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Abstract 

Neovascular age-related macular degeneration is one of the leading causes of blindness. 

Microglia and macrophages play critical role in choroidal neovascularization (CNV) and may 

therefore be potential targets to modulate the disease course. This study evaluated the effect of 

the colony stimulating factor-1 receptor (CSF-1R) inhibitor PLX5622 on experimental laser-

induced CNV. A 98% reduction of retinal microglia cells was observed in the retina one week 

after initiation of PLX5622 treatment, preventing accumulation of macrophages within the 

laser site and leading to a reduction of leukocytes within the choroid after CNV induction. 

Mice treated with PLX5622 had a significantly faster decrease of the CNV lesion size as 

revealed by in vivo imaging and immunohistochemistry from day 3 to day 14 compared to 

untreated mice. Several inflammatory modulators, such as CCL9, granulocyte-macrophage 

colony-stimulating factor, ssoluble tumor necrosis factor receptor-I, interleukin-1α, and 

matrix metallopeptidase-2 were elevated in the acute phase of the disease when microglia 

were ablated with PLX5622, whereas other cytokines (eg, interferon-γ, interleukin-4, and 

interleukin-10) were reduced. Our results suggest that CSF-1R inhibition may be a novel 

therapeutic target in patients with neovascular age-related macular degeneration.  
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Introduction 

The main feature of choroidal neovascularization (CNV) is new abnormal blood 

vessels emerging from the choroid and growing through Bruch’s membrane and sometimes 

the retinal pigment epithelium (RPE). CNV is observed during neovascular age-related 

macular degeneration (AMD) and can lead to vision loss in patients suffering from AMD.1, 2 

Although the particular pathogenesis of AMD remains unknown, there are several previous 

studies showing the involvement of the innate immune system in the development of the 

disease 3-5.  

Microglia, residing in the retina, are dynamic surveillants of the extracellular 

environment,6 located mainly in the ganglion cell layer, the inner nuclear layer, and the outer 

plexiform and nuclear layers. They can become reactive upon injury and acquire migration 

and proliferation capabilities.7 Several studies have suggested that along with resident 

microglia, infiltrating macrophages may also play a prominent role in the pathogenesis of 

AMD.8-11 In AMD, microglia/macrophages have been found in the sub-retinal space, where 

they are associated with drusen accumulation and CNV.12 In experimental laser-induced CNV 

microglia/macrophages depletion, using clodronate liposomes, resulted in reduced CNV size 

13, 14 and other studies have shown that the CNV area is significantly reduced in mice knocked 

out for the C-C chemokine receptor type 2 (CCR2), a crucial component mediating 

macrophage infiltration.15 CCR2 as well as the CX3C chemokine receptor 1 (CX3CR1) are 

considered important factors for recruitment of macrophages to areas of inflammation and for 

the trafficking and the cellular migration of microglia into the sub-retinal space.12 There is 

increasing evidence for their role in AMD development as lower expression of CX3CR1 has 

been observed in patients with AMD.16 

The involvement of microglia/macrophages in CNV is further supported by studies 

showing that reduction of immune cells’ reactivity by intravitreal injections of polysialic acid 
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leads to reduced vascular leakage in a laser-induced CNV mouse model.17, 18 Moreover, loss 

of interferon-β and transforming growth factor beta (TGF-β) signaling in retinal microglia has 

been implicated in increased microglia reactivity and exacerbated CNV lesions in mice, 19, 20 

supporting a role of microglia cytokine signaling in the course of CNV. 

Microglia depletion has been proven useful for the investigation of their involvement 

in several central nervous system (CNS) disease paradigms21, 22 and it has been recently 

shown that brain microglia can be effectively eliminated by colony stimulating factor-1 

receptor (CSF-1R) inhibition.23, 24 This was also observed in the retina, where microglia cells 

were eliminated by 92% to 97% in mice kept on a CSF-1R inhibitor–supplied diet for one 

week25, 26, while immune cells in the spleen were not affected after one to three weeks of 

PLX5622 treatment.27-29 However, PLX5622-dependent reduction of antigen presenting cells 

and Ly6Clow monocytes in the blood and the bone marrow have been reported.29, 30 Cessation 

of CSF-1R inhibitor resulted in repopulation of retinal microglia from the remaining resident 

microglia pool in a CX3CR1 dependent manner.31, 32 However, more recent studies using 

bone marrow chimera mice suggest that monocyte-derived macrophages repopulate the retina, 

following cessation of PLX5622 treatment, where they adopt a ramified microglia-like 

morphology.33 Here, the CSF-1R inhibitor PLX5622 was used during the whole duration of 

the experiments to gain insight in the role of retinal microglia/macrophages on the course of 

experimental laser-induced CNV.  

 

Materials and Methods 

Animals 

This study was approved by the local Animal Ethics Committee (Veterinärdienst des 

Kantons Bern: BE 136/16) and conformed to the ARVO Statement for the Use of Animals in 
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Ophthalmic and Vision Research. Female mice were used, based on the observation that 

female mice are more prone to CNV formation.34 C57BL/6J mice (Charles River 

Laboratories, Sulzfeld, Germany) and MacGreen (B6N.Cg-Tg(Csf1r-EGFP)1Hume/J)35 

heterozygous female mice (6 to 8 weeks old) were employed.  

 Mice had ad libitum access to PLX5622-containing chow (1200 parts per million [ppm] 

formulated in AIN-76A standard rodent diet; Research Diets, Inc., New Brunswick, NJ) or 

AIN-76A standard rodent diet (control chow). Animals were housed, in groups of 2 to 5, 

under temperature and humidity-controlled conditions in individually ventilated cages with a 

12-hour light/12-hour dark cycle. Before laser treatment or imaging, mice were anesthetized 

with 1 mg/kg medetomidine (Dormitor 1 mg/mL; Provet AG, Lyssach, Switzerland) and 80 

mg/kg ketamine (Ketalar 50mg/mL; Parke-Davis, Zurich, Switzerland) as previously 

described.25 . At the end of the intervention, medetomidine was antagonized by injection of 

2.25 mg/kg atipamezol (Antisedan 5mg/mL; Provet AG). Before and one week after the 

initiation of the PLX5622 diet, as well as at days 3, 7, and 14 after laser treatment, mouse 

retinas were examined using confocal laser scanning ophthalmoscopy, fundus 

autofluorescence, and fluorescein angiography (Heidelberg Spectralis HRA 2; Heidelberg 

Engineering GmbH, Heidelberg, Germany). Groups of mice were euthanized with CO2 

inhalation at days 3 and 7 after laser treatment and their retinas and choroid-RPE complexes 

were prepared for fluorescence-based flow cytometry (FACS) or retina and choroid-RPE 

whole mounts and histology. All experiments were repeated at least once. 

 

Laser-induced Choroidal Neovascularization 

Mice were anesthetized and laser coagulation was performed using a 532-nm argon 

laser (Visulas 532s; Carl Zeiss Meditec AG, Oberkochen, Germany) with a slit-lamp adapter 

(Iridex Corporation, Mountain View, CA) mounted on a slit-lamp (BM900; Haag-Streit AG, 



7 
 

Koeniz, Switzerland). Pupil dilation was achieved with tropicamide 0.5%/phenylephrine 2.5% 

eyedrops (Hospital Pharmacy, Inselspital, Bern, Switzerland). Hydroxypropyl methylcellulose 

20 mg/mL (Methocel 2%; OmniVision AG, Neuhausen, Switzerland) was applied on the eyes 

to keep them hydrated. A 2-mm fundus lens (Ocular Instruments, Inc., Bellevue, WA) was 

used for fundus visualization during the laser application. Three spots per eye were applied 

around the optic nerve, avoiding the large vessels (50µm size, 300mW intensity, 100ms 

duration) and both eyes were lasered per mouse. Rupture of Bruch`s membrane was indicated 

by bubble formation directly after laser application. Lesions with obvious hemorrhage were 

excluded from analysis. Bridging between laser spots was avoided by positioning the laser 

sites with sufficient distance.  

 

Fundus Autofluorescence Imaging 

Mice were anesthetized and their pupils were dilated as described above. To avoid 

drying of the cornea with resulting impairment of image quality, hydroxypropyl 

methylcellulose 20 mg/mL (Methocel 2%; OmniVision AG, Neuhausen, Switzerland) was 

applied on each eye. Retinal images were acquired using an ultra-widefield 102º lens 

(Heidelberg Engineering GmbH, Heidelberg, Germany), as described previously.36 In 

MacGreen mice, GFP-positive cells (microglia/macrophages) could be visualized as 

hyperfluorescent spots in the autofluorescence images. 

 

Fluorescein Angiography 

After induction of anesthesia and pupil dilation (see above) 50 µL of 0.01% 

fluorescein [Faure; Novartis, Switzerland; in 1x phosphate buffered saline (PBS)] was 

administered subcutaneously and images were acquired using the HRA system angiography 

(Heidelberg Spectralis HRA 2; Heidelberg Engineering GmbH, Heidelberg, Germany) with a 
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noncontact ultra-widefield 102º lens (Heidelberg Engineering GmbH, Heidelberg, Germany). 

Images were taken during the first 90 seconds. CNV area was marked and measured using the 

caliper function in the Heidelberg software by two blinded assessors (DK and PS) (Heidelberg 

Engineering GmbH, Heidelberg, Germany). 

 

Immunohistochemistry Studies 

For immunohistochemical studies, mouse eyes were isolated for preparation of retinal 

and choroid-RPE whole mounts. Eyes were fixed in 4% paraformaldehyde solution (PFA, pH 

7.4) for 10 minutes, the anterior segments were removed (cornea and lens), and the posterior 

segment was incubated for another 50 minutes in PFA. Retinas were mechanically detached 

from the choroid-RPE complex and both tissues were extensively washed in 1x PBS, 0.5% 

TritonX-100 (Sigma-Aldrich, St. Louis, MO) and processed according to Ebneter, Kokona 37. 

Isolectin GS-IB4 from Griffonia simplicifolia (Alexa Fluor 647 conjugate; 1:100; Thermo 

Fisher Scientific, Waltham, MA), a rabbit polyclonal antibody against ionized calcium-

binding adapter molecule 1 (Iba-1; 1:500; ; Wako Pure Chemical Industries Ltd., Osaka, 

Japan) and a chicken polyclonal antibody against GFP (1:300; Abcam, Cambridge, UK) were 

used for labeling of blood vessels and microglia/macrophages. The secondary antibodies goat 

anti-rabbit IgG H+L (Alexa Fluor 594 conjugate; 1:200; Thermo Fisher Scientific, Waltham, 

MA) was used for the visualization of Iba-1 staining and goat polyclonal antibody to chicken 

IgY H+L (FICH; 1:200; Abcam, Cambridge, UK) for visualization of GFP staining.  

Another group of mice was euthanized at days 3 or 7 after CNV induction and their 

eyes were fixed in 4% PFA (pH 7.4) overnight at 4 °C. Eyes were routinely embedded in 

paraffin and 5 µm paraffin sections were cut running through the optic nerve head. The slides 

were de-paraffinized and blocked with 10% NGS for 30 min prior to incubation with a rabbit 

polyclonal antibody against Iba-1 (see above) overnight at 4 °C. The slides were washed in 1x 
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PBS and incubated with a secondary biotinylated goat anti-rabbit IgG antibody (1:250; Vector 

Laboratories, Burlingame, CA), for 30 min in room temperature, followed by three washes 

with 1x PBS and incubation with an HRP-streptavidin-conjugate (1:1000; Vector 

Laboratories, Burlingame, CA) for 60 min at room temperature. The signal was visualized 

using the NOVA red substrate kit (Vector Laboratories, Burlingame, CA) according to 

manufacturer’s instructions.     

 

Microscopy 

For retinal or choroid-RPE whole mounts, microscopy was performed on equipment 

provided by the Microscopy Imaging Center (MIC), University of Bern, Switzerland. Retinal 

and choroid-RPE flat mounts were examined using an inverted Zeiss LSM 710 fluorescence 

confocal microscope (Carl Zeiss Meditec AG, Jena, Germany). Z-stacks of 100 to 110 µm 

with 5 µm intervals were obtained. Eye sections were examined under a fluorescence Nikon 

Eclipse 80i microscope (Nikon, Tokyo, Japan). CorelDraw X6 (Corel Corporation, Ottawa, 

ON, Canada) was used for figure preparation. 

 

Flow cytometry 

Retinas and choroid-RPE complexes from MacGreen mice were used for flow 

cytometry analysis at days 3 and 7 after the laser application. The eyes were collected in PBS 

(pH 7.4), the anterior segment was removed, the retina was mechanically detached from the 

choroid-RPE complex and both tissues were used for flow cytometry. Retinas or choroid-RPE 

of each individual mouse were analyzed as one sample. Tissues were processed according to 

Ebneter, Kokona 37. Retinas were stained with fluorescent-labelled antibodies against CD45-

APC/Cy7 (30-F11, 1:400), CD11b-APC (M1/70, 1:200), and MHC-II-Pacific blue (major 

histocompatibility complex class-II, AF6-120.1, 1:200). Choroid-RPE samples were stained 
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with fluorescent-labelled antibodies against CD11b-APC (M1/70, 1:200), CD11c-APC/Cy7 

(N418, 1:200), Ly6G-PerCP/Cy5.5 (1A8, 1:200), Ly6C-Brilliant Violet 405 (HK1.4, 1:100), 

NK-1.1-PE/Dazzle 594 (PK146, 1:200), CD3-PE/Dazzle 594 (17A2, 1:200), and CD19-

PE/Dazzle 594 (6D5, 1:200). Zombie Red Fixable Viability Kit (1:800; Biolegend, San 

Diego, CA) staining was used for detection of dead cells, according to manufacturer’s 

instructions. Samples were incubated for 20 minutes with an Fc blocker (1:200; Biolegend, 

San Diego, CA) followed by incubation with the fluorescent-labelled antibodies for 20 more 

minutes at 4 °C in the dark. Each experiment was repeated at least once.  

An LSR II Cytometer System with the BD FACSDiva software V4.1 (BD 

Biosciences, Allschwil, Switzerland) was used for data acquisition. The flow cytometry data 

were analyzed with the Flowjo Single Cell Analysis Software V10 (TreeStar, Ashland, OR). 

All antibodies were purchased from Biolegend (San Diego, CA).  

 

Protein extraction  

In total, 34 C57BL/6J mice were used for protein extraction and analysis of cytokine 

and chemokine levels. Control or PLX5622-fed mice were lasered as mentioned above one 

week after the initiation of the PLX5622 diet and proteins were extracted from the posterior 

part of the eyes at day 3 and 7 post CNV. Ten naïve mice were used as naïve controls and four 

eyecups were pooled as one sample. Briefly, the eyecups were homogenized in 200 µL of 

lysis buffer [1x lysis buffer provided with the kit, 1 mM Na3VO4, protease inhibitor cocktail 

(cOmplete ULTRA Tablets, EDTA-free; Roche, Basel, CH)] and homogenized using a 

Precellys 24 tissue homogenizer (Bertin Instruments, Montigny-le-Bretonneux, France). After 

centrifugation for 10 min at 13000 rpm at 4 °C, the supernatant was collected and Bradford 

assay was used for the determination of total protein content.  
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Mouse inflammation antibody array-membranes 

Mouse inflammation antibody array-membranes (ab193660; Abcam, Cambridge, UK) 

were processed according to manufacturer's instructions. Briefly, the membranes were 

incubated for 2 hours in blocking buffer (provided with the kit) and incubated with 500 µg of 

total protein, overnight at 4 °C. Membranes were washed (wash buffer provided with the kit) 

and incubated with biotin-conjugated anti-cytokines/chemokines (provided with the kit) in 

blocking buffer, overnight at 4 °C, and incubated with 1x HRP-conjugated streptavidin 

(provided with the kit), for 2 hours at room temperature. Chemiluminescence was detected 

using detection buffers (provided with the kit) and a Fusion Pulse Imaging System (Witec 

AG, Luzern, Switzerland). Densitometry analysis was performed using the “Protein Array 

Analyzer” function of the ImageJ2 software (https://imagej.net/ImageJ2; last accessed 

December 11, 2018).38 The signal was normalized between different membranes using the 

positive control spots. Spots with abnormally high background were excluded from the 

analysis. The experiment was repeated once.   

 

Statistical Analysis 

The sample size was estimated in the GPower 3.1 software39 based on a power of 0.8 

(80%) and a significance level of 0.05 (5%). The standardized difference (SMD) of each 

experimental group was estimated based on previous studies and pilot experiments. 

D`Agostino-Pearson omnibus test or Kolmogorov-Smirnov test were used to test the normal 

distribution of different data sets. Repeated measures one-way ANOVA was used for the 

analysis of the CNV course with or without PLX5622 treatment. To compare the CNV area 

between PLX5622-treated and non-treated mice, ordinary one-way ANOVA was used 

followed by Tukey’s post hoc analysis. Statistically significant differences of the flow 

cytometry data were determined using one-way ANOVA followed by Tukey’s post hoc 
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analysis for normally distributed data and Kruskal-Wallis test followed by Dunn`s multiple 

comparison test for the data that did not follow normal distribution. Kruskal-Wallis test 

followed by Dunn`s multiple comparison test was used for the comparison of the array 

membrane data. All data are expressed as mean ± standard deviation (SD). 

P-values less than 0.05 were considered statistically significant. GraphPad Prism 5.0 

software (GraphPad Software, Inc., San Diego, CA) was used for the statistical analysis.  

 

Results 

Effect of CSF-1R inhibition in the time course of laser-induced CNV  

Inhibition of the CSF-1R with PLX5622 for 7 days prior to CNV induction (Fig. 1A) 

led to a striking reduction of GFP positive cells in the retinas of mice (Fig. 1B). Laser 

application resulted in comparable CNV areas between PLX5622 treated and untreated mice 

three days after the CNV induction (Fig. 1C). However, the area of CNV was decreased at 

later time points in the CNV group (Fig. 1C), whereas the presence of PLX5622 resulted in an 

accelerated involution of CNV area over time (Fig. 1C). The leakage area of CNVs on the 

fluorescein angiographs substantiated this finding (Fig. 1D; *** P < 0.001, repeated measures 

one way ANOVA with Tukey’s post hoc analysis). Moreover, at day 14, there was a 

statistically significant decrease in CNV size of mice fed with PLX5622 compared to control-

fed mice (***P < 0.001, ordinary one way ANOVA with Tukey’s post hoc analysis).  

In the choroid-RPE complex, CNV areas were identified using isolectin GS-IB4 

staining (Fig. 2A). Iba-1 positive cells representing microglia/macrophages accumulated 

around the lesion sites in the choroid-RPE and retinal whole mounts of control mice (Fig. 

2A). In the PLX5622 group, Iba-1 positive cells, most probably representing macrophages, 

were present in CNV areas of the choroid-RPE but were absent from the neurosensory retina 

(Fig. 2A). In the choroid-RPE as well as in the outer retina, Iba-1 positive cells’ morphology 
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suggested a reactive phenotype, whereas in the inner retina most of the Iba-1 positive cells 

had a ramified morphology (Fig. 2B). Iba-1 positive cells were also detected in eye sections 

around the lasered area of CNV-subjected mice and their numbers were greatly reduced in the 

presence of PLX5622 (Fig. 2C). In the choroid-RPE complex of MacGreen CNV-subjected 

mice the majority of CSF-1R-GFP positive cells were co-localized with Iba-1, whereas a few 

cells (arrows) were Iba-1 negative (Fig. 2D).   

Quantification of microglia/macrophages with flow cytometry  

 Flow cytometry was performed at days 3 and 7 post CNV in the retina of control and 

PLX5622-treated CNV-subjected mice (Fig. 3A). The cells were gated as shown in 

Supplementary Figure 1A. CNV induced accumulation of CD45lowCD11b+ microglia and 

CD45hiCD11b+ macrophages40 in the retina, whereas PLX5622 reduced their numbers (Fig. 

3A). Quantification of different cell populations revealed that the number of microglia and 

macrophages was elevated 3 and 7 days post CNV (Fig. 3B; *** P < 0.001, ordinary one way 

ANOVA with Tukey’s post hoc analysis). In mice fed with PLX5622 microglia cells were 

diminished by approximately 98.5% compared to control CNV mice at day 3 and day 7 post 

CNV (Fig. 3B; ***P < 0.001, ordinary one way ANOVA with Tukey’s post hoc analysis). 

Similarly, PLX5622 led to a reduction of macrophages by 47.7% and 76.3%, respectively, 

compared to control at days 3 and 7 post CNV induction (Fig. 3B; ***P < 0.001, ordinary one 

way ANOVA with Tukey’s post hoc analysis). No statistically significant difference was 

observed in CSF-1R expression in different cell types for different treatments and time points 

(Fig. 3C). Increased MHC-II expression in both microglia and macrophages was observed at 

day 3 post CNV (Fig. 3C; ***P < 0.001, Kruskal-Wallis test followed by Dunn`s multiple 

comparison test). In mice fed with PLX5622 MHC-II expression in microglia and 

macrophages was virtually absent (Fig. 3C).  

Quantification of immune cell population in the choroid-RPE with flow cytometry  
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Flow cytometry was performed at days 3 and 7 post CNV in the choroid-RPE of control and 

PLX5622-treated mice. The cells were gated as shown in Supplementary Figure 1B. The 

number of CD11c+ cells, the majority of which most probably represents dendritic cells41, 

leukocytes (CD11b+CD11cneg)42, and neutrophils (CD11b+Ly6G+)41 were elevated in the 

choroid-RPE during the acute phase of CNV (Fig. 4A; *P < 0.05, **P < 0,01, ***P < 0.001, 

ordinary one-way ANOVA with Tukey’s post hoc analysis for CD11c+ cells and leukocytes, 

Kruskal-Wallis test followed by Dunn`s multiple comparison test for neutrophils), whereas 

PLX5622 led to a reduction of CD11c+ cells and leukocyte numbers below control (naïve) 

levels (Fig. 4A). Interestingly, although there was no difference between the naïve and the 

CNV-subjected tissues in the total number of Ly6Gneg Ly6Clow/neg SSC-Hlow cells, representing 

non-classical patrolling monocytes/macrophages43, the presence of PLX5622 led to a 

reduction of these cell numbers below control (naïve) levels (Fig. 4B; ***P <  0.001, ordinary 

one way ANOVA with Tukey’s post hoc analysis). Classical inflammatory 

monocyte/macrophages (Ly6Gneg Ly6Chi)43 on the other hand, were increased at day 3 after 

CNV and this was prevented by PLX5622 (Fig. 4B; ***P <  0.001, ordinary one way 

ANOVA with Tukey’s post hoc analysis). The expression of CSF-1R by patrolling and 

inflammatory monocytes, expressed as a percentage of Ly6Gneg Ly6Clow/neg SSC-Hlow and 

Ly6Gneg Ly6Chi cells, respectively, was not altered between the different groups (Fig. 4C, 

respectively).  

Cytokine levels during the course of CNV 

The protein levels of several inflammatory modulators such as chemokines (CCL3, 

CCL9), growth factors (IGFBP-3, IGFBP-5, GM-CSF), members of the TNF superfamily 

(CD30L, sTNFRI), inflammatory cytokines (interferon-γ, IFN-γ; interleukin-1α, IL-1α; 

inteleukin-12 p70, IL-12 p70), anti-inflammatory cytokines (interleukin-13, IL-13), matrix 

metalloproteinases (MMP-2, MMP-3), Fc gamma receptors (Fc-gamma RIIB), and adhesion 
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molecules (VCAM-1) were elevated at the acute phase of the disease (Table 1) 3 days after 

laser application. During the later phase (day 7), most of the inflammatory modulators 

returned to control levels except for an elevation of the protein levels of bFGF, GM-CSF, and 

VCAM-1. In the presence of PLX5622, protein levels of several targets were elevated (Table 

1), in agreement with previous studies,44 suggesting that PLX5622 actions are not mediated 

by a general reduction of the overall inflammatory response.  

 

Discussion 

Accumulation of microglia/macrophages in the subretinal space of CNV lesions and 

expression of inflammatory cytokines have both been implicated in the formation of CNV.10, 

12, 45, 46 However, the role of microglia/macrophages in CNV development is not clear yet, 

since contradictory roles of these cells have been reported. Previous studies have shown that 

macrophage depletion can lead to a reduction of VEGF production and CNV lesion size in 

mice,13, 14 whereas other studies reported that lack of the CCR2 receptor and its ligand CCL2 

in mice leads to spontaneous CNV development after 9 months of age.2 Moreover, microglia 

accumulation has been observed in AMD lesions in CCL2/CX3CR1 deficient mice but not in 

control mice,47 whereas several additional studies reported that resident microglia actively 

contribute to CNV development.12, 48, 49 Microglia/macrophage involvement in CNV is further 

supported by studies showing that reduction of microglia and macrophages reactivity by 

polysialic acid or translocator protein 18 kDa (TSPO) ligands leads to reduced 

neurodegeneration and less vascular leakage in a CNV mouse model.17, 50, 51  

Here, we show that CSF-1R inhibition with PLX5622 leads to faster involution of 

CNV, as revealed by in vivo imaging and immunohistochemical studies in retinal and 

choroid-RPE whole mounts (Figure 1 and 2). PLX5622 efficiently depletes retinal microglia 

as early as one week of treatment (Figs. 1, 2, and 3). The flow cytometry data showed that 
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PLX5622 reduced the total number of CD45hiCD11b+ cells in the retina, most probably 

representing invading monocyte-derived macrophages and perivascular macrophages, and 

largely prevented MHC-II expression by microglia and CD45hiCD11b+ cells (Figure 3C). of 

the effect of PLX5622 was not observed on CSF-1R expression by microglia or macrophages 

(Fig. 3C). Recent studies by Paschalis et al suggested that ocular injury could trigger 

infiltration of peripheral monocytes into the retina, where they adopt a ramified morphology 

similar to resting microglia and express low levels of CSF-1R.33, 52 However, this was not 

observed in the present study. 

Flow cytometry analysis was also performed in the choroid-RPE complex of CNV 

subjected mice fed with control or PLX5622 chow. These data revealed increased numbers of 

CD11c+ cells, leukocytes, and neutrophils after CNV (Fig. 4), which is in agreement with 

previous studies.53, 54 CD11c+ dendritic cells have been previously reported to play a role in 

CNV development. Specifically, they have been found to accumulate in the CNV lesions, 

peaking in numbers between day 2 and 4 after laser-induced CNV in mice.54 Moreover, 

intravenous injection of dendritic cells leads to their accumulation into the CNV lesions where 

they are associated with increased CNV size.54 Our data are consistent with these findings. 

Moreover, inhibition of the CSF-1R with PLX5622 did not only deplete retinal microglia but 

it also affected the number of  CD11c+ cells and leukocytes found in the choroid-RPE by 

reducing their numbers below naïve levels, while it did not have any effect on neutrophil 

numbers (Fig. 4A). Previous studies have shown that CSF-1R signaling is vital for dendritic 

cells differentiation, and dendritic cells are diminished in the spleen and peritoneum of CSF-

1R deficient mice.55 Moreover, CSF-1R depletion has been recently shown to negatively 

regulate the dendritic cell pool size in adult mice.56   

Further analysis of leukocyte subsets showed an increase of inflammatory classical 

monocytes/macrophages (Ly6Gneg/Ly6Chi) 3 days post CNV, which was prevented by 
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PLX5622. However, the population of patrolling non-classical monocytes/macrophages in the 

choroid-RPE, identified as Ly6Gneg/Ly6Clow/neg/SSC-Hlow, was not affected by laser-induced 

CNV, but PLX5622 reduced their number below naïve levels, while the remaining cells were 

still positive for CSF-1R expression (Fig. 4B). This suggests that PLX5622 leads to a 

reduction of resident choroidal macrophage numbers and prevents the recruitment of Ly6Chi 

inflammatory monocytes/macrophages into the affected area. Indeed, by using neutralizing 

antibodies against CSF-1R or its ligand CSF-1, it has been previously shown that blocking of 

CSF-1R signaling can lead to depletion of Ly6Cneg monocytes in the blood, while it only has 

modest effects in Ly6C+ monocytes in the bone marrow.57-59 Thus, the beneficial effects of 

PLX5622 may be attributed at least partially to the reduced numbers of peripheral immune 

cells, which along with retinal microglia could contribute to the extracellular matrix 

remodeling that trigger the formation of new blood vessels. 

To further investigate the effect of PLX5622 in the course of CNV, a panel of 

cytokines/chemokines were analyzed in CNV-subjected mice fed with PLX5622 or normal 

food, using a semi-quantitative assay (the array membrane data are openly available in 

OSF|Data repository - Open Science Framework at https://osf.io; reference number: y5n7h). 

Elevated levels of several cytokines/chemokines were found in the CNV-subjected eyes, 

while some of them were elevated even more in the presence of PLX5622 (Table 1). Among 

the highest up-regulated cytokines were CX3CL1, MMP-2, bFGF, and VCAM-1, whereas 

others, such as IL-6, TNFα, and MCP-1 were not changed compared to naïve mice. CX3CL1 

signaling is a key modulator of macrophage recruitment into the injured tissues60, 61 and it has 

been shown to reduce microglial activation and subsequent neurotoxicity.62, 63 MMP-2 on the 

other hand has been reported to play a prominent role in CNV formation, since reduced CNV 

is observed in mice deficient for MMP-2.64-66 MMPs can proteolytically cleave several 
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chemokines, leading to their inactivation or the generation of antagonistic derivatives, which 

cannot promote chemotaxis.67  

No differences were detected in the levels of vascular endothelial growth factor 

(VEGF) between the experimental groups 3 and 7 days after CNV induction. VEGF is 

considered the major pro-angiogenic factor in the inflamed retina,68-70 and it has been 

suggested that interaction between VEGF and other pro-angiogenic factors, such as bFGF, is 

required for the angiogenic actions of VEGF.71 Here, an up-regulation of bFGF was observed 

in the presence or absence of PLX5622, but no differences were observed in VEGF protein 

levels between naïve and CNV mice in the presence or absence of PLX5622. Most likely, 

these differences could be observed in earlier time points after the CNV induction.  

In the presence of PLX5622, the pro-inflammatory IL-1α was also elevated at day 3 

after CNV laser-induction and it was significantly reduced at day 7. Up-regulation of the 

adhesion molecule VCAM-1 was also observed in our study and this up-regulation was 

greater in the presence of PLX5622. VCAM-1 mediates the adhesion of monocyte-derived 

macrophages to vascular endothelial cells and increased protein levels of VCAM-1 have been 

reported in the retinal vasculature during CNV in mice.11 However, increased infiltration of 

monocyte-derived macrophages into the injured retina was not observed in the presence of 

PLX5622.  

Additionally, significantly elevated levels of sTNFRI were found during the disease 

course of CNV in the presence of PLX5622. After TNF-α binds to its membrane receptors, 

TNFRI and TNFRII, the receptors are cleaved to their soluble forms (sTNFRI/sTNFRII) by 

metalloproteinases.72 The level of surface expression of TNFRI and its soluble form was 

found to be an important factor in regulating TNFα-mediated effects,73, 74 and the receptor 

cleavage acts as an important mechanism for the suppression of TNF-α–mediated 

inflammation.75 The levels of the anti-inflammatory cytokines IL-4 and IL-10 were also 
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elevated in the PLX5622 group, and this was accompanied by down-regulation of IFN-γ 

levels. Indeed, IL-10 has been previously reported to inhibit the production of IFN-γ76 and to 

mediate a suppressive effect on CNV development.77 In addition, IL-4 has been shown to 

antagonize IFN-γ–induced activities in macrophages.78-80 The expression of insulin-like 

growth factor–binding proteins (IGFBP-3, IGFBP-5, and IGFBP-6) was also increased in the 

presence of PLX5622. IGFBPs bind with high activity to insulin growth factor (IGF) and thus 

limit the free form of IGF in the circulation, 84-86 thereby acting as angiogenesis 

suppressors.87-89 In keeping with this IGF signaling has been proposed to play a role in 

diabetic retinopathy and retinal neovascularization where it has been shown to lead to 

increased VEGF levels.81-83  

Because of complex cytokine interactions that may act antagonistically, the apparent 

increase of the inflammatory cytokines after PLX5622, which is in keeping with previously 

published studies44, may ultimately lead to a more angiostatic/anti-angiogenic phenotype and 

thus inhibits CNV progression. In addition, it has been previously reported that CSF-1 can 

increase the release of VEGF from monocytes and CSF-1R inhibition can lead to lower levels 

of VEGF.90, 91 Thus, blockade of the receptor may affect the angiogenesis mediated by CSF-

1R–expressing cells. Moreover, physical contact between immune cells, such as perivascular 

macrophages, and endothelial cells may be required for the progression of CNV. In vitro 

studies have shown that direct contact between monocytes and endothelial cells can increase 

endothelial cell proliferation.92 49, 93 Hence, reduction of retinal microglia and attenuation of 

perivascular macrophages could result in decreased endothelial cell proliferation and therefore 

regression of CNV lesions.  

Our data are in agreement with previous studies that have shown elevation of cytokine 

and chemokine levels in the retinas of CNV-subjected mice, as well as infiltration of 

monocyte-derived macrophages into the retina early during the course of CNV.11, 94-96 Apart 
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from microglia and monocyte-derived macrophages, RPE cells and vascular endothelial cells 

are also known to produce cytokines during CNV in mice.97 Moreover, activated Müller cells 

could also be a source of cytokines during CNV. Based on the PLX5622 depletion data, 

immune cells are likely not the main producers of cytokines during the course of our CNV 

model, yet they play an important role in CNV progression.  

In summary, the present study highlights the important role of innate immunity in the 

course of CNV in mice. Inhibition of the CSF-1R has beneficial effects against CNV 

progression but whether these effects are mediated by depletion of microglia and/or 

macrophages in the retina, by patrolling monocytes in the choroid or by the prevention of 

leukocyte influx needs to be further investigated. Additionally, a more detailed analysis of the 

cytokine and chemokine levels after PLX5622 treatment could provide valuable data towards 

specific biological effects of PLX5622 in retinal pathology.  
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Figure legends 

 

Figure 1. Effect of colony stimulating factor-1 receptor (CSF-1R) inhibition on choroidal 

neovascularization. A: Experimental setup. B: Representative autofluorescence images of a 

MacGreen mouse retina before (PLX5622 d-7, n = 3 mice) and 7 days after the start of 

PLX5622 diet (PLX5622 d0, n = 3). GFP positive microglia cells are drastically diminished in 

the retina after 7 days of PLX5622 diet. C: Representative fluorescein angiographs of 

choroidal neovascularization (CNV)-subjected eyes at different time points in control or 

PLX5622-fed mice. D: CNV area measurements in fluorescein angiographs of control or 

PLX5622-fed mice. CNV area was gradually decreased in control (CNV) and PLX5622-fed 

mice. ***P < 0.001, repeated measures one way ANOVA followed by Tukey’s post hoc 

analysis; n ≥ 14 eyes per group. Statistically significant reduction of the lesion size was 

observed in the presence of PLX5622 at day 14 compared to the control. ***P < 0.001, 

ordinary one way ANOVA followed by Tukey’s post hoc analysis; n ≥ 14 eyes per group. 

Individual CNV lesions are plotted in the graph.    

 

Figure 2. Ex vivo evaluation of microglia and accumulation of monocyte-derived 

macrophages in the laser site. A: Isolectin and Iba-1 staining in the choroid-RPE whole 

mounts and Iba-1 staining in retinal whole mounts 14 days post choroidal neovascularization 

(CNV) in control (n ≥ 6 mice per group) and PLX5622-fed mice. Iba-1–positive cells 

accumulate at the laser site in the choroid-RPE and in the retina of control CNV-subjected 

mice. In PLX5622-fed mice Iba-1–positive cells are detected in the choroid-RPE but not in 

the retinal whole mounts. The numbers indicate the three different laser spots and the asterisks 

indicate the optic nerve head. Scale bars: 500 µm; magnification: 10x B: Higher 

magnification of Iba-1 staining in control-fed mice subjected to CNV, 14 days after the laser 
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application. In the choroid-RPE and the outer retina, Iba-1–positive cells accumulated around 

the laser site and their morphology is characterized by increased soma size and retracted 

processes. In the inner retina a ramified morphology is observed. Scale bars: 200 µm; 

magnification: 40x. C: Representative photomicrographs of Iba-1–positive cells in retinal 

sections of control (n ≥ 3 mice per time point) or PLX5622-fed (n ≥ 3 mice per time point) 

CNV-subjected mice. Iba-1–positive cells accumulated in the outer retinal and the choroid-

RPE in the CNV eyes (first and second panel). In mice fed with PLX5622, Iba-1–positive 

cells also accumulated in the outer retina and choroid-RPE; however, they were fewer in 

number and were almost absent 7 days after CNV (third and fourth panel). IPL, inner 

plexiform layer; ONL, outer nuclear layer. Scale bars: 200 µm; magnification: 20x. D: 

Representative photomicrographs of Iba-1 and CSF-1R-GFP positive cells in retinal sections 

of control or PLX5622-fed mice 14 days after CNV (n ≥ 3 mice per treatment). Most of the 

CSF-1R-GFP positive cells are co-localized with Iba-1 while a few of them are Iba-1 negative 

(arrows). Scale bars: 100 µm; magnification: 40x.  

 

Figure 3. Flow cytometry analysis of microglia/macrophages population in the retina of 

choroidal neovascularization (CNV)-subjected mice. A: Representative flow cytometry plots 

at different time points post CNV in control and PLX5622-fed animals. Microglia were 

identified as CD45low CD11b+ and macrophages as CD45hi CD11b+. B: Quantification of 

microglia (upper panel; CD45low CD11b+) and macrophages (lower panel; CD45hi CD11b+) in 

the retina, 3 and 7 days post CNV, in the presence or absence of PLX5622. Elevated number 

of microglia and macrophages is observed 3 and 7 days post CNV (n ≥ 5 mice per group). 

PLX5622 reduces the number of microglia and macrophages in the retina (n ≥ 5 mice per 

group). C: Quantification of CSF-1R+ or MHC-II+ microglia (first and second graph) and 

CSF-1R+ or MHC-II+ macrophages (third and fourth graph), expressed as a percentage of the 
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total number of microglia or macrophages, respectively. No statistically significant difference 

was observed in the number of CSF-1R+ microglia and macrophages in the presence or 

absence of PLX5622. MHC-II+ microglia and macrophages were detected in the retina at the 

early course of CNV (day 3), yet this increase was not statistically significant compared to the 

naïve tissue. PLX5622 reduces the expression of MHC-II by these cells ***P < 0.001, one-

way ANOVA followed by Tukey’s post hoc analysis or Kruskal-Wallis test followed by 

Dunn`s multiple comparison test, n ≥ 5 per group).  

 

Figure 4. Quantification of immune cell population in the choroid-RPE using flow cytometry 

analysis. A: The numbers of CD11c+ cells (first graph) in the choroid-RPE is elevated 3 days 

after choroidal neovascularization (CNV) and returns to control levels at day 7 post CNV. 

PLX5622 reduces CD11c+ cell numbers below control levels. Leukocyte numbers (second 

graph) peak at day 3 after CNV and their numbers are reduced in the presence of PLX5622. A 

slight increase in neutrophil numbers is detected 3 days post CNV (third graph). B: 

Leukocytes were further gated based on the expression of Ly6G and Ly6C. Ly6Gneg 

Ly6Clow/neg SSC-Hlow cells are reduced in the presence of PLX5622 while no differences are 

observed between the naïve and CNV subjected tissues (first graph). On the other hand, 

Ly6Gneg Ly6Chi inflammatory monocytes/macrophages are increased 3 days post CNV and 

decreased thereafter (second graph) and this phenomenon is prevented by PLX5622. C: No 

difference is observed in the expression of colony stimulating factor-1 receptor (CSF-1R) by 

Ly6Gneg Ly6Clow/neg SSC-Hlow (first graph) or Ly6Gneg Ly6Chi monocytes/macrophages 

(second graph) between different treatments. *P < 0.05, **P < 0.01, ***P < 0.001, ordinary 

one way ANOVA with Tukey’s post hoc analysis or Kruskal-Wallis test followed by Dunn`s 

multiple comparison test; n ≥ 5 for each treatment. 
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Table 1. Effect of laser-induced CNV on cytokine/chemokine levels in the C57BL/6J 

mouse eyecups in the presence or absence of PLX5622. 

 Day 3 Day 7 

Factors CNV CNV+PLX5622 CNV CNV+PLX5622 

Chemokines     

CCL3 1.60* 1.11 0.85‡‡ 0.55 

CCL9 1.58***  2.36***†††  1.26 2.62***†††  

CX3CL1 1.34 4.59***  1.39 3.75***  

CXCL2 1.19 1.46***  1.08 1.39**†  

CXCL13 1.34 2.12***†  1.06 1.46 

CXCL16 1.29 2.38***†††  1.11 2.45***†††  

     

Growth factors     

bFGF 1.67 2.06* 2.12***  3.00***†  

IGFBP-3 1.33**  1.83***†††  1.08 1.70***†††  

IGFBP-5 1.45* 2.41***†††  1.12 1.92***†††  

IGFBP-6 1.13 2.80**†  1.32 1.84 

GM-CSF 1.68* 2.89***†††  1.66* 1.91**‡‡ 

M-CSF 1.12 1.33* 1.15 1.02 

     

TNF superfamily     

CD30 1.21 2.03**†  1.09 1.54 

CD30 L 1.43* 1.40 1.09 0.92 
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Fas ligand 0.79 1.75†† 0.85 0.93 

sTNFRI 1.53* 2.58***†††  0.86‡‡ 2.35***†††  

     

Pro-Inflammatory cytokines    

IFN-g 1.70* 0.54††† 1.14‡ 0.46† 

IL-1α 1.34* 2.31***†††  1.12 1.60***††‡‡‡ 

IL-12 p70 1.48**  1.76***  1.09‡ 1.50* 

TCA-3 1.20 1.86***†††  0.95 1.73***†††  

TIMP-1α 1.23 1.59**  0.93 1.41† 

     

Anti-inflammatory cytokines    

IL-4 1.06 2.72††† 0.89 2.75††† 

IL-10 1.40 3.13***†††  1.53 2.00*‡ 

IL-13 1.45**  1.35 1.08† 0.84‡ 

     

Tissue remodeling     

MMP-2 1.86***  5.07***†††  0.84‡ 5.62***†††  

MMP-3 1.59* 1.85**  1.13 2.29***†††  

     

Fc-gamma receptors    

Fc gamma RIIB 2.19**  0.43†† 1.45 0.89 

     

Adhesion molecules    

VCAM-1 1.54**  2.84***†††  1.57***  3.47***†††  
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Semi-quantitative analysis of inflammatory mediators’ protein levels in the retina-choroid-

RPE complex, 3 and 7 days after CNV, in the presence or absence of PLX5622. All data are 

normalized to naive tissues.  

*P < 0.05, ** P < 0.01, *** P < 0.001 compared to naïve. 

†P < 0.05, ††P < 0.01, †††P < 0.001 compared to CNV. 

‡P < 0.05, ‡‡P < 0.01, ‡‡‡P < 0.001 compared to the same treatment at day 3.  

Only targets with statistically significant differences are shown in the table. Targets that were 

examined but did not show statistically significant differences included IL-6, TNFα, VEGF, 

MCP-1, G-CSF, and CCL5 among others.  
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