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ABSTRACT
While deep learning is undoubtedly the predominant learning tech-
nique across speech processing, it is still not widely used in health-
based applications. The corpora available for health-style recogni-
tion problems are often small, both concerning the total amount of
data available and the number of individuals present. The Bipolar
Disorder corpus, used in the 2018 Audio/Visual Emotion Challenge,
contains only 218 audio samples from 46 individuals. Herein, we
present a multi-instance learning framework aimed at constructing
more reliable deep learning-based models in such conditions. First,
we segment the speech files into multiple chunks. However, the
problem is that each of the individual chunks is weakly labelled,
as they are annotated with the label of the corresponding speech
file, but may not be indicative of that label. We then train the deep
learning-based (ensemble) multi-instance learning model, aiming
at solving such a weakly labelled problem. The presented results
demonstrate that this approach can improve the accuracy of feedfor-
ward, recurrent, and convolutional neural nets on the 3-class mania
classification tasks undertaken on the Bipolar Disorder corpus.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification; • Applied computing → Health care information
systems; Health informatics.
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1 INTRODUCTION
There has been an acceleration in recent years in the number of
papers focused around the application of machine learning in the
health domain [8]. A striking aspect of these papers is that, when
reviewing the modelling techniques implemented, there is a clear
lack of deep learning based approaches [8]. While deep learning
has had great success in many speech-based learning tasks, [11,
18, 19], these tasks are commonly undertaken on large databases,
thus enabling the learning of the many of millions of parameters
in contemporary network structures. Speech-based health tasks,
however, are commonly conducted with smaller datasets, bringing
forth a need to seek novel and alternate approaches to facilitate the
use of deep learning [8].

An example of a ‘smaller’ health corpus is the Bipolar Disor-
der (BD) corpus [6], which was recently made available for re-
search purposes as part of the 2018 Audio/Visual Emotion Challenge
(AVEC) [26]. The corpus contains only 218 speech samples from
46 individuals. The diagnosis of bipolar disorders, especially in pri-
mary care (general health) settings, is difficult [3]. Further, as early
intervention strategies can have positive impacts, there is a need
for tools which support an early and objective diagnosis [7]. The
BD corpus was collected to aid efforts into identifying speech- and
facial-based markers indicative of different mania level displayed
by individuals with Bipolar – namely remission, hypomania, and
mania. Note that the work presented herein focuses on using speech
data only for this classification task of mania level.

Despite having small amounts of data, in terms of the number of
speakers and the overall number of samples, it is still possible to em-
ploy deep learning in speech-health applications. Techniques such
as transfer learning [4], data augmentation [10], and representation
learning [14] have all been used in this domain. One such approach,
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which to the best of our knowledge is yet to be applied in the speech-
health domain, ismulti-instance learning. Multi-instance learning is
the training of a machine learning model with a ‘bag’ of instances,
rather than a single feature vector [13]. Multi-instance learning
has been used in a diverse range of tasks including speech-based
interest recognition [28], and audio event detection [17].

The work presented in this paper uses chunking to artificially
increase the number of data instances for the training of a Deep
Neural Network (DNN) based classifier. However, while we assign
each chunk to a label corresponding to the clip it was partitioned
from, we considered all chunks as being weakly labelled. We make
this assumption on the basis that while some chunks will be indica-
tive of their corresponding labels, we cannot guarantee that this
is the case across all chunks. We, therefore, explore the benefits of
using different multi-instance learning techniques [1], in combina-
tion with multiple DNN-based classifiers, to overcome this weakly
labelled problem. The aim is to construct DNN models, under the
framework of multi-instance learning, such that we can train re-
liable DNN models on datasets with smaller amounts of data. We
demonstrate the effectiveness of this approach on the BD corpus.

Only a small number of papers have used deep learning on
the BD corpus to date. A transfer learning approach is presented
in [35]. The authors of [35] trained a Long Short-Term Memory Re-
current Neural Network (LSTM-RNN) [15] on affective data from the
RECOLA dataset [27], and used it to extract ‘emotion’ based features
from the BD corpus. A data-driven deep learning approach was
presented in [12]. This approach consisted of an Inception Net [31]
combined with an LSTM-RNN designed to learn multi-resolution
features from aMel Frequency Cepstral Coefficients (MFCCs) feature
space. Interestingly, other than the AVEC 2018 baseline system [26],
this approach did not outperform the more conventional machine
learning systems presented in the challenge [30, 33].

The rest of this paper is laid out as follows. First, our multi-
instance learning framework is presented in Section 2. We then
present our key experimental settings, including an overview of
the BD corpus in Section 3. Our experimental results are given in
Section 4, and finally our conclusions and future work in Section 5.

2 METHODOLOGY
Compared with more standard speech recognition tasks, based on
strongly labelled training data, the bipolar disorder classification
task with weakly labelled data contains only clip-level labels. In this
section, we first describe the three deep neural networks utilised in
this work. We then introduce the multi-instance learning approach
which unifies the predictions from the weakly labelled data to
formulate the overall clip-level labels.

2.1 Deep Neural Networks
We apply three common deep learning methods in the multi-
instance learning framework: feed-forward DNNs (herein denoted
as DNNs), Gated Recurrent Neural Networks (GRNNs), and Con-
volutional Neural Networks (CNNs). These three models have
achieved success in similar audio classification tasks [23, 25], and
health-related speech processing tasks [9, 34]. All of the three net-
works have a fully connected layer and a softmax layer for the
final prediction (Table 1). Aside from these aspects, the networks
differ slightly. The DNN models are constructed using two fully

Table 1: A comparison of the structures of three deep neural
networks examined in our proposed mutli-instance learn-
ing framework. Note, ‘fc’ is a fully connected layer, and
‘conv’ denotes a convolutional layer. The value following
each layer is the number of output neurons.

DNN RNN CNN

fc-1024 GRU-256 conv-64
fc-1024 GRU-256 conv-128; local max-pool

GRU-256 conv-256; global max-pool

a fully connected layer with three neurons
a softmax layer of probabilities for three classes

connected layers. The GRNN models include three Gated Recurrent
Unit (GRU) layers [5]; we choose the label of the last time step in
GRNNs as the final prediction. Based on previous work [22, 23], the
CNN structure contains three convolutional layers with a kernel
size of (3, 3), a local max pooling layer with a kernel size of (2, 2),
and a global max pooling layer. We have previously observed that
the global max pooling tends to result in accurate classification by
reducing the dimensionality of the output of the final convolutional
layer [23]. The structures and parameters of these networks were
set empirically to fit the training data of BD corpus.

Differing from using conventional machine learning methods
to process the complete speech samples, we apply the deep neural
networks to learn high-level representations from smaller speech
chunks. The classification procedure has two potential benefits.
First, segmenting speech clips into smaller chunks enables the use
of deep learning which relies on big data. Further, deep neural
networks can better fit the data by learning non-linear functions
more effectively than conventional machine learning classifiers.

However, within this framework, the label of each chunk is
unknown, and hence must be assumed weakly labelled. This weakly
labelled problem results in two main difficulties: (i) how to give
each chunk in a clip a label; and (ii), how to predict a single label
for an entire clip from the varied chunk-level predictions. Next, we
introduce our methodology to overcome these two difficulties via a
multi-instance learning framework.

2.2 Multi-instance Learning
To solve the weakly labelled data problem, we now introduce two
stages of multi-instance learning framework. The first is known as
instance-level classification, and the other is bag-level classification.
2.2.1 Instance-level Classification. When using strongly labelled
data, the data set L contains a set of pairs {(x i ,yi ) | i = 1, ...,m},
where m denotes the total number of speech samples, x i is a
d-dimensional feature vector, x i ∈ Rd , and yi is the label for
the i-th speech sample, yi ∈ {0, 1}C where C is the number of
classes. Multi-instance learning, on the other hand, aims to solve
the problems associated with weakly labelled data. Multi-instance
learning is defined in terms of bags, where single bag consists
of several instances. The number of instances can vary between
bags. In such a framework, the data set L now consists of a va-
riety of pairs {(Bi ,yi ) | i = 1, ...,m}, where the bag Bi is labelled
as yi . A bag Bi contains feature vectors of multiple instances,
Bi = {x ji | j = 1, ...,ni }, where ni means the total number of
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instances in the bag Bi . In the training procedure, as the data is
weakly labelled, the label of each instance x ji is assumed to be
consistent with the label of bag Bi .

In our multi-instance learning framework for the level of ma-
nia classification, we consider each speech clip as a bag, contain-
ing several chunks, herein named as instances. In the instance
space, constructed by speech chunks, an instance-based classifier
f (x) ∈ {0, 1}C can be constructed, from training data, using the
aforementioned deep learning methods (Section 2.1). Further, given
a new bag B, there is a need to construct a mapping between the
objective bag-level classifier F (B) ∈ {0, 1}C and f (x). The classi-
fier F (B) can be expressed by: F (B) = дx ∈B (f (x)), where д(f (x))
denotes a transfer function based on f (x).

2.2.2 Bag-level Classification. In order to define the transfer func-
tion mentioned above, four different assumptions can be made. The
first is the standard assumption in multi-instance learning, and the
others are the vocabulary-based assumption, the collective assump-
tion, and the weighted collective assumption [1].

Standard Assumption: To obtain a bag-level classifier F (B),
the standard assumption assumes that a speech clip is labelled as
positive for a specified mania level when the patient’s state at this
level occurs at more than one chunk. On the other hand, a speech
clip is labelled as negative when the patient’s state at the specified
level does not occur at any chunk. Under this standard assumption,
we can then define a bag-level classifier using the max rule,

F (B) = max
x ∈B

f (x). (1)

The standard assumption has been applied in many circum-
stances [29, 32]. However, it has an underlying issue, in that for
certain instances it can make the bag positive when the real label
is negative. It over- or underestimates the contribution of other
instances. Thus, more accurate approaches are used in our work to
consider the information from all instances to make a decision.

Vocabulary-based Assumption: The simplest solution to the
problem from the standard assumption is to represent the statistic
information of each bag using a vocabulary. We apply a histogram-
based method to construct the vocabulary [1]. To do this, we com-
pute a function which maps a bag B into a histogramH = h1, ...,hC ,
where thek-th histogramhk denotes the number of instances which
fall into class k . The mapping function can, therefore, be defined
asM(B,H ) = (h1, ...,hC ). Finally, the label of bag B is predicted as
the class which holds the maximum histogram count.

Collective Assumption: The collective assumption states that
all instances in a bag have some form of contribution to the bag’s
label. The collective assumption can be realised by using the mean
rule [16]. The mean rule assumes all instances in a bag have equal
contribution to the bag’s label. Given a new bag B, the bag-level
classifier can then be obtained by:

F (B) =
1
|B |

∑
x ∈B

f (x), (2)

where |B | is the normalisation constant for that final evaluation.
Themean rule can provide good results in many applications [9, 23].
However, the instances can also contribute at a variety of levels to
the bag’s label in the real data.

Table 2: The distribution of speech clips(chunks) for the
three classes in the three data sets. The speech clips are
the official dataset of AVEC 2018 [26]. The chunks are ob-
tained by chunking speech samples by a sliding window
with length of one frame.

Mania level Training Development Test

Remission 25(121 665) 18( 80 234) 18( 80 234)
Hypomania 38(314 463) 21(117 027) 18(117 027)
Mania 41(355 323) 21(133 198) 18(133 198)

Sum 104(791 451) 60(330 459) 54(388 386)

Weighted Collective Assumption: As an alternative implemen-
tation of the mean rule, the weighted rule under the weighted col-
lective assumption computes a weight value for each instance in a
bag. The weighted rule can be defined as,

F (B) =
1∑

x ∈B w(x)

∑
x ∈B

w(x)f (x), (3)

wherew(x) denotes the weight of the classifier f (x). To compute
the weight values, we propose the use of theMargin Sampling Value
(MSV) of the predicted class for each instance. We define the MSV
for an instance x using:

C(x) = | |P0 − P1 | |, (4)

where the P0 and P1 are the first and second maximum poste-
rior probabilities respectively. MSV has been used for decision
fusion [24] as metrics directly and in a cooperative learning frame-
work as a query function [36]. To the best of our knowledge,
MSV has not been applied to determine the weight value in multi-
instance learning. Finally, to ensure the sum of all MSVs in a bag is
equal to one, we apply a softmax function on the MSVs:

C(x) =
eC(x )∑

x ∈B e
C(x )
. (5)

3 KEY EXPERIMENTAL SETTINGS
3.1 Database
The BD corpus, as used in the AVEC 2018 [26], contains recordings
from 46 Turkish speaking individuals (16 females, 30 males) who
have bipolar disorder. Both audio and video data were recorded
while the participants completed various speaking tasks. At each
recording, the patients’ level of mania, a core feature of bipolar, was
determined using the Young Mania Rating Scale (YMRS). According
to their corresponding YMRS scores, the recordings are grouped
into one of three levels: remission (YMRS <= 7), hypomania (7 <
YMRS < 20), and mania (YMRS >= 20), leading to a three-class clas-
sification task. As part of AVEC 2018, the data set was partitioned
into training/development/test sets (Table 2). For further informa-
tion on the corpus, the interested reader is referred to [6, 26]. In
this work, we analyse the speech data with sampling rate of 16 kHz.

3.2 Ensemble Learning
Ensemble approaches have been repeatedly shown to improve the
performance of multiple single (weak) classifiers [2, 37]. As an ex-
tension to our framework, we apply the approach of bagging to
ensemble the classifiers learnt through multi-instance learning [37].
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Figure 1: Confusion matrices of the development and test set from our best result on the BD corpus.

Table 3: The results of differentmethods of bag-level classifi-
cation. The form of results is represented as UAR[%] on test
set (development set). The results are presented as two parts:
the multi-instance learning from single iteration, and the
ensemble multi-instance learning from multiple iterations.

UAR[%] Max Histogram Mean Weighted

Multi-instance Learning

CNN 51.9(51.9) 53.7(56.9) 53.7(55.3) 55.6(56.9)
DNN 48.1(44.7) 53.7(58.2) 53.7(56.6) 51.9(58.5)
RNN 44.4(53.4) 50.0(56.3) 50.0(56.3) 53.7(57.7)

Ensemble Multi-instance Learning

CNN 46.3(55.3) 46.3(55.3) 50.0(54.0) 51.9(56.6)
DNN 42.6(43.1) 51.9(61.6) 53.7(61.6) 57.4(61.6)
RNN 46.3(48.7) 51.9(60.1) 51.9(56.9) 55.6(58.5)

First, the training set is used to form a set of deep neural networks,
resulting in a set of classifiers {S1, ..., St } obtained from t training it-
erations. We then bag the outputs of all of these classifiers using the
bag-level classification methods introduced earlier (Section 2.2.2).

3.3 Experimental Set-up
First, the speech clips are segmented into a set of chunks by a
sliding window of width {1, 2, 4, 8, 16, 32} frames and a step size
of 1 frame in order to obtain a similar number of chunks from
different window lengths. Therefore, the chunks obtained by a
window with a length of 1 frame are distributed as Table 2. We
then extract MFCCs with the bands 1–20 empirically as the low-
level descriptors for each chunk. MFCCs have achieved success in
many applications, such as speech-based emotion recognition [21],
and audio classification [20]. The three deep learning algorithms
are trained for 6 000 iterations each with a batch size of 128, an
initial learning rate of 0.001, using Adam optimisation. To counter
over-fitting, and stabilise the training procedure, the learning rate
is decreased by a factor of 0.9 at every 50 iteration steps. The set-up
of parameters of deep neural networks were empirical.

4 RESULTS AND DISCUSSIONS
In our experiments we compared twomethods,multi-instance learn-
ing and ensemble multi-instance learning. The classification metric
is Unweighted Average Recall (UAR), which was the metric in AVEC
2018. The baseline was obtained using Support Vector Machines

Table 4: Comparison of the state-of-the-artmethods and our
deep neural networks-based multi-instance learning frame-
work. The compared methods can focus on either Audio
(A) data, or both Audio and Video data (A+V). Our multi-
instance learning approach is only applied on audio data.

UAR[%] Dev Test

SVMs (A) [26] 55.0 50.0
GEWELMs (A) [30] 55.0 48.2
Multistream (A+V) [35] 78.3 40.7
IncepLSTM (A+V) [12] 65.1 –
Hierarchical recall model(A+V) [33] 86.8 57.4
Multi-instance learning (A only) 61.6 57.4

(SVMs) for classification that were trained and tested with a single
feature representation extracted from the entire speech sample [26].

For the multi-instance learning, we choose the best results ob-
tained from the chunks with different window lengths of {1, 2, ..,
32} (Section 3.3) for each setup of network and bag-level classifi-
cation method. Also, each deep learning method was stopped at
the 5000-th training iteration. From these experiments we observed
that the bag-level classification approaches of histogram,mean, and
weighted perform better than max (Table 3). This observation is
consistent with the analysis presented in Section 2.2.2, , themax rule
will perform the weakest as it does not consider the contribution
of all instances in a bag.

In the ensemble multi-instance learning, the ten models are
formed from {5 000, 5 100, ..., 5 900} training iterations. Classifi-
cation performances are improved by using the ensemble extension
(Table 3). This improvement is observable across the four bag-level
classification methods, and in the three deep learning frameworks,
especially DNNs and RNNs.

The best result obtained by our proposed method is highly com-
petitive with those obtained by state-of-the-art methods (Table 4).
Except for [35] which also segmented the speech files, these meth-
ods fed features obtained from the full audio/video records into
SVMs [26], Greedy Ensembles of Weighted Extreme Learning Ma-
chines (GEWELMs) [30], Inception LSTM (IncepLSTM) [12], or a
hierarchical recall decision tree model [33]. Our multi-instance
learning method performs better than all other audio-based meth-
ods, and better than, or comparable with, the methods using both
speech and visual information. Notably, our algorithm improves
the performance significantly more than the multistream approach
by [35] on the test set (p < .05 in a one-tailed z-test).
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Finally, when viewing two confusion matrices of our best results
on the development and test sets from ensemble multi-instance
learning with the weighted rule, it can be observed that the classes
of remission and mania are classified better than the class of hypo-
mania (Figure 1). We speculate that the reason might be that the
YMRS of the class hypomamia sits between the other two classes
(aforementioned in Section 3.1), meaning these samples are more
challenging to be classified.

5 CONCLUSIONS
We proposed a multi-instance learning framework based on deep
neural networks to process the weakly labelled speech data for clas-
sifying the level of mania in bipolar patients. In the instance-level
classification, the speech clips were segmented into a set of chunks
as the input of deep neural networks. Then, the labels of speech
clips were predicted using the methods in bag-level classification.
The best result was obtained using an ensemble multi-instance
learning framework with the weighted rule. This model performed
better than, or matched to, the state-of-the-art methods on the test
partition of the Bipolar Disorder corpus from the 2018 Audio/Visual
Emotion Challenge.

In future efforts, we will consider training the neural networks at
the bag-level instead of the instance-level. Further, attention based
deep learning models will be investigated to better evaluate the
contribution of instances in the bag-level assumption.
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