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Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease 
characterized by the degeneration of motor neurons. Genetic factors play a key role in 
ALS, and identifying variants that contribute to ALS susceptibility is an important step 
toward understanding the etiology of the disease. The frequency of protein altering variants 
in ALS patients has been extensively investigated in populations of different ethnic origin. 
To further delineate the genetic architecture of the Hungarian ALS patients, we aimed to 
detect potentially damaging variants in major and minor ALS genes and in genes related 
to other neurogenetic disorders. A combination of repeat-sizing of C9orf72 and next-
generation sequencing (NGS) was used to comprehensively assess genetic variations in 
107 Hungarian patients with ALS. Variants in major ALS genes were detected in 36.45% 
of patients. As a result of repeat sizing, pathogenic repeat expansions in the C9orf72 gene 
were detected in 10 patients (9.3%). According to the NGS results, the most frequently 
mutated genes were NEK1 (5.6%), NEFH, SQSTM1 (3.7%), KIF5A, SPG11 (2.8%), ALS2, 
CCNF, FUS, MATR3, TBK1, and UBQLN2 (1.9%). Furthermore, potentially pathogenic 
variants were found in GRN and SIGMAR1 genes in single patients. Additional 33 novel 
or rare known variants were detected in minor ALS genes, as well as 48 variants in genes 
previously linked to other neurogenetic disorders. The latter finding supports the hypothesis 
that common pathways in different neurodegenerative diseases may contribute to the 
development of ALS. While the disease-causing role of several variants identified in this 
study has previously been established, other variants may show reduced penetrance or 
may be rare benign variants. Our findings highlight the necessity for large-scale multicenter 
studies on ALS patients to gain a more accurate view of the genetic pattern of ALS.

Keywords: amyotrophic lateral sclerosis, oligogenic inheritance, next-generation sequencing, mutation screening, 
C9orf72 repeat expansion, genetic heterogeneity

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the 
degeneration of upper and lower motor neurons (UMN and LMN, respectively) in the motor 
cortex, brain stem, and spinal cord, with a life expectancy of 3–5 years from symptom onset (Peters 
et al., 2015). Approximately 5–10% of all cases show a family history of ALS (fALS), whereas the 
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remaining 90–95% seem to occur sporadically (sALS, Renton et al., 
2014); nevertheless, fALS and sALS cases are indistinguishable 
regarding their clinical features. The genetic background of ALS 
is complex: more than 30 major genes have been associated 
with the disease, and more than 100 additional genes have been 
associated with disease risk (Amyotrophic Lateral Sclerosis 
Online Database, Abel et al., 2012). Variants of these genes 
have been implicated in several pathological mechanisms 
of ALS, including protein homeostasis, RNA metabolism, 
endosomal and vesicular transport, DNA repair, excitotoxicity, 
mitochondrial dysfunction, autophagy, nucleocytoplasmic 
transport, oligodendrocyte degeneration, axonal transport, and 
neuroinflammation (Hardiman et al., 2017; van Damme et al., 
2017). The significance of trans-ethnic study design for human 
genetics is broadly documented (Morris, 2011; Asimit et al., 
2016). Variants in the same genes are thought to contribute to 
the genetic etiology of both fALS and sALS (Renton et al., 2014). 
According to twin studies, the estimated heritability of sALS is 
about 60% (Al-Chalabi et al., 2010). Pathogenic variants have 
been described in 40–80% of fALS cases and in 5–15% of sALS 
patients (van Damme, 2018).

We have previously reported the prevalence and clinical 
characteristics of Hungarian patients with variants in the SOD1, 
SETX, and C9orf72 genes (Tripolszki et al., 2017a; Tripolszki 
et al., 2017b). The aim of the present study was to investigate the 
variants in the set of genes that have been associated with ALS so 
far, using next-generation sequencing (NGS) and repeat sizing of 
the C9orf72 gene in a cohort of 107 clinically well-characterized 
Hungarian patients.

PATIENTS AND METHODS

Patients
Patient recruitment was performed by senior neurologists at the 
Department of Neurology, University of Szeged. One hundred 
four patients were of Hungarian and three patients were of 
Romanian origin (total n = 107). Patients were unrelated to other 
enrolled patients and met the revised El Escorial and Awaji-
shima criteria for ALS (de Carvalho and Swash, 2009; Ludolph 
et al., 2015). Regarding the family history of the patients, only 
one patient (#122u) showed a positive family history, and two 
patients (#99u and #93u) had relatives with uncertain diagnosis 
of ALS. Four patients (#91u, #90u, #87u, and #56r) had first- or 
second-degree relatives with other neurodegenerative diseases 
(Parkinson’s or Alzheimer’s disease). The samples of 37 patients 
(without pathogenic variants) from the previously studied 
cohort (Tripolszki et al., 2017a) were also used in this analysis. 
The whole cohort was prescreened by Sanger sequencing for two 
major ALS genes (SOD1 and TARDBP), and no disease-causing 
variants were detected.

Because Hungarian population-specific databases have not been 
established yet, variants originating from whole-exome sequencing 
(WES) data of other studies were used as control in-house database. 
This in-house database included variants of 184 individuals 
(without any neurological diseases) of Hungarian (n = 133, mean 
age: 51 years) or Austrian (n = 51, mean age: 67.5 years) origin. 

To  assess the frequency of the detected R261H NEK1 variant in 
the Hungarian general population, an additional 186 samples from 
healthy individuals (mean age: 67 years) were used.

Methods
DNA Extraction
Genomic DNA was isolated from whole EDTA-containing 
venous blood using the DNeasy® Blood & Tissue Kit (QIAGEN, 
Gödöllő, Hungary).

C9orf72 Repeat Expansion Detection
A two-step protocol was applied for the detection of the 
GGGGCC repeat expansion (RE) in the C9orf72 gene. A sizing 
PCR was performed to determine the number of hexanucleotide 
repeats in the normal range as described previously (Akimoto 
et al., 2014). Normal repeat length was defined as ≤28 repeats. 
Samples revealing a single peak product were further analyzed 
by long-read PCR using the AmplideX PCR/CE C9orf72 (RUO) 
Assay (Asuragen, Inc.) as previously described (Suh et al., 2018). 
Amplidex PCR technique uses gene-specific and repeat-specific 
primers and provides an accurate capillary electrophoresis sizing 
of alleles up to 145 GGGGCC repeats and identifies the presence 
of expanded alleles over 145 repeats.

Next-Generation Sequencing
Patient DNA was target-enriched using a custom design SureSelect 
panel containing 247 genes (see Supplementary Table 1 for gene 
lists) in 86 patients and Human All exon V6 kit in 21 patients 
(Agilent Technologies, Santa Clara, CA, USA), according to the 
manufacturer’s recommendations. Sequencing was performed on 
Illumina NextSeq 500 sequencer (Illumina Inc., San Diego, CA, 
USA). As a result of sequencing, the mean on-target coverage was 
189× in case of the panel data and 71× per base in case of whole exome 
data with an average percentage of targets covered greater or equal 
to 10× of 96% and 90%, respectively. Data analysis was performed 
according to the best practices to identify single-nucleotide variants 
and small insertions/deletions. Paired-end reads were aligned to 
the Human Reference Genome (UCSC Genome Browser build 
hg19) using the Burrows–Wheeler Aligner (BWA). Duplicates 
were marked using the Picard software package. Genome Analysis 
Toolkit (GATK) was used for variant calling (BaseSpace BWA 
Enrichment Workflow v2.1.1. with BWA 0.7.7-isis-1.0.0, Picard: 
1.79 and GATK v1.6-23-gf0210b3), and variants tagged “PASS” 
by GATK were used for downstream analysis and annotated using 
the ANNOVAR software tool (version 2017 July 17, Wang et al., 
2010). In case of whole exome data, the variant files were parsed for 
genetic variants in genes of the custom design SureSelect panel (247 
genes, Supplementary Table 1). Raw reads of potentially relevant 
variants were manually checked using the Integrative Genomics 
Viewer (Robinson et al., 2011; Thorvaldsdóttir et al., 2013).

Variant Filtering
Calls per sample with a read depth of <10 or an allele balance 
of <0.3, intronic and synonymous variants, and variants with 
a population frequency higher than 0.1% in either the ExAC 
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Browser V0.3.1 (http://exac.broadinstitute.org) or 1000 Genomes 
Database (www.1000genomes.org/) were excluded from further 
analysis. Because the SOD1 D91A variant is the most common 
known pathogenic variant seen in the Amyotrophic Lateral 
Sclerosis Online Database (ALSoD) with minor allele frequency 
(MAF) of 0.001, we used it as a criterion for filtering out variants 
with higher MAF. Other population databases were also used 
for additional variant information: Kaviar (version 2015 09 23; 
Glusman et al., 2011), dbSNP 138 (Sherry et al., 2002), and 
gnomAD (Lek et al., 2016). The combination of eight variant 
prioritization tools available from the dbNSFP database v3.0 
(MetaSVM, MetaLR, DANN, PROVEAN, SIFT, Polyphen2, 
MutationTaster, MutationAssessor) was used to predict the effect 
of each variant on the corresponding protein (Liu et al., 2016). 
Variants identified in our patients were cross-checked in ALSoD 
(Abel et al., 2012), ALS Data Browser (ALSdb, http://alsdb.org) 
containing variants from 3,239 ALS cases and 11,808 controls 
(version v3 updated on Dec 03 2018), and ClinVar (Jan 30, 2017) 
databases, as well as in case reports in the literature. Variants 
that were found in our control in-house database—except for 
the R261H NEK1 variant that was characterized by reduced 
penetrance—were excluded from further analysis. The detected 
variants were classified in accordance with the guideline of the 
American College of Medical Genetics and Genomics (ACMG, 
Richards et al., 2015). All genetic changes with a read depth <25 
were validated by Sanger sequencing.

Gene Sets of Custom Design Panel
Based on the ALSoD and literature (Abel et al., 2012; Garton et al., 
2017; Krüger et al., 2016), two gene sets containing all major and 
minor genes involved in ALS-associated pathways were generated: 
Set 1, categorized as major ALS genes, contained 30 genes that 
fulfilled the criteria for causation, and Set 2, contained 101 risk 
or candidate genes (ALSoD). A third extended gene set contained 
116 genes related to other neurodegenerative and neuromuscular 
disorders (such as hereditary spastic paraplegia, spinal muscular 
atrophy, distal hereditary motor neuropathy, variants of Charcot–
Marie–Tooth disease, distal myopathy, etc.) that may have genetic 
or symptomatic link to ALS (based on GeneReviews, Online 
Mendelian Inheritance in Man; Abel et al., 2012; Krüger et al., 
2016; Garton et al., 2017; Supplementary Table 1).

Statistical Analysis
Statistical analysis of the R261H NEK1 variant in patients and 
healthy individuals was carried out according to the guidelines 
of case–control allelic association study design (Lewis, 2002). 
All statistical analyses were performed using RStudio version 
1.0.153 (RStudio Team, 2015). Frequencies were compared using 
X2 statistics (p < 0.05).

RESULTS

A total of 107 ALS patients (62 females, 45 males; mean age at 
disease onset: 60 years; age range: 30–79 years) were analyzed in 
this study. All patients presented UMN and LMN signs, and 69% 
also presented bulbar signs.

Pathogenic repeat expansions in the C9orf72 gene were 
detected in 10 patients (9.3%, mean age of onset: 60.8 years, age 
range: 49–72 years). According to NGS data, 28 variants were 
detected in 14 major ALS genes that passed the filtering criteria 
and assessment in Integrative Genome Viewer. Furthermore, we 
identified 33 variants in 26 minor ALS genes (Supplementary 
Table 2) and 48 variants in 31 genes associated with other 
neurodegenerative or neuromuscular diseases (Supplementary 
Table 3). No patients were identified as being homozygous for any 
of the studied variants.

Genetic Variants Detected in Major ALS 
Genes
Combining NGS and repeat sizing, variants in major ALS genes 
were detected in 36.45% (39/107) of patients including patients 
with variants considered to be of uncertain significance (VUS). 
The detected variants have MAF below 0.001, with an exception 
for variants in NEK1, as these variants have a reduced penetrance 
(Nguyen et al., 2018). Based on ACMG variant classification, 
two of the 29 detected major ALS variants were categorized 
as pathogenic, four as likely pathogenic and the remaining 
23 variants as VUS. The most common pathogenic genetic 
alteration was the C9orf72 hexanucleotide RE, present in 9.3% 
of our patients, with all 10 patients carrying more than 145 
GGGGCC repeats. Bulbar symptoms, primarily the alteration of 
the speech, was the initial sign in seven out of the 10 patients with 
C9orf72 RE. None of these patients had dementia according to 
the information obtained from the relatives (in case the patients 
could not speak or move at the examination) or the results of the 
MMSE. Three patients had concomitant thyroid disease, and two 
had a disease of the cervical spine with myelopathy, which may 
have influenced the signs of ALS (Table 1).

Apart from the repeat expansion, a rare missense variant of 
uncertain significance (R431Q) was also detected in the C9orf72 
gene. According to the NGS results, the most frequently mutated 
genes were NEK1 (6/107, 5.6%), NEFH, SQSTM1 (4/107, 3.7%), 
KIF5A, SPG11 (3/107, 2.8%), ALS2, CCNF, FUS, MATR3, TBK1, 
and UBQLN2 (2/107, 1.9%). Furthermore, potentially relevant 
variants were found in the GRN and SIGMAR1 genes in single 
patients (Table 2). Because of the relatively high prevalence 
of the NEK1 R261H variant in our patient cohort (5/107), we 
further evaluated 186 additional healthy controls (total 370) 
for this variant. R261H was identified in 5/107 (4.67%) patients 
and 4/370 (1.08%) controls, showing an enrichment in patients 
(MAF: 0.0234 vs 0.0054; p = 0.0162).

Six (6/107, 5.61%) patients had two rare variants in different 
major ALS genes. Two of these patients carried the C9orf72 RE 
and additional variants in the SQSTM1 or NEK1 genes. Only one 
patient (#108u) was detected to carry a pathogenic and a likely 
pathogenic variant in two different major ALS genes. In case of 
the other five patients with multiple major ALS gene variants, at 
least one of the two variants was categorized as VUS (Table 3).

Additionally, a novel variant (c.-25C > T) in the 5′ untranslated 
region of the FUS gene was also detected. As the screening of 
untranslated regions was not in the scope of our research, we did 
not examine it further.
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No SOD1 and TARDBP gene variants were found in this 
cohort. We would like to point out that 37 of the analyzed samples 
were overlapping samples from a previous study (Tripolszki et al., 
2017a) and were known to be negative for SOD1 and TARDBP 
mutations. Still, based on earlier results, one would expect to 
detect SOD1 variants in the further 70 samples.

Variants Detected in Minor ALS Genes
By focusing on the analysis of minor ALS genes, 33 variants (31 
missense and 2 splicing) were detected in 26 genes corresponding 
to 29 patients (27.1% of all patients, Supplementary Table 2). 
No patients were identified as being homozygous for any of the 
detected variants.

A patient was carrying two novel variants (T2583I and 
G4290R) in the DYNC1H1 gene; both variants localized in the 
motor domain of the protein. Due to the limitation of short-
read sequencing and the lack of parental DNA, we could not 

assess whether the two variants were present in a compound 
heterozygous state or as a complex allele. Several other candidate 
variants of uncertain significance were identified (Supplementary 
Table 2) in minor genes. Results of future replication studies will 
reveal which of these variants are truly causative.

Genetic Variants of Genes Related 
to Other Neurodegenerative and 
Neuromuscular Diseases
Additionally, an analysis of 116 genes of other neurodegenerative 
diseases was performed to reveal potentially disease-causing 
variants. A total of 48 missense variants in 31 different genes 
were identified in 41 of our patients. Two of these variants were 
classified as likely pathogenic and 46 as VUS (Supplementary 
Table 3).

Among others, a known missense variant was detected in 
the GJB1 gene (R230C), which is associated with mitochondrial 
disorders and Charcot–Marie–Tooth disease, and two variants 

TABLE 1 | Patients carrying the C9orf72 repeat expansion.

Patient 
ID

Age at onset 
(age range 
group, 
years)

Duration 
before the 
1st exam

Early 
signs and 
symptoms

Signs at 
the 1st 
exam

ALSFRS-R MMSE Other 
diseases

Other major 
ALS gene 
variant

Family history

#122u 70-75 1.4 y dysarthria 
dysphagia

B, PB +++ 
LMN +++ 
UMN+

9/48 NA stenosis of the 
cervical spinal 
canal and 
myelopathy

– Younger sister 
and mother 
probably ALS

#108u 45-50 2 ys dysarthria B, PB +++ 
LMN +++ 
UMN ++

16/48 NA – SQSTM1, 
R393Q

no

#99u 55-60 8 months dysarthria B, PB +++ 
LMN ++ 
UMN +

36/48 30/30 Hypo-
thyreoidism

NEK1, N250S Mother 
questioned /no 
medical data/ 
Uncertain family 
history

#96u 70-75 3 months Para-paresis B, PB – 
LMN + 
UMN ++

37/48 28/30 – – no

#83r 50-55 1 y dysarthria, 
dysphagia

B, PB +++ 
LMN + 
UMN++

37/48 28/30 Hashimoto 
thyroiditis

– no

#85r 60-65 6 months Peroneal palsy B, PB – 
LMN + 
UMN+

41/48 30/30 Hashimoto 
thyroiditis 
CV-CVI-CVII 
disc herniation 
operated

– no

#50u 55-60 1 y dysarthria 
dysphagia

B, PB +++ 
LMN + 
UMN +

45/48 30/30 – – no

#63u 60-65 9 
months

dysarthria 
dysphagia 
peroneal palsy

B, PB +++ 
LMN + 
UMN +

33/48 28/30 – – no

#88u 55-60 1 y Dysarthria 
dysphagia

B, PB +++ 
LMN + 
UMN +

41/48 NA CVI-VII Disc 
protrusion

– no

#75r 65-70 5  
months

Para-paresis B, PB – 
LMN+++ 
UMN++

35/48 30/30 – – no

B, PB, Bulbar and pseudobulbar; UMN, upper motor neuron; LMN, lower motor neuron; ALSFRS-R, ALS Functional Rating Scale Revised; MMSE, Mini-Mental State Examination.
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TABLE 2 | Major ALS gene variants detected in the Hungarian ALS cohort.

Gene Transcript Nucleotide 
change

Amino 
acid 
change

PopMax 
MAF 
(ExAc)

dbSNP ALSdb 
MAF ALS

ALSdb 
MAF 
Control

Pathogenicity 
(ACMG)

MetaSVM/ 
MetaLR/ 
PROVEAN/ 
SIFT/ 
PolyPhen2/ 
MutTast/ 
MutAs/ 
DANN

No 
patients

References Patient ID

ALS2 NM_020919 c.G3529T p.G1177X 0 rs386134180 0 0 Pathogenic D/D/D/D/D/
A/H/0.993

1 Sztriha et al., 
2008

#62r

ALS2 NM_020919 c.G4496A p.R1499H 2,49x10–5  rs566436589 0 0 VUS T/T/D/D/P/
D/L/1

1 – #59r

C9orf72 GGGGCC 
Repeat 
expansion

  0 – 0 0 Pathogenic – 10 Renton 
et al., 2011; 
DeJesus-
Hernandez 
et al., 2011

#99u, #108u, 
#75r, #50u, 
#63u, #88u, 
#96u, #85r, 
#83r, #122u

C9orf72 NM_001256054 c.G1292A p.R431Q 5,83x10–5  – 0 0 VUS T/T/N/T/D/
D/L/0.999

1 – #56u

CCNF NM_001761 c.C1714T p.R572W 4,14x10–5 rs199743115 0 4,24x10–5  VUS T/T/D/D/D/
D/M/0.999

1 – #107u

CCNF NM_001761 c.C316G p.L106V 0 rs990719669 0 4,24x10–5   VUS T/T/N/D/D/
D/M/0.998

1 – #85u

FUS NM_001170937 c.A74G p.Y25C 8,24x10–6 rs141516414 0 0 VUS D/D/D/D/D/
D/M/0.992

1 – #87u

FUS NM_001170937 c.C317T p.P106L 2,47X10–5 rs374191107 0  4,24x10-5  VUS T/T/N/T/B/
D/M/0.997

1 Huey et al., 
2012

#110u

GRN NM_002087 c.T1003C p.C335R 0 – 0 0 VUS D/D/D/D/D/
D/H/0.996

1 – #106u

KIF5A NM_004984 c.G2272A p.E758K 5,54x10–4  rs140281678 1,5x10–3 8,90x10–4  VUS T/T/N/D/B/
D/N/0.998

2 – #85u, #57r

KIF5A NM_004984 c.G1735A p.A579T 0 rs760135493 1,544x10–4  4,24x10–5  VUS T/T/N/T/B/
D/M/0.995

1 – #83u

MATR3 NM_001194956  c.C31T p.P11S 0 rs995345187 0 0 VUS T/T/N/D/D/
D/N/0.998

1 – #58r

MATR3 NM_018834 c.G824A p.S275N 0 – 0 0 VUS T/T/N/T/B/
D/N/0.99

1 – #105u

NEFH NM_021076 c.C1013T p.T338I 0 rs774252076 0 0 VUS D/D/D/D/D/
D/M/0.997

2 – #63r, #75u

NEFH NM_021076 c.G443C p.R148P 0 – 0 0 VUS D/D/D/D/D/
D/L/0.882

1 – #69u

NEFH NM_021076 c.C1514T p.P505L 0 rs1414968372 1,609x10–4   0 VUS T/T/D/D/B/
N/L/0.843

1 – #106u

NEK1 NM_001199397 c.G782A p.R261H  3,73x10–3 rs200161705  6,6x10–3 3,30x10–3  VUS T/T/D/D/P/
D/M/0.999

5 Kenna 
et al., 2016; 
Brenner 
et al., 2016; 
Nguyen et al., 
2018

#56r, #48r, #51, 
#90u, #93u

(Continued)
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TABLE 2 | Continued

Gene Transcript Nucleotide 
change

Amino 
acid 
change

PopMax 
MAF 
(ExAc)

dbSNP ALSdb 
MAF ALS

ALSdb 
MAF 
Control

Pathogenicity 
(ACMG)

MetaSVM/ 
MetaLR/ 
PROVEAN/ 
SIFT/ 
PolyPhen2/ 
MutTast/ 
MutAs/ 
DANN

No 
patients

References Patient ID

NEK1 NM_001199397 c.A749G p.N250S 0 rs368762503 0 0 VUS T/T/D/T/P/
D/N/0.988

1 – #99u

SIGMAR1 NM_001282205 c.T125G p.I42R 0 rs1206984068 0 0 VUS T/T/D/D/D/
D/M/0.987

1 – #73u

SPG11 NM_025137 c.G6101A p.R2034Q 0 rs750101301 0 0 VUS T/T/N/T/B/
D/L/0.998

1 – #64r

SPG11 NM_025137 c.C6352G p.L2118V 8,72x10–6  rs766851227 0 4,25x10–5  VUS D/D/N/D/D/
D/M/0.998

1 – #71u

SPG11 NM_025137 c.G6009T p.E2003D 0 – 0 0 VUS T/T/N/T/B/
D/M/0.969

1 – #104u

SQSTM1 NM_003900 c.C1175T p.P392L  9,00x10–4 rs104893941 1,5x10–4 2,20x10–3  Likely 
pathogenic

D/D/D/D/B/
A/L/0.996

2 Fecto et al., 
2011

#57u, #64u

SQSTM1 NM_003900 c.G1165C p.E389Q 0 rs1391182750 0 0 VUS D/D/N/T/B/
D/L/0.99

1 – #73u

SQSTM1 NM_003900 c.G1178A p.R393Q 4,94x10–5 rs200551825 0  4,24x10–5  Likely 
pathogenic

D/D/N/D/P/
D/M/0.999

1 Kwok et al., 
2014

#108u

TBK1 NM_013254 c.1888_1890del p.K631del 0 – 0 0 VUS – 1 – #90u
TBK1 NM_013254 c.T1190C p.I397T 1,00x10–4  rs755069538 0 0 Likely 

pathogenic
T/T/N/T/B/
D/L/0.908

1 Pozzi et al., 
2017

#97u

UBQLN2 NM_013444 c.A1174G p.M392V 0 rs1384003425 0 0 Likely 
pathogenic

T/T/N/T/B/
D/L/0.955

1 Huang et al., 
2017

#91u

UBQLN2 NM_013444 c.A252T p.Q84H 0 – 0 0 VUS T/T/N/T/D/
D/L/0.871

1 – #111u

PopMax MAF (ExAc), Maximal general minor allele frequency of the variant in the ExAc database; ACMG, guideline of the American College of Medical Genetics and Genomics; dbSNP, Single Nucleotide Polymorphism Database 
reference SNP ID number for the variant; ALSdb MAF ALS, Minor allele frequency in ALS Data Browser (ALSdb) variants from 3,239 ALS cases and 11,808 con; ALSdb MAF Control, Minor allele frequency in ALS Data Browser 
(ALSdb) containing variants from 11,808 controls; No patients, Number of patients with this variant in this study; VUS, variant of uncertain significance; MetaSVM and MetaLR prediction: D, Damaging, T, Tolerated; PROVEAN: 
D, Deleterious, N, Neutral; SIFT: D, Deleterious, T, Tolerated; PolyPhen2: D, Damaging, B, Benign; MutTast (Mutation Taster): D, Disease causing, A, Disease causing automatic, MutAs (Mutation Assessor): N, Neutral; L, Low; 
M, Medium; H, High; DANN, The value range is 0 to 1, with 1 given to the variants predicted to be the most damaging.
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TABLE 3 | Patients with two major ALS gene variants.

Patient 
ID

Age of onset 
(age range 
group, years)

Duration 
before the 
1st exam

Early signs and 
symptoms

Symptoms Gene Variant PopMax 
MAF (ExAc)

dbSNP Pathogenicity 
(ACMG)

Other disease

#73u 65-70 1.5 y Tetraparesis B, PB ++, LMN ++, 
UMN +++

SQSTM1 p.E389Q 0 rs1391182750 VUS Paget disease, 
Hyperparathyreodism, 
Hypothyreodism, Colon 
cancer (operated)

SIGMAR1 p.I42R 0 rs1206984068 VUS
#85u 60-65 6 months Four extremity weakness 

with spasticity with muscle 
atrophy and fasciculations, 
especially in the interosseus 
muscles

B, PB +, LMN ++, 
UMN ++

CCNF p.L106V 0 rs990719669 VUS

KIF5A p.E758K 5.54×10–4 rs140281678 VUS
#90u 35-40 6 months Psychomotor activity was 

slowing down, corticospinal 
tract lesion signs bilaterally

Memory loss, 
dementia.B, PB+, 
LMN ++, UMN +++

TBK1 p.K631del 3.73×10–3 – VUS –

NEK1 p.R261H rs200161 VUS
#99u 55-60 8 months Dysarthria B, PB +++, LMN 

++, UMN+
NEK1 p.N250S 0 rs368762503 VUS Hypothyreoidism

C9orf72 Repeat 
expansion

0 – Pathogenic

#106u 50-55 9 months Four extremity weakness 
with spasticity

B, PB –, UMN+++, 
LMN+++

GRN p.C335R 0 – VUS Alcoholism, polyneuropathy, 
cervical myelopathy caused 
by CIII-IV-V. disc protrusions

NEFH p.P505L 0 rs1414968372 VUS
#108u 45-50 2 years Dysarthria UMN, B, PB+++ SQSTM1 p.R393Q rs200551825 VUS –

LMN+++, 
UMN+++, B

C9orf72 Repeat 
expansion

0 – Pathogenic

B, PB, Bulbar and pseudobulbar, UMN, upper motor neuron, LMN, lower motor neuron, PopMax MAF (ExAc), Maximal general minor allele frequency of the variant in the ExAc database; ACMG, guideline of the American College of 
Medical Genetics and Genomics; dbSNP, Single Nucleotide Polymorphism Database reference SNP ID number for the variant; VUS, variant of uncertain significance.
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of conflicting significance in the GBE1 gene (H398R and 
R166C), which is associated with autosomal recessive adult-
type polyglucosan body disease (Online Mendelian Inheritance 
in Man). We identified sequence alterations in additional genes 
that are listed in Supplementary Table 3; however, most of these 
variants are unlikely to be implicated in our patients’ phenotypes.

DISCUSSION

The frequency of causative variants in ALS patients has been 
extensively investigated in populations of different ethnic origins. 
Here, we used a combination of repeat-sizing of the C9orf72 gene 
and next-generation sequencing to perform a comprehensive 
genetic analysis of 107 Hungarian ALS patients. Our genetic 
analysis included all known ALS-associated major and minor 
genes and an additional list of genes associated with other 
neurogenetic diseases.

Including the C9orf72 RE, a total of 29 genetic variations 
have been detected in 14 different major ALS genes, leading to a 
positive result in 36.45% (39/107) of our ALS patients (Table 2). 
According to ACMG variant classification, 2 of the 29 detected 
major ALS variants were categorized as pathogenic, 4 as likely 
pathogenic and the remaining 23 variants as variants of uncertain 
significance. Furthermore, 33 variants in 26 minor ALS genes 
(Supplementary Table 2) and 48 variants in 31 genes associated 
with other neurodegenerative diseases (Supplementary Table 3) 
were detected. A major challenge of using NGS data is the critical 
evaluation of the significance of detected variants, especially 
those that are very rare or novel. While the disease-causing role 
of several variants identified in this study has previously been 
well established (ALSoD, Abel et al., 2012), other variants may 
show reduced penetrance or may be rare benign alterations.

In accordance with the previous cohort studies, the most 
frequent genetic alteration was the C9orf72 repeat expansion, 
detected in 10 patients (9.3%) of this cohort. The initial signs of 
ALS in these patients were predominantly bulbar dysfunctions, 
especially altered speech (seven out of 10 patients). It is known 
that C9orf72 repeat expansion has been found in ~7% of sporadic 
ALS cases of European ancestry (Renton et al., 2014). Several 
studies reported missense variants in the coding region of the 
C9orf72 gene (Kenna et al., 2013; Koppers et al., 2013; Krüger 
et al., 2016), but the relevance of C9orf72 variants detected in 
the coding region is not yet understood. Therefore, we cannot 
determine the importance of the R431Q missense variant 
detected in this study.

We identified two missense variants in the NEK1 gene (both 
classified as VUS): the R261H variant in five and the N250S 
variant in a single patient. The NEK1 gene has been recently 
recategorized as a major ALS-associated gene (Kenna et al., 
2016), following two prior studies that identified NEK1 as an 
ALS candidate gene (Cirulli et al., 2015; Brenner et al., 2016). 
R261H was earlier described to significantly increase ALS risk 
in both fALS and sALS in independent cohort studies (Brenner 
et al., 2016; Kenna et al., 2016; Gratten et al., 2017; Nguyen et al., 
2018). In our evaluation, we observed an enrichment of the 
R261H variant in patients [5/107 (4.67%), MAF = 0.0234 patients 

vs controls 4/370 (1.08%), MAF = 0.0054]. According to the 
gnomAD and Kaviar databases, the maximum allele frequency 
of the R261H variant is 0.004 (Glusman et al., 2011; Lek et al., 
2016). Earlier studies detected R261H in 1.8% of ALS patients 
and 0.66% of controls with minor allele frequencies 0.009 and 
0.0033, respectively (Nguyen et al., 2017). Based on these results, 
we assume that the NEK1 R261H variant is more frequent in 
the Hungarian population (both in patients and controls) than 
in other populations, although further large cohort studies are 
needed to confirm this conclusion. This study provides additional 
evidence that NEK1 missense variants may contribute to the 
development of sALS.

Missense variants in the NEFH gene were detected in four 
patients: the T338I variant in two cases and the R148P and P505L 
variants in single cases. NEFH encodes the heavy neurofilament 
protein, and its variants have been associated with neuronal 
damage in ALS (Figlewicz et al., 1994). The T338I and R148P 
variants affect the conserved central coiled-coil rod domain of 
the protein mediating dimerization; therefore, we suggest their 
potential deleterious effect on the protein. In the individual 
carrying the P505L NEFH variant, an additional novel alteration 
(C335R) was detected in the GRN gene. Loss-of-function GRN 
variants are primarily considered to cause frontotemporal lobar 
degeneration (Mackenzie et al., 2006), but there is evidence that 
missense GRN variants are also linked to the pathogenesis of ALS 
(Sleegers et al., 2008). The novel GRN variant reported in this 
study results in a cysteine-to-arginine change in the cysteine-rich 
granulin A domain.

Four cases were identified to carry SQSTM1 variants: the P392L 
in two cases and the E389Q and R393Q in single patients. All three 
alterations are located within the C-terminal ubiquitin-associated 
(UBA) end of the sequestome 1 protein. Variants of the SQSTM1 
gene were originally reported in Paget’s disease of bone (Laurin 
et al., 2002). However, recent publications suggest a link between 
SQSTM1 variants and ALS/FTD (Fecto et al., 2011). The P392L and 
R393Q variants are known variants reported by other study groups 
(Fecto et al., 2011; Kwok et al., 2014). Interestingly, the patient 
(#73u) carrying the novel E389Q variant was also diagnosed with 
Paget’s disease of bone. In addition, this patient also carried a 
variant of unknown significance (I42R) in the SIGMAR1 gene in 
heterozygous form. This case exemplifies the relevant observation 
of phenotypic pleiotropy and highlights the complexity of the 
phenotype–genotype correlation.

Variants in the KIF5A gene has been previously linked to 
autosomal dominant hereditary spastic paraparesis (SPG10) 
and to Charcot–Marie–Tooth disease type 2 (CMT2; Reid et al., 
2002; Crimella et al., 2016; Liu et al., 2014; Jennings et al., 2017). 
Nonetheless, recent studies proved that KIF5A variants have a 
role in ALS (Brenner et al., 2018; Nicolas et al., 2018). According 
to earlier studies, KIF5A variants described in SPG10 or CMT2 
patients occur in the kinesin motor domain (amino acid positions 
9–327) and in the alpha-helical coiled-coil domain (amino 
acid positions 331–906) (Kaji et al., 2016; Guinto et al., 2017). 
In contrast, variants causing ALS are found in the C-terminal 
cargo-binding domain (amino acids 907–1032). In the present 
study, we found two variants: the E758K variant in two patients 
and the A579T variant in one case, with both variants located 
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within the coiled-coil domain (amino acid positions 331–906) of 
the protein, which is not in line with previous findings. Without 
additional functional evidence, the pathogenicity of these 
variants is uncertain.

Three rare missense variants (R2034Q, L2118V, and E2003D) 
of the SPG11 gene were found. The high detection rate of 
missense variants of this gene is probably due to the large size 
of the coding region; therefore, we suggest that these SPG11 
variants are unlikely to be deleterious. Variants in the SPG11 
gene are most commonly associated with autosomal recessive 
spastic paraplegia, although homozygous variants have been 
recently identified in juvenile ALS (Orlacchio et al., 2010; Daoud 
et al., 2012), and heterozygous missense variants in sALS (Kenna 
et al., 2013; Couthouis et al., 2014).

Variants in UBQLN2 have been shown to be a cause of 
dominant X-linked ALS (Deng et al., 2011). A previously 
reported (M392V, Huang et al., 2017) and a novel variant 
(Q84H) were found in the UBQLN2 gene. The novel Q84H 
variant affects the N-terminal ubiquitin-like domain of the 
ubiquilin-2 protein, which is involved in binding to proteasome 
subunits (Ko et al., 2004).

FUS variants have been mostly detected in familial ALS cases 
that are localized within the C-terminus of the FUS protein 
(Shang and Huang, 2016). However, the two rare FUS variants 
(Y25C and P106L) that were detected in this study were located 
in the N-terminal “prion-like” Q/G/S/Y domain (amino acids 
1–165) of the protein. Although the majority of FUS mutations 
linked to ALS are located in the extreme C-terminus of the 
protein, several studies show that N-terminal variants may also 
be damaging (Nomura et al., 2014, Murakami et al., 2015).

In the TBK1 gene, a known missense variant (I397T) and a 
novel non-frameshift deletion (K631del) were identified in our 
patient cohort. The patient (#90u) carrying the novel K631del 
deletion was a 37-year-old patient who also showed symptoms 
of frontotemporal dementia (FTD). This is in line with the data 
from previous studies; according to which, TBK1 is a causative 
gene of ALS–FTD (Cirulli et al., 2015, Freischmidt et al., 2015). 
The NEK1 R261H variant was also present in this patient. 
A combined effect of the two major ALS gene variants may 
contribute to the early onset and fast progression of the disease 
in patient #90.

CCNF variants are a rare cause of ALS–FTD; in diverse 
geographic familial cohorts, variants in CCNF were present at 
frequencies ranging from 0.6 to 3.3% (Williams et al., 2016). In 
this Hungarian cohort, we identified two patients (1.9%) with 
CCNF variants (L106V and R572W). The detected R572W 
variant affects the nuclear localization signal 2 (amino acids 568–
574) of the CCNF protein.

A previously characterized pathogenic nonsense variant 
(G1177X) and a rare missense alteration (R1499H) were 
detected in the ALS2 gene, both in heterozygous form. The alsin 
protein encoded by the ALS2 gene is involved in endosome/
membrane trafficking and fusion, cytoskeletal organization, and 
neuronal development/maintenance (Hadano et al., 2007). Both 
homozygous and compound heterozygous variants in the ALS2 
gene have been described as causative for juvenile ALS (Yang 
et al., 2001). The G1177X nonsense variant was first detected 

in compound heterozygous form in a family with two affected 
siblings suffering from infantile ascending spastic paralysis with 
bulbar involvement (Sztriha et al., 2008). The ages of onset of the 
patients with the ALS2 variants reported in this study were later 
than juvenile ALS onset, which generally manifests before 25 
years of age (Orban et al., 2007). Previous studies suggested that 
heterozygous variants in the ALS2 may be causative for adult-
onset sALS (Kenna et al., 2013; Couthouis et al., 2014).

MATR3 encodes three protein isoforms that have been 
described as nuclear-matrix and DNA/RNA binding proteins 
involved in transcription and stabilization of mRNA (Belgrader 
et al., 1991; Salton et al., 2011; Coelho et al., 2015). In the present 
study, two novel heterozygous variants (P11S, S275N) were 
detected. The P11S variant affects the b isoform of the MATR3 
protein (NM_001194956 and NP_001181885), contributing to 
splicing alteration of other isoforms. Further evidence is required 
to elucidate the mechanism of pathogenicity of these alterations.

We discovered several variants in ALS candidate and risk genes. 
In a patient with LMN-dominant ALS with slow progression, we 
found two novel variants (T2583I and G4290R) in the DYNC1H1 
gene. Variants in the DYNC1H1 gene result in impairment 
of retrograde axonal transport leading to progressive motor 
neuron degeneration in mice (Hafezparast et al., 2003) and have 
been described in a range of neurogenetic diseases, including 
Charcot–Marie–Tooth type 2O, spinal muscular atrophy, and 
hereditary spastic paraplegia (Weedon et al., 2011; Harms et al., 
2012; Poirier et al., 2013; Strickland et al., 2015; Beecroft et al., 
2017). A few studies described heterozygous variants in the 
DYNC1H1 gene in fALS and sALS patients, suggesting its role 
in ALS (Puls et al., 2003; Münch et al., 2004). Based on our 
findings, we strengthen the potential link between DYNC1H1 
variants and ALS.

Given that there are genetic and symptomatic overlaps among 
many neurodegenerative diseases, it has been suggested that 
causative variants might play roles in multiple disorders (Pang 
et al., 2017). Two heterozygous variants (H398R and R166C) 
were detected in the GBE1 gene. This gene is associated with 
autosomal recessive adult polyglucosan body disease (APBD), 
which is characterized by UMN signs, cognitive impairment, 
and decreased activity of the glycogen branching enzyme (Lossos 
et al., 1998). GBE1 variants have been recently detected 
in German ALS patients (Krüger et al., 2016). Although the 
majority of GBE1 disease-causing variants were detected in 
homozygous or compound heterozygous form, a substantial 
percentage of individuals with APBD carry a single variant in 
one allele (Ubogu et al., 2005; Akman et al., 2015).

An oligogenic model of ALS has been proposed (van Blitterswijk 
et al., 2012), with several studies suggesting that ALS may be caused 
by a single highly penetrant variant or a combination of several less 
penetrant variants (Martin et al., 2017). In addition, environmental 
factors have also been implicated in disease development (Fang et 
al., 2009). In earlier studies, the frequency of patients with more 
than one major ALS gene variants was ranging from 1.6% to 3.8% 
(Kenna et al., 2013; Cady et al., 2015; Zhang et al., 2018). In this 
study, we describe six patients (6/107, 5.61%) with two variants in 
major ALS genes (Table 3). Only patient #108u was detected to 
carry a pathogenic and a likely pathogenic variant in two different 
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major ALS genes; in case of the other five patients with multiple 
major ALS gene variants, at least one of the two variants was 
categorized as VUS (Table 3). Co-occurrence of multiple variants 
is most frequently observed in patients who carry the C9orf72 RE 
(Nguyen et al., 2018). Two of the six patients with multiple variants 
in our cohort carried the C9orf72 RE and additional variants in 
the SQSTM1 or NEK1 genes. In addition, it has been described 
that oligogenic inheritance is also associated with an earlier age 
of onset and rapid disease progression (Cady et al., 2015; Nguyen 
et al., 2018). In our cohort, most of the patients with two variants 
showed earlier onset, faster progression, or both, although a cohort 
of larger size is needed to confirm these observations. Additionally, 
many of our cases with major ALS gene variants also have several 
variants in other risk genes (Supplementary Table 2) or in genes 
associated with other diseases (Supplementary Table 3); still, the 
relevance of these results will only become clear when additional 
larger cohorts are studied.

Our results support the hypothesis that sALS has a 
complex model of inheritance, in which multiple variants and 
environmental factors contribute to disease susceptibility (van 
Blitterswijk et al., 2012; Martin et al., 2017). In general, this cohort 
of 107 ALS cases uncovers a heterogeneous genetic architecture 
with variants in numerous major and minor ALS genes. Several 
major ALS genes have been also linked to other diseases such as 
SQSTM1—Paget disease, and KIF5A—spastic paraplegia 10. In 
line with this, our results support the observation of phenotypic 
pleiotropy, where variants of a single gene contribute to different 
phenotypes. These findings further highlight the necessity for 
large-scale multicenter studies on ALS patients for a better 
understanding of the underlying genetic causes. Large-scale 
consortium approaches, such as Project MinE, will improve the 
separation of true causative genetic variants from irrelevant ones, 
which will help to gain a more accurate view of the genetic pattern 
of ALS. With this study, which represents the first comprehensive 
genetic study in the Hungarian ALS patients, we contribute to 
this approach.

DATA AVAILABILITY

The raw sequencing data of the 107 patients have been deposited 
in the NCBI Sequence Read Archive with BioProject accession no. 
PRJNA549957 (https://www.ncbi.nlm.nih.gov/sra/PRJNA549957).

ETHICS STATEMENT

The investigation was approved by the Hungarian Investigational 
Review Board at University of Szeged and the Ethics Committee 
at Medical University of Graz. Written informed consent was 
obtained from patients and healthy individuals, and the study 
was conducted according to the principles of the Declaration 
of Helsinki.

AUTHOR CONTRIBUTIONS

Conception, design, and coordination of the study were 
performed by KT, JE, DN, and MS. Acquisition of clinical data 
and sample collection were performed by JE, PK, PG, and HS. 
Analysis and interpretation of data were done by KT, JE, PG, ZN, 
and DN. Drafting of the manuscript was done by KT, JE, and ZN. 
Revision of the manuscript was done by KT, MS, PG, JE, PK, HS, 
and DN.

FUNDING

This work was funded by the Hungarian Brain Research 
Program (grant no. 2017-1.2.1-NKP-2017-00002), and the 
GSHA is a part of an EU Joint Programme—Neurodegenerative 
Disease Research (JPND) project. The project is supported 
in Austria by the Austrian Science Fund under the aegis 
of JPND—www.jpnd.eu. This work was conducted with 
the support of the Szeged Scientists Academy under the 
sponsorship of the Hungarian Ministry of Human Capacities 
(EMMI: 13725-2/2018/INTFIN).

ACKNOWLEDGMENTS

We thank Zsuzsanna Horváth-Gárgyán for her skilled technical 
assistance. 

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: 
https://www.frontiersin.org/articles/10.3389/fgene.2019.00732/
full#supplementary-material

REFERENCES

Abel, O., Powell, J. F., Andersen, P. M., and Al-Chalabi, A. (2012). ALSoD: a user-
friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. 
Hum. Mutat. 33, 1345–1351. doi: 10.1002/humu.22157

Akimoto, C., Volk, A. E., van Blitterswijk, M., Van den Broeck, M., Leblond, C. S., 
Lumbroso, S., et al. (2014). A blinded international study on the reliability of 
genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked 
differences in results among 14 laboratories. J. Med. Genet. 51, 419–424. doi: 
10.1136/jmedgenet-2014-102360

Akman, H. O., Kakhlon, O., Coku, J., Peverelli, L., Rosenmann, H., Rozenstein-
Tsalkovich, L., et al. (2015). Deep intronic GBE1 mutation in manifesting 
heterozygous patients with adult polyglucosan body disease. JAMA Neurol. 72, 
441–445. doi: 10.1001/jamaneurol.2014.4496

Al-Chalabi, A., Fang, F., Hanby, M. F., Leigh, P. N., Shaw, C. E., Ye, W., et al. 
(2010). An estimate of amyotrophic lateral sclerosis heritability using 
twin data. J.  Neurol. Neurosurg. Psychiatry 81, 1324–1326. doi: 10.1136/
jnnp.2010.207464

Asimit, J. L., Hatzikotoulas, K., McCarthy, M., Morris, A. P., and Zeggini, E. (2016). 
Trans-ethnic study design approaches for fine-mapping. Eur. J. Hum. Genet. 24, 
1330–1336. doi: 10.1038/ejhg.2016.1

Beecroft, S. J., McLean, C. A., Delatycki, M. B., Koshy, K., Yiu, E., Haliloglu, G., 
et al. (2017). Expanding the phenotypic spectrum associated with mutations 
of DYNC1H1. Neuromuscul–Disord. 27, 607-615. doi: 10.1016/j.nmd.2017. 
04.011

Belgrader, P., Dey, R., and Berezney, R. (1991). Molecular cloning of matrin 3.A 
125-kilodalton protein of the nuclear matrix contains an extensive acidic 
domain. J. Biol. Chem. 266, 9893–9899. 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.ncbi.nlm.nih.gov/sra/PRJNA549957
www.jpnd.eu
https://www.frontiersin.org/articles/10.3389/fgene.2019.00732/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2019.00732/full#supplementary-material
https://doi.org/10.1002/humu.22157
https://doi.org/10.1136/jmedgenet-2014-102360
https://doi.org/10.1001/jamaneurol.2014.4496
https://doi.org/10.1136/jnnp.2010.207464
https://doi.org/10.1136/jnnp.2010.207464
https://doi.org/10.1038/ejhg.2016.1
https://doi.org/10.1016/j.nmd.2017.04.011
https://doi.org/10.1016/j.nmd.2017.04.011


Identification of ALS Gene VariantsTripolszki et al.

11 August 2019 | Volume 10 | Article 732Frontiers in Genetics | www.frontiersin.org

van Blitterswijk, M., van Es, M. A., Hennekam, E. A., Dooijes, D., van Rheenen, W., 
Medic, J., et al. (2012). Evidence for an oligogenic basis of amyotrophic lateral 
sclerosis. Hum. Mol. Genet. 21, 3776–3784. doi: 10.1093/hmg/dds199

Brenner, D., Müller, K., Wieland, T., Weydt, P., Böhm, S., Lulé, D., et al. (2016). 
NEK1 mutations in familial amyotrophic lateral sclerosis. Brain 139, e28. doi: 
10.1093/brain/aww033

Brenner, D., Yilmaz, R., Müller, K., Grehl, T., Petri, S., Meyer, T., et al. (2018). Hot-
spot KIF5A mutations cause familial ALS. Brain 141, 688–697. doi: 10.1093/
brain/awx370

Cady, J., Allred, P., Bali, T., Pestronk, A., Goate, A., Miller, T. M., et al. (2015). 
Amyotrophic lateral sclerosis onset is influenced by the burden of rare variants 
in known amyotrophic lateral sclerosis genes. Ann. Neurol. 77, 100–113. doi: 
10.1002/ana.24306

de Carvalho, M. D., and Swash, M. (2009). Awaji diagnostic algorithm increases 
sensitivity of El Escorial criteria for ALS diagnosis. Amyotroph. Lateral Scler. 10, 
53–57. doi: 10.1080/17482960802521126

Cirulli, E. T., Lasseigne, B. N., Petrovski, S., Sapp, P. C., Dion, P. A., Leblond, C. S., 
et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk 
genes and pathways. Science 347, 1436–1441. doi: 10.1126/science.aaa3650

Coelho, M. B., Attig, J., Bellora, N., König, J., Hallegger, M., Kayikci, M., et al. 
(2015). Nuclear matrix protein Matrin3 regulates alternative splicing and 
forms overlapping regulatory networks with PTB. EMBO J. 34, 653–668. doi: 
10.15252/embj.201489852

Couthouis, J., Raphael, A. R., Daneshjou, R., and Gitler, A. D. (2014). Targeted 
exon capture and sequencing in sporadic amyotrophic lateral sclerosis. PLoS 
Genet. 10, e1004704. doi: 10.1371/journal.pgen.1004704

Crimella, C., Baschirotto, C., Arnoldi, A., Tonelli, A., Tenderini, E., Airoldi, G., 
et al. (2016). Mutations in the motor and stalk domains of KIF5A in spastic 
paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2. Clin. Genet. 82, 
157–164. doi: 10.1111/j.1399-0004.2011.01717.x

Daoud, H., Zhou, S., Noreau, A., Sabbagh, M., Belzil, V., Dionne-Laporte, A., 
et  al. (2012). Exome sequencing reveals SPG11 mutations causing juvenile 
ALS. Neurobiol. Aging 33, 839.e5–839.e9. doi: 10.1016/j.neurobiolaging.2011. 
11.012

Deng, H. X., Chen, W., Hong, S. T., Boycott, K. M., Gorrie, G. H., Siddique, N., 
et  al. (2011) Mutations in UBQLN2 cause dominant X-linked juvenile and 
adult-onset ALS and ALS/dementia. Nature 477, 211–215. doi: 10.1038/
nature10353

DeJesus-Hernandez, M., Mackenzie, I. R., Boeve, B. F., Boxer, A. L., Baker, M., 
Rutherford, N. J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in 
noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. 
Neuron 72, 245–256. doi: 10.1016/j.neuron.2011.09.011

Fang, F., Quinlan, P., Ye, W., Barber, M. K., Umbach, D. M., Sandler, D. P., et al. 
(2009). Workplace exposures and the risk of amyotrophic lateral sclerosis. 
Environ. Health Perspect. 117, 1387–1392. doi: 10.1289/ehp.0900580

Fecto, F., Yan, J., Vemula, S. P., Liu, E., Yang, Y., Chen, W., et al. (2011). SQSTM1 
mutations in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 
68, 1440–1446. doi: 10.1001/archneurol.2011.250

Figlewicz, D. A., Krizus, A., Martinoli, M. G., Meininger, V., Dib, M., Rouleau, G. A., 
et al. (1994). Variants of the heavy neurofilament subunit are associated with the 
development of amyotrophic lateral sclerosis. Hum. Mol. Genet. 3, 1757–1761. 
doi: 10.1093/hmg/3.10.1757

Freischmidt, A., Wieland, T., Richter, B., Ruf, W., Schaeffer, V., Müller, K., et al. 
(2015). Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal 
dementia. Nat. Neurosci. 18, 631–636. doi: 10.1038/nn.4000

Garton, F. C., Benyamin, B., Zhao, Q., Liu, Z., Gratten, J., Henders, A. K., et al. 
(2017). Whole exome sequencing and DNA methylation analysis in a clinical 
amyotrophic lateral sclerosis cohort. Mol. Genet. Genomic Med. 5, 418–428. 
doi: 10.1002/mgg3.302

Glusman, G., Caballero, J., Mauldin, D. E., Hood, L., and Roach, J. C. (2011). 
Kaviar: an accessible system for testing SNV novelty. Bioinformatics 27, 3216–
3217. doi: 10.1093/bioinformatics/btr540

Gratten, J., Zhao, Q., Benyamin, B., Garton, F., He, J., Leo, P. J., et al. (2017). Whole-
exome sequencing in amyotrophic lateral sclerosis suggests NEK1 is a risk gene 
in Chinese. Genome Med. 9, 97. doi: 10.1186/s13073-017-0487-0

Guinto, C. O., Diarra, S., Diallo, S., Cissé, L., Coulibaly, T., Diallo, S. H., et al. 
(2017). mutation in KIF5A in a Malian family with spastic paraplegia and 
sensory loss. Ann. Clin. Transl. Neurol. 4, 272–275. doi: 10.1002/acn3.402

Hadano, S., Kunita, R., Otomo, A., Suzuki-Utsunomiya, K., and Ikeda, J. E. (2007). 
Molecular and cellular function of ALS2/alsin: implication of membrane 
dynamics in neuronal development and degeneration. Neurochem. Int. 51, 
74–84. doi: 10.1016/j.neuint.2007.04.010

Hafezparast, M., Klocke, R., Ruhrberg, C., Marquardt, A., Ahmad-Annuar, A., 
Bowen, S., et al. (2003). Mutations in dynein link motor neuron degeneration 
to defects in retrograde transport. Science 300, 808–812. doi: 10.1126/
science.1083129

Hardiman, O., Al-Chalabi, A., Chio, A., Corr, E. M., Logroscino, G., Robberecht, W., 
et al. (2017). Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 3, 17085. doi: 
10.1038/nrdp.2017.85

Harms, M. B., Ori-McKenney, K. M., Scoto, M., Tuck, E. P., Bell, S., Ma, D., et al. 
(2012). Mutations in the tail domain of DYNC1H1 cause dominant spinal 
muscular atrophy. Neurology 78, 1714–1720. doi: 10.1212/WNL.0b013e31825 
56c05

Huey, E. D., Ferrari, R., Moreno, J. H., Jensen, C., Morris, C. M., Potocnik, F., et al. 
(2012). FUS and TDP43 genetic variability in FTD and CBS. Neurobiol. Aging 
33, 1016.e9-17. doi: 10.1016/j.neurobiolaging.2011.08.004

Huang, X., Shen, S., and Fan, D. (2017). No Evidence for pathogenic role of 
UBQLN2 mutations in sporadic amyotrophic lateral sclerosis in the mainland 
chinese population. PLoS One 12 (1), e0170943. doi: 10.1371/journal.pone. 
0170943

Jennings, S., Chenevert, M., Liu, L., Mottamal, M., Wojcik, E. J., and Huckaba, 
T. M. (2017). Characterization of kinesin switch I mutations that cause 
hereditary spastic paraplegia. PLoS One 12, e0180353. doi: 10.1371/journal.
pone.0180353

Kaji, S., Kawarai, T., Miyamoto, R., Nodera, H., Pedace, L., Orlacchio, A., et al. 
(2016). Late-onset spastic paraplegia type 10 (SPG10) family presenting with 
bulbar symptoms and fasciculations mimicking amyotrophic lateral sclerosis. 
J. Neurol. Sci. 364, 45–49. doi: 10.1016/j.jns.2016.03.001

Kenna, K. P., McLaughlin, R. L., Byrne, S., Elamin, M., Heverin, M., Kenny, E. 
M., et al. (2013). Delineating the genetic heterogeneity of ALS using targeted 
high-throughput sequencing. J. Med. Genet. 50, 776–783. doi: 10.1136/
jmedgenet-2013-101795

Kenna, K. P., van Doormaal, P. T., Dekker, A. M., Ticozzi, N., Kenna, B. J., Diekstra, 
F. P., et al. (2016). NEK1 variants confer susceptibility to amyotrophic lateral 
sclerosis. Nat. Genet. 48, 1037–1042. doi: 10.1038/ng.3626

Ko, H. S., Uehara, T., Tsuruma, K., and Nomura, Y. (2004). Ubiquilin interacts 
with ubiquitylated proteins and proteasome through its ubiquitin-associated 
and ubiquitin-like domains. FEBS Lett. 566, 110–114. doi: 10.1016/j.
febslet.2004.04.031

Koppers, M., Groen, E. J., van Vught, P. W., van Rheenen, W., Witteveen, E., van Es, 
M. A., et al. (2013). Screening for rare variants in the coding region of ALS-
associated genes at 9p21.2 and 19p13.3. Neurobiol. Aging 34, 1518.e5–1518.e7. 
doi: 10.1016/j.neurobiolaging.2012.09.018

Krüger, S., Battke, F., Sprecher, A., Munz, M., Synofzik, M., Schöls, L., et al. (2016). 
Rare variants in neurodegeneration associated genes revealed by targeted panel 
sequencing in a german ALS cohort. Front. Mol. Neurosci. 9, 92. doi: 10.3389/
fnmol.2016.00092

Kwok, C. T., Morris, A., and de Belleroche, J. S. (2014). Sequestosome-1 (SQSTM1) 
sequence variants in ALS cases in the UK: prevalence and coexistence of 
SQSTM1 mutations in ALS kindred with PDB. Eur. J. Hum. Genet. 22, 492–496. 
doi: 10.1038/ejhg.2013.184

Laurin, N., Brown, J. P., Morissette, J., and Raymond, V. (2002). Recurrent mutation 
of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. 
Am. J. Hum. Genet. 70, 1582–1588. doi: 10.1086/340731

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., 
et al. (2016). Analysis of protein-coding genetic variation in 60,706 humans. 
Nature 536, 285–291. doi: 10.1038/nature19057

Lewis, C. M. (2002). Genetic association studies: design, analysis and interpretation. 
Brief Bioinf. 3, 146–153. doi: 10.1093/bib/3.2.146

Liu, X., Wu, C., Li, C., and Boerwinkle, E. (2016). dbNSFP v3.0: A one-stop 
database of functional predictions and annotations for human nonsynonymous 
and splice-site SNVs. Hum. Mutat. 37, 235–241. doi: 10.1002/humu.22932

Liu, Y. T., Laurá, M., Hersheson, J., Horga, A., Jaunmuktane, Z., Brandner, S., 
et  al. (2014). Extended phenotypic spectrum of KIF5A mutations: from 
spastic paraplegia to axonal neuropathy. Neurology 83, 612–619. doi: 10.1212/
WNL.0000000000000691

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1093/hmg/dds199
https://doi.org/10.1093/brain/aww033
https://doi.org/10.1093/brain/awx370
https://doi.org/10.1093/brain/awx370
https://doi.org/10.1002/ana.24306
https://doi.org/10.1080/17482960802521126
https://doi.org/10.1126/science.aaa3650
https://doi.org/10.15252/embj.201489852
https://doi.org/10.1371/journal.pgen.1004704
https://doi.org/10.1111/j.1399-0004.2011.01717.x
https://doi.org/10.1016/j.neurobiolaging.2011.11.012
https://doi.org/10.1016/j.neurobiolaging.2011.11.012
https://doi.org/10.1038/nature10353
https://doi.org/10.1038/nature10353
https://doi.org/10.1016/j.neuron.2011.09.011
https://doi.org/10.1289/ehp.0900580
https://doi.org/10.1001/archneurol.2011.250
https://doi.org/10.1093/hmg/3.10.1757
https://doi.org/10.1038/nn.4000
https://doi.org/10.1002/mgg3.302
https://doi.org/10.1093/bioinformatics/btr540
https://doi.org/10.1186/s13073-017-0487-0
https://doi.org/10.1002/acn3.402
https://doi.org/10.1016/j.neuint.2007.04.010
https://doi.org/10.1126/science.1083129
https://doi.org/10.1126/science.1083129
https://doi.org/10.1038/nrdp.2017.85
https://doi.org/10.1212/WNL.0b013e3182556c05
https://doi.org/10.1212/WNL.0b013e3182556c05
https://doi.org/10.1016/j.neurobiolaging.2011.08.004
https://doi.org/10.1371/journal.pone.0170943
https://doi.org/10.1371/journal.pone.0170943
https://doi.org/10.1371/journal.pone.0180353
https://doi.org/10.1371/journal.pone.0180353
https://doi.org/10.1016/j.jns.2016.03.001
https://doi.org/10.1136/jmedgenet-2013-101795
https://doi.org/10.1136/jmedgenet-2013-101795
https://doi.org/10.1038/ng.3626
https://doi.org/10.1016/j.febslet.2004.04.031
https://doi.org/10.1016/j.febslet.2004.04.031
https://doi.org/10.1016/j.neurobiolaging.2012.09.018
https://doi.org/10.3389/fnmol.2016.00092
https://doi.org/10.3389/fnmol.2016.00092
https://doi.org/10.1038/ejhg.2013.184
https://doi.org/10.1086/340731
https://doi.org/10.1038/nature19057
https://doi.org/10.1093/bib/3.2.146
https://doi.org/10.1002/humu.22932
https://doi.org/10.1212/WNL.0000000000000691
https://doi.org/10.1212/WNL.0000000000000691


Identification of ALS Gene VariantsTripolszki et al.

12 August 2019 | Volume 10 | Article 732Frontiers in Genetics | www.frontiersin.org

Lossos, A., Meiner, Z., Barash, V., Soffer, D., Schlesinger, I., Abramsky, O., et al. 
(1998). Adult polyglucosan body disease in Ashkenazi Jewish patients carrying 
the Tyr329Ser mutation in the glycogen-branching enzyme gene. Ann. Neurol. 
44, 867–872. doi: 10.1002/ana.410440604

Ludolph, A., Drory, V., Hardiman, O., Nakano, I., Ravits, J., Robberecht, W., et al. 
(2015). A revision of the El Escorial criteria - 2015. Amyotroph. Lateral Scler. 
Frontotemporal Degener. 16, 291–292. doi: 10.3109/21678421.2015.1049183

Mackenzie, I. R., Baker, M., Pickering-Brown, S., Hsiung, G. Y., Lindholm, C., Dwosh, E., 
et al. (2006). The neuropathology of frontotemporal lobar degeneration caused by 
mutations in the progranulin gene. Brain 129, 3081–3090. doi: 10.1093/brain/awl271

Martin, S., Al Khleifat, A., and Al-Chalabi, A. (2017). What causes amyotrophic 
lateral sclerosis? F1000Res. 6, 371. doi: 10.12688/f1000research.10476.1

Morris, A. P. (2011). Transethnic meta-analysis of genomewide association studies. 
Genet. Epidemiol. 35, 809–822. doi: 10.1002/gepi.20630

Münch, C., Sedlmeier, R., Meyer, T., Homberg, V., Sperfeld, A. D., Kurt, A., et al. 
(2004). Point mutations of the p150 subunit of dynactin (DCTN1) gene in 
ALS. Neurology 63, 724–726. doi: 10.1212/01.WNL.0000134608.83927.B1

Murakami, T., Qamar, S., Lin, J. Q., Schierle, G. S., Rees, E., Miyashita, A., et al. 
(2015). ALS/FTD Mutation-induced phase transition of FUS liquid droplets 
and reversible hydrogels into irreversible hydrogels impairs RNP granule 
function. Neuron 88, 678–690. doi: 10.1016/j.neuron.2015.10.030

Nguyen, H. P., Van Mossevelde, S., Dillen, L., De Bleecker, J. L., Moisse, M., 
Van Damme, P., et al. (2017). NEK1 genetic variability in a Belgian cohort of 
ALS and ALS-FTD patients. Neurobiol. Aging 61, 255.e1–255.e7. doi: 10.1016/j.
neurobiolaging.2017.08.021

Nguyen, H. P., Van Broeckhoven, C., and van der Zee, J. (2018). ALS genes in the 
genomic era and their implications for FTD. Trends Genet. 34, 404–423. doi: 
10.1016/j.tig.2018.03.001

Nicolas, A., Kenna, K. P., Renton, A. E., Ticozzi, N., Faghri, F., Chia, R., et al. 
(2018). Genome-wide analyses identify KIF5A as a novel ALS gene. Neuron 97, 
1268–1283.e6. doi: 10.1016/j.neuron.2018.02.027

Nomura, T., Watanabe, S., Kaneko, K., Yamanaka, K., Nukina, N., and 
Furukawa,  Y. (2014). Intranuclear aggregation of mutant FUS/TLS as a 
molecular pathomechanism of amyotrophic lateral sclerosis. J. Biol. Chem. 289, 
1192–1202. doi: 10.1074/jbc.M113.516492

Orban, P., Devon, R. S., Hayden, M. R., and Leavitt, B. R., (2007). “Juvenile 
amyotrophic lateral sclerosis,” in Handbook of Clinical Neurology, Motor Neuron 
Disorders and Related Diseases, vol. 82. Eds. A. A. Eisen, P. J. Shaw (Amsterdam, 
The Netherlands: Elsevier B.V.) 301–312. doi: 10.1016/S0072-9752(07)80018-2

Orlacchio, A., Babalini, C., Borreca, A., Patrono, C., Massa, R., Basaran, S., 
et al. (2010). SPATACSIN mutations cause autosomal recessive juvenile 
amyotrophic lateral sclerosis. Brain 133, 591–598. doi: 10.1093/brain/awp325

Pang, S. Y., Teo, K. C., Hsu, J. S., Chang, R. S., Li, M., Sham, P. C., et al. (2017). 
The role of gene variants in the pathogenesis of neurodegenerative disorders as 
revealed by next generation sequencing studies: a review. Transl. Neurodegener. 
6, 27. doi: 10.1186/s40035-017-0098-0

Peters, O. M., Ghasemi, M., and Brown, R. H. Jr. (2015). Emerging mechanisms 
of molecular pathology in ALS. J. Clin. Invest. 125, 1767–1779. doi: 10.1172/
JCI71601

Poirier, K., Lebrun, N., Broix, L., Tian, G., Saillour, Y., Boscheron, C., et al. (2013). 
Mutations in TUBG1, DYNC1H1, KIF5C and KIF2A cause malformations of 
cortical development and microcephaly. Nat. Genet. 45, 639–647. doi: 10.1038/
ng.2613

Pozzi, L., Valenza, F., Mosca, L., Dal Mas, A., Domi, T., Romano, A., et al. (2017). 
TBK1 mutations in Italian patients with amyotrophic lateral sclerosis: genetic 
and functional characterisation. J. Neurol. Neurosurg. Psychiatry. 88, 869-875. 
doi: 10.1136/jnnp-2017-316174

Puls, I., Jonnakuty, C., LaMonte, B. H., Holzbaur, E. L., Tokito, M., Mann, E., et al. 
(2003). Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456. 
doi: 10.1038/ng1123

Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., 
et al. (2002). A kinesin heavy chain (KIF5A) mutation in hereditary spastic 
paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189–1194. doi: 10.1086/344210

Renton, A. E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J. R., 
et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of 
chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268. doi: 10.1016/j.
neuron.2011.09.010

Renton, A. E., Chiò, A., and Traynor, B. J. (2014). State of play in amyotrophic 
lateral sclerosis genetics. Nat. Neurosci. 17, 17-23. doi: 10.1038/nn.3584

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., et al. (2015). 
Standards and guidelines for the interpretation of sequence variants: a joint 
consensus recommendation of the American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–
424. doi: 10.1038/gim.2015.30

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., 
Getz, G., et al. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. 
doi: 10.1038/nbt.1754

Salton, M., Elkon, R., Borodina, T., Davydov, A., Yaspo, M. L., Halperin, E., et al. 
(2011). Matrin 3 binds and stabilizes mRNA. PLoS One. 6, e23882. doi: 
10.1371/journal.pone.0023882

Shang, Y., and Huang, E. J. (2016). Mechanisms of FUS mutations in familial 
amyotrophic lateral sclerosis. Brain Res. 1647, 65–78. doi: 10.1016/j.
brainres.2016.03.036

Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., et al. 
(2002). dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 
308–311. doi: 10.1093/nar/29.1.308

Sleegers, K., Brouwers, N., Maurer-Stroh, S., van Es, M. A., Van Damme, P., 
van Vught, P. W., et al. (2008). Progranulin genetic variability contributes 
to amyotrophic lateral sclerosis. Neurology 71, 253–259. doi: 10.1212/01.
wnl.0000289191.54852.75

Strickland, A. V., Schabhüttl, M., Offenbacher, H., Synofzik, M., Hauser, N. S., 
Brunner-Krainz, M., et al. (2015). Mutation screen reveals novel variants and 
expands the phenotypes associated with DYNC1H1. J. Neurol. 262, 2124–2134. 
doi: 10.1007/s00415-015-7727-2

Suh, E., Grando, K., and Van Deerlin, V. M. (2018). Validation of a long-read 
pcr assay for sensitive detection and sizing of C9orf72 hexanucleotide 
repeat expansions. J. Mol. Diagn. 20, 871–882. doi: 10.1016/j.
jmoldx.2018.07.001

Sztriha, L., Panzeri, C., Kálmánchey, R., Szabó, N., Endreffy, E., Túri, S., et al. 
(2008). First case of compound heterozygosity in ALS2 gene in infantile-onset 
ascending spastic paralysis with bulbar involvement. Clin. Genet. 73, 591–593. 
doi: 10.1111/j.1399-0004.2008.00993.x

Thorvaldsdóttir, H., Robinson, J. T., and Mesirov, J. P. (2013). Integrative genomics 
viewer (IGV): high-performance genomics data visualization and exploration. 
Brief Bioinf. 14, 178–192. doi: 10.1093/bib/bbs017

Tripolszki, K., Csányi, B., Nagy, D., Ratti, A., Tiloca, C., Silani, V., et al. (2017a). 
Genetic analysis of the SOD1 and C9ORF72 genes in Hungarian patients 
with amyotrophic lateral sclerosis. Neurobiol. Aging 53, 195.e1–195.e5. doi: 
10.1016/j.neurobiolaging.2017.01.016

Tripolszki, K., Török, D., Goudenège, D., Farkas, K., Sulák, A., Török, N., et al. 
(2017b). High-throughput sequencing revealed a novel SETX mutation in a 
Hungarian patient with amyotrophic lateral sclerosis. Brain Behav. 7, e00669. 
doi: 10.1002/brb3.669

Ubogu, E. E., Hong, S. T., Akman, H. O., Dimauro, S., Katirji, B., Preston, D. C., 
et al. (2005). Adult polyglucosan body disease: a case report of a manifesting 
heterozygote. Muscle Nerve 32, 675–681. doi: 10.1002/mus.20384

van Damme, P. (2018). How much of the missing heritability of ALS is hidden 
in known ALS genes? J. Neurol. Neurosurg. Psychiatry 89, 794. doi: 10.1136/
jnnp-2018-318354

van Damme, P., Robberecht, W., and Van Den Bosch, L. (2017). Modelling 
amyotrophic lateral sclerosis: progress and possibilities. Dis. Model Mech. 10, 
537-549. doi: 10.1242/dmm.029058

Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: functional annotation 
of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 
38, e164. doi: 10.1093/nar/gkq603

Weedon, M. N., Hastings, R., Caswell, R., Xie, W., Paszkiewicz, K., Antoniadi, T., 
et al. (2011). Exome sequencing identifies a DYNC1H1 mutation in a large 
pedigree with dominant axonal charcot-marie-tooth disease. Am. J. Hum. 
Genet. 89, 308–312. doi: 10.1016/j.ajhg.2011.07.002

Williams, K. L., Topp, S., Yang, S., Smith, B., Fifita, J. A., Warraich, S. T., et al. 
(2016). CCNF mutations in amyotrophic lateral sclerosis and frontotemporal 
dementia. Nat. Commun. 7, 11253. doi: 10.1038/ncomms11253

Yang, Y., Hentati, A., Deng, H. X., Dabbagh, O., Sasaki, T., Hirano, M., et al. (2001). 
The gene encoding alsin, a protein with three guanine-nucleotide exchange 

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1002/ana.410440604
https://doi.org/10.3109/21678421.2015.1049183
https://doi.org/10.1093/brain/awl271
https://doi.org/10.12688/f1000research.10476.1
https://doi.org/10.1002/gepi.20630
https://doi.org/10.1212/01.WNL.0000134608.83927.B1
https://doi.org/10.1016/j.neuron.2015.10.030
https://doi.org/10.1016/j.neurobiolaging.2017.08.021
https://doi.org/10.1016/j.neurobiolaging.2017.08.021
https://doi.org/10.1016/j.tig.2018.03.001
https://doi.org/10.1016/j.neuron.2018.02.027
https://doi.org/10.1074/jbc.M113.516492
https://doi.org/10.1016/S0072-9752(07)80018-2
https://doi.org/10.1093/brain/awp325
https://doi.org/10.1186/s40035-017-0098-0
https://doi.org/10.1172/JCI71601
https://doi.org/10.1172/JCI71601
https://doi.org/10.1038/ng.2613
https://doi.org/10.1038/ng.2613
https://doi.org/10.1136/jnnp-2017-316174
https://doi.org/10.1038/ng1123
https://doi.org/10.1086/344210
https://doi.org/10.1016/j.neuron.2011.09.010
https://doi.org/10.1016/j.neuron.2011.09.010
https://doi.org/10.1038/nn.3584
https://doi.org/10.1038/gim.2015.30
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1371/journal.pone.0023882
https://doi.org/10.1016/j.brainres.2016.03.036
https://doi.org/10.1016/j.brainres.2016.03.036
https://doi.org/10.1093/nar/29.1.308
https://doi.org/10.1212/01.wnl.0000289191.54852.75
https://doi.org/10.1212/01.wnl.0000289191.54852.75
https://doi.org/10.1007/s00415-015-7727-2
https://doi.org/10.1016/j.jmoldx.2018.07.001
https://doi.org/10.1016/j.jmoldx.2018.07.001
https://doi.org/10.1111/j.1399-0004.2008.00993.x
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1016/j.neurobiolaging.2017.01.016
https://doi.org/10.1002/brb3.669
https://doi.org/10.1002/mus.20384
https://doi.org/10.1136/jnnp-2018-318354
https://doi.org/10.1136/jnnp-2018-318354
https://doi.org/10.1242/dmm.029058
https://doi.org/10.1093/nar/gkq603
https://doi.org/10.1016/j.ajhg.2011.07.002
https://doi.org/10.1038/ncomms11253


Identification of ALS Gene VariantsTripolszki et al.

13 August 2019 | Volume 10 | Article 732Frontiers in Genetics | www.frontiersin.org

factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. 
Nat. Genet. 29, 160–165. doi: 10.1038/ng1001-160

Zhang, H., Cai, W., Chen, S., Liang, J., Wang, Z., Ren, Y., et al. (2018). Screening 
for possible oligogenic pathogenesis in chinese sporadic ALS patients. 
Amyotroph. Lateral Scler.  Frontotemporal Degener. 19, 419–425. doi: 
10.1080/21678421.2018.1432659

Conflict of Interest Statement: The authors declare that the research was 
conducted in the absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The reviewer SK declared a past co-authorship with one of the authors MS to 
the handling editor.

Copyright © 2019 Tripolszki, Gampawar, Schmidt, Nagy, Nagy, Klivényi, Engelhardt 
and Széll. This is an open-access article distributed under the terms of the Creative 
Commons Attribution License (CC BY). The use, distribution or reproduction in 
other forums is permitted, provided the original author(s) and the copyright owner(s) 
are credited and that the original publication in this journal is cited, in accordance 
with accepted academic practice. No use, distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://doi.org/10.1038/ng1001-160
https://doi.org/10.1080/21678421.2018.1432659
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Comprehensive Genetic Analysis of a Hungarian Amyotrophic Lateral Sclerosis Cohort
	Introduction
	Patients and Methods
	Patients
	Methods
	DNA Extraction
	C9orf72 Repeat Expansion Detection
	Next-Generation Sequencing
	Variant Filtering
	Gene Sets of Custom Design Panel
	Statistical Analysis


	Results
	Genetic Variants Detected in Major ALS Genes
	Variants Detected in Minor ALS Genes
	Genetic Variants of Genes Related to Other Neurodegenerative and Neuromuscular Diseases

	Discussion
	Data Availability
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


