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Preferential flow pathways in a 
deforming granular material: self-
organization into functional groups 
for optimized global transport
Joost H. van der Linden   1, Antoinette Tordesillas2* & Guillermo A. Narsilio1

Existing definitions of where and why preferential flow in porous media occurs, or will occur, assume 
a priori knowledge of the fluid flow and do not fully account for the connectivity of available flow 
paths in the system. Here we propose a method for identifying preferential pathways through a flow 
network, given its topology and finite link capacities. Using data from a deforming granular medium, 
we show that the preferential pathways form a set of percolating pathways that is optimized for global 
transport of interstitial pore fluid in alignment with the applied pressure gradient. Two functional 
subgroups emerge. The primary subgroup comprises the main arterial paths that transmit the greatest 
flow through shortest possible routes. The secondary subgroup comprises inter- and intra-connecting 
bridges that connect the primary paths, provide alternative flow routes, and distribute flow through 
the system to maximize throughput. We examine the multiscale relationship between functionality 
and subgroup structure as the sample dilates in the lead up to the failure regime where the global 
volume then remains constant. Preferential flow pathways chain together large, well-connected pores, 
reminiscent of force chain structures that transmit the majority of the load in the solid grain phase.

Where preferential fluid flow paths in porous media occur, what fraction of flow these paths carry, and why cer-
tain pathways are preferred has been defined in various ways, including (1) the delineation of the liquid phase 
in relatively mobile (preferential) and immobile parts1, (2) ‘all phenomena where water and solutes move along 
certain pathways, while bypassing a fraction of the porous matrix’2, [p ∼ 150], and (3) non-equilibrium transport 
through large interaggregate voids referred to as macropores in soil science3. A dedicated body of research has 
also presented different ways to characterize preferential flow, including dye staining experiments4,5, mathemati-
cal indicators based on the breakthrough curves and early arrival times6, thresholding the highest flow rates (‘hot-
spots’) in numerical simulations (e.g.7,8) and, more recently, complex network approaches focusing on individual 
paths of least resistance9–12. While these studies have continuously improved our understanding of preferential 
flow, predicting emergent preferential flow remains particularly challenging due to the multi-scale, coupled inter-
play between complex, heterogeneous pore geometry13, capillary, gravity and viscous forces acting on the fluid14, 
pore pressure15, antecedent moisture16, organic matter14 and wettablity effects17. Consequently, the emergence 
of preferential flow is one of the main contributors to uncertainty in the prediction of transport1,18. Further pro-
gress is impeded by the lack of a quantitative, multi-scale and predictive definition of the structure and location 
of preferential flow pathways. Indeed, the aforementioned definition (1) and characterization techniques (dye 
tracing, breakthrough curves and hotspots) cannot predict preferential flow structure without conducting a fluid 
flow experiment or numerical simulation, while definition (3) does not directly account for the connectivity that 
is inherent to the chains of pores that make up preferential flow pathways19.

Where and why preferential flow paths occur is inherently related to the connectivity and internal properties. 
Such knowledge plays an important role in a wide range of applications, such as soil contamination3,13, fluid 
homeostasis in the central nervous system20, ore dewatering processes8, landfill waste leaching21 and volcanic 
lava flow22. The size and properties of the fast-flowing, preferential fraction of the pore network within soils, 
in particular, have repeatedly been highlighted as an important topic of research that has not been conclusively 
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quantified13,14,23. Experimental observations point to a complex network of inter- and intra-connected preferen-
tial flow segments with varying size and connectivity, rather than disjoint pathways spanning the entire medium, 
both at the hillslope scale16 and in soil columns analyzed using X-ray computerized tomography19. Allaire et al.4 
conclude that lateral preferential flow is at least as important as vertical preferential flow (in the direction of grav-
ity) and their interaction is critical for the overall throughput, particularly at large scales, yet these connections 
are rarely studied. Interconnections between preferential flow paths are also known to be a critical factor for the 
hydraulic properties of aquifers24, and may increase permeability in fractured media with low matrix permeabil-
ity and high fracture permeability25. Connectivity is generally considered one of the most important influenc-
ing factors of permeability in porous media26–31. Overall, these observations suggest two natural groups within 
preferential flow paths, namely primary, highway-like preferential route segments, inter- and intra-connected by 
secondary, bridge-like pathways that support the overall preferential throughput.

Elucidating the functional preferential flow groups requires a mathematical framework that can account for 
geometrical and material heterogeneity germane to complex porous media. In this context, network flow theory 
and, in particular, the Maximum Flow, Minimum Cost (MFMC) algorithm, has shown promise in modeling 
(preferential) force transmission32–34 in cohesionless and cohesive granular materials in 3D35,36. Tordesillas et al.35 
observe a 76–82% capture rate of grains predicted as being ‘preferential’ force transmission pathways by MFMC, 
measured as a percentage of grains in the (known preferential) force chains (see37,38). A similar approach is fol-
lowed to predict the macro-crack pattern in heterogeneous and multiphase concrete specimens, prior to initiation 
of actual damage39. The use of a network flow model for fluid transmission also has precedent, with Ushizima et al.40  
using the maximum flow component of MFMC to characterize fluid storage after precipitation for carbon seques-
tration applications. Ju et al.12 compare shortest paths, used in the minimum cost component of MFMC, to 
(experimentally) measured preferential flow in two dimensions and observe good agreement in the primary flow 
pathway structure. Shortest paths are also employed by Rizzo and Barros11 to quantify solute transport through 
heterogeneous porous media, establishing a relationship with the (preferential flow-induced) early arrival times 
of a solute plume. Further characterization of the optimal flow pathways predicted using a network flow model 
can be obtained using complex network theory. Gao and co-authors, for example, uncover the structure and flow 
patterns in multi-phase oil-water slug flow using a range of complex network techniques, including PageRank 
versatility and community structure41–43. Given their ability to accurately quantify multi-scale connectivity, ana-
lyzing complex systems using complex networks is an increasingly prominent paradigm in numerous scientific 
areas44–46, including the geosciences31,47.

In this work, we propose a definition for preferential flow pathways through porous media, as given by the 
output of the Maximum Flow, Minimum Cost algorithm. We build on the insights gained from applying network 
flow models to force transmission by applying the algorithm to the network of pores and throats, capturing the 
domains in which the bulk of fluid flow occurs. MFMC returns a percolating set of optimal pathways through the 
medium, pushing ‘flow’ in the direction of the pressure gradient. We incorporate both local knowledge of trans-
mission (e.g. Hagen-Poiseuille conductance) and the multi-scale connectivity that is inherent to flow pathways, 
moving beyond the single-scale views associated with existing definitions. Further building on and formalizing 
the intuitions behind micropore-macropore and mobile-immobile delineations of the void phase, we employ a 
statistical model to subdivide preferential pathways into the primary routes and the secondary pathways that con-
nect them. MFMC is applied to a fully saturated deforming granular material, to capture part of the dynamics that 
are inherent to the manifestation of flow in real (fractured) sands, soils and rocks48,49. For a validation of the pro-
posed network flow model on a collection of well-known, static sphere assemblies, we refer to the Supplementary 
Material. Our physics-based and data-driven model is not intended to replace experimental approaches, such as 
preferential solute transport imaging using high-resolution X-ray tomography19,50, or micromechanical models 
coupling fluid flow and mechanical deformation15. Rather, our network flow model aims to complement such 
investigations to gain supplemental insights and further our understanding of where, why and to what degree 
preferential flow paths form in granular, porous media.

Results
Figure 1 provides a summary of the data generated, methodology used and our key results, further expanded on 
in this section.

Experiment.  To capture the evolution of the pore space in a deforming granular material in the presence of 
dilatant shear zones, we subject a dry assembly of 6,776 polydisperse spheres to a triaxial shear test. This sample 
is one of a series of shear tests which has been comprehensively examined and reported elsewhere10,48,49,51 (see 
also Ord et al.52,53 for similar tests). The mechanical response of the sample is summarized in Fig. 2. During the 
test, the assembly expands globally in the horizontal directions under a relatively high constant confining pres-
sure and a constant vertical axial strain rate, as evidenced by the increase in porosity and volumetric strain. Pore 
bodies increase in size accordingly, as shown in Fig. 2(b), merging smaller pores (decreasing their frequency) and 
developing a long tail in the distribution. Peak stress ratio occurs at about 7% axial strain and the assembly is in 
steady state at 20% and beyond. Snapshots of the assembly at 430 regularly-spaced strain intervals between 0 and 
30% axial strain are the main input data for the remainder of the analysis.

Maximum flow, minimum cost.  A pore network is constructed independently for each snapshot of the 
deforming assembly, embedding local connectivity of the pore space by modeling pores as nodes and throats as 
edges in a graph. This particular pore network construction approach has been previously validated in54,55. Each 
pore network is the input for the Maximum Flow, Minimum Cost (MFMC) algorithm. MFMC aims to identify 
the optimal flow pathways through the pore network, starting at a collection of defined inlet nodes at the top 
of the assembly (shown in Fig. 1) and ending at the outlet nodes at the bottom. Optimality in this network flow 
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model is achieved by maximizing flow (subject to the capacity) while minimizing cost. To mimic fluid flow, we 
define capacity as the fluid conductance of a simplified cylindrical throat, calculated using the Hagen-Poiseuille 
law. Under the corresponding assumptions of tube flow, wide throats that connect large pores over a short dis-
tance have large capacity. Cost is defined as an inertia penalty value. If an edge (i, j) is poorly aligned with other 
edges connected to nodes i and j, then the cost value is high. This penalty models the resistance of fluid to flow 
‘around a bend’, due to inertia of the fluid. With capacity defined as conductance and cost representing inertia 
effects, we essentially provide the network flow model with some of the key ingredients of the Navier-Stokes 
equation for viscous fluid flow. Defining capacity as conductance also allows us to conveniently (and efficiently) 
compute the approximate numerical permeability. Assuming saturation, we solve the Stokes equation for each 
pore network, imposing a pressure difference of l Pa over the inlet- and outlet nodes and inducing local hydraulic 
gradients in the order of 10 Pa/m. From the resulting pressures and flow rates, the permeability is derived using 
Darcy’s law. The result is included in Fig. 3(b) and shows that the porosity in Fig. 2(a) and volumetric strain 
(capturing dilation) in Fig. 2(c) follow the same trend as permeability, as expected. The permeability increases by 
approximately a factor two between the minimum at 5% axial strain and the maximum in the steady state.

Given the edge capacities and costs, the MFMC algorithm returns a sub-graph (denoted P and referred to as 
the preferential flow network) of nodes and edges that make up the (optimal) preferential flow pathways through 
the pore network. The percolating network P transmits the maximum flow from inlet nodes to outlet nodes, 
where the maximum flow is the maximum number of units of flow that can be ‘pushed’ through the network, 
bounded by edge capacities. Due to the absence of any global physical bottlenecks, the majority (between 72% 
and 77%) of edges in the original pore networks at different strain intervals are part of the corresponding MFMC 
sub-graph P. A small excerpt of P is shown on the right-hand side of Fig. 1. The maximum flow and correspond-
ing total (summed) cost of transporting the maximum flow is plotted in Fig. 3. Maximum flow follows approxi-
mately the same trend as permeability, suggesting good resemblance between macro-scale MFMC and Stokes flow 
behavior. In the Supplementary Material, the Stokes flow permeability is shown to correspond well to the perme-
ability derived from the Navier-Stokes equation for fully saturated sphere packing geometries. The Navier-Stokes 
permeability has previously been validated against experimental values56, suggesting indirectly that MFMC can 
capture realistic physical fluid flow behavior. Total cost follows the inverse trend of permeability, capturing the 
intuition of increased permeability in the presence of ‘cheaper’ flow pathways. At the micro (edge) scale, shown in 
Fig. 3(a), MFMC flow is well-correlated with Stokes flow rates, with a Pearson correlation coefficient of 0.8 at 20% 
strain. The (statistically significant) correlation coefficient otherwise varies between 0.72 at 0% strain and 0.81 in 
the steady state (p < 2 · 10−16).

Figure 1.  Optimal pathways through a failing granular material give rise to a hierarchy of primary, preferential 
flow pathways, laterally supported by secondary, bridging pathways. Snapshots of an assembly of spherical 
particles subjected to a triaxial test are extracted from the discrete element simulation (Input). A pore network 
is constructed for each assembly, in which nodes represent pores and edges represent throats (Input). Next, the 
Maximum Flow, Minimum Cost (MFMC) algorithm is applied to the pore network to extract a sub-network P of 
optimal flow paths. Using a logistic regression classifier, we distinguish between edges in P that can be correctly 
predicted as being part of P (primary edges, blue), incorrectly predicted as not being part of P (secondary edges, 
orange) and the remainder (tertiary edges, grey). Further examination of these edges using complex network 
theory reveals secondary edges act either as intraconnecting pathways, embedded in chains of primary edges, or 
as interconnections, bridging the primary pathways and re-routing flow to maximize throughput, as shown on 
the right-hand side.
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Primary, secondary and tertiary flow.  Having defined our network flow model, and having validated the 
output of the algorithm by comparing flow at the micro-structural and macro-structural level, we focus on why 
preferential flow occurs in certain edges next. To do so, we define a binary classifier to predict inclusion or exclu-
sion χ(i,j) of a particular edge in the MFMC sub-graph P, i.e. χ(i,j) = 1 if (i, j) ∈ P and χ(i,j) = 0 otherwise. For the 
results in Table 1, the classifier model is fitted on a randomly selected 80% of edges in the sample with axial strain 
21.54% (21737 edges). Generalization performance is obtained by testing the fitted model on the remaining 20% 
of edges, for which we obtain an area under the ROC curve equal to 0.76 (0.5 corresponds to random guessing, 

Figure 2.  A previously published and validated discrete element simulation is used to model a deforming 
granular material. Summarized results for the discrete element simulation. Showing (a) porosity versus axial 
strain, (b) pore body volume distributions, prior to peak stress and in the steady state, and (c) the evolution of 
the stress ratio and volumetric strain.

Figure 3.  Micro-scale and macro-scale output of the network flow model, in the form of the edge flows, 
maximum flow and associated cost of transmission shows good agreement with well-known trends in stress 
ratio, volumetric strain, Stokes flow and permeability for deforming granular materials. (a) Correlation between 
(square-root transformed) network model flow rates and Stokes flow rates at the edge level for 20% axial strain, 
including marginal distributions and density contours to indicate the joint distribution. (b) Evolution of the 
(dimensionless) permeability, normalized by the squared particle radius r2, plotted against axial strain as the 
sample fails. (c) Dimensionless maximum flow |f|* and total cost |c|*, as computed using the Maximum Flow, 
Minimum Cost algorithm. The dimensionless maximum flow is calculated by multiplying with the dynamic 
viscosity η and dividing by the cross-sectional area A and mean particle radius r. Total cost is normalized by the 
mean particle radius r, maximum flow |f|* and height H of the assembly.
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while 1.0 would imply a perfect prediction). For other strain rates (repeating the model fitting process described 
here), the area under the ROC curve is approximately similar, varying between 0.75 and 0.81.

The odds ratio of the cost value c(i,j) (0.55) in Table 1 is smaller than one, indicating that every unit increase in 
the standardized value of c(i,j) decreases the odds of χ(i,j) = 1 by a factor 0.55. The odds ratio for throat area is closer 
to one, suggesting that a larger throat area has a slightly negative impact on the odds of an edge being included in 
P. For V i j( , ) and θ(i,j), we observe > >β βe e 14 3 , which implies that these features positively impact the odds of being 
included in P. A unit increase in the standardized incline, in particular, increases the odds by a factor 2.59, cap-
turing the intuition that edges better aligned with the vertical pressure gradient of the assembly are more likely to 
be part of the preferential flow network. In contrast with throat area, pore volume also has a positive effect on the 
odds. For a relatively narrow throat size distribution and in the absence of major bottlenecks, we attribute this 
difference to the preference of flow to find the most direct routes across the sample, as provided by pores of larger 
size and edges aligned with the global pressure gradient.

Having fitted the logistic regression model, and having tested the ability of the model to generalize, we re-fit 
the model to 100% of edges in the the assembly with axial strain 21.54% and predict inclusion or exclusion in P 
for each edge in the pore network at the next strain state (21.61%). The confusion matrix for this result is shown 
in Fig. 4.

For this sample, 69% of edges in P are correctly predicted as χ(i,j) = 1 (true positives). The remaining 31% are 
incorrectly predicted as χ(i,j) = 0 (false negatives). The difference between true positives and false negatives gives 
rise to a distinction between edges in P that can be predicted with physical features and a binary classifier, versus 
edges in P that are less predictable. As such, we designate edges in P that are correctly predicted as χ(i,j) = 1 as pri-
mary edges. Edges that are part of P but incorrectly predicted as χ(i,j) = 0 are called secondary edges. All edges not 
in P are referred to as tertiary edges. Figure 1 shows an example of this hierarchy. For other strain rates (repeating 
the model fitting process as described), the true positive rate and true negative rate are approximately similar to 
the rates shown in Fig. 4, varying between 68% and 75%.

To assess this distinction further, the distribution of the incline of primary, secondary and tertiary flow edges 
is shown in Fig. 5 along with the Stokes flow rates in corresponding edges.

Clearly, edges closer aligned with the pressure gradient (at 90°) have higher flow rates, as expected. The 
majority of edges are primary, with an incline centered around approximately 45° and exhibiting high flow rates 
(Q(i,j) = 5.9 · 10−10 m3 s−1, on average). In this sense, primary edges bear resemblance to the preferential ‘hotspots’ 
of fluid flow, as described in the introduction7,8. Tertiary edges, in contrast, are more horizontally aligned (21°, on 
average), perpendicular to the pressure gradient, and have a considerably lower average flow rate (2.1 · 10−10 m3 
s−1,). Interestingly, secondary edges have even smaller inclines (15°, on average), yet the flow rates are considera-
bly higher (4.0 · 10−10 m3 s−1, on average) than the flow rates of tertiary edges. Indeed, comparing the square-root 
transformed flow rate for primary, secondary and tertiary edges in a one-way ANOVA test rejects the null hypoth-
esis that the means are the same (F(2,33963) = 3365, p < 2 · 10−16). A post-hoc Tukey test also confirms that there 
is a statistically significant difference between each of the three pairs of means (p < 2 · 10−16). In contrast, the 
average pore volume of adjacent nodes is 1.36 · 10−9 for secondary edges and 1.40 · 10−9 for tertiary edges, which 
is not a statistically significant difference (Tukey test, p = 0.62, using square-root transformation). In conclusion, 
secondary edges have a less favorable incline than tertiary edges, and similar adjacent pore volume, yet the flow 
rates for secondary edges are significantly higher. These conclusions also hold for flow networks at other axial 
strain states, including pre-peak stress.

These observations suggest that secondary edges play a distinct role in the transmission of fluid through the 
pore space. Despite less favorable circumstances in terms of incline, secondary edges have significantly higher 

Feature name Equation Significance Odds ratio 95% conf. interval

Edge cost X1 = c(i,j) in Eq. (4) p < 2 · 10−16 = .βe 0 551 [0.53, 0.57]

Throat area X2 = A(i,j) p < 2 · 10−16 = .βe 0 842 [0.81, 0.87]

Adjacent pore volume =X V i j3 ( , ) in Eq. (1) p < 2 · 10−16 = .βe 1 363 [1.30, 1.42]

Incline X4 = θ(i,j) in Eq. (2) p < 2 · 10−16 = .βe 2 594 [2.48, 2.69]

(Constant) p < 2 · 10−16 = .βe 3 660 [3.52, 3.80]

Table 1.  Features for each edge (i, j) used in the logistic regression model. Notation of features and coefficients 
refers to Eq. (7).

Figure 4.  Confusion matrix for the prediction on the assembly with axial strain 22.94%.
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flow rates than tertiary edges. Further qualitative examination of these pathways, shown on the right-hand side of 
Fig. 1, reveals that secondary edges are either intraconnections or interconnections for the preferential pathways 
of primary edges. Intraconnections are embedded in chains of primary edges, forming preferential flow pathways 
that span the assembly from inlets to outlets and carry the fluid across. Interconnections, in contrast, bridge 
these preferential pathways, providing the ability to re-route flow in order to maximize the overall throughput. 
Interconnecting secondary edges therefore play a crucial role in the global optimization of finding pathways that 
maximize flow while minimizing cost.

Impact of pathway hierarchy on permeability.  The importance of inter- and intra-connecting flow 
is further highlighted by removing all secondary edges from the original pore network and re-calculating the 
permeability shown in Fig. 3. To do so, we repeat the process described in the previous section, fitting a logistic 
regression classifier for every assembly in the loading history and identifying primary, secondary and tertiary 
edges. In Fig. 6(a), the impact on permeability by removing secondary edges is compared to the impact on the 
permeability when tertiary edges are removed instead. Removing primary edges disconnects the inlets from the 
outlets altogether, hence a permeability for this type of removal is not shown.

We observe a pronounced difference of the impact on permeability if secondary edges are removed, com-
pared to removing tertiary edges. On average, permeability is reduced by approximately 10% throughout the 
loading history if tertiary edges are removed. Prior to peak stress, the reduction is 30% for secondary edges, 
increasing to a 37% reduction in the steady state. It should be noted that the number of secondary edges is 
generally slightly smaller than the number of tertiary edges in each assembly, with an average of 7914 and 8929 
edges across all strain states, respectively. The per-edge percentual reduction in permeability is still consistently 
and considerably larger for secondary edges, however: −33.6%/7914 = −4.2 · 10−3% for secondary edges, versus 
−9.9%/8929 = −1.1 · 10−3% for tertiary edges.

Impact of pathway hierarchy on transmission efficiency.  We quantify the association between per-
meability, preferential flow, the primary-secondary-tertiary distinction and network connectivity patterns using 
measures of complex network centrality. We calculate the average closeness centrality, betweenness centrality and 
information centrality. Closeness and betweenness are based on shortest paths, assuming that flow occurs only 
along these shortest paths and does not split. More specifically, an unweighted shortest path between node i and 
j is the route through the pore network that requires the minimum number of edges. The closeness centrality of 
a node i, in turn, is the reciprocal of the summed shortest path lengths to every other node in the pore network. 
A larger average closeness centrality suggests that most nodes in the network are relatively well-connected to all 
other nodes. Edge betweenness centrality is defined as the fraction of all shortest paths between pairs of nodes 
in the pore network that pass through the edge under consideration. In this case, only the paths that connect an 
inlet node with an outlet node are considered. Large average betweenness centrality indicates that shortest paths 
through the pore network are relatively localized and less spread out. Information centrality models connectivity 
through electrical current flow paths that can split and may follow any (potentially sub-optimal) route. This type 
of centrality is calculated for a node i as the reciprocal of the summed potential differences between i and every 
other node j. The edge resistance, a required input of the algorithm, is conveniently calculated as the inverse of the 
conductance capacity used in our network flow model. High average information centrality, in our case, suggests 
a more well-connected network in terms of all possible paths between nodes.

Figure 6(b–d) illustrates the impact of removing all secondary or all tertiary edges from the pore network. 
Betweenness centrality is edge-averaged, while closeness- and information centrality are averaged across all 
nodes.

The betweenness centrality results in Fig. 6(b) show that shortest paths between inlets and outlets gradu-
ally become more localized following peak-stress. More interestingly, shortest paths between inlets and outlets 
become considerably more localized when secondary edges are removed, compared to removing tertiary edges, 
up to a factor two at 30% axial strain. The removal of inter-connecting edges would contribute to such locali-
zation, eliminating the capacity to re-route and focusing shortest paths down the remaining routes connecting 

Figure 5.  Secondary pathways are poorly aligned with the pressure gradient, yet exhibit favorable flow rates, 
suggesting an important role in bridging preferential flow pathways. Radial distribution of the incline of 
primary edges (left), secondary edges (middle) and tertiary edges (right). The color of each bar indicates the 
average flow rate of all edges in the corresponding range of inclines.
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inlets with outlets. The difference in closeness centrality by removing secondary and tertiary edges in Fig. 6(c) 
is negligible until 15% axial strain. Beyond 15%, removing secondary edges decreases closeness centrality more 
considerably. The transition suggests that inter- and intra-connections, as provided by secondary edges, become 
more important in terms of maintaining connectivity as the sample fails. Indeed, the impact on betweenness cen-
trality in Fig. 6(b) of removing secondary edges is also more pronounced in the steady state, compared to prior 
axial strain values.

Lastly, the trend in information centrality (Fig. 6(d)) is remarkably similar to the trend in permeability. This 
may not be entirely surprising, given the use of conductance in both results, and the corresponding similarities 
between calculating pressure differences using Stokes’ law and electrical potential differences using Kirchhoff ’s 
laws. The Pearson correlation coefficient between the permeability and closeness centrality is equal to 0.975 
(p < 2 · 10−16), compared to 0.995 (p < 2 · 10−16) for the correlation between permeability and information cen-
trality. Note that the decrease in closeness centrality when secondary/tertiary edges are removed is smaller than 
the decrease in information centrality. We attribute this difference to the fact that information centrality counts 
‘distance’ as an aggregated amount of information flow along all possible paths. Closeness centrality only considers 
the shortest path. As a result, removing edges is more impactful for information centrality. The impact of remov-
ing secondary edges in terms of information centrality is more pronounced after 15% axial strain. The decrease in 
shortest-path connectivity (Fig. 6(c)) and connectivity of all paths (Fig. 6(d)) through removal of secondary edges 
may contribute to the 37% permeability reduction (Fig. 6(a)) in the steady state, up from 30% prior to peak stress.

Impact of deformation on pathway hierarchy.  Finally, we employ the proposed definition of prefer-
ential flow and the resulting hierarchy of primary-secondary-tertiary flow pathways to shed light on the impact 
of deformation on preferential flow pathway connectivity and structure. First, we investigate the frequency of 
primary and secondary edges, as well as the structures that they form. To this end, we introduce the notion of 
primary components as the disconnected components in P if all but the primary edges are removed. Similarly, 
the secondary components are the disconnected components in P if only secondary edges are retained. Figure 7 
compares the frequency of primary and secondary components with the relative frequency of the primary and 
secondary edges. Figure 7(a,b) show that a decrease in the percentage of primary edges coincides with a slight 
increase in the relative frequency of secondary edges. The largest connected component, quantified in size in 
Fig. 7(d), connects 80–90% of the primary edges at 0% axial strain, in addition to the approximately 1000 other 
primary components shown Fig. 7(c). The subsequent decrease in size of the largest component coincides with 

Figure 6.  Removing secondary, bridging pathways has a stronger negative effect on permeability and centrality than 
removing tertiary pathways. Moreover, secondary pathways become more important for the overall transmission 
beyond peak stress and into the steady state. Impact of removing secondary or tertiary edges on (a) permeability,  
(b) edge-averaged betweenness centrality for all shortest paths between inlets and outlets, (c) node-averaged 
closeness centrality for all shortest paths, (d) node-averaged information centrality. Insets show pre- and post-
peak stress excerpts of the 10% lowest-cost pathways in P, with nodes and edges sized by pore size and throat size, 
respectively. Primary edges are colored blue and secondary edges are colored orange.
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an increase in the number of primary components. From this, we derive that the primary flow structures become 
increasingly fragmented as the assembly reaches the steady state. Given the favorable flow characteristics of pri-
mary edges, shown in Fig. 5, this fragmentation would have a negative impact on permeability. Yet the permeabil-
ity increases with increasing axial strain, as shown in Fig. 3(b). We attribute this counter-intuitive behavior to the 
increasingly prominent role of secondary edges. The frequency of these inter- and intra-connecting edges does 
increase slightly, as shown in Fig. 7(b). More importantly, the results in Fig. 7 provide further evidence for the idea 
that secondary edges provide re-routing capabilities for the (increasingly fragmented) primary components, as 
the sample deforms, corroborating similar observations in the centrality measures presented in Fig. 6.

Figure 8 compares the evolution of local connectivity in terms of degree (i.e. pore coordination number), with 
changes of multi-scale connectivity in terms of information centrality, as the axial strain increases. Each point 
represents an average across all nodes in the stated category. A node is considered primary if its primary degree 
(number of adjacent primary edges) is larger than the global average primary degree across all nodes. Generally, 
the ratio of primary nodes to other nodes is approximately 1:2.

For primary nodes, local connectivity increases as the axial strain increases, from an average of 4.2 connected 
edges prior to peak stress to an average degree of 5 in the steady state. The average degree of non-primary nodes, 
in contrast, remains constant at 3.8 edges, despite continued physical deformation of the material. Both primary 
and non-primary nodes become more connected to all other nodes in terms of information centrality post peak 

Figure 7.  A decrease in the fraction of primary edges coincides with an increase in the number of primary 
components, indicating an increasingly fragmented primary flow network in the steady state. Showing (a) 
fraction of primary edges, (b) fraction of secondary edges, (c) number of primary components, and (d) number 
of secondary components. Insets at the top illustrate the primary components at 0% and 25% axial strain.

Figure 8.  During deformation, and particularly in the steady state, nodes in primary pathways of flow 
become more connected to other nodes, both locally, in terms of degree, and across multiple scales, in terms 
of information centrality. Non-primary nodes also gain in multi-scale connectivity, but do not become more 
locally connected. Feature vector trajectory, in terms of degree and information centrality, for primary and 
non-primary nodes. Color gradient indicates the axial strain. Insets illustrate nodes with some of the highest 
centrality values prior to peak stress, and in the steady state.
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stress, with primary nodes achieving slightly higher values towards the end of the shear test. Closer inspection of 
the associated network structures (insets in Fig. 8) reveals that primary nodes post peak stress, and into the steady 
state, become highly-connected, micro-structural information (i.e. fluid) hubs. This connectivity may be associ-
ated with the above-average flow rates for primary edges (connected to these primary nodes) and below-average 
flow rates for tertiary edges in Fig. 5. The trend in degree for primary nodes also suggests a correlation with per-
meability, which is found to be equal to 0.982 (p < 2 · 10−16) in terms of the Pearson correlation coefficient, similar 
to the correlation between permeability and information/closeness centrality.

Discussion
In this section, we connect our insights with existing definitions of preferential flow and prior experimental 
work. The proposed method to identify preferential flow pathways and corresponding functional groups extends 
existing interpretations in the following ways. As outlined in the introduction, preferential flow has previously 
been defined by the delineation of the liquid phase in relatively mobile and immobile parts1, where the prefer-
ential (mobile) part bypasses a fraction of the porous matrix2, through large inter-aggregate voids also known as 
macropores3. Indeed, in Fig. 3(a), we observe good correlation between what the network flow model predicts 
to be the fast-flowing, high-throughput fraction of the pore network, and what Stokes flow predicts as such. As a 
result, the edge flow f(i,j) provided by MFMC may be interpreted as micro-structural quantification of confidence 
that the edge is preferred, in addition to the macro-structural confidence parameters provided in Table 1). We 
also observe a statistically significant difference in the average flow rate through primary edges (Q(i,j) = 5.9 · 10−10 
m3 s−1) and tertiary edges (Q(i,j) = 2.1 · 10−10 m3 s−1) in Fig. 5. The secondary edges exhibit an intermediate average 
flow rate of 4.0 · 10−10 m3 s−1, however, suggesting an extension of the mobile-immobile distinction to include a 
third part for the bridging pathways that provide re-routing capabilities for the primary preferential pathways and 
maximize overall throughput, as hypothesized in the introduction. Secondary interconnections can be observed 
in the experimentally observed preferential fluid flow pathway images of Ju et al.12, though they are not fully 
captured by the shortest path model presented therein. Shortest paths alone do not account for pathway capacity 
and the corresponding inherent interplay between redundancy and rerouting in complex systems. As a result, the 
secondary (bridge-like) connections between primary preferential flow pathways observed in X-ray CT scans 
of soil columns19 cannot be captured using shortest paths alone. Addressing this issue, MFMC takes both cost 
(shortest paths) and capacity into account, from which the distinction between primary and secondary (bridging) 
preferential route segments emerges (e.g. see Fig. 1). In capturing primary, secondary and tertiary pathways of 
preferential fluid flow, our MFMC results corroborate the self-organizing, complex linkage continuum observed 
by Sidle et al.16 and Luo et al.19.

Our definition of preferential flow also corroborates the well-known preference for larger (macro)pore sizes3, 
as indicated by the positive odds (1.36) of the pore volume term in the logistic regression model (Table 1). Rather 
than capturing preferential flow using individual parameters such as (macro)pore size, our model considers a 
multitude of multiscale factors influencing preferential flow simultaneously (pore size3, throat area12, path align-
ment with the pressure gradient and surrounding pathways16,19) to obtain the optimal decision boundary between 
primary and secondary pathways. As such, the classifier provides a direct statistical interpretation for other rel-
evant factors as well: the odds of an edge being included in the preferential flow network decrease by a factor 
0.55 for every unit increase in edge cost, for example, and increase by a factor 2.59 for every unit increase in edge 
incline. Interpreted as such, the logistic regression model provides deeper insights into why certain parts of the 
porous medium are predicted as being part of the preferential flow network by our network flow model.

In the observations of inter- and intra-connecting edges summarized in Fig. 1, a particular analogy emerges 
with the two-tier hierarchical architecture observed in contact networks and force chains. Prior to peak stress, the 
sample is compressed along the vertical axis. The material can sustain the applied load through the formation of 
what is known as the strong, load-bearing force network along particle contacts, laterally supported and bridged 
by contacts in the weak force network38,57. A loss of lateral support and the phenomenon of buckling force chains 
results in subsequent failure of the assembly post peak-stress51. In rock formations, such events are associated 
with the formation of fracture patterns53. Figure 3(b) and 3 show that permeability, maximum flow and total cost 
are approximately constant in the critical regime, aside from minor fluctuations associated with local compression 
and dilation resulting from the spatiotemporal formation and buckling of force chains supporting the material. 
The plateauing behavior of the maximum flow in the steady state has also been observed in force transmission 
studies using MFMC36. In the same way that force is distributed under loading by forming a hierarchical support 
structure, our observations suggest that preferential fluid flow maximizes throughput by bridging primary flow 
pathways with secondary, horizontally-oriented connections. As such, juxtaposing our work with the fracture 
pattern model of Ord and Hobbs53, we observe that preferential flow is routed not just between macropores within 
regions of dilation (i.e. fracture patterns), but also, through secondary (multiscale) connections, between such 
regions. The supporting structures for force transmission and preferential flow are also inherently connected: 
compression and dilation due to the formation and buckling of force chains continuously alter the pore space10,37. 
Indeed, Fig. 6 shows that the secondary connections between primary flow pathways become increasingly 
important for preferential flow as the assembly dilates beyond peak-stress, furthering the idea of Allaire et al.4  
that lateral flow connections are at least as important as preferential flow in the direction of gravity (for overall 
throughput). Additionally, the loss of inter- and intra-connecting edges analyzed in Fig. 6 demonstrates that 
secondary pathways are responsible for a larger fraction of the connectivity and physical flow than tertiary edges.

Related work has shown that closeness centrality is more strongly correlated with permeability than most 
other complex network parameters, including betweenness centrality54,55. Building on this outcome, the results in 
Figs. 6 and 8 suggest that information centrality, previously not considered due to computational costs, is (line-
arly) more strongly correlated with permeability than closeness centrality. We noted in the discussion of Fig. 8 
that permeability is also significantly correlated with the average degree of primary nodes, yet not correlated with 
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the average degree of non-primary nodes. While we cannot prove causality, these results suggest that the local 
increase in connectivity of primary nodes (depicted in the insets of Fig. 8) may be responsible for the increase in 
multi-scale connectivity (closeness centrality and information centrality) and permeability post peak stress. 
Translating these insights back to the physical domain, increased local connectivity of primary nodes implies that 
pores likely to be part of preferential flow pathways become (on average) more connected to neighboring pores 
during deformation of the material. The degree of pores outside the preferential flowpaths, in contrast, does not 
increase. Further inspection shows that primary nodes are likely to represent larger pores, as predicted by the 
logistic regression model ( = .βe 1 363  in Table 1) and consistent with the macropore definition of preferential 
flow3. This insight is also consistent with observations by Ju et al.12, who observed a preferential flow path prefer-
ence for macropores both in experimental measurements and their shortest path model. Large pores, in turn, are 
the result of local dilation and shear bands that follow the aformentioned buckling force chains post 
peak-stress37,51,53. Additionally, we observe in Fig. 6 that the negative impact on permeability and connectivity by 
removing secondary edges (bridging primary nodes/edges) is most pronounced in the steady state. We conclude 
that preferential flow benefits from the onset of failure at peak-stress, a result that was previously hypothesized in 
2D by Russel et al.10. While primary, flow-promoting edges decrease in number and become increasingly frag-
mented post peak-stress, Fig. 7 shows that secondary edges compensate for this by providing the inter- and 
intra-connecting routes that maximize the throughput, ultimately resulting in an increase in permeability.

This work is a first step in defining and predicting preferential flow structure for more complex materials 
using MFMC. For saturated media, as considered in this work, comparing MFMC to Navier-Stokes fluid flow56 
and considering coupled interactions (e.g. pore pressure, internal erosion and fault slip15) could provide further 
insights into the applicability and limitations of MFMC, and the structure of preferential fluid flow pathways. 
Particularly in the presence of higher Reynolds’ numbers and stronger inertia effects, the contribution and role of 
secondary edges may become more or less pronounced. Beyond the assumption of full saturation, hydrological 
effects in unsaturated media, typically modelled by Richards equation23, should also be investigated, including 
wettability effects, drainage and air entrapment19. In our idealized particle assemblies, the network flow model 
highlights non-linear interdependencies between microstructure and preferential path formation in fully satu-
rated granular media. For real granular materials, such non-linear and non-intuitive responses will likely be even 
more pronounced. A comparison to real fluid flow obtained from MRI scans or X-ray tomography50, similar to 
the work by Ju et al.12 for shortest paths, could provide experimental (network and capacity) input and validation 
for MFMC. The MFMC framework is exemplified herein with idealized realistic virtual samples and its resulting 
insights are contrasted with relevant observations available in literature. Beyond structure, applying MFMC to 
real pore geometries may also provide further insights into the physical dimensions of preferential flow pathways. 
As long as a pore network representation with corresponding capacities is available, MFMC is generally applicable 
to void descriptions in permeable media.

Methods
Discrete element simulation.  The discrete element model used here is from Pucilowski et al.48,49. It is a 
three-dimensional analogue of a well-studied in-plane biaxial compression test51 under a relatively high constant 
confining pressure to induce dilation during shear. Indeed, these samples were designed for characterization of 
dynamics of transmission in a densely-packed 3D granular sample up to and during failure when the sample 
deforms in the presence of fully developed dilatant shear zones. As shown by Ord52, fluid flow is enabled by 
regions of dilatancy (e.g. shear zones). The model parameters are summarized in Table 2. The height coordinate 
is z and the width and depth coordinates are x and y, respectively. In summary, a normally consolidated drained 
triaxial test is simulated for a dry, sand-like specimen. As is common in discrete element methods, a friction-free 
approach is used to simulate air pluviation. 6,776 spherical particles are placed in a friction-free, stress-free, 
non-contacting, and gas-like state in a cubic box without gravity. The walls are subsequently moved inwards to 
compress the sample to 495 kPa constant confining pressure. When the assembly reaches a static equilibrium, 
particle velocities are reset and particles are assigned the friction coefficients listed in Table 2. The horizontal (top 
and bottom) walls are assigned the same sliding friction coefficient as the particles (0.7), while vertical walls in the 
remaining simulation are still assumed to be frictionless. This way, no additional artificial shear is imposed to the 
virtual specimen. Next, the assembly is subjected to a triaxial shear test, with a constant axial strain rate of −0.05 
s−1 in the vertical direction. During the test, the assembly expands globally in horizontal directions under con-
stant confining pressure. The state of the dry assembly is extracted at 430 equally spaced iterations, corresponding 
to 430 stages of axial strain between 0 and 30%, for further analysis.

Pore network construction.  We use the modified Delaunay tessellation (MDT) approach to construct 
the pore networks, originally proposed by Al-Raoush et al.58, with the adaptations introduced by van der Linden 
et al.54. For a detailed description of the algorithm and a comparison with the original MDT approach, refer 
to55. The Delaunay tessellation delineates the pore space using tetrahedra, for which the vertices coincide with 
the particle centroids. The tetrahedra are assumed to encapsulate pores, while throats are assumed to coincide 
with the tetrahedral faces. Al-Raoush et al.58 recognized that the tessellation may unnecessarily sub-divide pores, 
however, and introduced the idea of merging tetrahedra to remedy this issue. We merge a pair of tetrahedra if the 
areal porosity on the shared face exceeds a pre-defined threshold54. The threshold is fixed at 0.4, which has been 
shown to achieve a good balance between under- and over-merging55. Following the merging procedure, network 
nodes are assigned to individual or merged collections of tetrahedra, connected by an edge if the tetrahedra share 
a face. Nodes are labelled as inlet (outlet) nodes if one or more tetrahedra contains a face exposed to the top inlet 
(bottom outlet) plane.
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Pore volume Vi for node i is calculated by summing the void volume encapsulated by the corresponding tet-
rahedron or tetrahedra. Similarly, throat area A(i,j) is obtained by summing the void area on all shared faces. The 
derived variables of adjacent average pore volume and edge incline in Table 1 are defined as:
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where a node i is assumed to have the centroid coordinates (xi, yi, zi).

Network flow model construction.  Maximum Flow Minimum Cost (MFMC) is used to model fluid 
flow between two parallel walls (top inlet and bottom outlet) in a deforming granular material. Our intended 
application is the identification of preferential flow paths and their joint structure. As such, we formulate the 
relative capacity and cost through measures that capture the capacity of pores and throats to transmit fluid at a 
certain cost. If, instead, our application was to model actual fluid flow, then MFMC and the actual capacity and 
cost would have to satisfy the assumed physical flow behaviour (e.g. Stokes or Navier-Stokes) and be formulated 
accordingly. Such a representation is beyond the scope of this work.

In this work, MFMC is implemented using the LEMON library by Dezso et al.59 and formulated as follows. We 
denote  = V E U C s t( , , , , , ) as the flow network. Vertices (nodes) V represent the pores and the set E contains 
the edges (links) that represent throats, as described in the previous section on pore network construction. Edges 
(i, j) ∈ E transmit a certain flow f(i,j), limited by the capacities = | ∈U u i j E{ ( , ) }i j( , )  and incurring costs 

= | ∈C c i j E{ ( , ) }i j( , ) . The capacity u(i,j) is equal to the maximum number of units of flow f(i,j) that (i, j) can trans-
mit, with c(i,j) representing the cost per flow unit. Flow is injected into  through an artificial source node s, con-
nected (with infinite capacity and zero cost) to every inlet node. In the same way, a sink node t is connected to 
every outlet node. Optimization in the MFMC algorithm proceeds in two stages:

	 1.	 Find the maximum number of units of flow (maximum flow) |f|* that can be transmitted through , from 
source s to sink t, using Goldberg-Tarjan’s preflow push-relabel algorithm60, subject to the constraints:
f(i,j) ≤ u(i,j) ∀ (i, j) ∈ E (capacity constraint)
∑i∈V f(i,j) = ∑k∈V f(j, k), j ≠ {s, t} (conservation of flow)
∑i∈V f(i, t) = ∑j∈V f(s, j) (conservation of flow)

	 2.	 Minimize the cost of transmitting |f|* through  (minimum cost) using the primal network simplex 
algorithm61,62, subject to the constraints above.

The first stage of MFMC typically identifies the main bottleneck in the network, restricting |f|* to the summed 
capacity of the edges in the bottleneck. The second stage then proceeds to optimize the transmission of |f|* by 
finding the minimum cost pathways from the inlet to the bottleneck, and from the bottleneck to the outlet. The 
solution of the MFMC optimization problem provides (1) the maximum flow |f|*, capturing the total flow that can 
be ‘pushed’ through , (2) a percolating sub-network P of  that transmits |f|* at minimum cost, and (3) the total 
cost of transmitting |f|*, defined as | | = ∑ ∈

⁎c f ci j E i j i j( , ) ( , ) ( , ). We plot the average cost of transmitting a unit of max 
flow (|c|*/|f|*) in Fig. 3(c) to reveal how the ease with which the material transmits flow evolves as the material 
deforms. Lastly, we note that the solution of the network flow model depends on the relative values of u(i,j) and c(i,j). 
That is, if (|f|*, |c|*, P) is the solution using capacities u(i,j) and costs c(i,j), then (α|f|*, α|c|*, P) is the solution for 
capacities αu(i,j) and costs αc(i,j) (α > 0).

Number of particles 6,776

Particle radii (from uniform 
distribution) (0.76 − 1.52) × 10−3 m

Density 2650 kg/m3

Young’s modulus 9.19 × 107 Pa

Poisson’s ratio 0.5

Rolling stiffness coefficient37 1.0

Rolling friction coefficient 0.7

Sliding friction coefficient 0.02

Strain rate −0.05 s−1

Constant confining pressure (in 
x and z direction) 4.95 × 105 Pa

Initial void ratio 0.5

Initial dimensions (x × y × z) 109.23 × 109.20 × 109.26 10−3 m

Final dimensions (x × y × z) 133.25 × 132.09 × 80.97 10−3 m

Table 2.  Simulation parameters used in DEM.
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In the remainder of this section, we present the definitions of capacity and cost. As a proxy for the relative 
transmission capacity of an edge in the network , representing a pore-throat-pore series, we assume equivalent 
cylindrical geometry for the pores and throats. Under the corresponding assumptions of tube flow, conductance 
is calculated using the Hagen-Poiseuille law:
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where i and j denote the pores on either side of the connecting throat t(i,j), C (m3 Pa−1 s−1) is the conductance, r 
(m) and L (m) are the respective radius and length the equivalent cylinder, and η (Pa s) is the dynamic viscosity 
of the fluid. For further details on the derivation of L and r for pores and throats we refer to the more extensive 
discussion in van der Linden et al.54,55. The conductance capacity function is given by the harmonic mean of the 
pore-throat-pore series:
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For cost, we use a penalty value based on inertia. Capturing the intuition of ‘high cost’ for flow around a sharp 
bend, an edge (i, j) is given a high cost value if it aligns poorly with other edges connected to nodes i and j. To this 
end, we define the average angle of edge (i, j) with the Nk other edges (i, k) connecting to node i as:
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where (xi, yi, zi) are the coordinates of the centroid of the particle corresponding to node i. The average angle of 
edge (i, j) with every other edge connecting to node j is obtained by switching out i and j in (5). Using this expres-
sion, the inertia cost penalty is given by the harmonic mean:
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We take the inverse of the harmonic mean to ensure angles close to 180°, in alignment with (i, j), result in low 
cost.

Classification.  To perform the classification, we define a simple binary classifier, predicting inclusion or 
exclusion χ(i,j) of a particular edge in the MFMC sub-graph P, i.e. χ(i,j) = 1 if ∈i j P( , )  and χ(i,j) = 0 otherwise. The 
classifier is given by the logistic regression of χ(i,j) on the four independent edge-level variables (features) 

…X X, ,1 4 listed in Table 1, estimating the corresponding model parameters β β…, ,0 4 by maximum likelihood 
in:

β β β β β= + + + + =



 −






logit p X X X X logit p p
p

( ) , ( ) ln
1

,
(7)

0 1 1 2 2 3 3 4 4

where p is the probability that χ(i,j) = 1. Other features were considered (capacity, throat length, vertical distance) 
but ultimately removed from the model due to multicollinearity given by other features in Table 1. Other 
(non-linear) classification methods were also considered, but did not provide noticeable improvement in classifi-
cation performance. The features …X X, ,1 4 are standardized to have zero-mean and unit-variance.

For previously unseen edges, a derived output of the logistic regression model in Eq. (7) is the probability that 
χ(i,j) = 1. As such, a threshold is required to convert each probability prediction into the binary outcome: (i, j) ∈ P 
or (i, j) ∉ P. For probabilities above the threshold, we assume χ(i,j) = 1 (positive case), while probabilities below the 
threshold are assumed to imply χ(i,j) = 0 (negatives case). As is common, we calculate this threshold by simultane-
ously maximizing the fraction of true positives (sensitivity) and fraction of true negatives (specificity) using 20% of 
the 80% of edges reserved for model fitting in the sample with 21.54% axial strain used for Table 1. Sensitivity and 
specificity are competing objectives, as increasing the threshold increases the likelihood of correctly predicting 
all negative cases, while decreasing the likelihood of predicting all positive cases. For this particular set of edges, 
we obtain a threshold of 0.73.

Permeability.  The approximated numerical permeability is calculated using Stokes’ law and the OpenPNM 
Python package63. Using the conductances C(i,j) calculated in Eq. (4), the conservation of mass prescribes:
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where Q(i,j) is the flowrate (m3 s−1) between nodes i and j and Pi is the pressure (Pa). We express Eq. (8) as linear 
system of equations, prescribing Pi = 10 Pa for all inlet nodes i, and Pj = 9 Pa for all outlet nodes j. We obtain the 
pressures at all other nodes by solving the corresponding matrix-vector equation. Lastly, the net outlet flow Qour 
is inserted into Darcy’s law to calculate permeability:

η
=

Δ
k LQ

A P
, (9)

out

where L is the height of the sample, A is the cross-sectional area, η = 0.001002 Pa s is the fluid dynamic viscosity, 
and ΔP = 1 is the pressure difference over inlet and outlet nodes. For spherical particle assemblies, Stokes flow 
has been shown to agree moderately well with physical measurements64.

Shortest paths and network centrality.  We define d(i,j) as the length of the shortest path distance from 
node i to node j, minimizing the number of traversed edges. Shortest paths are calculated using Dijkstra’s algo-
rithm65. To assess network connectivity, we compute the average closeness, betweenness and information central-
ity. Closeness centrality for a node i is given by66:
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where |V| is the number of nodes. Closeness centrality is a multi-scale measure of connectivity, capturing the 
degree of connectivity of nodes to all other nodes. Betweenness centrality further characterizes this connectivity 
by computing the fraction of shortest paths passing through a particular edge67:
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where Vin and Vout are the respective inlet and outlet nodes, σkl is equal to the total number of shortest paths 
between node k and l, and σkl(i, j) is the number of shortest paths between k and l that pass through edge (i, j). We 
opt for the specific case where k ∈ Vin and l ∈ Vout (as opposed to k, l ∈ V) to assess the degree of path localization 
in the direction of flow.

Shortest path distance, closeness centrality and betweenness centrality quantify connectivity by assuming 
quantities traverse the network solely along non-diverging shortest paths. In a connected and saturated porous 
medium, however, fluid will flow along non-preferential paths too. To this end, information centrality quantifies 
connectivity through electrical current flow paths, which, similar to electrical current, may diverge, converge and 
follow non-preferential paths68. We calculate information centrality for every node i as69:
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where pij(k) is the absolute potential of node k if a single unit of current is injected at node i and leaves the net-
work at node j. Given this unit supply, the absolute potential is calculated by solving the linear set of equations 
given by Ohm’s and Kirchoff ’s potential laws:

∑ ∑= − =
→ →

x C p p( ) 0,
(13)i j

i j
i j

i j i j( , ) ( , )

where x(i,j) is the current and C(i,j) is the conductance. We use (4) for the conductance, in which case (13) is 
equivalent to Stokes law’ (8) with a unit flow supply at node i and sink at node j. The term pij(i) − pij(j) in (12) is 
the effective resistance (or pressure difference) acting as an alternative to the shortest path distance used in (10).
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