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ABSTRACT: The effect of poly(amido amine) (PAMAM) dendrimers of
generations G2, G6, and G10 on the dispersion stability of titanate nanowires
(TiONWs) as potential nanocarriers was clarified in order to develop
biocompatible delivery systems. The PAMAMs adsorbed strongly on the
oppositely charged TiONWs even under slightly alkaline conditions where the
macromolecules possess low amounts of charged groups and they were able to
reverse the charge of the particles. This process resulted in unstable dispersions
near the dose where the charge reversal occurred, while stable samples were
observed away from it. No generation dependence was found on the aggregation
and charging behavior at low ionic strengths. Although heterogeneous adsorption
of the dendrimers led to attractive patch-charge interactions at intermediate doses,
interparticle forces of electrostatic origin described by Derjaguin and Landau, Verwey, and Overbeek (DLVO) played the major
role in colloidal stability. The nanowires were found to adopt a face-to-face orientation within the aggregates, giving rise to the
formation of well-defined bundles. Highly stable dispersions were observed once the TiONWs were coated with PAMAM
dendrimers of higher generations even at elevated ionic strengths.

■ INTRODUCTION

Layered materials have anisotropic structure, and they have
recently attracted widespread interest due to their advantageous
structural and mechanical properties as well as their potential
application as a source of unilamellar nanosheets.1,2 Among
such lamellar compounds, elongated titanate derivatives
represent a new class of materials which are widely used as
building blocks in sensors, nanocarriers, and potential
catalysts.3−9 Accordingly, nanocomposites consisting of layered
titanates and hemoglobin showed high biocatalytic activity even
in nonaqueous media10 and reduced graphite oxide supported
by layered titania was developed and used as a mediator-free
biosensor.11 In addition, immobilization of horseradish
peroxidase enzyme on layered titanate afforded a catalyst of
good recyclability.12 More recently, other titanate derivatives
such as nanowires,13 nanotubes,14 and nanoflowers15 were
applied in drug delivery systems. The titanate nanowires
(TiONWs) decorated with anatase crystals showed high
loading ability for protein-based drugs, while nanotubes entered
into cells successfully by endocytosis.
Most of the biomedical applications require functionalization

of the titanate surfaces in order to prevent the aggregation of
the particles in the living systems and to achieve well-controlled
drug release. Moreover, titanate-based nanofilaments were
found to be cytotoxic and thus their surface must be modified
with biocompatible compounds.16 To deal with these
challenges, titanate nanotubes were coated with polyelectro-
lytes,17 biodegradable polymers,18 or inorganic nanoparticles.19

For instance, poly(ethylene imine)-coated particles showed
better dispersion properties as the surface charge of the
nanocarrier could be tuned easily by the pH.17 The dispersion
stability of TiONWs was also investigated by aggregation
kinetic measurements in the presence of polyelectrolytes below
and above the point of zero charge.20−22 They revealed that the
colloidal stability of the samples can be appropriately tuned by
varying the concentration of the polyelectrolyte, pH, or ionic
strength and that full polyelectrolyte coating resulted in highly
stable aqueous dispersions.
Although these studies report polyelectrolytes as appropriate

stabilizing agents, further research has to be performed in order
to clarify their toxicity and to find specific ones for targeted
drug delivery processes. Promising candidates to meet such
requirements are the dendrimers. For instance, poly(amido
amine) (PAMAM) dendrimers are widely used in biomedical
applications.23−26 Enzyme mimicking catalytic systems were
also developed using PAMAMs,27 and their composite
materials were successfully applied as gene delivery vectors.25

PAMAM dendrimers are monodisperse, symmetrically
branched macromolecules containing an ethylenediamine core
and primary amines on the outer spheres. They are connected
with oligoamide chains, and they double their molecular weight
approximately by increasing the number of generations.26 The
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primary and tertiary amines can be protonated at appropriately
low pH where the dendrimers become positively charged. Their
protonation under different experimental conditions,28 along
with other fundamental properties such as self-diffusion29 and
their reversible swelling process,30 was also investigated in
detail. Toxicity of PAMAMs depends on the generation
number and their concentration in the living systems;23,26

however, they were found to be biocompatible both in the bare
stage31 and in composites.25,32

PAMAM dendrimers are ideal building blocks for a wide
range of composite materials; therefore, their interaction with
nanomaterials was extensively studied.33 Accordingly, inter-
calation in layered clays,34 their association with other
macromolecules to form interpolyelectrolyte complexes,35 and
their ability to stabilize transition metal nanoclusters36 have
been reported. Adsorption experiments were also carried out
on silica,37,38 graphite,39 and gold40 surfaces using reflectom-
etry, atomic force microscopy (AFM), and quartz crystal
microbalance, respectively. For silica, it was found that low
molecular weight PAMAMs at low pH and high ionic strength
adsorb reversibly on the surface, while the adsorption of high
generation ones at high pH and low ionic strength is
completely irreversible.
Interaction of PAMAM dendrimers with colloidal particles

was also widely studied to tune interparticle forces and related
dispersion stability of the samples. For instance, silver
nanoparticles were synthesized and protected against aggrega-
tion by adsorbed PAMAM dendrimers.41 Detailed investiga-
tions were performed on systems containing sulfate modified
polystyrene latex particles and PAMAM dendrimers in aqueous
dispersions. Electrophoretic and time-resolved dynamic light
scattering (DLS) experiments revealed that the molecules
strongly adsorb on oppositely charged latexes leading to charge
neutralization and subsequent charge reversal at appropriate
doses.42 The latter process was found to be superstoichiometric
since it involves coadsorption of the dendrimer counterions.
Unstable dispersions were reported near the charge neutraliza-
tion point, while the samples were stable far from that
dendrimer dose. Two types of interparticle forces were
discovered, namely, classical forces described by Derjaguin
and Landau, Verwey, and Overbeek (DLVO) and attractive
patch-charge interactions due to the heterogeneous surfaces
created by the incomplete coverage by the adsorbed PAMAM
molecules. Such forces were identified by both the AFM
colloidal probe technique and computer simulations using
similar latex particles of higher size.43,44 More recently,
aggregation rate coefficients of these polystyrene particles
were determined in the presence of PAMAM dendrimers by
AFM and DLS and both experiments yielded very similar values
especially for PAMAM of lower generation.45

Apart from these results concerning monodisperse spheres as
model colloidal particles, no systematic aggregation studies
have been published with systems containing titanate nano-
particles of anisotropic structure and PAMAM dendrimers.
Given the facts that titanate derivatives are becoming popular
nanocarriers in biomedical processes and controlling their
aggregation with macromolecules has not been investigated yet
in detail, we aimed to study the charging and aggregation of
TiONWs in the presence of PAMAM dendrimers to character-
ize the colloidal stability of this potentially biocompatible
delivery system. We were particularly interested in clarifying the
effect of molecular weight and ionic strength on the colloidal

stability and structure of aggregates using electrophoresis, DLS,
and transmission electron microscopy (TEM).

■ EXPERIMENTAL SECTION
Materials. The TiONWs were synthesized by a two-step

hydrothermal method from anatase (Sigma-Aldrich) which was
reacted with concentrated NaOH (Sigma-Aldrich) solution at
130 °C. In the next step, the intermediate product was treated
with concentrated KOH (Sigma-Aldrich) solution followed by
heating at 200 °C for 1 day. The latter post-treatment process
should enhance the stability in morphology and result in a
better crystallinity which leads to an excellent long-term
reproducibility in the scattering parameters of the nanowires.
The white product was then filtered off and washed extensively
with ultrapure water produced by a Milli-Q device (Millipore).
The TiONWs were dried and suspended in water. The
TiONWs have a specific surface area of 186 m2/g as
determined by nitrogen adsorption experiments using the
BET method. For more details, see our previous publica-
tions.20,22 Similar to other titanium(IV) oxides,46,47 the charge
of TiONWs strongly depends on the pH. They are negatively
charged under alkaline conditions with a surface charge density
of −8.2 mC/m2 at pH 9 as reported earlier.22

PAMAM dendrimers (Dendritech) were purchased in
aqueous solutions and used without further purification. The
characteristic size values for all generations used are shown in
Table 1. The degree of protonation varies only slightly with the
generation at pH 9 which was used throughout the experi-
ments.28

The temperature was kept at 25 °C in the measurements.
Glassware, plastic vials, and cuvettes used in the experiments
were cleaned with Hellmanex (Hellma) solution and washed
thoroughly with ultrapure water.

Methods. The electrophoretic mobilities were measured
with a ZetaNano ZS (Malvern) device using plastic capillary
cells (Malvern). For sample preparation, PAMAM and KCl
(Sigma-Aldrich) stock solutions were mixed with water to
obtain the desired concentration and ionic strength followed by
the addition of the TiONW stock to the samples. The
procedure resulted in a final sample volume of 5.0 mL and
particle concentration of about 7 mg/L. The electrophoretic
mobilities were measured after overnight equilibration of the
samples at room temperature. The mobility of each sample was
measured five times and averaged.
For determination of the apparent size in time-resolved DLS

measurements, the ZetaNano ZS (Malvern) instrument
equipped with a He/Ne laser and an avalanche photodiode
as a detector was used at 173° scattering angle. The
hydrodynamic radii were determined using the cumulant
method to fit the correlation function which was accumulated
for 30 s.48 Square plastic cuvettes (Malvern) of 1 cm path
length were used for the measurements. Regarding sample
preparation, dendrimer, KCl solutions, and ultrapure water

Table 1. Characteristic Structural Data of the PAMAM
Dendrimers Used in the Present Worka

generation mol wt (kg/mol) diamb (nm) no. primary amine groups

G2 3.3 2.9 16
G6 58.0 6.7 256
G10 934.7 13.5 4096

aThe values were reported by Dendritech. bDetermined by DLS.
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were mixed to adjust the desired polyelectrolyte dose and ionic
strength. The aggregation experiments were initiated by
injecting the TiONW stock dispersion which was previously
subjected to ultrasonic treatment to mechanically disaggregate
the small fraction of agglomerates that may have formed upon
aging of the sample. Similar to the electrophoretic measure-
ments, the final particle concentration was about 7 mg/L. This
experimental setup allowed us to avoid multiple scattering
events and to measure only the translational diffusion
coefficient as detailed elsewhere.22 In both electrophoretic
and aggregation studies, the pH of stock solutions of
dendrimers, KCl, and TiONW as well as water was adjusted
to 9 by KOH and HCl (Sigma-Aldrich) prior to mixing them
together.
The samples were imaged by TEM using a Tecnai G2

electron microscope (FEI) operating at 120 kV. In a typical
experiment, a 3 μL sample containing approximately 7 mg/L
TiONW, calculated amount of the dendrimers, and KCl was
deposited on a carbon coated 400-mesh copper grid. After 30 s,
which was needed for the adsorption of the particles, the liquid
phase was blotted off with a filter paper by holding it vertically.
The images were then immediately taken from the sample
without staining.

■ RESULTS
Effects of Dendrimer Generation. Electrophoretic

mobilities of TiONWs were measured in the presence of
PAMAM dendrimers of generations G2, G6, and G10 (Figure
1a). These macromolecules can be considered as weak
polyelectrolytes and thus bear a positive charge at pH 9,
since only about 30% of the amino groups are protonated
under this experimental condition.28

In general, the positively charged PAMAMs adsorb on the
oppositely charged TiONWs and this is reflected in the
increasing mobility values with the dendrimer dose. The
adsorption led to charge neutralization at the isoelectric point
(IEP) where the overall charge of the TiONW−PAMAM
particles is zero. To quantify the contribution of the protonated
groups of the dendrimers to the charge balance, one should
note that these macromolecules tend to adsorb together with
condensed counterions within the structure and, hence, a
significant part of the positive PAMAM charge is neutralized by
the chloride ions.42 Therefore, the effective charge of the
macromolecules is lower than the one that can be calculated on
the basis of the chemical structure and the protonation
equilibria. No trend can be observed with the generation; the
IEP values fall within the experimental error. Although a clear
dependence was reported on the IEPs earlier in other PAMAM
systems, those investigations were carried out with latex
particles and under acidic conditions where the PAMAMs are
highly charged and significant counterion condensation takes
place.42

Adding further dendrimers into the samples led to charge
reversal which was previously discovered in several particle−
polyelectrolyte systems.20−22,42,44,45,49−51 The adsorption con-
tinues up to the dose at the onset of the adsorption saturation
plateau (ASP) which correlates with the establishment of the
maximum amount of dendrimers that can adsorb on the
particle surface under these experimental conditions. The ASP
values fell around 500 mg/g for all generations within the
experimental error. This is much higher than the ASPs
determined for other polyelectrolytes adsorbed on TiONWs
(50−100 mg/g).20,22 Those macromolecules were highly

charged, while the PAMAMs in our systems are only partially
protonated and, therefore, the electrostatic repulsion between
the adsorbed dendrimers is notably less and a higher amount
can be adsorbed on the surface. Another possible explanation
for the higher ASPs could be the formation of PAMAM
multilayers on the surface, but we do not have unambiguous
evidence for such a process. These phenomena are considered
generic for all generations of the PAMAMs investigated,
because no molecular mass dependence on the charging
behavior was observed.
Light scattering has been proved as a suitable tool to follow

particle aggregation in dispersions by measuring the apparent
hydrodynamic radius under different experimental conditions in
a time-resolved experiment.52−54 Therefore, time-resolved DLS
measurements were carried out to describe the colloidal
stability of the systems under the same experimental conditions
as in the mobility studies (Figure 1b). Constant values of
hydrodynamic radii indicated stable dispersions, while their
increase with time was an unambiguous signal for particle
aggregation (Figure 2). A linear fit can be performed on the size
versus time data, and the slope is proportional to the
aggregation rate. Finally, the dispersion stability was expressed
in terms of the stability ratio, which is the slope in the case of
diffusion controlled aggregation divided by the slope yielded
from the actual experiment at the same particle concentration.55

Figure 1. Electrophoretic mobility (a) and stability ratio (b) values as
a function of the dendrimer dose measured in dispersions of 7 mg/L
TiONW at 1.0 mM ionic strength for three generations (G2, G6, and
G10) of PAMAM. The dose corresponds to milligrams of dendrimer
per gram of nanowires. The lines are just to guide the eye.
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The diffusion controlled condition was achieved at 1.0 M KCl
concentration where the surface charges are screened and the
particles aggregate rapidly due to attractive van der Waals
forces.56 Accordingly, stability ratio values close to unity
indicate unstable, rapidly aggregating samples, while higher
values refer to more stable dispersions.
Figure 1b shows the stability ratios for different generations

of PAMAMs at low ionic strength. The stability plots for G2
and G6 are almost identical, while it is somewhat different for
G10. In all cases, stable dispersions were observed at low
dendrimer doses and the stability ratios decreased with

increasing concentration. Fast aggregation and unstable systems
were discovered near the dose corresponding to the IEP, while
the aggregation slowed down at higher PAMAM concen-
trations. Considering the results of the electrophoretic
measurements, such behavior can be explained by the classical
DLVO theory developed for charged particles in aqueous
dispersions.56 Accordingly, the particles are negatively and
positively charged at low and high PAMAM doses, respectively
(Figure 1a). The surface charge is accompanied by the
formation of electric double layers around the particles, and
their overlap upon approach gives rise to repulsive interaction
forces which can stabilize the sample. However, the TiONWs
have an overall charge close to zero around the IEP and the
electric double layers vanish, and hence the particles will rapidly
aggregate due to the predominating attractive van der Waals
forces. A similar origin of interparticle forces was discovered in
other particle−polyelectrolyte systems confirmed by direct
force measurements using the AFM-based colloidal probe
technique.43−45,57

However, two phenomena require further clarification. First,
the stability ratios in the fast aggregation regimes are
systematically lower than 1. This fact indicates the presence
of an additional attractive force which is absent in the reference
system (TiONW in 1.0 M KCl). This force must be induced by
the adsorbed PAMAM molecules, and it is of non-DLVO
origin. This additional attraction can be explained by patch-
charge interactions as follows. The dendrimers adsorb in a
heterogeneous fashion on the surface and form positively
charged patches. These patches can interact with a negatively
charged part of another particle leading to Coulombic
attraction and increased aggregation rate. Such patch-charge
forces have already been discovered for dendrimers and also for

Figure 2. Change in hydrodynamic radius with time in some typical
time-resolved DLS experiments with samples containing 7 mg/L
TiONW and different doses of G2 PAMAM dendrimer at 1.0 mM
ionic strength. The indicated doses refer to milligrams of dendrimer
per gram of nanowires.

Figure 3. TEM images recorded for systems containing TiONWs and different generations of PAMAMs around the IEP. Dendrimer doses of 57, 55,
and 55 mg/g were applied for G2 (a), G6 (b), and G10 (c), respectively.
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other polyelectrolytes adsorbed on oppositely charged
surfaces.20,42,44,57,58 Second, the fast aggregation regime is
slightly shifted to higher PAMAM doses in the case of G10
dendrimers. A similar finding was reported with latex particles
with an even more significant shift.42 This effect may originate
from the counterion condensation, since higher generation
dendrimers bring a considerable amount of negatively charged
counterions to the surface and, hence, a part of the PAMAM’s
charge is already neutralized and a higher amount of dendrimer
is required for reaching the IEP. Interestingly, this effect could
not be detected in the electrophoretic mobility measurements
(Figure 1a), most probably due to the lower sensitivity of that
method. Obviously the shift is small and it would be more
pronounced if the PAMAM molecules were highly charged
(e.g., at low pH) and more counterions would be entrapped
into their structure.
The orientation of the nanowires in the aggregates was also

investigated near the IEPs by recording TEM images on
samples prepared in the same way as for the mobility and
scattering experiments (Figure 3). Accordingly, aggregating
TiONW samples were imaged in the presence of G2 (Figure
3a), G6 (Figure 3b), and G10 (Figure 3c) dendrimers. It can be
clearly seen that the nanowires prefer face-to-face orientation in
the aggregates which leads to the formation of bundles or
“spaghetti-like” structure regardless of the molecular weight and
generation of the PAMAMs. The same orientation of the
TiONWs was observed in AFM images during aggregation
induced by inert salts or other type of polyelectrolytes.20 The
dark spots on the TEM images may originate from the presence
of anatase nanocrystals grown on the nanowires, but the
resolution of our instrument did not allow us to confirm this
unambiguously.
Effects of Ionic Strength. Charging and aggregation were

studied at different ionic strengths in the TiONW−G6 system
first. Although the electrophoretic mobilities follow the general
trend as described in the previous section, change in the ionic
strength affects the shape of the curves significantly (Figure 4a).
At low dendrimer dose, the mobility values are constant and
refer to the electrophoretic mobility of the bare particles at the
corresponding ionic strength (Figure 5a). Such values are very
similar at lower salt levels (1 and 10 mM), while they decreased
in magnitude at higher ionic strength (100 mM) due to the
screening effect of the counterions on the particle surface
charge. A similar phenomenon was observed at high doses
where the particles are positively charged due to the charge
reversal process. Accordingly, the mobility values are smaller at
the ASP at high ionic strength, but the change is less significant
compared to the low dendrimer dose case. Furthermore, the
PAMAM doses at the IEP shift toward higher concentrations,
indicating a counterion condensation into the adsorbed
dendrimer structure. The same shift was also experienced
with other weakly charged polyelectrolytes during their
adsorption of oppositely charged particles.59

The ionic strength had a huge influence on the aggregation
of the TiONWs in the presence of the G6 dendrimers (Figure
4b). As discussed earlier, the stability ratios at 1 mM KCl
concentration indicate stable dispersions at low and high
PAMAM doses, while fast aggregation occurs in the
intermediate regime near the IEP. The shape of the stability
ratio versus dose curves changed dramatically at higher ionic
strengths (10 and 100 mM). The TiONWs aggregate rapidly in
the entire range at and below the IEP. This fact is not surprising
since the critical coagulation concentration (CCC, which

separates fast and slow aggregation regimes) was determined
as 8 mM for the bare nanowires.22 Accordingly, only a small
amount of PAMAM is adsorbed on the TiONWs at low doses
and, hence, the aggregation rate corresponds to the value of the
bare particles (Figure 5b). However, stable dispersions and
slow aggregation were observed at high dendrimer concen-
tration where the charge reversal resulted in nanowires of
positive charge. The slopes at higher dose are also sensitive to
the ionic strength due to the screening effect of the counterions
on the surface. In these cases, the counterions are the negative
chloride ions and such a screening effect was also discovered in
the electrophoretic mobility measurements (Figure 4a) as
discussed above. The stability ratios are below 1 at all ionic
strengths around the IEP. The lack of the effect of salt level on
the responsible patch-charge interaction indicates that the
adsorbed amount and the structure of the dendrimer layers on
the surface are not affected by the KCl concentration; therefore,
the ionic strength dependence of the stability curves is only due
to the electrostatic screening of the counterions on the particle
surfaces especially at higher doses. This set of data shed light on
the stabilization of the dispersions by PAMAM adsorption even
at higher ionic strengths where the bare particles rapidly
aggregate indicated by their low CCC values.
To further explore this issue, surface charges and aggregation

were studied with nanowires coated with dendrimers of
different generations. Accordingly, a PAMAM dose higher

Figure 4. Electrophoretic mobility (a) and stability ratio (b) values as
a function of the dendrimer dose measured in dispersions of 7 mg/L
TiONW and G6 at different ionic strengths adjusted by KCl. The lines
are just to guide the eye.
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than the onset of the ASP was applied in order to completely
cover the TiONW surfaces and to obtain positively charged
TiONW−G2, TiONW−G6, and TiONW−G10 particles.
Figure 5a shows the electrophoretic mobilities of such
nanowires together with the bare TiONW over a wide range
of ionic strengths. The trends observed with the bare and
TiONW−G2 particles are very similar, but of opposite sign of
the charge due to the charge reversal process. The magnitude of
the mobilities decreased with increasing the ionic strength and
met around zero at high electrolyte concentration. This fact
indicates that both bare and G2-coated nanowires has the same
charge at an elevated KCl level, shedding light on the
desorption of the G2 dendrimers from the particle surface.
Such reversible adsorption has already been observed with low
generation dendrimers38,42 and also with other multivalent
ions.60 The electrophoretic mobilites of TiONW−G6 and
TiONW−G10 nanowires were found to be very similar to
slightly higher values in the latter case. Accordingly, the positive
mobility values were recorded in the entire ionic strength range
investigated and they decreased with increasing electrolyte
concentration. The electrophoretic mobilities remained sig-
nificantly positive even at high KCl concentrations where the
mobility of the TiONW−G2 has already reached zero. The
decrease of mobilities in the case of higher generation systems

is most likely due to the screening effect of the chloride anions
on the positive surface charge.
On the basis of these results, we have tested the aggregation

processes (Figure 5b) under the same experimental conditions
(pH, ionic strength range, TiONW concentration, and
dendrimer dose). The TiONW and TiONW−G2 systems
showed similar behavior with a small shift in the CCC. As one
could predict applying the DLVO theory, the particles were
stable at low ionic strength due to the repulsive forces
originating from the overlap of the electric double layers. By
increasing the salt level, the surface charges are screened and
such double layer repulsion disappears leading to the
predominance of the attractive van der Waals forces and to
rapidly aggregating samples. The mobility results (Figure 5a)
indicate that this screening process is accompanied by
desorption of the G2 molecules. Since the CCCs are slightly
different, desorption of the dendrimers is incomplete at the
ionic strength corresponding to the range of the CCCs.
In addition, the stability curves of TiONW−G6 and

TiONW−G10 nanowires were also sensitive to the KCl
concentration: stability ratios decreased with increasing salt
level (Figure 5b). For the first system, a CCC of about 1500
mM was found, indicating an enormous stabilizing effect of the
dendrimer coating compared to the 8 mM value determined for
the bare particles. Moreover, the stabilization effect was even
higher in the case of TiONW−G10, where only slow
aggregation was observed at high salt levels and we were not
able to reach the CCC due to the solubility limit of KCl. If one
compares these data to the lower generation TiONW−G2
system, the following conclusions can be made. First, all coated
systems are stable at very low ionic strengths regardless of the
generation of the PAMAMs. Second, increasing the ionic
strength led to desorption of G2 which is most likely not
favorable for G6 and G10 even at high KCl concentrations.
These facts clearly indicate that higher generation dendrimers
can be used as dispersing agents even at high ionic strength;
however, G2 most likely desorbs under these experimental
conditions. For instance, in drug or gene delivery systems
where the ionic strength is over 100 mM and hence aggregation
of the bare nanowires would certainly occur, PAMAM
dendrimer coating prevents such aggregation and provides
highly stable dispersions suitable for the delivery and release
processes.

■ CONCLUSIONS
Electrophoretic, time-resolved DLS, and TEM experiments
were carried out to clarify the effect of PAMAM dendrimers of
different generations on the colloidal stability of TiONW
dispersions. Our study on charging revealed that PAMAMs
strongly adsorbed on the oppositely charged particles and
charge neutralization as well as reversal occurred. These
phenomena were independent of the molecular weight of the
macromolecules. The dispersions were stable at low and high
dendrimer doses at low ionic strength where the particles
possessed sufficiently high negative or positive charge,
respectively. Rapid aggregation and unstable systems were
obtained near the dose of the charge reversal point. The
predominating interparticle forces were mainly of DLVO
origin; nevertheless, additional attraction due to patch-charge
interactions was also discovered. The orientation of the
nanowires in the aggregates resulted in the formation of
bundles or “spaghetti-like” structures regardless of the
generation of the dendrimers. The ionic strength dependence

Figure 5. Electrophoretic mobility (a) and stability ratio (b) values of
bare (TiONW) and PAMAM dendrimer-coated nanowires using
different generations of PAMAM (TiONW−G2, TiONW−G6, and
TiONW−G10) as a function of the ionic strength adjusted by KCl at
pH 9. For the coated particles, about 1000 mg/g dendrimer doses
were used to cover the TiONWs. The solid lines are to guide the eye.
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of the aggregation rates pointed out an enormous stabilization
effect of the PAMAM macromolecules of higher generations
since the coated TiONW dispersions were stable even at salt
levels where the bare particles undergo rapid aggregation due to
their low CCC value. In conclusion, a potential nanocarrier
(TiONW) to be used in biomedical applications can be
stabilized by PAMAM macromolecules of higher generations
and, on the basis of our results, appropriate doses can be
calculated to obtain highly stable dispersions to be further
investigated as biocompatible delivery systems. Accordingly,
TiONWs coated with higher generation dendrimers are
potential candidates in delivery processes as carriers where
unwanted aggregation is prevented by the PAMAM layer even
under extremely high ionic strengths.
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