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We deal with the topic of segmenting emotion-related (emotional/affective) episodes into adequate units for analysis and automatic
processing/classification—a topic that has not been addressed adequately so far. We concentrate on speech and illustrate promising
approaches by using a database with children’s emotional speech. We argue in favour of the word as basic unit and map sequences of
words on both syntactic and “emotionally consistent” chunks and report classification performances for an exhaustive modelling of
our data by mapping word-based paralinguistic emotion labels onto three classes representing valence (positive, neutral, negative),

and onto a fourth rest (garbage) class.

1. Introduction

It is not only difficult to define “emotion,” it is difficult as well
to find out where an emotional episode—whatever it is—
begins and where it ends. It is difficult both for theoretical
reasons—in order to know where it begins and ends, we have
to know what it is—and for methodological/practical reasons
as well, which we will detail below. By and large, studies on
emotion have bypassed this topic by dealing with episodes
delimited by external criteria.

1.1. The Phenomena: Emotions or.... There is definitely no
agreement on an extensional or intensional definition of
“emotion”—or of any other term that could be used instead
such as affect, attitude, and mood, to replace it or to denote
similar phenomena that have to be told apart from the core
semantics of this term. The core phenomena consist of the
big n emotions such as despair, anger, joy—n being some
figures between 4 and 8 or more; this concept is mainly
rooted in psychology, and has been challenged, elaborated,
and extended amongst others in cognitive psychology, for
instance in the OCC model [1]. Perhaps “the” alternative
concept is a wider definition, encompassing all the fringe
phenomena that are “present in most of life but absent

when people are emotionless” [2]; this is the concept of
pervasive emotion, which often implicitly forms the basis of
engineering approaches in a sometimes vague use of the
term, addressing states such as interest, stress, and boredom.

These fiercely disputed terminological debates are, how-
ever, not relevant for our topic. Segmentation for dealing
with such para-linguistic phenomena is pivotal—no matter
which definition we use to describe them. They are related
to but are not by definition coextensive with linguistic units
such as sentences, utterances, dialogue acts, and salience. We
will elaborate on this topic in the next subsection. To prevent
fruitless debates, we use the rather vague term “emotion-
related episodes” in the title to denote both emotions in a
strict sense and related phenomena in a broader sense, which
are found in the database our experiments are based on. In
the text, we will often use “emotion” as the generic term,
for better readability. This resembles the use of generic “he”
instead of “he/she;” note, however, that in our context, it
is not a matter of political correctness that might make a
more cumbersome phrasing mandatory, it is only a matter
of competing theoretical approaches, which are not the topic
of the present paper.

Implicitly, it is normally taken for granted that these
states to be modelled are produced and not only perceived.



This difference can be illustrated by the following example:
a father can get really angry with his son, and this can
be heard in his tone of voice and seen in the outcome of
physiological measurements. He can, however, only pretend
being angry—because as father, he has to, even if he perhaps
likes his son’s “misbehaviour.” In such a case, we can hear
the change in his tone of voice but most likely we will
not be able to measure marked physiological changes. The
son might notice such a “fake” emotion—if he is clever
and has experienced it often enough—or not. We cannot
assume that machines are clever enough to notice. Thus, the
emotion-related states we are dealing with have to be taken
as “perceived” surface phenomena, at face value—at least
as long as we do not employ physiological measurements,
trying to find out a real ground truth. (Strictly speaking,
physiological measurements are most likely closer to—but
not necessarily constituting—any ground truth.)

The components of speech are vocal expression and
linguistic content. Both components can be employed for
signalling denotations and semantics, and for constituting
illocutions (such as dialogue acts), and for expressing
connotations as paralinguistic messages (such as emotions).
The same scenario as above can illustrate this usage: the
father can get really angry with his son, but instead of
expressing his anger in his tone of voice, he simply can say, in
a low and calm voice: “Now I'm really getting angry.” It could
be argued that this is a describing “meta” statement and not
an indication of “real” anger. However, the son will be well
advised to react as if the father had expressed “real” anger
in his tone of voice as well. Moreover, it cannot be argued
that this is not an indication of negative valence—note that
in this paper, we map our raw labels onto main classes
representing positive, neutral, or negative valence. Again, the
son can take this at face value and stop his misbehaviour, or
he can misconceive his father’s anger as pretense because it is
not expressed in the father’s tone of voice. Again, machines
should not try to be too clever; the only possibility they have
is to take the linguistic content of the user’s utterances at face
value.

Thus, both vocal and linguistic expression of emotions
should be taken by machines along the lines of Grice’s
cooperative principle, at face value, and not assuming any
indirect use [3]; this excludes, for example, irony, metaphor,
and meiosis. (It is sometimes claimed that irony can be
recognised by a system; this will never work under real-life
conditions, at least not in the foreseeable future.) In this vein,
we will employ both acoustic and linguistic features for the
automatic classification of emotion-related user states.

1.2. The Need for Segmentation. In this paper, we want to
address different possibilities to segment emotional episodes.
We will concentrate on speech but, at the same time, we want
to argue that in many applications to be imagined, speech
will possibly be the best modality to base segmentation upon;
of course, this only holds for speech to be found together
with other modalities. As has been noted in [4], for all
modalities the segmentation into emotion units is one of
the most important issues if we aim at real applications but
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has been “largely unexplored so far” The same holds for
another, equally important aspect: even if most authors agree
that it is high time to go over from acted data to realistic,
spontaneous data, normally, only a subset of the full database
is used consisting of somehow clear, that is, more or less
prototypical cases. This is not only a clever move to push
classification performance, it simply has grown out from the
problem of class assignment in emotion processing: there is
no simple and unequivocal ground truth. We have elaborated
on the use of prototypes and their impact on classification
performance in [5, 6].

In the transition from read speech to spontaneous speech
in Automatic Speech Recognition (ASR), normally all data
have been employed apart from, for instance, nonlinguistic
vocalisations, which are treated as garbage; but they are still
treated and not removed from the signal before processing.
Note that a rough estimate for the difference between read
and spontaneous data was that, at least at the beginning, one
could expect an error rate for spontaneous data twice the size
than the one for read data [7]. Of course, we cannot simply
transfer this empirically obtained estimate onto Automatic
Emotion Recognition (AER). Yet we definitely will have
to deal with a plainly lower classification performance.
However, this constitutes the last step before AER, including
full ASR and automatic segmentation, really can be used “in
the wild,” that is, in real applications.

As mentioned in the last subsection, we use “emotion”
in a broad sense, following the definition of “pervasive
emotions” in the Network of Excellence HUMAINE [2],
where emotion is defined as the absence of non-emotion.
Thus, it is a foreground-background phenomenon: emo-
tional has to be different from “not emotional”, that is, from
neutral (emotionally idle). However, in the four different
modalities that have been mostly investigated in emotion
studies—speech, vision (i.e., facial gestures), body posture
and movements, and physiology—telling apart emotionally
idle from emotionally active, that is, not-idle, poses different
questions because the modalities themselves behave in a
different way: speech versus non-speech is easy to tell apart—
at least for a human being. Note that of course, such
statements have to be taken with a grain of salt: depending
on the signal-to-noise ratio, it can be difficult; telling apart
a non-linguistic vocalisation from a linguistic one can be
difficult, sometimes; and for a machine, it is more difficult
than for a human listener. Yet to start speaking and to finish
speaking is a voluntary act, which normally can be detected
and delimited by the listener. However, you cannot start or
finish your face—you always have it, even while asleep. And
you might be able to control your physiological signals, but
only up to a certain extent—you cannot stop your heart
beats. (Interestingly, perception in these different modalities
is different as well: you cannot stop hearing even while
sleeping—ryou only can use some ear protection decreasing
the noise—but you can stop looking by simply closing your
eyes, while awake or while sleeping.)

If there was an unequivocal ground truth, at least for the
reference data used in automatic processing, we could define
begin and end of such episodes easily. However, there is none,
irrespective of the modalities. Thus, we have to use and rely
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on human annotations or on some external criteria; a well-
known example for the latter is taking hanging-up the phone
abruptly in a telephone human-machine communication
as an indication of anger so we know that there has been
some anger before—but we do not know yet whether and
where it could be noticed. Arousal might be traced back in
physiological signals by defining a threshold criterion based
on, for example, Feeltrace annotations [8], but this is way
more difficult for valence. Moreover, in many applications,
physiological signals cannot be recorded.

We mentioned in the beginning that almost all studies
have bypassed somehow the decision where to start or to
end an emotion. For decades, the bulk of evidence came
from acted data in the lab; for such data, beginning and
end are given trivially: either some short episodes had
to be produced, for example, using a semantically void
utterance as carrier, or longer periods have been integrated.
Even in a—more or less realistic—verbal human-human or
human-machine communication, a dialogue act/move or an
“utterance” can be delimited easily by the act of turn taking,
when the one partner finishes speaking and the other partner
takes over. As long as such a strategy works sufficiently well,
there is no pressure to go over to other criteria. The longer
such a unit is, however, the higher is the probability that it
does not only entail one emotional episode but two or more,
and that it is “smeared,” that is, not unequivocal. We can
compare this situation with dialogue acts: often, one dialogue
move (turn) constitutes just one dialogue act. However, it
can consist of sequences of dialogue acts as well; for instance,
in appointment scheduling dialogues [9] often sequences of
rejection (of the dialogue partner’s suggestion), statement (of
problems/facts), and suggestion (of alternative dates) can be
found.

Several different subunits have been investigated as for
their impact on improving classification performance such as
frame-based processing, or taking some other fixed interval
(percentage of whole utterance, nms, or voiced/unvoiced
decisions, just to mention the most important ones, cf.
[10]). But all this has rather been independent from higher
processing; yet in a full system such as SmartKom [11]
or Semaine [12], time constraints make it mandatory not
to wait with ASR and other processing modules until the
speaker has finished his/her full turn. For a (close to) real-
time processing, it might not matter much whether frames,
or syllables, or words, or short chunks are processed; when
we assume 1.5 real time, for a short chunk lasting 2 seconds,
a user has to wait 3 seconds before a system answer has been
generated. This can be tolerated. However, for a turn lasting
10 seconds, the user had to wait 15 seconds—which simply
is far too long. Taking any unit below chunk level of course
results in even shorter processing time.

We can suppose that emotional changes within a word
are difficult to produce and therefore very rare. As a further
advantage of word-based processing of emotional speech, we
see the better dovetailing of emotion and speech processing.
We do not have to align the “emotional time axis” in an
additional step with Word Hypotheses Graphs (WHG); for
instance, each word in a WHG can be annotated with
either its individual emotion label or with the label that

has been attributed to the higher unit this specific word
belongs to. These are practical considerations; yet it might
be plausible conceiving the word as the “smallest meaningful
emotional unit” as well. We thus can speak of an “ememe”
in analogy to the phoneme, the morpheme, and especially
to the sememe and claim that normally, the word and
the ememe are coextensive. A sememe consists of either a
morpheme or a word indicating both semantic denotation
and/or connotation either encoding a holistic meaning or
being constituted by a feature bundle. We introduce the
ememe as constituting “pure” connotation, indicated both
by acoustic and linguistic means. Such a concept definitely
makes sense from a practical point of view; thus, we do not
have to care too much whether sometimes it might make
sense to go over to subword units. Of course, this only holds
for speech; there is no equivalent—at least no one that can
be defined and segmented easily—in the other modalities.
Note that our “ememe” is the smallest emotional unit. The
same way as it makes more sense to process meaningful
sequences of n words (sememes) constituting something like
a syntactically meaningful chunk or a dialogue act, the same
way it pays off to combine ememes into higher units. The
charm of such an approach is that it is relatively easy to
find a word, and where it begins and where it ends. In other
modalities, it is way more difficult to delimit units.

In this paper, we want to pursue different emotion units
based on speech. We will start with the word, and later
combine words into syntactically/semantically meaningful
chunks or into consistent “ememe sequences,” that is,
sequences of words belonging to the same emotion class.
By that, we model two different approaches: in the one
approach, emotion is sort of modelled as being part of
linguistics, in the other one, emotion is an independent
layer, in parallel to linguistics. The latter one might be
more adequate for theoretical reasons—emotion is not
(fully or only) part of linguistics. On the other hand, in
a communication conveyed partly or mostly via speech,
emotion might really be structured along the speech layer;
for instance, the emotional load of content words is normally
higher than the one of function words, and the “emotional
message” might really be coextensive with dialogue acts. To
give an example: laughter is a non-linguistic indication of
emotions/user states and often co-occurs with joy. It can be
stand alone or modulated onto speech (speech laughter).
Laughter and speech laughter are mainly found at the end
of syntactic units. This does not necessarily mean that
laughter and speech/language are processed and generated in
the same module, but it demonstrates a close relationship.
Moreover, in an end-to-end system, we always need to align
emotion and linguistic processing somehow. However, in this
paper, we can only deal with performance measures such
as classification rates as criteria. Note that we will not deal
with data, use cases, or applications without speech. If we
take into account more than one modality we always have
to align the unit of one modality with the unit(s) found in
the other modality/modalities. Of course, this can be done
with some criteria for overlapping on the time axis. At least
for the time being, it seems to us that speech, if available,
is advantageous over the other modalities to start with.



This is, of course, an assumption that has to be validated
or falsified. We can imagine that researchers working in
other modalities but speech prefer having their own units of
analysis and late fusion of channels [13]. From a theoretical
point of view, this might be easier to accomplish; from a
practical point of view, it will be a matter of performance,
of ease of handling, and—perhaps most important—of the
weight a modality has in specific scenarios. Thus, a fall-back
solution for our approach is, of course, to use it within a
uni-modal speech scenario. Time synchronous or adjacent
emotional messages conveyed by different modalities can
be congruent or incongruent; speech can even distort the
emotional message conveyed via facial gesture or bio-signals
because of lip and jaw movements. Moreover, we have to tell
apart different types of systems: on the one hand, there are
end-to-end systems that take into account emotions as a way
of “colouring” the intended message, triggering decisions on
part of the dialogue manager in, for instance, call-centre
interactions. Here we find a high functional load on speech.
On the other hand, there are pure “emotion systems” with a
low functional load on speech, for instance in video games—
here, “non-verbal” grunts and affect bursts might be more
relevant, together with facial gestures.

1.3. Overview. In Section 2, we present the database and the
annotations performed, as well as the mapping onto main
classes used in this paper. Section 3 presents the units of
analysis we want to deal with: we start with the word as basic
unit, and then discuss two different types of units, one based
on syntactic criteria—to be dovetailed with higher processing
modules such as dialogue act processing, the other one
simply based on “emotional consistency;” adjacent words
belonging to the same class are aggregated within the same
unit. In Section 4, we describe the acoustic and linguistic
features used in this study, as well as the classifier chosen
for this task. Classification results are presented in Section 5
and discussed in Section 6. The paper closes with concluding
remarks in Section 7.

2. Database and Annotation

The general frame for our FAU Aibo Emotion Corpus is
human-robot communication, children’s speech, and the
elicitation and subsequent recognition of emotional user
states. The robot is Sony’s (dog-like) robot Aibo. The basic
idea is to combine a so far rather neglected type of data
(children’s speech) with “natural” emotional speech within a
Wizard-of-Oz task. The children were not told to use specific
instructions but to talk to the Aibo like they would talk to a
friend. They were led to believe that the Aibo is responding to
their commands, but the robot is actually being controlled by
a human operator, using the “Aibo Navigator” software over
awireless LAN (the existing Aibo speech recognition module
is not used). The wizard causes the Aibo to perform a fixed,
predetermined sequence of actions, which takes no account
of what the child says. For the sequence of Aibo’s actions,
we tried to find a good compromise between obedient and
disobedient behaviour: we wanted to provoke the children in
order to elicit emotional behaviour but of course we did not
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want to run the risk that they break off the experiment. The
children believed that the Aibo was reacting to their orders—
albeit often not immediately. In fact, it was the other way
round: the Aibo always strictly followed the same screen-plot,
and the children had to align their orders to its actions.

The data was collected from 51 children (age 10-13,
21 male, 30 female). The children were from two different
schools, Mont and Ohm. The recordings took place in a
classroom at each school. The child, the wizard, and two
supervisors were present. The disjoint school recordings will
be used to obtain a natural partitioning into train (Ohm)
and test (Mont) in the ongoing. Speech was transmitted
with a wireless head set (UT 14/20 TP SHURE UHF-
series with microphone WH20TQG) and recorded with a
DAT-recorder. The sampling rate of the signals is 48 kHz;
quantisation is 16 bit. The data is downsampled to 16 kHz.
Each recording session took some 30 minutes. The speech
data were segmented automatically into speech files (turns),
triggering a turn boundary at pauses >1 second. Note that
here, the term “turn” does not imply any linguistic meaning;
however, it turned out that only in very few cases, this
criterion wrongly decided in favour of a turn boundary
instead of (implicitly) modelling a hesitation pause. Because
of the experimental setup, these recordings contain a huge
amount of silence (reaction time of the Aibo), which
caused a noticeable reduction of recorded speech after raw
segmentation; finally we obtained about 8.9 hours of speech.

Five labellers (advanced students of linguistics with
German as native language, four females, one male) listened
to the speech files in sequential order and annotated inde-
pendently from each other each word as neutral (default)
or as belonging to one of ten other classes, which were
obtained by inspection of the data. This procedure was
iterative and supervised by an expert. The sequential order
of the labelling process does not distort the linguistic and
paralinguistic message. Needless to say, we do not claim
that these classes represent children’s emotions (emotion-
related user states) in general, only that they are adequate for
the modelling of these children’s behaviour in this specific
scenario. We resort to majority voting (henceforth MV):
if three or more labellers agree, the label is attributed to
the word; if four or five labellers agree, we assume some
sort of prototypes. The following raw labels were used; in
parentheses, the number of cases with MV is given: joyful
(101), surprised (0), emphatic (2528), helpless (3), touchy,
that is, irritated (225), angry (84), motherese (1260), bored
(11), reprimanding (310), rest, that is, non-neutral, but not
belonging to the other categories (3), neutral (39169); 4707
words had no MV; all in all, there are 48401 words. Joyful and
angry belong to the “big” emotions, the other ones rather to
“emotion-related/emotion-prone” user states but have been
listed in more extensive catalogues of emotion/emotion-
related terms, for example, “reproach” (i.e., reprimanding),
bored, or surprised in [1]. The state emphatic has been
introduced because it can be seen as a possible indication of
some (starting) trouble in communication and by that, as a
sort of “pre-emotional,” negative state [5, 14, 15]; note that
all the states, especially emphatic, have only been annotated
when they differed from the (initial) baseline of the speaker.
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TaBLE 1: Emotion classes and their word-based frequencies.

Class No. train No. test No. total % total
P(ositive) 1110 299 1409 2.9
I(dle) 20471 18698 39169 80.9
R(est) 685 550 1235 2.5
N(egative) 3891 2697 6588 13.6
Total 26157 22244 48401 100.0

In this paper, we do not preselect a subcorpus out of
the whole database but model valence, that is, positive, idle
(neutral), and negative, for all the data; the remaining cases
are attributed to a rest class. Thus, we map motherese and
joyful onto P(ositive), neutral onto I(dle), emphatic, touchy,
reprimanding, and angry onto N(egative), and surprised,
helpless, bored, and rest onto R(est). Cases without an MV
were mapped onto R(est) as well. The confusion matrices and
the subsequent one- and two-dimensional plots based on
Nonmetric Multidimensional Scaling (NMDS) in [14], both
for labelling correspondences and for confusion matrices
based on automatic classification, corroborate these map-
pings.

Table 1 displays the frequencies of these four classes;
interestingly, I(dle) versus all other classes is Pareto dis-
tributed, that is, 80/20, as was the case for the emotion-
related user states in the SmartKom [16] and in the AVIC
[17] corpus as well.

Our database might seem to be atypical as it deals with
children’s speech; however, children represent just one of the
usual partitions of the world’s population into subgroups
such as women/men, upper/lower class, or different dialects.
Of course, automatic procedures have to adapt to this specific
group—children’s speech is a challenge for an Automatic
Speech Recognition (ASR) system [18, 19], as both acoustic
and linguistic characteristics differ from those of adults [20].
However, this necessity to adapt to a specific sub-group
is a frequent issue in speech processing. Pitch, formant
positions, and not yet fully developed co-articulation vary
strongly, especially for younger children due to anatomical
and physiological development [21]. Moreover, until the
age of five/six, expression and emotion are strongly linked:
children express their emotions even if no one else is present;
the expression of emotion can be rather intense. Later on,
expressions and emotions are decoupled [22] when children
start to control their feelings. Thus so far, we found no
indication that our children (age 10-13) behave differently
from adults in a principled way, as far as speech/linguistics
in general or emotional states conveyed via speech are
concerned.

3. Units: Words, Syntactic Chunks,
and Ememe Chunks

In this section, we present the three units we will deal with
in the following: the word (ememe) as basic unit, and as
higher units syntactic chunks (SCs) consisting of 1 to n
words, and consistent sequences of ememes belonging to the

same class, as well consisting of 1 to n words. The word
(WO) is a straightforward unit, as is the ememe chunk
(EC). There are many different syntactic theories yielding
different representations of deep structure. However, we
resort to a shallow, surface structure, thus, neutralising many
of these differences. We are dealing not with syntactically
well-formed speech but with spontaneous, natural speech—
this will be the rule and not the exception if we aim
at applications in real-life scenarios. For such data, no
agreed-upon syntactic representation exists; thus, we have
to establish one ourselves, based on the phenomena we can
observe in our data.

3.1. Words: WO. Based on the orthographic transcription
(transliteration) of the speech data, a lexicon has been
compiled consisting of 1146 words, of which 333 are
word fragments. Beginning and end of each word were
presegmented automatically using a forced alignment of
the spoken word chain, and eventually manually corrected.
Throughout this paper, we will use this manual segmentation
for extracting acoustic features. (Different smaller units of
analysis for the FAU Aibo Emotion Corpus were pursued in
[23].)

3.2. Syntactic Chunks: SC. Finding the appropriate unit of
analysis for emotion recognition has not posed a problem in
studies involving acted speech with different emotions, using
segmentally identical utterances (cf. [24, 25]). In realistic
data, a large variety of utterances can be found, from short
commands in a well-defined dialogue setting, where the unit
of analysis is obvious and identical to a dialogue move, to
much longer utterances, and from syntactically well-defined
units to all kinds of spontaneous phenomena such as elliptic
speech and disfluencies [26]. In [27] it has been shown
that in a Wizard-of-Oz-scenario (appointment scheduling
dialogues), it is beneficial not to model whole turns but
to divide them into smaller, syntactically and semantically
meaningful chunks along the lines of [9]. Our scenario
differs in one pivotal aspect from most of the other scenarios
investigated so far; there is no real dialogue between the two
partners; only the child is speaking, and the Aibo is only
acting. Thus, it is not a “tidy” stimulus-response sequence
that can be followed by tracking the very same channel;
we are using only the recordings of the children’s speech.
Therefore, we do not know what the Aibo is doing at the
corresponding time or has been doing shortly before or after
the child’s utterance. Moreover, the speaking style is rather
special; there are not many “well-formed” utterances but a
mixture of some long and many short sentences and one-
or two-word utterances, which are often commands. The
statistics of the observable turn lengths (in terms of the
number of words) for the whole database is as follows: 1 word
(2538 times), 2 words (2800 times), 3 words (2959 times), 4
words (2134 times), 5 words (1190 times), 6-9 words (1560
times), >10 words (461 times). We see that on the one hand,
the threshold for segmentation of 1s is meaningful; on the
other hand, there are still many turns having more than 5
words per turn. This means that they tend to be longer than



one intonation unit, one clause, or one elementary dialogue
act unit, which are common in this restricted setting “giving
commands.”

We observe neither “integrating” prosody as in the
case of reading, nor “isolating” prosody as in the case of
TV reporters. Many pauses of varying length are found,
which can be hesitation pauses—the child produces slowly
while observing the Aibo’s actions—or pauses segmenting
into different dialogue acts—the child waits until he/she
reacts to the Aibo’s actions. Thus, there is much overlap
between two different channels: speech produced by the
child, and vision, based on the Aibo’s actions, which is
not used for our annotation. We therefore decided in
favour of hybrid syntactic-prosodic criteria: higher syntactic
boundaries always trigger chunking; whereas lower syntactic
boundaries do so only if the adjacent pause is =500 ms. By
that, we try, for example, to tell apart vocatives that simply
function as “relators” from vocatives with specific illocutive
functions meaning, for example, “Hi, I am talking to you” or
“Now I am getting angry” (illocution “command”: “Listen to
me!”).

Note that in earlier studies, we found out that there
is a rather strong correlation of more than 90% between
prosodic boundaries, syntactic boundaries, and dialogue act
boundaries [9]. Using only prosodic boundaries as chunk
triggers results in (somehow) worse classification perfor-
mance (in [9], some five percentage points lower). Moreover,
from a practical point of view, it would be more cumbersome
to time-align the different units—prosodic, that is, acoustic
units, and linguistic, that is, syntactic or dialogue units,
based on ASR and higher level segmentation—at a later stage
in an end-to-end processing system, and to interpret the
combination of these two different types of units accordingly.
Preliminary experiments with chunks of different granu-
larity, that is, length, showed that using our longer turns
actually results in suboptimal classification performance,
while the chunking procedure presented below, which was
used for the experiments dealt with in this paper, results in
better performance. This might partly result from the fact
that more training instances are available, but partly as well
from the fact that shorter units are more “consistent,” [6].

The syntactic and pause labels are explained in Table 2.
For this type of data, we could use a simplified version of the
tull set of syntactic-prosodic boundaries which is described
in detail in [9], for both German and English. Chunk
boundaries are triggered by higher syntactic boundaries after
main clauses (s3) and after free phrases (p3), and boundaries
between vocatives Aibo Aibo (v2v1) because here, the second
Aibo is most likely not simply a relator but is conveying
specific illocutions, as discussed above. Single instances of
vocatives (v1, v2) are treated the same way as dislocations
(d2). If the pauses at those lower syntactic boundaries given
in Table 2 (s2, d2, v1, and v2) are at least 500 ms long,
we insert a chunk boundary as well. s3 and s2 delimit
syntactically “well-formed” clauses containing a verb; p3
characterises not-well-formed units, functioning like clauses
but without a verb. d2 is annotated between clauses and
some dislocated units to the left or to the right, which
could have been integrated into the clause as well. Any
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TABLE 2: Syntactic and pause labels; frequencies given in Table 3.

label Description

eot End-of-turn, recoded as s3 (p3)

s3 Main clause/main clause

s2 Main/subord. clause or subord./subord. clause
s1 Sentence-initial particle or imperative “komm”
p3 Free phrases/particles

d2 Dislocations to the left/right

v2 Postvocative

vi Praevocative

v2vi Between “Aibo” instances

0 Pause 0-249 ms

1 Pause 250-499 ms

2 Pause 500-749 ms

3 Pause 750-1000 ms

longer pause at words within all these units was defined
as a nontriggering hesitation pause. Each end-of-turn was
redefined as triggering a clause/phrase boundary as well.
Note that our turn-triggering threshold of 1s works well
because in the whole database, only 17 end-of-turn (<eot>)
triggers were found that obviously denote within clause word
boundaries as in the case of “dieses Mal musst du nach
<eot> links gehen <eot>” (this time you have to go to <eot>
the left <eot>). The boundary s1 had to be introduced
because komm can function both as a sentence initial particle
(corresponding to English well, ...) as well as an imperative
(corresponding to English come! ...); only the imperative
constitutes a clause.

With our simple and automatic threshold of 1's between
turns, we obtained turns as long as the one below, which
we present for illustration. We denote the chunk triggering
boundaries described in Tables 2 and 3 with the symbol “|”.
In Table 3, rows and columns with chunk triggering labels
are shaded in grey. Between angle brackets, first the syntactic,
and after the colon the pause labels are given; note that pause
length has been corrected manually. For the last part, five
chunks are defined. The degree of emotional homogeneity
(confidence) given at the end of each chunk is simply the
number of the labels the whole chunk is attributed to,
divided by the number of all labels. These five chunks in this
example belong all to N(egative).

One long turn, German original word sequence with
syntactic and pause labels, and chunk boundaries:

und stopp <vi:1> Aibo <v2:0> stehenbleiben
<s83:0> | darein musst du laufen <s3:0> | da
links in die Strafle <p3:2> | so is gut <v1:0> Aibo
<v2:0> und jetzt laufen <s3:3> | fein gemacht
<v1:0> Aibo <v2:2> | und <A> weiter <p3:3>
<A> | und jetzt da nach links in die StrafSe abbiegen
<d2:0> | zu dem blauen Napf <s3:1> | nein
<v1:0> Aibo <v2:0> nein <p3:0> | stopp <vi:1>
Aibo <v2:0> nicht <p3:2> <G> | nein <v1:0>
Aibo <v2:0> stopp <s3:0> | stehenbleiben <v1:3>
| Aibo <v2:1> stehenbleiben <s3:eot> |
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TaBLE 3: Frequencies of syntactic and pause labels in the full database (48401 words), grey rows and columns indicate chunk triggering
boundaries; “% tr.” displays the percentage of triggering boundaries within the specific row/column.

Label Pause length Sum % tr.
0 1 2 3
eot 13642 100
s3 801 407 340 273 1821 100
p3 885 276 183 135 1479 100
s2 165 10 12 10 197 11
sl 328 48 32 28 436 25
d2 56 5 7 2 70 13
v2 3278 498 376 228 4380 14
vl 3226 217 204 178 3825 10
v2vi 20 49 59 69 197 100
Sum 8759 1510 1213 923
% tr. 19% 48% 100% 100%

English translation with chunk boundaries:

and stop Aibo stand still | go this way | to the left
towards the street | well done Aibo and now go on |
well done Aibo | and further on | and now turn into the
street to the left | to the blue cup | no Aibo no | stop
Aibo no | no Aibo stop | stand still | Aibo stand still |

Last part, German original, emotion labels per word,
syntactic and pause labels, chunk boundaries, and “confi-
dence”:

nein NNNNI <v1:0> Aibo NNNNI <v2:0> nein
NNNNN <p3:0> 0.87 | stopp NNNNN <vi:1> Aibo
NNNNI <v2:0> nicht NNNNI <p3:2> 0.87 | nein
NNNIN <v1:0> Aibo NNNII <v2:0> stopp NNNNN
<83:0> 0.80 | stehenbleiben NNNNN <v1:3>
1.0 | Aibo NNNNN <v2:1> stehenbleiben NNNNN
<s3:eot> 1.0 |

If all 13642 turns are split into chunks, the chunk
triggering procedure results in a total of 18216 chunks. Note
that the chunking rules have been determined in a heuristic,
iterative procedure; we corroborated our initial hypotheses,
for instance, that pauses between adjacent vocatives are
longer on average than pauses after or before single vocatives,
with the descriptive statistics given in Table 3. The basic cri-
teria have been formulated in [9]; of course, other thresholds
could be imagined if backed by empirical results. The rules
for these procedures can be automated fully; in [9] multilayer
perceptrons and language models have successfully been
employed for an automatic recognition of similar syntactic-
prosodic boundaries, yielding a classwise average recognition
rate of 90% for two classes (boundary versus no boundary).
Our criteria are “external” and objective and are not based
on intuitive notions of an “emotional” unit of analysis as
in the studies by [28-30]. Moreover, using syntactically
motivated units makes processing in an end-to-end system
more straightforward and adequate.

In order to obtain emotion labels for the chunks, we
first mapped the word level decisions of the five labellers
(the raw labels) onto the four main classes P(ositive), I(dle),
N(egative), and R(est). A whole chunk is considered to be
P(ositive) if either the absolute majority (=50%) of all raw

labels is positive or if the proportion of positive raw labels is
at least one third and the remaining raw labels are mostly
neutral, that is, the positive and the neutral raw labels
make up at least 90% of all raw labels. By that, chunks
that are mostly neutral but where some words clearly signal
the subject’s positive state are considered to be P(ositive)
as well. The heuristic thresholds are adjusted by inspecting
the resulting chunk labels. N(egative) and R(est) chunks are
defined along the same lines. If according to these definitions
a chunk does not belong to one of these three main classes
and the proportion of neutral raw labels is at least 90%,
the chunk is considered to be neutral, that is, I(dle). If the
proportion of neutral raw labels is lower but at least 50%
and raw labels of only one other main class appear, the
chunk is assigned I(dle) as well. These are the cases where
single words signal one nonneutral main class but where
the proportion of these words is too low. In all other cases,
the raw labels belong to too many main classes and the
whole chunk is assigned to the R(est) class. The frequencies
of the four main classes on the chunk level are given in
Table 4.

Our word-based labelling makes it possible to try out
different types and sizes of chunks. The other way round
would be to attribute the same label to a word that the
chunk it belongs to has been annotated with. This has
two disadvantages: first, there is only one possibility to
map chunk labels onto word labels—each word has to be
annotated with the chunk label. Thus, we could, for instance,
not contrast SC with EC. Second, the result would be
“smeared” because of the contra-factual assumption that all
words belonging to a chunk necessarily belong to the same
emotion class. This can be, but need not be the case. (Of
course, sometimes chunking together words belonging to
different classes to the rest class, as we do, results in some
“smearing” as well—but at least we do know where and up
to what extent. Thus, thresholds can be altered and more or
less prototypical cases can be established [5, 6].)

3.3. Ememe Chunks: EC. The last unit of analysis investigated
in this work consists of ememe chunks (ECs). ECs are
obtained from the ememe sequence by clustering together
adjacent ememes belonging to the same main class. An EC is



therefore an i-tuple of ememes characterised by an identical
emotional content. In general, from an utterance of n
ememes, we can obtain from 1 to n EC. The practical
motivation behind EC is that homogeneous groups of
ememes might be easier to classify than single ememes; for
the recognition of each emotional class, we are exploiting the
largest amount of contextual information, that is, the entire
EC. From a theoretical point of view, this approach might
be most adequate when we model emotional episodes fully
independently from linguistic processing.

In the example below, we draw the ECs that belong to the
same utterance described in the previous section. Chunks
of ememes (denoted as pairs of spoken word and emotion
label, that is, “word emotion_label”) are delimited by
markers (symbol “|”).

Sequence of ememe chunks:

und I | stopp R | Aibo N stehenbleiben N | darein I
musst T du I laufen I da I | links N |in I die I
Strafle T so I *is I gut I Aibo I und I jetzt I
laufen 1 fein I gemacht I Aibo I und I weiter I
und I jetzt I dal nachI linksI inI dieI Strafle
I abbiegen I zuI dem I | blauen N | Napf I | nein
N Aibo N nein N stopp N Aibo N nicht N nein N
Aibo N stopp N stehenbleiben N Aibo N stehenbleiben
N

Combining ememes into EC is trivial that way; we use
a simple finite state automaton. However, this is only the
case because our processing is sort of trivial; we are able to
map mixed cases onto one class because we have previously
performed MV and adopted threshold criteria (Section 2).
Taking into account other dimensions or mixtures of
annotations [29] would have required a more sophisticated
clustering strategy and would not have been feasible for our
data, due to the severe sparse data problem. A mixed case
in our data—albeit a rather seldom one—is this sequence of
words: “so PNNPI weit PNNPI *simma PNNPI noch PNNPI
nicht PNNPI” (we ain’t that far yet) which is attributed to
R(est) both as SC and EC. In fact, this is a good example
of a mixture of motherese and reprimanding, the latter being
indicated by the wording, the former by the tone of voice.
However, as these are very rare cases, we cannot model them
reliably for automatic processing and have to map them onto
R(est).

Furthermore, in this paper we will not deal with the
problem of automatically obtaining EC given a set of features.
Instead, we will assume the emotional labels as given.
Thereby, we are avoiding segmentation errors for EC, as
we do for SC, in both cases assuming a 100% correct
segmentation; this can be considered as an upper bound
for classification performance. Note that in preliminary
experiments, we found out that Hidden Markov Models
trained on EC obtained on the training set lead to a
segmentation of the test data that achieves a classification
performance comparable to the SC approach. To keep the
two approaches fully apart, we do not combine sequences of
SC with the same label into one higher “SC/EC-unit.”
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TaBLE 4: Emotion classes and their SC-based frequencies.

Class No. train No. test No. total % total
P(ositive) 674 215 889 4.9
I(dle) 5260 5083 10343 56.8
R(est) 667 494 1161 6.4
N(egative) 3358 2465 5823 32.0
Total 9959 8257 18216 100.0

TaBLE 5: Emotion classes and their EC-based frequencies.

Class No. train No. test No. total % total
P(ositive) 518 199 717 3.9
I(dle) 6410 6185 12595 69.0
R(est) 479 391 870 4.8
N(egative) 2276 1789 4065 22.3
Total 9683 8564 18247 100

3.4. Ememe Chunks versus Syntactic Chunks. Tables 4 and 5
reveal that the overall frequencies of the two chunk types are
almost the same; however, there are 2.2k more I(dle) EC-
chunks than SC-chunks, counterbalanced by more P(ositive),
N(egative), and R(est) SC-chunks. Figurel displays for
each of the four classes and for all classes taken together,
frequencies in percent for SC and EC with the length 1
to n words. The same information is given in the stacked
histograms of Figure 2; in Figure 1, relationships within
classes and differences between type of chunk can be seen,
whereas Figure 2 concentrates on frequencies across classes
within one plot. One-word ECs are more frequent than one-
word SCs; especially for the three “marked” classes P(ositive),
N(egative), and R(est), there is a decline in frequencies,
especially for chunks with 2, 3, or 4 words, which display
higher frequencies for SC than for EC. These differences
can be traced back to the different MV and thresholds.
EC in our case are “pure,” that is, after the initial, word-
based MV, the labels are fixed, and only adjacent words
with identical labels are combined into EC; as we mentioned
above, this is not a necessary condition for EC but had to be
chosen for our database, to avoid the sparse data problem. In
contrast, if it is a chunk with more than one word, individual
words belonging to the very same SC can be attributed to
different classes but the combined threshold for the whole
SC overrides such differences.

4. Features and Classifiers

4.1. Acoustic Features. The main focus has been on prosodic
features in the past, in particular pitch, durations, and inten-
sity [31]. Comparably small feature sets (10-100) were first
utilised. In only a few studies, low-level feature modelling
on a frame level was pursued, usually by Hidden Markov
Models (HMMs) or Gaussian Mixture Models (GMMs).
The higher success of static feature vectors derived by
projection of the Low-Level Descriptors (LLDs) such as pitch
or energy by descriptive statistical functional application
such as lower order moments (mean, standard deviation) or
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extrema is probably justified by the supra-segmental nature
of the phenomena occurring with respect to emotional
content in speech. In more recent research, also voice quality
features such as Harmonics-to-Noise Ratio (HNR), jitter,
or shimmer, and spectral and cepstral features such as
formants and Mel-Frequency Cepstral Coefficients (MFCCs)
have been successfully added to prosodic features. At the
same time, brute-forcing of features (1000 up to 50000),
for example, by analytical feature generation, partly also
in combination with evolutionary generation, has become
popular. It seems as if this (slightly) outperforms hand-
crafted features while the individual worth of automatically
generated features seems to be lower. Within expert-based
hand-crafted features, perceptually more adequate features
have been investigated, reaching from simple log-pitch to
Teager energy or more complex features such as articulatory
features (e.g., (de-)centralisation of vowels).

In this study, a feature set is employed that shall best cover
the described gained knowledge. We therefore stick to the
findings in [32] by choosing the most common and at the
same time promising feature types and functionals covering
prosodic, spectral, and voice quality features. Furthermore,
we limit to a systematic generation of features. For the
highest transparency, we utilise the open source openSMILE
feature extraction and choose the basic set used in the only
official challenge on emotion recognition from speech to the
present day (cf. “Classifier Sub-Challenge” [33]). In detail,
the 16 Low-Level Descriptors chosen are: zero-crossing-
rate (ZCR) from the time signal, root mean square (RMS)
frame energy, pitch frequency (normalised to 500 Hz), HNR
by autocorrelation function, and MFCCs 1-12. To each of
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TaBLE 6: Acoustic Low-Level Descriptors (LLD) and functionals.

LLD (16 - 3) Functionals (12)

(A,AA) ZCR Mean

(A, AA) RMS Energy Standard deviation

(A, AA) FO Kurtosis, skewness

(A, AA) HNR Extremes (max, min): value (2), rel.

position (2), range (1)

(A, AA) MFCC 1-12 Linear regression: offset, slope, MSE

these, the delta coefficients are additionally computed. We
further add double-delta coefficients for a better modelling of
context. Then the 12 functionals mean, standard deviation,
kurtosis, skewness, minimum and maximum value, relative
position, and range as well as two linear regression coeffi-
cients with their Mean Square Error (MSE) are applied on
a chunk basis as depicted in Table 6. Thus, the total feature
vector per chunk contains 16 - 3 - 12 = 576 attributes.

4.2. Linguistic Features. Spoken or written text also carries
information on the underlying affective state [34—36]. This is
usually reflected in the usage of certain words or grammatical
alterations—which means in turn, in the usage of specific
higher semantic and pragmatic entities.

From the many approaches existing we chose vector
space modelling, that is, bag of words [37]. This is a well-
known numerical representation form of text in automatic
document categorisation introduced in [38]. It has been suc-
cessfully ported to recognise sentiments in [39] or emotion
and interest in [40]. The possibility of early fusion with
acoustic features helped make this technique very popular as
shown in [37].

For the FAU Aibo Emotion Corpus, the vocabulary size is
1146 entries. But only a fraction of these words conveys rele-
vant information about the underlying emotional states of a
person. In order to reduce the information in a meaningful
way, two methods can be applied: stopping and stemming.
Stopping uses simple rules or a data-driven evaluation to
exclude single words from the vocabulary. A simple yet
popular method for reducing the vocabulary is exploited:
a minimum training database word frequency, here two,
determines the necessary minimum number of occurrences
for a word in the database for being part of the vocabulary.
Very rare words are therefore discarded. Stemming instead
is a method for reducing different morphological forms of a
word to its base form. The Iterated Lovins Stemmer [41] is
used for the experiments in this paper.

The main idea of the bag of words approach is the
representation of words (or lexemes if stemming is applied)
as numeric features. For each word (i.e., term) in the vocabu-
lary, a corresponding feature that represents its frequency of
occurrence in the unit exists, resulting in a high-dimensional
feature vector space. Each unit can therefore be mapped to a
vector in this feature space.

This frequency can be transformed in various ways [42,
page 311], [38]. The logarithmic term frequency normalised
to the inverse document (here database) frequency (TFIDF)
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in combination with normalisation to the unit length proved
to be the best in our experiments.

Within this paper, the linguistic analysis is based on the
correct transcription of the spoken content. Therefore it
describes the performance under perfect speech recognition
conditions. This follows the typical reporting of linguistic
analysis results in emotion recognition, as it allows for better
comparability of results [37]; the corpus comes with the
transcription, while speech recognition results would differ
from site to site. Also, some practical relevance exists: con-
sider media retrieval from broadcasts; here the close captions
are usually available. However, to close the gap to the real
world where spoken content has to be determined by an ASR
engine first, we had carried out experiments employing ASR
for this corpus in other studies: though recognition of affect
related speech is a rather difficult problem which has not
been solved yet to complete satisfaction [43], this did not
yield marked differences, as reported, for example, in [44, 45]
for this corpus. This derives from the fact that not the perfect
word chain is needed as, for example, in transcription of
speech. Some minor mistakes are caught by stemming and
stopping, and not all words are necessarily needed. Insertions
and substitutions are only critical if they change the “tone”
of the affective content. As additional features in linguistic
analysis, we utilise each word’s start and end time, as well as
the derived duration. This is motivated by the fact that an
ASR engine would also provide this information.

4.3. Classifiers. Classifiers typically used for the recognition
of emotion from speech comprise a broad variety: depending
on the feature type considered for classification either
dynamic algorithms as Hidden Markov Models [46] or
Multiinstance Learning techniques [10] for processing on
a frame-level, and static classifiers for processing on the
supra-segmental functional level are found. With respect to
static classification the list of classifiers seems endless: Neural
Networks (mostly Multilayer Perceptrons), Naive Bayes,
Bayesian Networks, Gaussian Mixture Models, Decision
Trees, Random Forests, Linear Discriminant Classifiers, k-
Nearest Neighbour distance classifiers, and Support Vector
Machines are found most often [4]. Also a selection of
ensemble techniques has been applied, as Boosting, Bagging,
Multiboosting, and Stacking with and without confidences
[47]. Finally, the two general types may also be mixed by
fusion of dynamic and static classification [48].

As we consider acoustic and linguistic information, the
two information streams need to be integrated. In this
respect, all experiments found in the literature use static
classification techniques [17, 37, 49]: an early fusion is
usually the best choice for preserving all information prior to
the final decision. Thus, the acoustic features introduced in
Section 4.1 and the linguistic ones introduced in Section 4.2
are combined in one feature vector on the respective
unit level (i.e., word or chunk), which demands for static
classification.

The classifier of choice to this aim in this paper is a
discriminatively learned simple Bayesian Network, namely
Discriminative Multinomial Naive Bayes (DMNB) [50]
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instead of Support-Vector Machines (SVMs) and Random
Forests as applied in our previous investigations [23, 32, 33].
The reason is twofold: first, DMNB only requires lower
memory and only a fraction of the computation time of
SVM. (Sequential Minimal Optimisation training of SVM
with linear Kernel demanded 200 times higher computation
time than DMNB in parameterisation as below using [42]
on an 8 GB RAM, 2.4 GHz, 64 Bit industry PC.) At the same
time, the mean recall values resulted in a slight absolute
improvement over SVM in our experiments on the FAU Aibo
Emotion Corpus (—0.9/+1.3 weighted/unweighted average
recall on average for acoustic features; +6.9/+2.3 for linguis-
tic features). Second, the parameter learning is carried out by
discriminative frequency estimation, whereby the likelihood
information and the prediction error are considered. Thus,
a combination of generative and discriminative learning is
employed. This method is known to work well in highly
correlated spaces (as in our case), to converge quickly, and
not to suffer from overfitting.

For optimal results we found it best to ignore the
frequency information in the data and select a number
of ten iterations. Numeric variables are discretised using
unsupervised ten-bin discretisation [42]. Multiclass decision
is obtained by transformation into binary problems by taking
the two largest classes, each.

5. Classification

As mentioned above and carried out within [33], we
split the FAU Aibo Emotion Corpus into train and test
partitions by schools of recording. Thus, utmost indepen-
dence of the speaker, room acoustics, general intonation
and articulation patterns, and wording of the children is
ensured. To better cope with this variety, all features are
standardised per partition (speaker group normalisation).
Due to the high imbalance among classes (cf. Table 1),
balancing of the training instances is further mandatory to
achieve reasonable values of unweighted recall and thus avoid
overfitting of strong classes (here I(dle) and N(egative) [17].
The chosen straightforward strategy is random mixed up-
sampling of sparse and downsampling of majority classes’
instances enforcing unit distribution while preserving the
total number of instances. Note that the order of operations
has an influence on (un)weighted recall figures [33]; we
first standardise and then balance the training. Next we
classify with DMNB as described. At this point constant
parameterisation is preferred over individual optimisation;
thus, no alterations are undertaken with respect to number
of iterations, quantisation, and so forth, among the different
units and feature types to be classified.

Table 7 displays weighted average recall (WA), that is, the
overall recognition rate (RR) or recall (number of correctly
classified cases divided by total number of cases), and
unweighted average recall (UA) (or “class-wise” computed
recognition rate (CL)), that is, the mean along the diagonal
of the confusion matrix in percent, for three sets of features:
only acoustic features, only linguistic features, and both
acoustic and linguistic features (early fusion).

11

TaBLE 7: Evaluation in percent correct; (un-)weighted average recall
(UA/WA). Note that the chunk- and the word-based evaluations
of word units coincide; words can be seen a the smallest possible
chunk.

Unit Acoustic Linguistic Ac. + ling.
WA UA WA UA WA UA
Basic unit of evaluation: the chunk
WO | 49.73 46.15 44.27 45.50 53.59 48.56
SC 46.43 44.40 43.04 42.30 50.02 46.33
EC 57.23 51.63 | 62.42 51.80 | 64.89 55.38
Basic unit of evaluation: the word
WO | 49.73 46.15 44.27 45.50 53.59 48.56
SC 44.56 45.10 40.63 44.37 48.82 48.35
EC 65.84 53.10 71.98 53.00 73.66 56.77

There are two different types of evaluation: first we
evaluate for the whole units WO, SC, and EC; note that
the total number of chunks is different for each of these
units. Then, we evaluate WO, SC, and EC by checking each
word in these units whether it has been classified correctly,
that is, attributed to the class the higher unit it belongs
to has been annotated with. Obviously, the evaluation of
the unit WO is identical under the two methods, as words
can be seen as smallest possible chunks. WA tends to be
higher because of the bias in class distribution; UA is more
relevant for applications which are, most of the time, more
interested in the “marked” classes, that is, in our case, not
in the frequent I(dle) class; thus, we concentrate on the
interpretation of UA. All results are above chance level (25%
correct). The chunk-based figures might be more relevant
if we have applications in mind, the word-based figures are
more balanced. We can see that the early fusion of acoustic
and linguistic features pays off, always yielding higher WA
and UA. As there are more—and especially longer I(dle)
chunks containing more words, it could be expected that
word-based evaluation for SC and EC yields better results;
the differences are, however, not marked. As ECs are more
consistent—all words belonging to an EC belong to the same
class—UA for EC is higher than for SC.

On average, the unit “word” contains less information
than the units SC and EC; each unit consists of only one word
whereas SC and EC mostly consist of more than one word.
The number of SC and EC is in the same range, as can be seen
in Tables 4 and 5, although EC should be more consistent
than SC. In Table 8, we display classification results for
cross-unit evaluation, that is, we use different units for the
training and for testing partitions. This could only be done
for acoustic features because of the unbalanced distribution
of linguistic features in the different units. We see that
performance is really worst when we use the unit “word”
both as train or test unit, with UA being consistently below
40 % correct. Overall, there is again almost no difference
between chunk-based and word-based evaluation of UA.
Although the figures are of course lower than for the within-
unit evaluation displayed in Table 7, it is reassuring that
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TaBLE 8: Cross unit: train # test; evaluation in percent correct;
(un-)weighted average recall (UA/WA); acoustics only.

Train Test Chunk based Word based
UA WA WA UA
EC SC 47.77 42.15 51.51 42.10
WO SC 44.01 38.43 46.83 39.90
SC EC 45.22 45.40 47.85 46.98
WO EC 32.53 30.73 31.23 33.08
EC WO 37.81 38.30 37.81 38.30
SC WO 27.50 39.35 27.50 39.35

TasLE 9: Confusion matrix, acoustics + linguistics, word evaluation
in percent correct.

Class. as — P I R N Total
P(ositive) 47.49 24.41 16.38 11.70 299
I(dle) 9.60 51.76 12.95 25.67 18698
R(est) 21.27 26.54 21.63 30.54 550
N(egative) 3.15 13.12 10.30 73.41 2697

performance does not break down when we train with EC
and test with SC or vice versa.

Table 9 displays the confusion matrix for the fusion of
acoustics and linguistics for the word evaluation (cf. the
two last columns in Table 7, row WO), giving an impression
of the confusion between classes. The confusion between
the classes is as expected; no much confusion between
P(ositive) and N(egative), most confusion between I(dle)
(and partly R(est)) and the other classes. Table 10 displays
recall-rates (i.e., only the figures of the diagonal of the
confusion matrices) as correctly classified cases per class,
for the remaining four constellations from Table 7. This
gives an impression of the performance per class across all
constellations. Basically, the picture is always the same: the
mixed R(est) class is recognised worst and almost evenly
smeared across all classes. The highest recognition rates can
be observed for the rather acoustically and linguistically
marked N(egative) instances—both for SC and EC; P(ositive)
is in between.

6. Discussion

6.1. Classification Performance: The Reality Shock. The sci-
entific community has been used to good or almost perfect
classification performance in emotion recognition; it is
such figures that are remembered and implicitly defined
as standard. We have to realise, however, that such figures
have been obtained only within specific constellations: acted
data [51], prototypical cases preselected out of the whole
database, or a focus on one specific class, modelling all other
classes as rest/garbage; for this last constellation, high recall
can be obtained if we can live with many false alarms in
the rest classes. Normally, the data have not been processed
fully automatically but the experiments have been based on
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TaBLE 10: Classwise recall values (i.e., diagonal values of confusion
matrices), acoustics + linguistics; chunk evaluation in percent
correct. Note that the chunk- and the word-based evaluations of
WO coincide.

Constellation P(ositive) I(dle) R(est) N(egative)
WO, chunk based 47.49 51.76 21.63 73.41
SC, chunk based 51.62 44.26 22.06 67.34
EC, chunk based 44.72 65.40 40.66 70.65
WO, word based 47.49 51.76 21.64 73.41
SC, word based 55.18 46.43 21.45 70.26
EC, word based 48.49 75.93 33.81 68.85

the spoken word chain. In the present study, we aim at
realistic conditions—apart from the last step to use fully
automatic ASR. In [23] we could show that—depending
on the recording conditions and the feature set used—ASR
errors do not always deteriorate emotion recognition.

We simply do not know yet which type of realistic
databases—amongst them our FAU Aibo Emotion Corpus—
could be conceived as being representative, as far as distinc-
tiveness of classes and by that, goodness of performance is
concerned. Chances are, however, that we will never achieve
such high performance as we did, using only acted and/or
prototypical data, and that approaches such as the present
one—trying to model all phenomena present is a database—
will give way to more focused approaches, aiming at specific
classes for specific application tasks.

6.2. Deciding between Types of Units. At least three aspects are
relevant for deciding between WO, SC, and EC—or any other
type of sequencing emotional episodes: first, performance;
second, adequacy in real-life applications; third, perceptual,
cognitive adequacy.

Performance has been significantly better for EC than for
SC. Note that in this paper, we used the spoken word chain
simulating 100% correct word recognition, and a manual
segmentation into SC and EC. For a fair comparison between
SC and EC, this had to be done automatically. We know
that SC can be established automatically with high reliability
even for spontaneous speech [9]. As for EC, this might
look like a “Miinchhausen” approach; finding the boundaries
of phenomena we afterwards want to recognise; however,
preliminary experiments showed that it can be done using
an HMM approach, albeit yielding lower classification per-
formance in the range of SC. Semantically “rich” words, that
is, content words such as nouns, adjectives, and verbs, tend
to be marked emotionally to a higher extent than function
words such as particles. For instance, in our data, more EC
(22.5%) than SC (21.3%) consist only of 1 to n content
words. A modelling of part-of-speech (POS) sequences yields
a classification performance, not much lower than one
obtained with acoustic modelling [32]. POS modelling is
rather robust because ASR confusions between words within
one POS class have no effect. Factors like these make it likely
that LM modelling of EC is as promising as LM modelling
of SC. Thus, it is an empirical question to be addressed
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whether EC will be classified better than SC, if the process is
fully automated. The best compromise between automation
and performance seems to be WO. Here, we obtain better
results than for SC—but still worse results than for EC. Word
segmentation is obtained for free if ASR has been applied.
However, due to the reasons sketched passim and in the
following, the single ememe, that is, the word, might not
be the optimal unit, if it comes to processing in both higher
linguistic and emotion modules.

Applications are different. If we look at the attempt
towards a taxonomy of applications in [52], most important
for segmentation might be the difference between online
and offline applications. We mentioned in the beginning
that for online applications such as SmartKom [11] or
Semaine [12], incremental processing will be mandatory
because of time constraints. Matters are similar in any
interaction between users and Embodied Conversational
Agents (ECAs) or robots. In such online applications, there
is normally an interaction between system and user. The
system does not only monitor somehow the user’s emotional
states but has to recognise and process linguistic content
and semantics and illocutions (dialogue acts) in order
to react appropriately. This makes a close dovetailing of
linguistics and para-linguistics such as monitoring emotional
states most adequate, and this in turn might favour the
processing of SC instead of EC or WO. It is different in
offline applications; the processing of movie databases in
search for emotional episodes needs not be incremental
and can be done in several passes. Thus, we can imag-
ine one pass for emotion monitoring within the whole
movie, and then a second pass for segmentation, and so
on.

To our knowledge, there are not many studies on the
relationship between human speech/linguistic processing
and human emotion processing. We know, however, that
phonetic/psycholinguistic studies on the localisation of
nonverbal signals within speech showed that listeners tend
to structure the perception of these phenomena along the
perception and comprehension of linguistic phenomena
(sentence processing) [53]. Unpublished studies on the
localisation of laughter in our data showed that this is the
case for the production of paralinguistic events as well.
Thus, it might be that linguistics and emotions are more
intertwined—at least within interactions where emotional
and non-emotional episodes alternate. If this is the case, the
modelling of SC seems to be most adequate also from the
point of view of cognition and comprehension.

7. Concluding Remarks

The unique contribution of the present study is the use
of word-based annotations and the subsequent mapping
onto different types of higher units, to investigate promising
possibilities of segmenting emotional episodes. However,
word-based annotation is very time-consuming and thus
expensive. Perhaps it should not be established as a new
standard but only be used for basic research. The higher units
“syntactic chunk” and “emotion/ememe chunk” introduced
in this study are, in our opinion, representative for two
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different types of most promising units. However, a great
variety of different thresholds or mapping procedures can
be imagined. Most of them will not differ considerably, as
far as usability or performance is concerned. Although being
a truism, we definitely need more realistic databases for
deciding between such alternative approaches.
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