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ERBA VM
B9 not used irregular boundary, 

mostly hesitation 
lengthening

B3 sentence or clause 
boundary

main phrase boundary

B2 constituent boundary 
prosodically marked

intermediate phrase 
boundary

Bl constituent boundary 
not prosodically 
marked

not used

BO every other word 
boundary

every other word 
boundary

A4 not used emphatic or 
contrastive accent

A3 sentence accent 
(1 per B3 phrase)

not used

A2 primary phrase accent 
(1 per B2 phrase)

primary phrase 
accent

Al secondary phrase 
accent
(1 per Bl phrase)

secondary phrase 
accent

AO unaccentuated 
syllable

unaccentuated 
syllable

Table 1. Definition of the prosodic labels

For VM the prosodic reference labels are based on per­
ceptive evaluation done by non-naive listeners [11]. For 
ERBA they were created automatically based on rules us­
ing linguistic knowledge and expectations about prosodic 
marking. Listening experiments showed a high agreement 
with the automatically created labels [2], Thus there is 
a rough correspondence between the reference labels for 
ERBA and VM. A list of all the labels is given in Ta­
ble 1. The VM test utterances contain 74 B3, 36 B2, 
13 B9, and 349 BO boundaries not counting the end of 
utterances. They also contain 243 accentuated words.
Note, that the boundary labels are attached to word 
boundaries and the accent labels to each of the syllables 
in the spoken words.

3. ACOUSTIC-PROSODIC FEATURES
The computation of the features is based on a time align­
ment of the words on the phoneme level computed during 
word recognition. For each syllable to be classified the fol­
lowing prosodic features were computed from the speech 
signal for the syllable under consideration and for the six 
syllables in the left and the right context:

• the normalized duration of the syllable nucleus [16]
• the FO minimum, maximum, onset, and offset and 

the maximum energy and their positions on the time 
axis relative to the position of the actual syllable

• the mean energy, and the mean FO
• flags indicating if the syllable carries the lexical word 

accent or if it is in a word final position
Furthermore the following features were computed only 
for the syllable under consideration:

• the length of the pause (if any) preceding or succeed­
ing the word containing the syllable

• the linear regression coefficients of the FO-contour 
and the energy contour computed over different 15 
windows to the left and to the right of the syllable

This yields a total of 242 features. The feature set proba­
bly contains useless or redundant features, but to our ex­
perience this does not hurt the classification performance 
of the neural networks provided enough training data. In 
[4] the contribution of different groups of features to the 
classification results was investigated.

4. METHODS
4.1. Training of the acoustic-prosodic model
Multi-layer perceptrons (MLP) were trained using Quick­
propagation to classify the features described in Section 3. 
Training is based on the time alignment of the spoken 
word chain, which was computed with our hidden Markov 
model (HMM) word recognizer [13]. For the experi­
ments on the VM data, MLPs with 40/20 nodes in the 
first/second hidden layer were used. For ERBA, where 
more training data is available, a MLP with 60/30 nodes 
in the first/second hidden layer was used. The MLPs have 
one output node per class.
For ERBA one MLP was trained to distinguish between 
the six classes A0B01, A0B2, A0B3, A123B01, A123B2, 
A123B3. All the 242 features described in Section 3 were 
used as input. This MLP was used separately for bound­
ary and accent classification. In both cases the MLP out­
puts were added appropriately.
Since for VM much less training data was available, we 
used different subsets of the prosodic features of Section 3, 
and we trained separate MLPs for boundary and accent 
classification: one MLP distinguishes between AO and 
A124, another between BO, B2, B3, and B9, and a third 
one between B029 and B3.
In the following, we assume that the MLP computes a 
posteriori probabilities. However, in order to balance for 
the a priori probabilities of the different classes, during 
training the MLP was presented with an equal number 
of feature vectors from each class. Furthermore, the sum 
of the MLP outputs was normalized to be equal to one, 
though we observed that in most cases the sum is close to 
one.

4.2. Polygram-classification
In [5] we already showed that a combination of an 
acoustic-prosodic classifier for phrase boundaries with a 
stochastic language model improves the recognition rate. 
At that time we worked on the spoken word chain. In the 
following a modification of the language models is pro­
posed, so that they can be used for classification on the 
basis of word graphs.
Let w, be a word out of a vocabulary where i denotes the 
position in the utterance; vi denotes a symbol out of a pre­
defined set V of prosodic symbols. These can be for exam­
ple {B01,B2, B3}, {A01,A23} or a combination of both 
{B01A01, B01A23,..., B3A23} depending on the specific 
classification task (cf. Section 2). For example vt = B01 
means that the ith word in an utterance is succeeded by 
the prosodic label B01 (i.e., no prosodic boundary), and 
Vi = A23 means that the ith word is accentuated.
Ideally one would like to model the following a priori prob­
ability

P(W1«1W2V2 ■ • • WmUm)
which is the probability for strings, where words and 
prosodic labels alternate (m is the number of words in 
the utterance).
In [5] we used a language model similar to this one to 
score chains containing words and prosodic labels. In the 
following, we are interested in the recognition of prosodic 
classes given a (partial) word chain (which in the case of 
word graphs is obtained from the best path through the 
word hypothesis to be classified). When determining the 
appropriate label to substitute Vi the labels at positions 
Vi-k and Vi+k are not known (k = 1,2,...). Thus, we 
used the following probabilities:

P(W1 . . . WjViWi + l . . . Wm) = PlPvPr (1)

where Pi, Pv, and Pr are defined as follows:

Pi = P(wi)P(w2|wi) • ... • P(wi|wi ... W£-i) (2) 
Pv = P(vi\wi ...?«,) (3)
Pr — P(wi + 1|wi ...WiVi)

■ ■ P(wm|wi . . . WiViWi+l . . . Wm-1) (4) 
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Terms like wi ...w, in P(vtjwi ... Wi) are called history. 
As usual in stochastic language modelling the history has 
to be restricted to a certain length [8]. The stochastic 
language model approach we used is the so called polygram 
[13], where the histories have variable length depending 
on the available training data. A maximum history length 
can be defined.
For each word boundary in the training corpora of ERBA 
and VM a sufficient number of context words (according 
to the maximum history length) and the corresponding 
prosodic reference label are extracted from the text cor­
pora and used to estimate the probabilities of the equa­
tions above by counting the frequencies (maximum likeli­
hood estimation) as usually done when training stochastic 
language models. In fact, not the above probabilities are 
used, but the words are put into categories. In the case of 
ERBA only the names of train stations, days of the week, 
month names, ordinal numbers, and cardinal numbers are 
put into categories. All other 392 words are not grouped 
into categories. In the case of VM all the 1186 words were 
put into 150 categories.
We used the so trained polygrams for the classification of 
prosodic labels. Given a word chain wi ... w,... wm, the 
appropriate prosodic class v* is determined by maximizing 
the probability of equation 1:

v* = argmax P(wi... w,ViWi+i ... wm) 
v;eV

Note, that the probability Pi is independent of vi (equa­
tion 2). Thus this maximization (and v*) are indepen­
dent from Pi. Note also, that v* does not only depend on 
the left context (probability Pv, equation 3) but also on 
the words succeeding the word w, (probability Pr, equa­
tion 4). In practice, the context is restricted to the maxi­
mum history length Hl used during training of the poly­
gram:

v* = argmax P(wi-hl ■ ■ ■ wiviwi+i... Wi+sL) (5)

4.3. Prosodic scoring of word graphs
A word graph is a directed acyclic graph [9]. Each edge 
corresponds to a word hypothesis which is attached with 
the acoustic probabilities, the first and the last time 
frame, and a time alignment of the underlying phoneme 
sequence. The graph has a single start node (correspond­
ing to time frame 1) and a single end node (the last time 
frame in the signal). Each path through the graph from 
the start to the end node forms a sentence hypothesis. 
Each edge in the graph lies on at least one such path. In 
the following the term neighbors of a word hypothesis in 
a graph refers to all its predecessor and successor edges. 
With prosodic scoring of word graphs we mean in fact 
the annotation of the word hypotheses in the graph with 
the probabilities for the different prosodic classes. These 
probabilities are used by the other modules (e.g. pars­
ing) of a speech understanding system. Note, that also 
in the case of phrase boundaries we do not compute the 
probability for a prosodic boundary located at a certain 
node in the word graph, but for each of the word hy­
potheses in the graph the probability for a boundary be­
ing after this word is computed. This is important, since 
the acoustic-prosodic features also include the duration 
of syllable nuclei; these are most robustly obtained from 
the time alignment of the phoneme sequence underlying a 
word hypothesis computed with the word recognizer, and 
these durations have to be normalized with respect to the 
intrinsic phoneme duration.
The following steps have to be conducted for each word 
hypothesis w,:

1. determine recursively appropriate neighbors of the 
word hypothesis until a word chain wt-k ... w,+i is 
built which contains enough syllables to compute the 
acoustic-prosodic feature vector and where k > Hl, 
1>Hl.

2. for each vi € V and for each syllable s in the word 
wi compute the probabilities

Psvi = — where
L,,ev

Qsvi = P(vi\as)Pi(wi-HL ■ ■ ■ WiViWi+l . . . Wi+HL )
Note, that in the case of boundaries only the word 
final syllable is considered.

cis denotes the acoustic-prosodic feature vector, £ is a 
weight for the combination of the acoustic-prosodic model 
probability (P(yi|c;s) computed by the MLP) and the lan­
guage model probability; its value has been determined 
empirically. Different values were used for the different 
classification experiments described in Section 5.
In the current implementation we just select the hypothe­
sis which is most probable according to the acoustic model 
as the “appropriate” neighbor of wt. Note, that this is 
suboptimal, because the context words may differ from 
the spoken words. An exact solution would be a weighted 
sum of all probabilities P.V1 computed on the basis of all 
the possible contexts. However, this does not seem to be 
feasible under real-time constraints. As a trade-off the 
neighbors could be determined on the basis of the best of 
the paths through the graph which contain the hypothe­
sis Wi. The best path could be determined efficiently with 
dynamic programming using acoustic and language model 
scores.
The duration of a syllable nucleus should be normalized 
with respect to the average speaking rate, which is the 
reciprocal of the average of the intrinsically normalized 
phoneme durations [16]. The speaking rate has to be de­
termined on the basis of the word graph:

• the local speaking rate is determined on the neighbors 
of word Wi

• the global speaking rate is the average of the speaking 
rates of all hypotheses in the graph weighted by their 
acoustic scores.

All the experiments described below were obtained by us­
ing the global speaking rate, for which - compared to the 
local speaking rate - slightly better results could be ob­
served for experiments based on the word chain; whereas 
on word graphs the local speaking rate performs slightly 
better.
The evaluation of the prosodic scores only makes sense on 
the word graphs containing the spoken word chain:

1. score the word graph prosodically with the probabil­
ities PSVi. Note, that this is based on the best paths 
through the hypotheses which may be different from 
the spoken word chain

2. for each word contained in the (best) path corre­
sponding to the spoken word chain and in the case 
of accent classification for each syllable in the word 
determine the prosodic class with the largest proba­
bility PSVi (i.e. the recognized class)

3. compare the recognized classes with the reference la­
bels and determine the recognition error

5. EXPERIMENTAL RESULTS
In Tables 2-5 the recognition rates for different experi­
ments on ERBA and VM are presented. LM^ denotes the 
polygram-classification as described in Section 4.2, where 
h specifies the maximum context allowed during train­
ing of the polygram. LM(,i9rOm denotes the probabilities 
P(«i|wi), i.e. no (suboptimal) context has been used. The 
columns ‘word chain’ refer to experiments conducted on 
the time alignment of the spoken word chain.
On ERBA we could improve the recognition rate for ac­
centuated vs. non-accentuated syllables with respect to 
[4] from 88.7% to 94.9%. The results for the bound­
ary recognition are given in Table 2: using the MLP the 
recognition rate could be improved from 75.7% to 90.3% 
in comparison to [4]; the main improvement results from 
the additional use of syllable nucleus durations of the con­
text. With the polygram classifier alone a recognition rate 
of 99.3 could be achieved. This surprisingly good result
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Table 2. Recognition rates in percent for 50.1 vs. B2 vs. B3 
on ERBA (word chains)

average 501 52 53
MLP 90.3 89.8 92.2 90.6
LMi 97.7 98.4 95.S 93.9
LM3 99.3 99.6 98.4 99.4

Table 3. Recognition rates in percent for 501 vs. B2 vs. B3 
vs. 59 on VM (word chains)

average 50 52 53 59MLP 60.6 59.1 48.3 71.9 68.5
LMs 82.1 95.9 11.4 59.6 28.1

is at least partly caused by the rather restricted syntax of 
the ERBA material.
Table 3 shows the recognition rates for the VM 4-class 
boundary problem. The results seem not to be very good. 
Probably, the main reason for this is the small amount of 
available training data.
In Table 4 the recognition rates for accentuated vs. non­
accentuated syllables for VM are given. The performance 
on word graphs is only slightly worse than on the word 
chain.
Currently the syntactic analysis in VM is mostly inter­
ested in probabilities for B3 boundaries. Thus, we per­
formed a series of experiments the results of which are 
presented in Table 5. Due to the suboptimal context de­
termined for each word hypothesis, the recognition rate 
drops when switching from the word chain to word graphs. 
Increasing the history size modeled by the polygram im­
proves the recognition rate, even in the case of word 
graphs. Due to the sparse training data a history of more 
than 2 symbols does not change the recognition rate. A 
combination of both, acoustic-prosodic model (MLP) and 
stochastic language model (polygram LM2) yields the best 
recognition rate (91.7%).
We also tested on VM the MLP trained on ERBA. The 
recognition rate for accents dropped by only 4%, while the 
one for the B3 boundaries dropped by 17%. We believe 
that this increase in error is mostly due to the differences 
in intonation between read and spontaneous speech.

6. CONCLUSION
We showed that the prosodic scoring of word graphs is fea­
sible without a great reduction in recognition rate. Fur­
thermore, a method for combining acoustic-prosodic and 
stochastic language model scores for prosodic classifica­
tion purposes has been successfully applied on the basis 
of word graphs.
In preliminary parsing experiments performed by our col­
leagues at Siemens München [3] on word graphs computed 
on VM speech data, the parse time and the number of 
parse trees could be decreased even more than reported 
for the ERBA data [1] when using probabilities for B3 
boundaries computed with the MLP described in this pa­
per.
The prosodic scores for all of the alternative classes of 
interest are attached to the word hypotheses in the graph 
and passed to the other modules (e.g. syntactic analysis, 
semantic interpretation). They are supposed to use these 
scores rather than a single class symbol.
In this paper we did not consider the classification of sen­
tence mood depending on the intonation contour. How­
ever, in the current version of our prosody module the 
classifier described in [6] is used to compute the probabil­
ity for three different classes of sentence mood which is as 
well attached to the word hypotheses in the graph.
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