CRYSTALLOGRAPHIC COMMUNICATIONS

Received 18 April 2015
Accepted 24 April 2015

Edited by J. Simpson, University of Otago, New Zealand

Keywords: crystal structure; pyrazoloquinoline; hydrogen bonding; $\pi-\pi$ stacking interactions

CCDC reference: 1012361
Supporting information: this article has supporting information at journals.iucr.org/e

The crystal structure of 3-chloro-2-(4-methyl-phenyl)-2H-pyrazolo[3,4-b]quinoline

Haliwana B. V. Sowmya, ${ }^{\text {a }}$ Tholappanavara H. Suresha Kumara, ${ }^{\text {b }}$ Jerry P. Jasinski, ${ }^{\text {c }}{ }^{\text {* }}$ Sean P. Millikan, ${ }^{\text {c }}$ Hemmige S. Yathirajan ${ }^{\text {d }}$ and Christopher Glidewell ${ }^{\text {e }}$

${ }^{\text {a }}$ PG Department of Chemistry, Jain University, 52 Bellary Road, Hebbal, Bangalore 560024 , India, ${ }^{\text {b }}$ University B.D.T. College of Engineering, (a Constituent College of VTU, Belgaum), Davanagere 577 004, India, ${ }^{\text {c }}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\mathbf{e}}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland. *Correspondence e-mail: jjasinski@keene.edu

In the molecule of 3-chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4-b]quinoline, $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3}$, (I), the dihedral angle between the planes of the pyrazole ring and the methylated phenyl ring is $54.25(9)^{\circ}$. The bond distances in the fused tricyclic system provide evidence for $10-\pi$ delocalization in the pyrazolopyridine portion of the molecule, with diene character in the fused carbocyclic ring. In the crystal, molecules of (I) are linked by two independent $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming sheets containing centrosymmetric $R_{2}^{2}(16)$ and $R_{6}^{4}(28)$ rings, and these sheets are all linked together by $\pi-\pi$ stacking interactions with a ring-centroid separation of 3.5891 (9) A.

1. Chemical context

Quinoline exhibits antimalarial, anti-bacterial, antifungal, anthelmintic, cardiotonic, anticonvulsant, anti-inflammatory and analgesic activity (Marella et al., 2013). Quinoline and its fused heterocyclic derivatives constitute an important class of compounds for new drug development (Kumar et al., 2009), and the medicinal applications of pyrazolo[3,4-b]quinolines have been summarized, along with an efficient synthetic method (Afghan et al., 2009). Recently, we have reported the synthesis of a number of novel pyrazolo[3,4-b]quinoline derivatives, including that of the title compound (I), and molecular docking studies of their binding affinity to the active sites of human telomerase (Sowmya et al., 2014). In a continuation of that study, we now report the crystal and molecular structure of one such example, the title compound 3-chloro-2-p-tolyl-2H-pyrazolo[3,4-b]quinoline, (I).

2. Structural commentary

Within the molecule of compound (I) (Fig. 1), the pendent phenyl group is twisted out of the plane of the fused heterocyclic ring system, as indicated by the relevant torsional angles (Table 1): the dihedral angle between the mean planes of the pyrazole and the methylated phenyl rings is $54.25(9)^{\circ}$. The molecules of (I) exhibit no internal symmetry and thus they are conformationally chiral: however, the centrosymmetric

Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
space group accommodates equal numbers of both of the conformational enantiomers. The non-planar character of the molecular skeleton may be plausibly ascribed to the combined effects of the intramolecular non-bonded repulsion between the Cl substituent and the nearest H atom of the methylated phenyl ring, and of the direction-specific intermolecular interactions, in particular the hydrogen bonds.

The bond distances in compound (I) (Table 1) show some interesting features. Within the pyrazole ring, the bond distances $\mathrm{N} 1-\mathrm{C} 9 A$ and $\mathrm{N} 2-\mathrm{C} 3$ (Fig. 1) are identical within experimental uncertainty, although these two bonds are formally double and single bonds, respectively. In the fused carbocyclic ring, the bonds $\mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 7-\mathrm{C} 8$ are much shorted than any other $\mathrm{C}-\mathrm{C}$ bonds in the molecule. However, in the central pyridine ring, within each of the pairs of

Figure 2
Part of the crystal structure of compound (I) showing the formation of a centrosymmetric hydrogen-bonded dimer. For the sake of clarity, the unit-cell outline and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk $\left(^{*}\right)$ are at the symmetry position $(-x, 1-y, 1-z)$.

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right.$).

$\mathrm{N} 1-\mathrm{N} 2$	$1.3644(18)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.358(2)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.346(2)$	$\mathrm{C} 8-\mathrm{C} 8 A$	$1.432(2)$
$\mathrm{C} 3-\mathrm{C} 3 A$	$1.398(2)$	$\mathrm{C} 8 A-\mathrm{N} 9$	$1.342(2)$
$\mathrm{C} 3 A-\mathrm{C} 4$	$1.388(2)$	$\mathrm{N} 9-\mathrm{C} 9 A$	$1.346(2)$
$\mathrm{C} 4-\mathrm{C} 4 A$	$1.394(2)$	$\mathrm{C} 9 A-\mathrm{N} 1$	$1.349(2)$
$\mathrm{C} 4 A-\mathrm{C} 5$	$1.429(2)$	$\mathrm{C} 3 A-\mathrm{C} 9 A$	$1.430(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.357(3)$	$\mathrm{C} 4 A-\mathrm{C} 8 A$	$1.446(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.419(3)$	$\mathrm{C} 3-\mathrm{Cl} 3$	$1.6993(16)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22$	$-53.7(2)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 22$	$125.08(17)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 26$	$126.42(16)$	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 21-\mathrm{C} 26$	$-54.8(2)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).
$C g 1$ represents the centroid of the C21-C26 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.95	2.50	$3.393(2)$	157
$\mathrm{C} 26-\mathrm{H} 26 \cdots 9^{\mathrm{ii}}$	0.95	2.50	$3.449(2)$	174
$\mathrm{C} 27-\mathrm{H} 27 A \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.98	2.84	$3.653(2)$	140

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $-x,-y+1,-z+2$.
corresponding bonds $\mathrm{C} 3 A-\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 4 A, \mathrm{C} 8 A-\mathrm{N} 9$ and $\mathrm{N} 9-\mathrm{C} 9 A$, and $\mathrm{C} 3 A-\mathrm{C} 9 A$ and $\mathrm{C} 4 A-\mathrm{C} 8 A$, the two distances are very similar. These observations taken together are fully consistent with a $10-\pi$ delocalized system in the pyrazolopyridine portion of the molecule, comparable to those found in naphthalene and azulene (Glidewell \& Lloyd, 1984), while the fused carbocyclic ring has more the character of an isolated diene ($c f$. Glidewell \& Lloyd, 1986).

3. Supramolecular features

The supramolecular assembly in compound (I) is determined by two independent $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) and a $\pi-\pi$ stacking interaction, which together link the molecules into a three-dimensional framework structure. The formation of this framework is readily analysed in terms of three simpler sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000). In the simplest sub-structure, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond having atom C23 as the donor links an inversion-related pair of molecules, forming a cyclic centrosymmetric dimer characterized by an $R_{2}^{2}(16)$ (Bernstein et al., 1995) motif (Fig. 2), and this dimeric unit can be regarded as the basic building block in the supramolecular assembly. The second $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, having atom C26 as the donor, directly links the reference dimer, which is centred at $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ to four symmetry-related dimers centred at $(0,0,0),(01,0),(0,0,1)$ and $(0,1,1)$, thereby leading to the formation of a hydrogenbonded sheet lying parallel to (100), in which centrosymmetric $R_{2}^{2}(16)$ rings alternate with $R_{6}^{4}(28)$ rings (Fig. 3).

Only one hydrogen-bonded sheet passes through each unit cell, but the sheets are linked by the $\pi-\pi$ stacking interaction which is associated with the extensive overlap between the tricyclic ring systems of inversion-related pairs of molecules in

Figure 3
A stereoview of part of the crystal structure of compound (I) showing the formation of a hydrogen-bonded sheet lying parallel to (100) and containing alternating $R_{2}^{2}(16)$ and $R_{6}^{4}(28)$ rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
adjacent sheets (Fig. 4). The pyridine rings of the molecules at (x, y, z) and $(1-x, 1-y, 1-z)$, which lie in adjacent sheets, are strictly parallel with an interplanar spacing of 3.3819 (6) A. The ring-centroid separation is 3.5891 (9) \AA, corresponding to a ring-centroid offset of ca $1.202 \AA$ (Fig. 4). The effect of this interaction is to link all of the hydrogen-bonded sheets into a single three-dimensional array.

Figure 4
Part of the crystal structure of compound (I) showing the overlap of an inversion-related pair of molecules. For the sake of clarity, the unit-cell outline and all of the H atoms have been omitted. The molecules are viewed normal to the planes of the fused heterocyclic ring system and atoms marked with an asterisk $\left(^{*}\right)$ are at the symmetry position ($1-x$, $1-y, 1-z)$.

Table 3
Experimental details.
Crystal data

Chemical formula	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3}$
$M_{\text {r }}$	293.75
Crystal system, space group	Monoclinic, $P 2_{1} / \mathrm{c}$
Temperature (K)	173
$a, b, c(\AA)$	$\begin{aligned} & 10.2194(4), 13.4661(5), \\ & 10.4600(4) \end{aligned}$
$\beta\left({ }^{\circ}\right.$)	102.780 (4)
$V\left(\AA^{3}\right)$	1403.80 (10)
Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	2.36
Crystal size (mm)	$0.42 \times 0.28 \times 0.12$
Data collection	
Diffractometer	Agilent Eos Gemini
Absorption correction	Multi-scan (CrysAlis RED; Agilent, 2012)
$T_{\text {min }}, T_{\text {max }}$	0.554, 0.753
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	8443, 2738, 2479
$R_{\text {int }}$	0.032
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.619
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.040, 0.114, 1.05
No. of reflections	2738
No. of parameters	191
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	$0.36,-0.22$

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Despite the large number of aromatic $\mathrm{C}-\mathrm{H}$ bonds in the molecule of compound (I), the only short $\mathrm{C}-\mathrm{H} \cdots \pi$ contact involves one of the $\mathrm{C}-\mathrm{H}$ bonds of the methyl group. Not only are such bonds of low acidity but, perhaps more important, such a methyl group will be undergoing very rapid rotation about the adjacent $\mathrm{C}-\mathrm{C}$ bond. When a group having local C_{3} symmetry, such as a methyl group, is directly bonded to another group having local C_{2} symmetry, such as a phenyl group, as in (I), the rotational barrier about the bond between them is very low, generally of the order of $\mathrm{J} \mathrm{mol}^{-1}$ rather than the usual $\mathrm{kJ} \mathrm{mol}^{-1}$ (Naylor \& Wilson, 1957; Tannenbaum et al., 1956). Moreover, it has been shown that simple hydrocarbyl substituents undergo rapid rotation about $\mathrm{C}-\mathrm{C}$ bonds in the solid state, even at reduced temperatures (Riddell \& Rogerson, 1996, 1997). Therefore, while such a $\mathrm{C}-\mathrm{H} \cdots \pi$ intermolecular interaction may not be regarded as structurally significant, we report it here for completeness (Table 2).

4. Database survey

Structural information on un-reduced pyrazolo[3,4-b]quinolines carrying a substituent at the N 2 position but not at N 1 , is sparse. In a series of pyrazolo[3,4-b]quinolin-5-ones, each carrying a substituent at N 2 , the central heterocyclic ring is in reduced form, carrying H atoms at positions 4 and 8 (Cannon et al., 2001a,b,c,d). By contrast, in a series of less highly reduced pyrazolo[3,4-b]quinolin-5-ones which each carry a substituent at N 1 but not at N 2 , the central fused ring is fully
aromatic (Mera et al., 2005; Cruz et al., 2006; Portilla et al., 2007). Similarly, in a series of benzo[f]pyrazolo[3,4-b]quino]quinolines, in each of which there is a substituent at position 1, but not at position 2, the pyridine ring is fully aromatic (Portilla, Quiroga et al., 2005; Portilla, Serrano et al., 2005; Portilla et al., 2008).

5. Synthesis and crystallization

A sample of the title compound was prepared using the recently published procedure (Sowmya et al., 2014). Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation, at ambient temperature and in the presence of air, of a solution in hexane-ethyl acetate (19:1, $v / v)$.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were located in difference maps, and then treated as riding atoms in geometrically idealized positions with $\mathrm{C}-\mathrm{H}$ distances $0.95 \AA$ (aromatic) or $0.98 \AA$ (methyl) and with $U_{\text {iso }}(\mathrm{H})=k U_{\mathrm{eq}}(\mathrm{C})$, where $k=1.5$ for the methyl group, which was permitted to rotate but not to tilt, and 1.2 for all other H atoms.

Acknowledgements

THSK thanks the authorities of Jain University for their support and encouragement. JPJ acknowledges the NSF-MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

Afghan, A., Baradarani, M. M. \& Joule, J. A. (2009). Arkivoc, pp. 2030.

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. \& Low, J. N. (2001a). Acta Cryst. E57, o151-o153.

Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. \& Low, J. N. (2001b). Acta Cryst. E57, o154-o156.
Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. \& Low, J. N. (2001c). Acta Cryst. E57, o157-o159.
Cannon, D., Quesada, A., Quiroga, J., Mejía, D., Insuasty, B., Abonia, R., Cobo, J., Nogueras, M., Sánchez, A. \& Low, J. N. (2001d). Acta Cryst. E57, o160-o162.
Cruz, S., Quiroga, J., de la Torre, J. M., Cobo, J., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. C62, o525-o527.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.
Ferguson, G., Glidewell, C., Gregson, R. M. \& Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.
Glidewell, C. \& Lloyd, D. (1984). Tetrahedron, 40, 4455-4472.
Glidewell, C. \& Lloyd, D. (1986). J. Chem. Educ. 63, 306-308.
Gregson, R. M., Glidewell, C., Ferguson, G. \& Lough, A. J. (2000). Acta Cryst. B56, 39-57.
Kumar, S., Bawa, S. \& Gupta, H. (2009). Mini Rev. Med. Chem. 9, 1648-1654.
Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M. \& Alam, M. M. (2013). Saudi Pharm. J. 21, 1-12.
Mera, J., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o442-o444.
Naylor, R. E. \& Wilson, E. B. (1957). J. Chem. Phys. 26, 1057-1060.
Portilla, J., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o483-o489.
Portilla, J., Quiroga, J., Cobo, J., Low, J. N. \& Glidewell, C. (2007). Acta Cryst. C63, o582-o584.
Portilla, J., Quiroga, J., Nogueras, M., de la Torre, J. M., Cobo, J., Low, J. N. \& Glidewell, C. (2008). Acta Cryst. B64, 72-83.

Portilla, J., Serrano, H., Cobo, J., Low, J. N. \& Glidewell, C. (2005). Acta Cryst. C61, o490-o492.
Riddell, F. G. \& Rogerson, M. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 493-504.
Riddell, F. G. \& Rogerson, M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 249-256.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sowmya, H. B. V., Suresha Kumara, T. H., Nagendrappa, G., Jasinski, J. P., Millikan, S. P., Chandramohan, V., Jose, G., Rashmi, S. K., Chandrika, N. \& Ashwini, A. M. (2014). J. Applicable Chem. 3, 2384-2392.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tannenbaum, E., Myers, R. J. \& Gwinn, W. D. (1956). J. Chem. Phys. 25, 42-47.

supporting information

Acta Cryst. (2015). E71, 567-570 [https://doi.org/10.1107/S205698901500818X]
The crystal structure of 3-chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4b]quinoline

Haliwana B. V. Sowmya, Tholappanavara H. Suresha Kumara, Jerry P. Jasinski, Sean P. Millikan, Hemmige S. Yathirajan and Christopher Glidewell

Computing details

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

3-Chloro-2-(4-methylphenyl)-2H-pyrazolo[3,4-b]quinoline

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3}$
$M_{r}=293.75$
Monoclinic, $P 2_{1} / c$
$a=10.2194$ (4) \AA
$b=13.4661(5) \AA$
$c=10.4600(4) \AA$
$\beta=102.780(4)^{\circ}$
$V=1403.80(10) \AA^{3}$
$Z=4$

Data collection

Agilent Eos Gemini
diffractometer
Radiation source: Enhance (Cu) X-ray Source ω scans
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
$T_{\text {min }}=0.554, T_{\text {max }}=0.753$
8443 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.114$
$S=1.05$
2738 reflections
191 parameters
0 restraints
$F(000)=608$
$D_{\mathrm{x}}=1.390 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 2738 reflections
$\theta=4.4-72.6^{\circ}$
$\mu=2.36 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, yellow
$0.42 \times 0.28 \times 0.12 \mathrm{~mm}$

2738 independent reflections
2479 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=72.6^{\circ}, \theta_{\text {min }}=4.4^{\circ}$
$h=-12 \rightarrow 12$
$k=-12 \rightarrow 16$
$l=-12 \rightarrow 11$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0702 P)^{2}+0.2814 P\right]$ where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	0.18699 (13)	0.38247 (10)	0.54035 (13)	0.0290 (3)
N2	0.21652 (13)	0.38697 (10)	0.67397 (13)	0.0269 (3)
C3	0.34907 (16)	0.38742 (11)	0.72750 (16)	0.0271 (3)
Cl 3	0.41552 (4)	0.39736 (3)	0.89093 (3)	0.03435 (15)
C3A	0.41587 (16)	0.38246 (11)	0.62459 (15)	0.0257 (3)
C4	0.54815 (16)	0.37944 (11)	0.61183 (15)	0.0280 (3)
H4	0.6210	0.3825	0.6860	0.034*
C4A	0.56909 (16)	0.37163 (11)	0.48495 (16)	0.0287 (3)
C5	0.70051 (17)	0.36552 (13)	0.45927 (18)	0.0356 (4)
H5	0.7767	0.3680	0.5302	0.043*
C6	0.71795 (19)	0.35618 (14)	0.33496 (19)	0.0401 (4)
H6	0.8060	0.3516	0.3197	0.048*
C7	0.60533 (19)	0.35325 (13)	0.22768 (18)	0.0390 (4)
H7	0.6191	0.3472	0.1411	0.047*
C8	0.47823 (19)	0.35900 (12)	0.24644 (16)	0.0352 (4)
H8	0.4045	0.3569	0.1730	0.042*
C8A	0.45426 (17)	0.36816 (11)	0.37577 (15)	0.0282 (3)
N9	0.32609 (13)	0.37210 (10)	0.38697 (13)	0.0283 (3)
C9A	0.30883 (16)	0.37944 (11)	0.51055 (15)	0.0264 (3)
C21	0.10959 (16)	0.39242 (12)	0.74232 (16)	0.0283 (3)
C22	0.01295 (16)	0.46631 (12)	0.70896 (16)	0.0318 (3)
H22	0.0147	0.5109	0.6390	0.038*
C23	-0.08594 (16)	0.47332 (13)	0.78014 (17)	0.0356 (4)
H23	-0.1520	0.5239	0.7588	0.043*
C24	-0.09102 (16)	0.40803 (14)	0.88226 (17)	0.0353 (4)
C25	0.00467 (17)	0.33313 (14)	0.90984 (18)	0.0393 (4)
H25	0.0016	0.2870	0.9779	0.047*
C26	0.10438 (17)	0.32453 (13)	0.83996 (17)	0.0360 (4)
H26	0.1685	0.2725	0.8590	0.043*
C27	-0.19679 (19)	0.41851 (18)	0.9614 (2)	0.0476 (5)
H27A	-0.1545	0.4387	1.0510	0.071*
H27B	-0.2424	0.3547	0.9636	0.071*
H27C	-0.2623	0.4689	0.9212	0.071*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0265(7)$	$0.0343(7)$	$0.0250(7)$	$-0.0008(5)$	$0.0028(5)$	$-0.0009(5)$
N2	$0.0244(7)$	$0.0303(7)$	$0.0251(7)$	$0.0004(5)$	$0.0035(5)$	$-0.0002(5)$

supporting information

C3	$0.0251(8)$	$0.0298(8)$	$0.0251(8)$	$0.0001(6)$	$0.0026(6)$	$-0.0006(6)$
C13	$0.0305(2)$	$0.0482(3)$	$0.0228(2)$	$0.00019(15)$	$0.00256(16)$	$-0.00138(14)$
C3A	$0.0272(8)$	$0.0244(7)$	$0.0243(8)$	$-0.0007(5)$	$0.0034(6)$	$-0.0001(6)$
C4	$0.0261(8)$	$0.0288(7)$	$0.0278(8)$	$-0.0013(6)$	$0.0033(6)$	$-0.0009(6)$
C4A	$0.0298(8)$	$0.0243(7)$	$0.0322(8)$	$-0.0025(6)$	$0.0074(7)$	$-0.0008(6)$
C5	$0.0304(9)$	$0.0361(9)$	$0.0411(9)$	$-0.0026(7)$	$0.0093(7)$	$-0.0028(7)$
C6	$0.0366(9)$	$0.0391(9)$	$0.0503(11)$	$-0.0026(7)$	$0.0220(8)$	$-0.0036(8)$
C7	$0.0500(11)$	$0.0363(9)$	$0.0359(9)$	$-0.0041(8)$	$0.0204(8)$	$-0.0028(7)$
C8	$0.0445(10)$	$0.0335(9)$	$0.0288(8)$	$-0.0032(7)$	$0.0109(7)$	$-0.0009(7)$
C8A	$0.0336(8)$	$0.0226(7)$	$0.0287(8)$	$-0.0014(6)$	$0.0078(6)$	$0.0003(6)$
N9	$0.0306(7)$	$0.0293(7)$	$0.0243(7)$	$-0.0020(5)$	$0.0042(5)$	$-0.0003(5)$
C9A	$0.0270(8)$	$0.0246(7)$	$0.0267(8)$	$-0.0008(6)$	$0.0038(6)$	$-0.0002(6)$
C21	$0.0230(7)$	$0.0330(8)$	$0.0283(8)$	$0.0005(6)$	$0.0045(6)$	$-0.0020(6)$
C22	$0.0266(8)$	$0.0352(8)$	$0.0305(8)$	$0.0015(6)$	$-0.0003(6)$	$0.0016(7)$
C23	$0.0230(8)$	$0.0413(9)$	$0.0397(9)$	$0.0047(6)$	$0.0005(7)$	$-0.0042(7)$
C24	$0.0236(8)$	$0.0463(10)$	$0.0355(9)$	$-0.0018(6)$	$0.0053(7)$	$-0.0075(7)$
C25	$0.0320(9)$	$0.0486(10)$	$0.0388(9)$	$0.0009(7)$	$0.0111(7)$	$0.0095(8)$
C26	$0.0300(8)$	$0.0378(9)$	$0.0418(10)$	$0.0067(7)$	$0.0114(7)$	$0.0084(7)$
C27	$0.0302(9)$	$0.0671(13)$	$0.0483(11)$	$-0.0017(8)$	$0.0145(8)$	$-0.0121(10)$

Geometric parameters (A, ${ }^{\circ}$)

N1-N2	$1.3644(18)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
N2-C3	$1.346(2)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
C3-C3A	$1.398(2)$	$\mathrm{N} 2-\mathrm{C} 21$	$1.434(2)$
C3A-C4	$1.388(2)$	$\mathrm{C} 3-\mathrm{C} 3$	$1.6993(16)$
C4-C4A	$1.394(2)$	$\mathrm{C} 21-\mathrm{C} 26$	$1.380(2)$
C4A-C5	$1.429(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.391(2)$
C5-C6	$1.357(3)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.385(2)$
C6-C7	$1.419(3)$	$\mathrm{C} 22-\mathrm{H} 22$	0.9500
C7-C8	$1.358(2)$	C23-C24	$1.393(3)$
C8-C8A	$1.432(2)$	C23-H23	0.9500
C8A-N9	$1.342(2)$	C24-C25	$1.390(3)$
N9-C9A	$1.346(2)$	C24-C27	$1.507(2)$
C9A-N1	$1.349(2)$	C25-C26	$1.384(2)$
C3A-C9A	$1.430(2)$	C25-H25	0.9500
C4A-C8A	$1.446(2)$	C26-H26	0.9500
C4-H4	0.9500	C27-H27A	0.9800
C5-H5	0.9500	C27-H27B	0.9800
C6-H6	0.9500	C27-H27C	0.9800
C9A-N1-N2	$103.40(12)$	C8-C8A-C4A	$118.05(15)$
C3-N2-N1	$113.60(13)$	C8A-N9-C9A	$115.12(14)$
C3-N2-C21	$126.87(14)$	N9-C9A-N1	$123.20(14)$
N1-N2-C21	$119.52(12)$	N9-C9A-C3A	$124.38(14)$
N2-C3-C3A	$107.30(14)$	N1-C9A-C3A	$112.41(14)$
N2-C3-C13	$124.06(12)$	C26-C21-C22	$121.19(15)$
C3A-C3-C13	$128.59(13)$	C26-C21-N2	$119.56(14)$

$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3$	136.66 (15)
C4-C3A-C9A	120.04 (14)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	103.30 (14)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	116.84 (15)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	121.6
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4$	121.6
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5$	122.13 (16)
C4-C4A-C8A	119.06 (15)
C5-C4A-C8A	118.81 (15)
C6-C5-C4A	120.91 (17)
C6-C5-H5	119.5
C4A-C5-H5	119.5
C5-C6-C7	120.32 (17)
C5-C6-H6	119.8
C7-C6-H6	119.8
C8-C7-C6	121.22 (16)
C8-C7-H7	119.4
C6-C7-H7	119.4
C7-C8-C8A	120.68 (17)
C7-C8-H8	119.7
C8A-C8-H8	119.7
N9-C8A-C8	117.40 (15)
N9-C8A-C4A	124.55 (14)
C9A-N1-N2-C3	0.34 (16)
$\mathrm{C} 9 \mathrm{~A}-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 21$	179.24 (13)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}$	-0.29 (17)
C21-N2-C3-C3A	-179.08 (14)
N1-N2-C3-Cl3	177.38 (11)
C21-N2-C3-Cl3	-1.4 (2)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	-179.33 (17)
$\mathrm{Cl} 3-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	3.1 (3)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	0.10 (16)
$\mathrm{Cl} 3-\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 9 \mathrm{~A}$	-177.43 (12)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}$	178.21 (17)
C9A-C3A-C4-C4A	-1.1 (2)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5$	-178.51 (14)
C3A-C4-C4A-C8A	0.6 (2)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5-\mathrm{C} 6$	178.81 (16)
C8A-C4A-C5-C6	-0.3 (2)
C4A-C5-C6-C7	0.6 (3)
C5-C6-C7-C8	-0.4 (3)
C6-C7-C8-C8A	0.0 (3)
C7-C8-C8A-N9	-179.12 (15)
C7-C8-C8A-C4A	0.3 (2)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{N} 9$	0.1 (2)
C5-C4A-C8A-N9	179.25 (14)
$\mathrm{C} 4-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8$	-179.31 (14)

120.04 (14)
103.30 (14)
116.84 (15)
121.6
121.6
122.13 (16)
119.06 (15)
118.81 (15)
120.91 (17)
119.5
119.5
120.32 (17)
119.8
121.22 (16)
119.4
119.4
120.68 (17)
119.7
119.7
(15)
0.34 (16)
179.24 (13)
-0.29 (17)
-179.08 (14)
177.38 (11)
-1.4 (2)
-179.33 (17)
3.1 (3)
0.10 (16)
-177.43 (12)
178.21 (17)
-1.1 (2)
-178.51 (14)
0.6 (2)
178.81 (16)
-0.3 (2)
0.6 (3)
-0.4 (3)
0.0 (3)
-179.12 (15)
0.3 (2)
0.1 (2)
-179.31 (14)

$\mathrm{C} 22-\mathrm{C} 21-\mathrm{N} 2$	$119.25(14)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{C} 21$	$118.42(16)$
$\mathrm{C} 23-\mathrm{C} 22-\mathrm{H} 22$	120.8
$\mathrm{C} 21-\mathrm{C} 22-\mathrm{H} 22$	120.8
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$121.64(15)$
$\mathrm{C} 22-\mathrm{C} 23-\mathrm{H} 23$	119.2
$\mathrm{C} 24-\mathrm{C} 23-\mathrm{H} 23$	119.2
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 23$	$118.24(15)$
$\mathrm{C} 25-\mathrm{C} 24-\mathrm{C} 27$	$120.74(17)$
$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 27$	$121.02(17)$
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	$121.16(16)$
$\mathrm{C} 26-\mathrm{C} 25-\mathrm{H} 25$	119.4
$\mathrm{C} 24-\mathrm{C} 25-\mathrm{H} 25$	119.4
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{C} 25$	$119.26(16)$
$\mathrm{C} 21-\mathrm{C} 26-\mathrm{H} 26$	120.4
$\mathrm{C} 25-\mathrm{C} 26-\mathrm{H} 26$	120.4
$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}$	109.5
$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	109.5
$\mathrm{H} 27 \mathrm{~A}-\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B}$	109.5
$\mathrm{C} 24-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
$\mathrm{H} 27 \mathrm{~A}-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	109.5
$\mathrm{H} 27 \mathrm{~B}-\mathrm{C} 27-\mathrm{H} 27 \mathrm{C}$	

179.20 (14)
-0.2 (2)
-178.78 (14)
-0.4 (2)
178.30 (14)
-0.27 (16)
1.1 (2)
-178.44 (14)
179.66 (14)
0.11 (17)
-53.7 (2)
126.42 (16)
125.08 (17)
-54.8 (2)
2.9 (2)
-177.01 (14)
-0.6 (3)
-1.5 (3)
178.15 (16)
1.4 (3)
-178.25 (17)
-3.0 (3)
176.89 (16)
0.8 (3)
$\mathrm{C} 5-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 8 \quad-0.2(2)$
Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 represents the centroid of the $\mathrm{C} 21-\mathrm{C} 26$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 23 — \mathrm{H} 23 \cdots \mathrm{~N} 9^{\mathrm{i}}$	0.95	2.50	$3.393(2)$	157
$\mathrm{C} 26 — \mathrm{H} 26 \cdots \mathrm{~N} 9^{\mathrm{ii}}$	0.95	2.50	$3.449(2)$	174
$\mathrm{C} 27 — \mathrm{H} 27 A \cdots \mathrm{Cg} 1^{\mathrm{iii}}$	0.98	2.84	$3.653(2)$	140

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x,-y+1,-z+2$.

