauxite 1218+16 17714 773 99+0 13.1#0.1
Lateritic bauxite 60+1 5+0 112 26+1 1.4+0.1
Digestion liquors 10.9 1002+122 3243 2796+ 13.2
Lime <0.3 0.3 4 <3 <0.003
sum 1288.9 1184.3 4132 2921 27.7
Out:  Aluminium hydroxide <5 <0.5 <10 88+2 1.2
Spent liquor 13.5 1036+51 3274 2910 13.2
Bauxite residue 1265186 18930 903 3615  12.7+0.7
sum 1278.5 1225 4177 3034 27.1
difference -1% 3% 1% 4% -2%
In: External balance
Karst bauxite 1218+16 17714 774 99+0 13.1+0.1
Lateritic bauxite 60+1 5+0 112 26+1 1.4+0.1
Lime <0.3 0.3 4 <3 <0.003
sum 1278 182.3 890 125 14.5
Out:  Aluminium hydroxide <5 <0.5 <10 88+2 1.2
Bauxite residue 1265186 189430 903 3615  12.7+0.7
sum 1265 189 903 124 13.9
difference -1% 4% 1% -1% -4%
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Table A 6. Distribution of trace elements that do not accumulate to process liquors based on ICP-

MS data. In mg/kg, normalised to the mass of aluminium hydroxide produced.

La Ce Pr Nd Sm
| HMS
In: B3 Standard (ST-BX) 18+1 49+1 3.510.1 15+1.1 3+0.3
B3 Delphi-Distomo (DD-BX) 48+1 17410 11+0.1 44.7+3.2 9.310.1
sum 66 223 14.5 59.7 12.3
Out: B3 Mixed bauxite (DC-BX) 6412 18610 9.8+0.2 40.6+0.9 9.840
Decalc. Residue (DC-RE) 11+1 27+1 2.4+0.1 9.1+0.1 1.610
sum 75 213 12.2 49.7 11.4
difference 14% -4% -16% -17% -7%
Il Grinding, preheating of karst bauxite
In: B3 Mixed bauxite 64+2 186x0 9.8+0.2 40.6+0.9 9.80
B3 Mixed from stock 3710 10910 5.710 23.7+0.5 5.7+0
Turkish bauxite 1542 270 2.3#0.1 9.310.3 2+0.4
B2 bauxite 1+0 340 <0.2 0.60 0.10
Concentrated liquor <0.3 <0.3 n/a <22 <0.4
sum 117 325 17.8 74.2 17.6
Out:  Karst solid fraction 97+2 29142 <18.8 73.2+0.4 15.2
Karst liquid fraction n/a n/a n/a n/a n/a
sum 97 291 73.2 15.2
difference -17% -10% -1% -14%
Il Grinding, desilication of lateritic bauxite
In: Lateritic bauxite 2+0 4+1 <4.3 <4.3 0.3+0
Spent liquor <0.01 <0.01 n/a <0.01 <0.01
sum 2 4 0.3
Out:  Later. solid fraction 6+0 17+0 <3.7 4.4+0 0.8+0
Later liquid fraction n/a n/a n/a n/a n/a
sum 6 17 4.4 0.8
difference 200% 325% 167%
IV Digestion, settling, washing
In: Karst solid fraction 9612 2910 <18.8+0 73.2£0.4  15.2+0.8
Karst liquid fraction n/a n/a n/a n/a n/a
Later. solid fraction 6+0 17+0 <3.7 4.4+ 0.8+0
Later. liquid fraction n/a n/a n/a n/a n/a
Lime 0.2 <0.2 <0.7 <0.3 0.01
sum 102.2 308 77.6 16.0
Out:  Bauxite residue 120+1 32145 19.2+0.1 76.6+0.8 18.1+2.3
Pregnant liquor <0.4 <0.4 n/a <33 <0.6
sum 120 321 76.6 18.1
difference 17% 4% -1% 13%
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Table A 6 continued.

La Ce Pr Nd Sm
In: External balance
Karst bauxite 11743 325+1 17.840.2 74.2+1.4 17.610.4
Lateritic bauxite 210 4+0 <4.3 <4.3 0.3x0
Lime 0.2 <0.2 <0.7 <0.3 0.01
sum  119.2 329 17.8 74.2 17.9
Out:  Aluminium hydroxide <0.5 <3 <10 <5 <0.1
Bauxite residue 1201  321#5 19.2%#0.1 76.6+0.8  18.1+2.3
sum 120 321 19.2 76.6 18.1
difference 1% -2% 8% 3% 1%
Table A 6 continued.
Gd Dy Er Yb Y Th
I HMS
In: B3 Standard 310.2 340.3 2+0.2 1.9+0.1 13+0.2 14.7+1.1
B3 Delphi-Distomo 9.5¢0.1 8.5#0.1 4.9+0.3 5.2+0.3 39.6x0.3 42.7+1.4
sum 12.5 11.5 6.9 71 52.6 57.4
Out: B3 Mixed bauxite 8.1+0 8.20 5.40 5.7+0 42.8+0.3  48.9+1
Decalc. residue 1.8+0 1.610 1.1+0 1.2+0 8+0.3 3.1+0.1
sum 9.9 9.8 6.5 6.9 50.8 52
difference -21% -15% -6% -3% -3% -9%
Il Grinding, preheating of karst bauxite
In: B3 Mixed bauxite 8.1+0 8.2+0 5.40 5.7+0 42.8+0.3  48.9+1
B3 Mixed from stock 4.7+0 4.8+0 3.1+0 3.320 25+0.2  28.6%0.6
Turkish bauxite 2.5:0.1  2.2#0.1 1.1+0 1.1+0 9.310.3  4.5#0.1
B2 bauxite <0.2 <0.2 <0.2 0.10 0.810 1+0
Concentrated liquor <0.3 n/a n/a <15 <0.3 <2
sum 15.3 15.2 9.6 10.2 77.9 83
Out:  Karst solid fraction <18.8 <18.8 <18.8 12.2%1.1 71.9 71
Karst liquid fraction n/a n/a n/a n/a n/a n/a
sum 12.2 71.9 71
difference 20% -8% -14%
Il Grinding, desilication of lateritic
bauxite
In: Lateritic bauxite <4.3 <4.3 <4.3 0.9+0.1 4.910.6  10.7+0.6
Spent liquor <0.01 n/a n/a <0.04 <0.01 <0.05
sum 0.9 4.9 10.7
Out: Later. solid fraction <3.7 <3.7 <3.7 1+0.1 6.3+0.1 10.6+1.3
Later liquid fraction n/a n/a n/a n/a n/a n/a
sum 1 6.3 10.6
difference 11% 29% -1%
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Table A 6 continued.

Gd Dy Er Yb Y Th
IV Digestion, settling, washing
In: Karst solid fraction <18.8 <18.8 <18.8 12.2+41.1  71.9+0.2 70.9+8.4
Karst liquid fraction n/a n/a n/a n/a n/a n/a
Later. solid fraction <3.7 <3.7 <3.7 1+0.1 6.3+0.1 10.6+1.3
Later. liquid fraction n/a n/a n/a n/a n/a n/a
Lime <0.7 <0.7 <0.7 0.02 <0.7 <0.01
sum 13.22 78.2 81.5
Out: Bauxite residue 15.5+0 15+0 9.9+0.1 11.2#0.3 79.2%#1.3 93
Pregnant liquor <0.4 n/a n/a <2.2 <0.4 <2
sum 15.5 15 9.9 11.2 79.2 93
difference -15% 1% 14%
In: External balance
Karst bauxite 15.3+0.1 15.2#0.1 9.7#0 10.2+0  77.9+0.5 83#1.5
Lateritic bauxite <4.3 <4.3 <4.3 0.9+0.1 4.9+0.6 10.7+0.6
Lime <0.7 <0.7 <0.7 0.02 <0.7 <0.01
sum 15.3 15.2 9.7 11.12 82.8 93.7
Out:  Aluminium hydroxide <10 <10 <10 <0.3 <10 <0.2
Bauxite residue 15.5 15+0 9.9+0.1 11.2+0.3 79.2 93+2.1
sum 15.5 15 9.9 11.2 79.2 93
difference 1% -1% 2% 1% -4% -1%
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Table A 7. Distribution of trace elements that do not accumulate to process liquors based on

INAA data. In mg/kg, normalised to the mass of aluminium hydroxide produced.

La Ce Nd Sm
| HMS
In: B3 Standard 16.8+0.7 49+1 11+1 2.4+0.1
B3 Delphi-Distomo 42.841.3 18147 35+2 8.7+0.8
sum 59.6 230 46 111
Out: B3 Mixed bauxite 43+2.7 19145 3110 8.810
Decalc. residue 10.4+0 2410 1143 1.840
sum 53.4 215 42 10.6
difference -10% -7% -9% -5%
Il Grinding, preheating of karst bauxite
In: B3 Mixed bauxite 43+2.7 191+5 3110 8.810
B3 Mixed from stock 27.5+1.7 11243 1810 5.1+0
Turkish bauxite 13+0.1 27+0 7+0 1.740.1
B2 bauxite 0.8+0 310 0+0 0.1+0
Concentrated liquor <0.3 <0.2 <22 <0.4
sum 84.3 333 56 15.7
Out:  Karst solid fraction 82.9+13.1 33240 49 15.24+0.8
Karst liquid fraction n/a n/a n/a
sum 82.9 332 49 15.2
difference -2% 0% -13% -3%
Il Grinding, desilication of lateritic bauxite
In: Lateritic bauxite 2.2+0.2 4+0 <2 0.310
Spent liquor <0.01 <0.01 <0.01 <0.01
sum 2.2 4 03
Out:  Later. solid fraction 5.6+0.3 17+1 <2 0.8+0
Later liquid fraction n/a n/a n/a n/a
sum 5.6 17 0.8
difference 155% 325% 167%
IV Digestion, settling, washing
In:  Karst solid fraction 82.9+13.1 33210 49 15.21+0.8
Karst liquid fraction n/a n/a n/a n/a
Later. solid fraction 5.610.3 17+1 <2 0.8+0
Later liquid fraction n/a n/a n/a n/a
Lime 0.2 <0.2 <0.3 0.01
sum 88.7 349 49 16.01
Out:  Bauxite residue 92.1+0.9 33412 58+2 15.840.9
Pregnant liquor <04 <04 <0.6
sum 92.1 334 58 15.8
difference 1% -4% 18% -1%
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Table A 7 continued.

La Ce Nd Sm
In:  External balance
Karst bauxite 84.3+2 33348 5610 15.71+0.1
Lateritic bauxite 2.21+0.2 410 <2 0.3z0
Lime 0.2 <0.2 <0.3 0.01
sum 86.7 337 56 16.01
Out:  Aluminium hydroxide <0.5 <3 <5 <0.1
Bauxite residue 92.1+0.9 33412 58+2 15.8+0.9
sum 92.1 334 58 15.8
difference 6% -1% 4% -1%
Table A 7 continued.
Eu Yb Lu Sc
I HMS
In: B3 Standard 0.7+0.1 1.7+0.1 0.27+0.00 12.0+0.2
B3 Delphi-Distomo 2.310.3 610.6 1.05+0.16 44.8+0.8
sum 3 7.7 1.32 56.8
Out: B3 Mixed bauxite 1.940.1 6.610.6 0.91+0.07 47.8+0.8
Decalc. residue 0.4+0 1.1+0 0.14+0.01 5.5+0.1
sum 23 7.7 1.05 53.3
difference -23% 0% -20% -6%
Il Grinding, preheating of karst bauxite
In: B3 Mixed bauxite 1.9+0.1 6.610.6 0.91+0.07 47.8+0.8
B3 Mixed from stock 1.1+0.1 3.9104 0.53+0.04 27.910.4
Turkish bauxite 0.30 1.2+0 0.16%0 5.610.1
B2 bauxite 0.0210 0.1+0 0.0210 0.8+0
Concentrated liquor <0.7 <0.7 <0.22 <0.4
sum 3.32 11.8 1.62 82.1
Out: Karst solid fraction 24104 12.2+0.8 1.46+0.23 77.910
Karst liquid fraction n/a n/a n/a n/a
sum 24 12.2 1.46 77.9
difference -28% 3% -10% -5%
lll Grinding, desilication of lateritic bauxite
In: Lateritic bauxite 0.210.1 0.9+0.1 0.16+0.02 3.110
Spent liquor <0.02 <0.02 <0.01 <0.01
sum 0.2 0.9 0.16 3.1
Out: Later. solid fraction 0.3#0.1 1+0.1 0.16x0 5.510.1
Later liquid fraction n/a n/a n/a n/a
sum 0.3 1 0.16 5.5
difference 50% 11% 0% 77%
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Table A 7 continued.

Eu Yb Lu Sc
IV Digestion, settling, washing
In: Karst solid fraction 2.4+0.4 12.2+0.8 1.46+0.23 77.910
Karst liquid fraction n/a n/a n/a n/a
Later. solid fraction 0.3#0.1 1+0.1 0.1610 5.5+0.1
Later liquid fraction n/a n/a n/a n/a
Lime <0.01 0.02 <0.003 0.1
sum 2.7 13.22 1.62 83.5
Out: Bauxite residue 3.5+0.4 1240 1.68+0.04 86.510.1
Pregnant liquor <1.1 <1.1 <0.33 <0.6
sum 3.5 12 1.68 86.5
difference 30% -9% 4% 4%
In: External balance
Karst bauxite 3.3240.2 11.8+0.9 1.62+0.1 82.1+1.2
Lateritic bauxite 0.2+0.1 0.9+0.1 0.1610 3.1+0
Lime <0.01 0.02 <0.003 0.1
sum 3.52 12.72 1.78 85.3
Out: Aluminium hydroxide <0.2 <0.2 <0.05 <0.1
Bauxite residue 3.5:0.4 1240 1.6810 86.510.5
sum 3.5 12 1.68 86.5
difference -1% -6% -6% 1%
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Appendix B

Table B 1. Normalised HRTEM-EDS semi-quantitative analysis of the nano-scaled calcium ferrotitanate particles.

“nﬂzii”r:s O Na Mg A Si S ca Ti V ¢ Fe C zr la C Nd Th Sum
2-22 9.6 2.4 n/a 0.9 1.6 n/a 28.3 39.2 n/a 0.6 11.0 1.1 n/a 1.8 3.3 0.2 n/a 100.0
4-23 24.6 2.9 n/a 0.6 1.5 n/a 26.8 36.3 0.5 n/a 5.2 n/a n/a 0.1 1.4 0.0 n/a 100.0
2-24 25.8 1.7 n/a 4.4 54 0.4 15.9 21.2 n/a 0.8 23.1 n/a n/a 0.0 0.8 0.5 n/a 100.0
3-24 21.6 3.2 n/a 0.6 1.7 n/a 29.5 38.6 n/a n/a 2.1 0.2 n/a 0.0 2.1 0.3 n/a 100.0
2-58 19.5 24 n/a 0.9 1.4 n/a 25.2 32.0 n/a 0.6 14.0 n/a n/a 2.8 0.9 0.2 n/a 100.0
4-25 17.9 2.0 n/a 1.1 1.6 n/a 31.8 40.3 0.7 n/a 34 n/a n/a 0.0 1.1 0.0 n/a 100.0
2-57 10.5 2.9 n/a 0.9 2.1 n/a 33.1 41.7 n/a 0.6 2.9 1.1 n/a 0.9 2.8 0.1 0.4 100.0
3-7 21.1 1.7 n/a 0.6 1.6 n/a 28.6 35.6 nfa n/a 10.1 nfa n/a 0.0 0.6 0.0 n/a 100.0
2-41 17.7 24 n/a 1.0 1.7 n/a 25.1 31.0 n/a 0.7 18.0 1.0 n/a 0.0 0.9 0.2 0.4 100.0
3-63 3.9 1.4 n/a 1.0 2.0 n/a 39.6 47.7 n/a 0.4 34 n/a n/a 0.0 0.5 0.2 n/a 100.0
2-42 11.5 1.2 n/a 0.8 1.6 n/a 26.9 32.2 n/a 0.8 23.9 n/a n/a 0.0 0.4 0.3 0.4 100.0
2-14 23.1 2.6 n/a n/a 2.1 n/a 31.1 36.9 n/a 0.5 2.7 n/a n/a 0.5 0.3 0.2 n/a 100.0
2-21 19.8 2.7 n/a 0.9 1.6 n/a 29.5 34.9 n/a 0.7 8.1 0.9 n/a 0.4 0.6 0.1 n/a 100.0
2-15 14.8 1.4 n/a 1.6 1.5 n/a 26.8 314 n/a 0.6 21.6 n/a n/a 0.0 0.2 0.1 n/a 100.0
3-6 12.8 0.8 n/a 0.7 1.2 n/a 27.4 32.0 n/a 0.6 24.1 n/a n/a 0.0 0.4 0.1 n/a 100.0
3-69 16.9 24 1.0 1.9 n/a n/a 32.7 38.0 n/a n/a 3.1 n/a 0.6 2.6 0.8 0.0 n/a 100.0
2-71 27.2 2.9 n/a 1.5 1.7 n/a 27.9 32.1 n/a 0.6 2.8 0.9 n/a 1.5 0.8 0.0 n/a 100.0
1-17 33.9 1.6 n/a 3.9 2.9 n/a 20.6 18.5 n/a 0.4 17.7 n/a n/a n/a 0.5 n/a n/a 100.0
4-9 24.2 n/a n/a n/a 1.9 n/a 32.8 37.1 0.5 n/a 2.5 n/a 0.5 n/a 0.5 0.0 n/a 100.0
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Appendix C

Table C 1. EPMA-WDS quantification of Parnassos-Ghiona horizon B3 bauxite (DD-BX) hematite matrix.

Analyte 1 2 3 4 5 6 7 8 9 10 11 12 Average S.D.
Fe20; (wt %) 84.91 83.50 83.02 8894 8895 8731 86.12 63.53 88.96 92.07 9049 92.27 85.84 7.66
TiO2 (wt %) 3.52 3.09 2.68 2.96 3.43 3.40 2.31 1.84 2.48 3.08 2.47 2.61 2.82 0.51
Al,05 (wt %) 9.65 13.62 15.64 8.53 8.13 9.72 11.97 36.59 9.51 5.71 7.56 5.32 11.83 8.36
Si0; (wt %) 1.10 1.08 1.37 1.22 1.08 1.03 1.19 1.26 1.16 0.99 1.06 1.14 1.14 0.11
NaO (wt %) 0.02 0.00 0.01 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01
CaO (wt %) 0.13 0.16 0.15 0.21 0.12 0.14 0.14 0.09 0.16 0.15 0.16 0.16 0.15 0.03
MgO (wt %) 0.02 0.03 0.05 0.04 0.04 0.03 0.03 0.04 0.04 0.03 0.02 0.03 0.03 0.01
Cr20s (wt %) 0.30 0.25 0.23 0.27 0.21 0.21 0.21 0.13 0.21 0.20 0.22 0.24 0.22 0.04
V20s (wt %) 0.10 0.09 0.09 0.09 0.09 0.08 0.10 0.06 0.08 0.10 0.10 0.10 0.09 0.01
Sc (mg/kg) 240 280 230 260 270 250 250 200 250 270 270 290 260 20

Total (wt %) 99.78 101.86 103.26 102.29 102.10 101.95 102.10 103.59 102.64 102.37 102.13 101.90 102.16 0.92
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Table C 2. EPMA-WDS quantification of Parnassos-Ghiona horizon B3 bauxite ST-BX hematite matrix.

Ana- Ave-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 S.D.
lyte rage
Fe,O
( tZ‘VS) 93.37 93.79 96.22 97.16 95.21 96.31 97.47 95.99 96.66 96.05 94.48 97.86 95.08 97.06 97.30 95.48 95.97 1.32
Wt
TiO,

2.31 2.67 1.76 2.45 2.72 2.42 2.09 2.32 2.85 2.51 2.81 3.53 2.53 2.69 2.31 2.54 2.53 0.38
(wt %)
Al,03

8.99 2.90 1.87 1.42 1.94 2.07 2.02 2.68 1.72 1.95 1.73 1.47 2.25 1.03 3.10 2.37 2.47 1.82
(wt %)
510 0.56 0.56 0.46 0.67 0.73 0.81 0.43 0.58 0.45 0.73 0.79 0.33 0.64 1.72 0.30 0.49 0.64 0.33
(wt %)
Na,O

0.02 0.02 0.01 0.02 0.02 0.03 0.01 0.03 0.01 0.02 0.03 0.00 0.06 0.02 0.00 0.02 0.02 0.01
(wt %)
Cao

0.11 0.11 0.07 0.08 0.16 0.14 0.10 0.12 0.07 0.12 0.14 0.05 0.18 0.12 0.07 0.15 0.11 0.04
(wt %)
MgO

0.00 0.01 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.02 0.00 0.02 0.01 0.01
(wt %)
Cr20s 0.15 0.19 0.34 0.16 0.18 0.15 0.18 0.17 0.31 0.18 0.18 0.21 0.17 0.17 0.30 0.18 0.20 0.06
(wt %)
V205 0.23 0.23 0.31 0.32 0.20 0.25 0.20 0.24 0.21 0.24 0.23 0.16 0.23 0.31 0.29 0.22 0.24 0.04
(wt %)
( S;:k) 120 120 130 200 200 200 230 180 100 190 200 80 180 180 180 150 170 40
mg/kg
Total
(t‘y) 105.75 100.51 101.06 102.31 101.19 102.20 102.53 102.16 102.28 101.84 100.43 103.63 101.18 103.17 103.71 101.49 102.21 1.37
Wt %
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Table C 3. EPMA-WDS quantification of bauxite residue hematite-dominant particles, Sc-depleted population.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
(FV5£3) 101.11 100.80 100.84 92.34 88.48 88.49 86.91 94.56 9579 94.43 94.13 91.54 93.72 95.29 95.17 88.93 96.68
0
(VTV'S;) 1.56 1.52 1.54 172 0.87 077 161 1.26 073 09 099 1.19 096 093 084 153 0.49
0
(CI'E?/"’) 0.11 0.15 016 203 6.23 627 556 1.20 1.62 132 096 093 198 190 201 210 1.86
0
(st'tooz) 0.07 0.10 012 130 155 149 168 1.30 093 142 157 226 054 0.68 056 058 0.81
(u’if) 0.03 0.01 001 098 020 011 039 1.13 050 067 061 055 028 0.36 026 035 0.41
0
(Vifi) 0.10 0.13 013 082 052 0.52 055 048 037 037 060 051 036 035 037 041 0.40
(vl\ctgf/)) 0.00 0.00 0.00 004 000 0.02 000 0.04 020 014 027 028 015 0.13 019 0.20 0.18
(o]
(i:tzc;) 0.08 0.09 0.09 008 004 0.06 004 0.15 001 003 003 015 0.02 0.05 003 0.04 0.03
(o]
(\\l/vzto;) 0.28 0.28 029 003 014 0.13 011 0.08 003 001 003 003 002 0.03 002 002 0.02
(0]
S 10 30 40 30 30 0 50 10 10 20 50 20 30 50 30 80
(mg/kg)
(Ivcitf;l) 103.34 103.08 103.18 99.34 98.04 97.85 96.83 100.19 100.18 99.35 99.18 97.45 98.04 99.73 99.45 94.16 100.88
(0]
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Table C 3 continued.

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Average S.D.
(I\:;s(;j) 96.48 92.52 9199 93.09 91.22 94.75 92.53 97.13 95.76 95.84 92.72 89.60 91.01 92.32 95.65 93.81 3.49
(v.I\-/ItO"/Zo) 0.60 1.78 103 105 119 034 0.58 0.21 0.16 0.17 031 034 019 0.56 4.61 1.02 0.82
(CJE(‘?/Z’) 1.95 224 134 134 130 169 171 2.42 230 183 117 110 144 161 1.29 1.91 1.47
(vSvltO";,) 0.75 030 143 149 149 138 0.86 0.63 066 098 182 269 248 1.39 0.19 1.11 0.68
(:22:/3) 0.36 0.14 062 061 063 0.67 0.45 0.30 030 057 027 064 069 0.52 0.09 0.43 0.27
(\f/:(oi) 0.35 0.28 071 068 071 0.61 0.45 0.30 0.27 034 050 050 052 044 0.39 0.44 0.17
(vl\c*cg;) 0.19 030 0.27 024 034 016 0.15 0.21 0.19 0.15 038 025 028 0.11 0.00 0.16 0.11
((\i\:;c‘;j) 0.02 0.03 004 003 004 0.02 0.02 0.01 0.02 0.01 001 0.02 001 0.02 0.27 0.05 0.05
(\\//v%co"/zs:) 0.02 0.02 004 003 003 0.02 0.03 0.02 0.01 0.02 002 0.02 003 0.03 0.53 0.07 0.12
(m;:kg) 50 60 0 10 20 50 40 40 30 20 0 10 20 80 80 30 20
(Lcit;l) 100.72 97.62 97.45 98.56 96.95 99.66 96.76 101.24 99.66 99.90 97.20 95.15 96.64 97.01 103.04 98.99 2.28
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Table C 4. EPMA-WDS quantification of bauxite residue hematite-dominant particles, Sc-hosting population.

1 2 3 4 5 6 7 8 9 10 11 12 13
F
(\5533) 85.62 96.26  98.22 93.47 93.02 95.90 92.74 87.46 89.47 95.13 95.09 94.95 93.64
0
%) 5.25 2.41 2.61 5.22 3.73 2.28 2.20 3.52 3.53 1.45 1.57 7.42 8.69
(\AA:;?/"’) 1.83 2.37 1.03 0.96 2.06 2.48 2.46 1.92 2.05 1.42 1.41 0.73 0.70
0
S'()o;)(Wt 0.45 0.69 0.40 0.16 0.41 0.46 0.31 2.00 0.45 2.11 2.00 0.31 0.35
(uatzg ) 0.31 0.14 0.13 0.10 0.20 0.10 0.09 1.04 0.24 0.56 0.52 0.09 0.10
0
Ca;)(Wt 1.50 0.45 0.21 0.28 0.34 0.18 0.16 1.00 0.54 0.38 0.57 0.16 0.18
MgO
(Wt %) 0.02 0.01 0.00 0.01 0.01 0.01 0.00 0.05 0.02 0.03 0.03 0.00 0.00
(i:tzf;) 0.45 0.11 0.03 0.16 0.30 0.33 0.27 0.18 0.26 0.18 0.16 0.08 0.08
(o]
(\\//vzto"/S) 0.59 0.28 0.29 0.14 0.13 0.19 0.22 0.12 0.12 0.05 0.05 0.13 0.14
(0]
S 120 160 210 120 190 160 120 290 220 260 230 160 180
(mg/kg)
(\TNott;J) 96.03  102.74 102.95 100.52  100.24 101.95  98.47 97.32 96.72 101.33 101.43 103.90 103.91
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Table A 4 continued.

14 15 16 17 18 19 20 21 22 23 24 Average  S.D.
F
(\5533) 85.79 86.07  90.84 94.35 88.17 85.55 94.68 94.75 95.99 94.84 86.61 92.02 4.06
0
%) 4.04 4.06 2.94 2.69 4.91 3.71 3.17 3.59 2.78 3.39 10.45 3.98 2.17
Al
(W;?/"’) 1.77 1.87 1.93 3.36 1.60 1.81 1.63 1.52 2.42 1.90 1.65 1.79 0.60
0
S'()o;)(Wt 0.42 0.46 1.79 0.98 0.53 0.34 0.44 0.59 0.15 0.54 0.66 0.71 0.60
(u’atzg) 0.18 0.21 1.02 0.42 0.28 0.09 0.22 0.20 0.08 0.26 0.27 0.29 0.26
0
Ca;)(Wt 0.39 0.45 1.05 0.27 0.70 0.36 0.57 0.50 0.31 0.50 0.69 0.49 0.32
MgO
(Wt %) 0.03 0.02 0.09 0.02 0.17 0.04 0.02 0.08 0.03 0.03 0.03 0.03 0.04
(i:tzf;) 0.39 0.38 0.14 0.30 0.37 0.18 0.19 0.14 0.31 0.17 0.48 0.24 0.12
(o]
(\\//vzto"/S) 0.21 0.22 0.06 0.19 0.10 0.12 0.15 0.21 0.10 0.16 0.14 0.17 0.11
(0]
S 120 100 380 180 160 290 170 130 200 160 240 190 70
(mg/kg)
(\TNott;J) 93.24 93.76 9991  102.61 96.86 92.24  101.08 101.60 102.21 101.80 101.03  99.74 3.39
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Table C 5. EPMA-WDS quantification of bauxite residue’s goethite particles.

1 2 3 4 5 6 7 8 9 10 11 12 Average S.D.
Fe,0; (wt%) 94.91 9458 80.13 8891 83.07 80.62 84.88 81.58 84.83 85.62 84.72 86.87 85.89 4.84
TiO2 (wt %) 023 020 7.8 033 933 6.08 042 111 102 125 021 0.28 2.36 3.34
Al,O; (wt%) 017 0.08 051 015 069 114 164 245 084 081 0.03 0.52 0.75 0.72
SiO; (wt %) 132 153 139 170 159 241 235 251 209 204 136 1.82 1.84 0.43
Na,O (wt%) 0.16 0.12 0.15 020 046 056 048 077 045 060 0.05 0.29 0.36 0.23
CaOo (wt %) 0.17 013 010 0.14 0.17 040 0.29 078 044 048 020 0.21 0.29 0.20
MgO (wt %) 001 000 0.01 0.0 0.0 012 014 020 030 031 0.00 0.00 0.09 0.12
Cr,0s(wt%) 001 001 002 000 007 011 003 004 010 0.13 0.02 0.03 0.05 0.04
V203 (wt %) 0.03 002 008 001 011 0.09 0.04 005 004 004 001 0.04 0.05 0.03
Sc (mg/kg) 830 420 400 300 290 60 80 130 30 260 470 650 330 240
Total (wt%) 97.13 96.75 90.26 91.47 95.53 91.55 90.27 89.53 90.12 91.32 86.67 90.15 91.73 3.15
Table C 6. EPMA-WDS quantification of diaspore/boehmite matrices of bauxite samples.
1 2 3 4 5 6 7 8 9 10 Average S.D.
Fe,Os3(wt %)  7.27 4.42 3.88 3.26 3.11 2.80 3.81 2.90 7.39 6.81 4.56 1.86
TiO; (wt %) 0.30 0.18 0.16 0.15 0.11 0.10 0.18 0.14 0.82 0.30 0.24 0.21
Al,Os(wt%) 87.46 91.22 88.24 91.11 9157 90.98 92.68 85.71 87.82 89.62 89.64 2.23
SiO, (wt %) 0.30 0.64 0.45 0.92 0.40 0.61 0.65 0.52 0.33 0.44 0.53 0.18
Na,O (wt%) 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.04 0.01 0.03 0.01 0.01
Cao (wt %) 0.03 0.01 0.02 0.04 0.02 0.03 0.05 0.04 0.05 0.03 0.03 0.01
Sc (mg/kg) 20 10 0 0 10 0 0 0 20 10 10 10
Total (wt %) 95.38 96.48 92.76 95.48 95.21 94.53 97.38 89.35 96.42 97.23 95.02 2.41
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Table C 7. EPMA-WDS quantification of diaspore/boehmite dominant particles of bauxite residue.

1 2 3 4 Average S.D.
Fe,Os(wt%) 295 252 414 1.14 2.69 1.24
TiO2 (wt %) 1.70 097 059 0.17 0.86 0.65
Al,Os(wt%) 88.56 88.14 86.90 86.23 87.46 1.08
SiO; (wt %) 0.14 0.11 0.67 0.00 0.23 0.30
Na,O (wt%) 0.00 0.00 0.01 0.01 0.00 0.00
CaO (wt %) 0.07 002 035 014 0.15 0.15
Sc (mg/kg) 20 10 30 0 15 15
Total (wt%) 93.42 91.76 92.67 87.68 91.38 2.56
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