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Abstract
Approximately 50% of prostate cancers harbor the TMPRSS2:ERG fusion, resulting in elevated expression of the ERG
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cancer has not been investigated. Resolution of this issuemay identify novel therapeutic approaches for ERG-positive
prostate cancers. In this study, we used quantitative mass spectrometry-based kinomic profiling to identify ERG-
mediated changes to cellular signaling networks. We identified 76 kinases that were differentially expressed and/or
phosphorylated in DU145 cells engineered to express ERG. In particular, the Traf2 and Nck-interacting kinase (TNIK)
wasmarkedly upregulated and phosphorylated onmultiple sites upon ERG overexpression. Importantly, TNIK has not
previously been implicated in prostate cancer. To validate the clinical relevance of these findings, we characterized
expression of TNIK and TNIK phosphorylated at serine 764 (pS764) in a localized prostate cancer patient cohort and
showed that nuclear enrichment of TNIK (pS764) was significantly positively correlated with ERG expression.
Moreover, TNIK protein levelswere dependent uponERGexpression inVCaPcells and primary cells established froma
prostate cancer patient-derived xenograft. Furthermore, reduction of TNIK expression and activity by silencing TNIK
expression or using the TNIK inhibitor NCB-0846 reduced cell viability, colony formation and anchorage independent
growth. Therefore, TNIK represents a novel and actionable therapeutic target for ERG-positive prostate cancers that
could be exploited to develop new treatments for these patients.

Neoplasia (2019) 21, 389–400
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ostate cancer is the fifth leading cause of cancer-related deaths in men
orldwide [1].Men that present with early stage prostate cancer are often
ccessfully treated with active surveillance, prostatectomy and/or
diotherapy. However, in 20% to 30% of patients, the cancer will
lapse and standard treatment is androgen deprivation therapy (ADT),
ith or without docetaxel chemotherapy. Despite an initial response to
DT, the majority of patients progress to the more aggressive castrate-
sistant prostate cancer (CRPC). Over the last decade the treatment
tions for metastatic CRPC have increased with the introduction of
cetaxel, enzalutamide, abiraterone acetate, cabazitaxel, and radium-223
]. Despite these advances, overall survival increments are measured in
onths and the majority will eventually die from their cancer. To
prove patient outcomes from lethal metastatic prostate cancer, we need
identify new therapeutic strategies incorporating molecular subtyping.
Themost common genetic abnormality in prostate cancer is the fusion
the 5′ untranslated region ofTMPRSS2 to members of the ETS family
transcription factors including ETV1, ETV4 and ERG, resulting in
eir aberrant androgen receptor (AR)-regulated expression [3]. Indeed,
proximately 50%of prostate cancers harbor theTMPRSS2:ERG fusion
ne and 56% of lethal CRPC cases have ETS re-arrangements, the vast
ajority being ERG fusions [3,4]. Moreover, patients with TMPRSS2:
RG positive prostate cancers have a worse outcome as indicated by
cidence of metastasis and/or death [3].
Overexpression of ERG in prostate epithelial and prostate cancer
ll lines promotes proliferation, migration, invasion and taxane
sistance [5,6]. In addition, knockdown of ERG decreased tumor
owth in mouse xenograft models [6]. However, increased
pression of ERG alone is insufficient to initiate prostate cancer
morigenesis in genetically-engineered mouse models, with addi-
onal molecular events such as PTEN loss or AR overexpression
quired to drive the development of invasive prostate cancer [3].
Overall, these data indicate that ERG plays a key driver role in
ostate cancer, including CRPC. However, the impact of ERG on
cogenic signaling networks remains poorly characterized. We
pothesized that global characterization of kinase signaling pathways
wnstream of ERG may reveal potential therapeutic strategies for
rgeting this disease subtype. In this report, we have exploited a
werful mass spectrometry-based kinome profiling platform to define,
r the first time, the ERG-regulated kinome, thereby identifying TNIK
a novel, actionable target in ERG-positive prostate cancer.

aterials and Methods

ell Lines
DU145 and RWPE1 cell lines stably expressing the vector control
ERG were previously described in [5]. 22Rv1 cells stably

pressing the vector control or ERG were made by lentiviral
ansduction of a GFP sequence or a flag-tagged ERG sequence
coding TMPRSS2:ERG (a kind gift from Dr. Brenner [7]) cloned
to a pLentiLox lentivirus vector (from University of Michigan
ector Core). Doxycycline inducible 22Rv1-ERG cells were made by
ntiviral transduction of the flag-tagged ERG sequence encoding
MPRSS2:ERG cloned into a pCW57.1 vector (a kind gift from Pr.
iannakakou). 22Rv1 cells were cultured in RPMI 1640 (Gibco)
pplemented with 10% (v/v) FBS (Gemini) and 1% (v/v) penicillin/
reptomycin (Gibco), and kept under puromycin selection (Gibco).
CaP cells were purchased from ATCC (CRL-2876) and cultured in
MEM high glucose (Gibco) supplemented with 10% (v/v) FBS
erana) and 1 mM sodium pyruvate (Gibco). Cells were tested to be
ycoplasma negative using the MycoAlert Mycoplasma Detection
it (Lonza), the Mycoplasma PCR Detection kit (Applied Biological
aterials Inc.) or PCR using forward and reverse primers: 5′-
GGAGCAAACAGGATTAGATACCCT-3′ and 5′-TGCAC
ATCTGTCACTCTGTTAACCTC-3′ respectively [8]. All cells
ere used within 20 passages of revival from liquid nitrogen.

inome Enrichment and Profiling by Mass Spectrometry
DU145 cells containing the empty vector or stably expressing ERG
] were SILAC labeled in RPMI 1640 (RPMI R1780–500 ML,
gma) supplemented with 382 μM L-leucine and either 219 μM L-
sine and 287 μM L-arginine (light labeled) or equal concentrations
L-[13C615N2]-lysine and L-[13C615N4]-arginine (heavy labeled)
ilantes), 10% (v/v) dialysed FBS (Hyclone) and 1% (v/v) penicillin/
reptomycin (Gibco). The SILAC labels for DU145 empty vector
d ERG expressing cells were switched in the second biological
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plicate. Subconfluent cells were harvested on ice into kinome
ofiling buffer [9] and cleared lysates adjusted to 1 M NaCl. Equal
ounts (47 mg) of light and heavy labeled cell lysates were
mbined and tumbled with beads coupled to kinase inhibitors: CTx-
94885/KiNet-1 (SYNkinase), Purvalanol B (Tocris), SU6668
iochempartner Chemical) and VI16832 (Evotec) for 2 h at 4°C [9].
eads were then washed and eluted kinases subjected to either in-gel
in-solution digestion, and phosphopeptides enriched using TiO2
ads, as previously described [9]. Peptides were injected into an
xactive Plus Orbitrap mass spectrometer (Thermofisher) and the
w data analyzed using MaxQuant (version 1.5.2.8).

estern Blotting
Protein lysates were subjected to Western blot analysis using the
llowing antibodies: ERG (Abcam, ab92513), ERG (Abcam,
133264), TNIK (Genetex, GTX13141), TNIK (pS764) (Abgent,
P3276a), MERTK (Abcam, ab52968), MAP4K4 (Cell Signaling
echnology, 3485), Lamin B1 (Cell Signaling Technology, 12586),
KT (Cell Signaling Technology, 4685), AKT (pS473) (Cell Signaling
echnology, 4058), tubulin (Sigma-Aldrich, T5168), β-actin (Santa
ruz Biotechnology, sc-69879) and β-actin (MP Biomedicals, 691001).

RNA Knockdown
VCaP cells were transfected with lipofectamine 2000 (Thermo-
sher Scientific) and patient-derived xenograft (PDX) cells were
ansfected with DharmaFECT4 (GE Healthcare Dharmacon) 24 h
st seeding. Media was changed 24 h later. The following siRNAs
ere used at a final concentration of 40 nM and purchased from GE
ealthcare Dharmacon: siGENOME SMARTpool human ERG
atalogue no. M-003886-01), siGENOME SMARTpool human
NIK (catalogue no. M-004542-03) and ON-TARGETplus
ARTpool human CTNNB1 (catalogue no. L-003482-00). The

N-TARGETplus (siOTP) non-targeting pool was used as the
ntrol (catalogue no. D-001810-10).

ytoplasmic and Nuclear Fractionation
Total protein was harvested by washing cells twice with 1× PBS
d lysing into western solubilization buffer (WSB) (0.5 mM EDTA,
mM HEPES, pH 7.4, 2% (w/v) SDS). Cytoplasmic and nuclear

actions were isolated on ice by washing twice with 1× PBS before
sing into nuclei buffer (NB) [10]. Lysates were then centrifuged at
00×g for 5 min at 4°C and the supernatant collected as the
toplasmic fraction. Pelleted nuclei were then washed twice with NB
d lysed in WSB. Lysates in WSB were passed through a 27-gauge ½
ch needle 15 times to shear the DNA. All lysates were cleared by
ntrifugation at 16000×g for 15 min.

munohistochemistry (IHC)
A cohort of archival formalin-fixed paraffin-embedded specimens
as collected from 60 men treated with radical prostatectomy for
calized prostate cancer at St Vincent's Hospital, Sydney. This
oject was approved by the St Vincent's Hospital Ethics Committee
2/231). A mean of 3 biopsies (range 2–5) of prostate cancer
presentative of primary, secondary and, if present, tertiary Gleason
ades were used to construct Tissue Microarrays (TMAs). Fresh-cut
ctions of TMAs were immunostained for ERG (1:200 dilution,
pitomics #28051), TNIK (1:2000 dilution, GeneTex GXT13141)
d TNIK (pS764) (1: 50 dilution, Abcam ab135556). All stains
ere performed on a Leica Bond autostainer. Sections were dewaxed
ing the Bond Dewax Solution and antigen retrieval performed
ing the Heat-Induced Epitope Retrieval (HIER) protocol with
ond Epitope Retrieval solution at 100°C for 20 min for the ERG
otocol and 30 min for the TNIK and TNIK (pS764) protocols.
he secondary detection was performed using the Bond Polymer
efine system with DAB chromagen. The TMAs were scored for the
immunostains. For ERG staining, nuclear staining was scored as a
rcentage of the total number of cancer cells. ERG-positive cases
ere classified as maximum nuclear staining for ERG across the cores
edian 90%, range 5–99%). For total TNIK, cytoplasmic staining
as scored as a percentage of the total number of cancer cells. For
NIK (pS764), nuclear staining was scored as a percentage of the
tal number of cancer cells. PDX tissue was stained with
matoxylin and eosin (H&E) for pathological assessment. IHC to
tect ERG (3.26 μg/ml, Abcam Ab92513) was performed using the
ica Bond-MAX™ automated system. TNIK and TNIK (pS764)
aining was performed as described previously.

atient-Derived Xenografts (PDXs)
Prostate cancer tissue was obtained from a dural metastasis during
st-mortem autopsy according to approved human ethics (Peter
acCallum Cancer Centre, 15/98, 97_27). Tumor tissue was
tablished as xenografts with approval from the Monash Animal
thics Committee (MARP/2014/085). Tumor grafts were implanted
der the renal capsule of immunodeficient male mice (NSG)
cording to our previously published protocol [11] and then grown
bcutaneously. PDX tissue were digested and cultured in organoid
edia [12] before being used for in vitro studies.

CF Reporter Assays
HEK293T cells (1.5 × 106) were seeded in 6 well plates in DMEM
igma) supplemented with 1% (v/v) penicillin/streptomycin (Sigma), 2
M L-glutamine (Sigma) and 10% (v/v) FBS (Gibco). The media was
placed 24 h later with freshmedia before the addition of the transfection
ix containing 1250 ng 7xTCF lentiviral vector (a gift from Roel Nusse,
ddgene plasmid # 24309, http://n2t.net/addgene:24309; RRID:
ddgene_24309) [13], 1250 ng packaging vector (psPAX2) (a gift
om Didier Trono (Addgene plasmid # 12260; http://n2t.net/
dgene:12260; RRID:Addgene_12260), 250 ng envelope vector
SVG) (a gift from Didier Trono (Addgene plasmid # 12259; http://
t.net/addgene:12259; RRID:Addgene_12259) and FuGENE® 6
romega) (8.75 μl per 1250 ng lentiviral vector). The 6 well plate was
en centrifuged at 1000×g for 30 min at room temperature and
cubated overnight in a humidified incubator with 5%CO2 atmosphere
37°C. The media was replaced with fresh media supplemented with
% (v/v) FBS 20 h later. Viruses were harvested 48 h and 72 h post
ansfection, pooled and stored at −80°C until use. PDX cells stably
pressing the 7xTCF lentiviral vector were generated by incubating cells
ith 7xTCF virus and 0.5 μg/ml polybrene overnight, followed by
lection with 1μg/ml puromycin for 96 h. Cells were seeded into 96well
ates 24 h after siRNA transfection. Cells were washed with 1x PBS,
sed in passive lysis buffer and assayed for luciferase activity 72 h post
ansfection using 50 μl of luciferase assay reagent from the Dual-
ciferase Reporter Assay System (Promega). Luminescence was detected
ing the CLARIOstar microplate reader (BMG LABTECH).

ell Viability Assays
Cells were seeded into 96 well plates and viability determined using
ellTiter96 Aqueous One Solution Cell Proliferation Assay (Promega)
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llowing the manufacturer's instructions. Absorbance was determined
ing the PHERAstar microplate reader (BMG LABTECH).

uantitative Real-Time PCR
RNA was extracted from cells 72 h post siRNA transfection using
e RNeasy Mini Kit (Qiagen). cDNA was synthesized from 400 ng
RNA using the RT2 First Strand Kit (Qiagen). Real-Time PCR
as performed using RT2 SYBR Green qPCRMastermix (Qiagen) in
T2 Profiler PCR array 384-well plates for the Human WNT
gnaling Pathway (Qiagen, catalogue no. 330231 PAHS-243ZA) in a
FX384 Touch Real-Time PCR detection System (Bio-Rad)
llowing the manufacturer's instructions. Three biological replicates
r cell line were performed. The threshold value was set at 20 and the
ta analyzed using Qiagen's online Data Analysis Center. GAPDH
d RPLP0 were selected automatically from the house keeping gene
nel and used for normalization of the VCaP and PDX data
spectively. P-values were calculated using Student's t-test.

eneration of Stable TNIK Knockdown Cells
PDX cells were transduced with MISSION lentiviral transduction
articles (SHCLNV, Sigma-Aldrich): shTNIK-A (clone ID:
RCN0000234733) and shTNIK-B (clone ID: TRCN0000234734)
ing a MOI of 5. The pLKO.puro vector (SHC002V, Sigma-Aldrich)
as used as the control. Transduced cells were selected with 1 μg/ml of
romycin for 3 days.

lonogenic Assay
Cells were seeded into 24 well plates at 500 cells per well. After 11 to
days, cells were washed twice with 1× PBS, fixed with 100% (v/v)
ethanol for 2 min, stained with 0.4% (w/v) crystal violet/20% (v/v)
hanol for 20 min and destained with distilled water. Images were
ken with a FinePix F100fd digital camera (Fujifilm) and colonies
unted using cell counter on ImageJ 1.48v (http://imagej.nih.gov/ij).

CB-0846 Treatment
NCB-0846 (SelleckChem) was reconstituted in DMSO. For
estern blotting, PDX cells were treated with 0–10 μM NCB-0846
r the indicated time before lysing in WSB. For viability assays, cells
ere treated with NCB-0846 24 h post seeding and viability
termined at the indicated days. For clonogenic and anchorage
dependent growth assays, NCB-0846 was changed twice a week
gether with fresh media.

nchorage Independent Growth in Soft Agar
A base layer of organoid media containing 0.7% (w/v) agar was
epared in 24 well plates. Cells (1000 cells per well) in organoid
edia containing 0.3% (w/v) agar was then layered on top of the set
se layer. The next day, 400 μl of organoid media containing NCB-
46 was applied to the cells. After 4 weeks, cells were stained with
005% (w/v) crystal violet/10% (v/v) ethanol for 2 h and destained
ith distilled water. Images were taken with a FinePix F100fd digital
mera (Fujifilm). Colony number and size was analyzed using
ageJ 1.48v (http://imagej.nih.gov/ij).

tatistical Analysis
Statistical t-tests were performed using GraphPad Prism 7 version 7.0b.

esults and Discussion
global survey of how ERG alters intracellular signaling in prostate
ncer cells has not been conducted. Our group has established a
nome profiling platform that uses a novel broad spectrum kinase
hibitor, CTx-0294885/KiNet-1 [9], in combination with other
pture reagents (Purvalanol B, SU6668 and VI16832), to enrich
nases from cell lysates. When combined with a quantitative,
LAC-based mass spectrometry (MS) workflow, this enables global
terrogation of the expressed kinome at the level of both protein
pression and phosphorylation (Figure 1A).
We applied this approach to DU145 prostate cancer cells expressing
RG or the corresponding empty vector. This MS-based kinomic
ofiling workflow identified 215 kinases from the total peptide and
osphopeptide data sets. A change in expression or phosphorylation of
.2-fold, when compared to the empty vector control, was implemented
classify 76 kinases as being ERG-regulated in terms of expression (21
nases), phosphorylation (136 phosphorylation sites from 65 kinases) or
th (10 kinases) (Figure 1, B and C). ERG-regulated kinases were
rived from all kinase family groups (Figure 1C), with the greatest
ntributions to the upregulated kinases from STE (23.2%), TK
4.0%), AGC (14.0%) andCMGC (14.0%) kinase families (Figure 1D,
p left). Most downregulated kinases were from the CMGC (27.8%),
E (19.4%) and TK (19.4%) kinase families (Figure 1D, top right).
KI and atypical kinases were the least impacted by ERG expression. In
rms of phosphorylation sites, over 50% of ERG-mediated upregulated
osphorylation events occurred on members of the STE (31.6%) and
AMK (23.7%) kinase families (Figure 1D, bottom left). Members of
e CMGC kinase family contributed to approximately 50% of
wnregulated phosphorylation events mediated by ERG overexpression
igure 1D, bottom right).
The main biological processes and signaling pathways regulated by
RG expression, through either altered kinase expression or
osphorylation, were mRNA splicing (16.6%), MAPK signaling
4.6%), DNA repair and cell cycle regulation (12.7%) and
toskeletal remodeling (11.5%) (Figure 2). Prominent alterations
cluded multisite modulation of CDK12 and CDK13 (implicated in
gulation of mRNA splicing and transcriptional control), MARK2
d MARK3 (cytoskeletal regulation and Wnt signaling), STK10
ell migration and cell cycle control) and TNIK (Wnt signaling).
While our study focused on kinase expression and phosphoryla-
on, we noted some similarities with data from transcriptomic and
oteomic screens. Specifically, characterization of the ERG-regulated
anscriptome identified changes associated with regulation of cell
igration, consistent with our identification of cytoskeletal modeling
a prominent functional category [14]. Proteomic analyses of ERG-
sitive prostate cancer specimens and VCaP cells, identified the
toskeletal regulatory kinases PAK1–4 and cell cycle regulators
DK1 and CDK2 as downstream ERG targets [15]. In our study, we
tected increased PAK4 phosphorylation at T207 in ERG-
erexpressing cells, as well as a decrease in Thr14 and Tyr15
hibitory phosphorylation events on CDK1 (Figure 2).
Kinases exhibiting the greatest changes in expression/phosphory-
tion included EPHA4, TNIK, MERTK, MELK, LIMK1, and
AP4K4 (Figure 3, A and B). Aside from TNIK, these are all
plicated in prostate cancer development and progression. In
dition, therapeutic drugs against TNIK, MERTK and MELK are
rrently under preclinical development. Consequently, our data
pported our hypothesis that ERG-regulated kinases may be novel
erapeutic targets. Amongst the ‘top-ranked’ kinases, TNIK
hibited the second highest increase in expression (2.4-fold).
oreover, of the top 25 up-regulated phosphosites, 7 belonged to
NIK (Figure 3B indicated by a star). The profound impact of ERG
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Figure 1. Profiling the ERG-regulated prostate cancer kinome. (A) Workflow for quantitative MS-based kinomic profiling. (B) Summary of
kinome profiling data. Number of kinases identified to exhibit a ≥1.2-fold change in expression, phosphorylation or both in ERG
overexpressing cells, when compared to the empty vector control, in both biological replicates. (C) Distribution of ERG-regulated kinases
over the human kinome. Kinome tree generated using Kinome Render [34]. Illustration reproduced courtesy of Cell Signaling Technology,
Inc. (www.cellsignal.com). (D) Proportional representation of ERG-regulated kinases. Kinases up- and/or down-regulated by ERG in terms
of expression and/or phosphorylation from (C) were categorized into their kinase families (top). Proportional representation of regulated
kinase phosphosites. Each ERG-regulated phosphosite was categorized into the family of its respective kinase (bottom).
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TNIK, and the identification of TNIK as a ‘driver’ kinase in
ecific human cancers by a recent meta-analysis of cancer genome
quencing studies [16], led us to focus on this kinase for further
lidation and functional characterization.
To confirm the changes in TNIK detected by MS, we undertook
estern blot analysis. While phosphospecific antibodies against
entified TNIK phosphorylation sites were not available, blotting
ith a pS764-selective antibody revealed an approximately 2-fold
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Figure 2. Biological processes and pathways associated with ERG-regulated kinases. Kinases from Figure 1C were categorized using
information from Genecards. Red circles indicate kinases with increased expression. Green circles indicate kinases with decreased
expression. Gray circles indicate kinases with no change in expression. Upregulated phosphorylation sites indicated in red.
Downregulated phosphorylation sites indicated in green.
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crease in phosphorylation on this site in ERG-overexpressing DU145
lls, and blotting with an antibody specific for TNIK confirmed
hanced TNIK expression (Figure 3C). In addition, this approach
nfirmed thatMERTK andMAP4K4 levels were also elevated in these
lls, as well as in AR-positive RWPE1 prostate epithelial cells
ogrammed to overexpress ERG (Figure 3C). TNIK and TNIK
S764) were not convincingly detected in the latter cells. However, we
ere able to confirm ERG-regulated TNIK expression and S764
osphorylation in AR-positive 22Rv1 cells that stably express ERG,
hen compared to the empty vector control (Figure 3D). Furthermore,
is ERG-dependent increase in TNIK and TNIK (pS764) expression
as validated in 22Rv1 cells engineered to express ERG upon
xycycline induction (Figure 3D). ERG-regulated expression of
NIK was further validated in the ERG and AR-positive prostate
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Figure 3. Positive association of TNIK expression and/or phosphorylation with ERG in prostate cancer. (A) Kinases exhibiting the largest
expression change in response to ERG. (B) Top 25 kinase phosphorylation sites upregulated by ERG overexpression. Expression is
indicated relative to the empty vector control. TNIK indicated by star. (C) Confirmation of MS data by Western blotting. SILAC labeled
DU145 cells and exponentially growing RWPE1 cells engineered to overexpress ERG, or the empty vector, were immunoblotted with the
indicated antibodies. (D) ERG-regulated expression of TNIK and TNIK (pS764) in 22Rv1 cells. 22Rv1 cells containing the empty vector or
expressing ERG, and 22Rv1-ERG inducible cells treated with 10 μg/mL doxycycline (Dox) for 48 h, were immunoblotted with the indicated
antibodies. (E) Regulation of TNIK by ERG in VCaP cells. ERG and TNIK expression was reduced using siRNAs. Cells were lysed 72 h post
transfection and immunoblotted with the indicated antibodies. (F) TNIK localization in DU145 cells overexpressing ERG, or the empty
vector. TNIK and TNIK (pS764) localization was determined by Western blotting. Lamin B and tubulin were used as nuclear and
cytoplasmic markers, respectively.

Neoplasia Vol. 21, No. 4, 2019 TNIK is a potential therapeutic target in prostate cancer Lee et al. 395
ncer cell line VCaP, where knockdown of ERG expression reduced
th TNIK and TNIK (pS764) expression by 1.9- and 2.1-fold
spectively (Figure 3E). We then examined whether ERG overexpres-
on promoted TNIK localization to the nucleus. In DU145 cells,
NIK largely localized to the cytoplasm, with a modest increase in
NIK andTNIK (pS764) expression observed in the nuclear fraction of
RG overexpressing cells (Figure 3F).
We next sought to validate the localization of TNIK in prostate
ncer specimens. Immunostaining for ERG, TNIK and TNIK
S764) were performed on TMAs constructed from a cohort of 60
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Figure 4. Expression of ERG, total TNIK and TNIK (pS764) in localized prostate cancer. (A) Panels represent IHC for ERG, TNIK and TNIK
(pS764) in 3 sequential sections of the same prostate cancer specimen: i) Nuclear and cytoplasmic expression of ERG. ii) Cytoplasmic
expression of total TNIK. iii). Nuclear and cytoplasmic expression of TNIK (pS764). Panels iv-vi) demonstrate lack of ERG, TNIK and TNIK
(pS764) expression in 3 sequential sections of the same prostate cancer specimen. (B) Expression of total TNIK (cytoplasmic) in ERG-
negative and -positive prostate cancers. (C) Expression of TNIK (pS764) (nuclear) in ERG-negative and -positive prostate cancers.
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en treated with radical prostatectomy for localized prostate cancer
igure 4A). Overall, 50% of the prostate cancer specimens were
RG-positive (Figure 4, A and B). Total TNIK expression
ytoplasmic) was high in prostate cancer cases irrespective of ERG-
atus (Figure 4B). However, there was a significant positive
rrelation between ERG-positivity and nuclear expression of
NIK (pS764), with only 13% (4/30) of ERG-negative prostate
ncers expressing nuclear TNIK (pS764) compared to 53% (16/30)
ERG-positive prostate cancers (Figure 4C, P = .02, χ2 test).
In colorectal cancer cells, TNIK binds directly to β-catenin and the
CF4 transcription factor, via its intermediate and kinase domain
spectively, phosphorylates TCF4 at S154 in the nucleus, and
ereby promotes transcription of Wnt signaling target genes [17,18].
hosphorylation of TNIK at S764 in the intermediate domain is a β-
tenin-dependent event and S764-phosphorylated TNIK co-
calizes in the nucleus with TCF4, indicating that it is positively
sociated with β-catenin-induced transcription [18]. This highlights
positive feedback circuit whereby β-catenin promotes TNIK
tivation, which then further promotes β-catenin-regulated tran-
ription. These findings raised the possibility that TNIK may
ntribute to the known positive regulation of Wnt signaling in
ostate cancer by ERG [19]. The role of TNIK in mediating TCF
anscriptional activity in prostate cancer was determined using
imary cells derived from a patient-derived xenograft (PDX) of
RPC with the TMPRSS2:ERG fusion. The PDX was positive for
RG, TNIK and TNIK (pS764), with TNIK phosphorylated at
64 localizing mainly in the nucleus (Figure 5A). Cells derived from
is PDX maintained ERG and TNIK expression as confirmed by
estern blotting (Figure 5B). Silencing of ERG using siRNA resulted
reduced TNIK and TNIK (pS764) expression, indicating that

RG is required for TNIK expression and phosphorylation in these
lls (Figure 5B). As expected, β-catenin knockdown in these cells
arkedly reduced TCF reporter activity, however, knockdown of
NIK expression had no significant effect. The change in TCF
tivity upon β-catenin knockdown was not due to differential cell
ability between conditions (Figure 5C). Of note, the ERG-positive
DX cells used in our study harbor a β-catenin S45F mutation that
events its phosphorylation by GSK3β and subsequent degradation.
the colon epithelial cell line Ls174T, which also harbors a

abilizing mutation in β-catenin, silencing of TNIK expression
duced TCF activity [17]. Therefore, the lack of effect of TNIK
ockdown on TCF reporter activity in our PDX cells either reflects
e specific β-catenin mutation present, or the different cellular
ntext. To interrogate this issue further, we determined how
ducing TNIK expression impacted the gene expression of 84 Wnt
gnaling targets in either our PDX model, or in VCaP cells, where no
utations in β-catenin have been reported (CCLE database). In the
DX cells, only 4 genes were up- or downregulated by more than 2-



Figure 5. Lack of a role for TNIK in Wnt signaling in prostate cancer. (A) Expression of ERG, TNIK and TNIK (pS764) in PDX tissues. H&E, ERG,
TNIK, and TNIK (pS764) staining of PDX tissue. (B)Requirement of ERG for TNIK expression and phosphorylation. ERGexpressionwas knocked
down in PDX cells using siRNAs, with siOTP as the non-targeting control. Cells were harvested 72 h post transfection and immunoblotted with
the indicated antibodies. (C) TCF reporter assays. TNIK and β-catenin expression were knocked down in PDX cells stably expressing the 7xTCF
lentiviral vector and luciferase activity and viabilitymeasured. Error bars indicate SEM, n=5. Unpaired t-test, ****P b .0001 (D) and (E) Effect of
TNIK knockdown on expression of known Wnt pathway target genes in PDX and VCaP cells, respectively. Real-time PCR comparing TNIK
knockdown to the non-targeting control (siOTP) was performed on a panel of 84 Wnt signaling target genes. Volcano plot with a 2-fold cut-off
implemented and indicated by the dotted line. Bold vertical central line indicates no change in gene expression. Horizontal bold line indicates P
value of 0.05, n = 3. (F) TNIK knockdown does not affect AKT activation. TNIK expression was knocked down in PDX cells using siRNAs. Cells
were harvested 72 h post transfection and immunoblotted with the indicated antibodies.
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ld upon TNIK knockdown, and these did not reach statistical
gnificance (Figure 5D). Moreover, in VCaP cells, 10 genes were
ther up- or downregulated by more than 2-fold upon TNIK
gure 6. Functional characterization of TNIK in ERG-positive PDX cells. (A
ro vector control were immunoblotted with the indicated antibodies. (B
ith stable TNIK knockdown were grown for 11–13 days before being fix
npaired t-test, **P b .01. (C) PDX cells were treated with 0–10 μMNCB-
e indicated antibodies. (D)NCB-0846 reduces cell viability. Cells were s
. Cell viability was measured at days 1, 3 and 5. Error bars indicate SEM
lony formation. Cells were treatedwith NCB-0846 24 h after seeding. C
ystal violet. Error bars indicate SEM, n = 4. Unpaired t-test, ****P b .00
ze in soft agar. Cells seeded in soft agarwere treatedwithNCB-0846 for
= 9. Unpaired t-test. **P b .01, ****P b .0001.
ockdown, and of these, only the elevated levels of FGF7 reached
atistical significance (Figure 5E). Since overexpression of fibroblast
owth factor 7 (FGF7) in normal prostate epithelial cells promotes
)Cells with stable TNIK knockdown (shTNIK-A and -B) or the pLKO.
) TNIK knockdown reduces colony formation. Colonies from cells
ed and stained with crystal violet. Error bars indicate SEM, n = 9.
0846 for 24 h before harvesting. Lysates were immunoblotted with
eeded into 96well plates and treatedwith NCB-0846 24 h later (day
, n = 3. Unpaired t-test, *P b .05, **P b .01. (E) NCB-0846 reduces
olonieswere grown for 12 days before being fixed and stainedwith
01 (F) TNIK inhibition by NCB-0846 reduces colony formation and
4weeks before stainingwith crystal violet. Error bars indicate SEM,
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ll proliferation and migration [20], the biological relevance of this
ding is unclear. Of note, in contrast to the minimal impact of
NIK silencing observed in this study, ERG knockdown in VCaP
lls markedly reduces expression of Wnt pathway genes [19]. Taken
gether, these data indicate that while ERG promotes Wnt signaling
prostate cancer, TNIK is either not required for Wnt pathway
tivation in this malignancy or the requirement is dependent on the
netic background of the prostate cancer cells.
Our finding that TNIK knockdown does not impact Wnt pathway
tivation in the prostate cancer models tested is consistent with the
ork of Yu et al [21], who found that TNIK amplification in gastric
ncer was not associated with β-catenin nuclear localization, and that
NIK knockdown in TNIK-amplified cells did not affect expression of
nt pathway genes. Instead, through TNIK inhibition and knock-
wn studies, they determined that TNIK impacted the AKT and
tophagy pathways [21]. The possibility that TNIK regulates
ditional pathways is also supported by the work of other groups,
ho have demonstrated that TNIK positively regulates the JNK
thway [22,23]. However, TNIK knockdown in our PDX cells did
t affect AKT S473 phosphorylation, and JNK phosphorylation was
detectable in these cells (Figure 5F and data not shown).
onsequently, further work is required to delineate the signaling
echanism of TNIK in prostate cancer.
The biological role of TNIK in ERG-positive prostate cancers was
terrogated in ERG-positive PDX cells. To characterize the
nctional role of TNIK, we generated stable knockdown pools
ing two independent shRNAs targeting TNIK (Figure 6A).
educing TNIK expression led to a significant decrease in colony
rmation (Figure 6B). The functional role of TNIK was also
aracterized using the small molecule TNIK inhibitor NCB-0846
4]. NCB-0846 robustly decreased both TNIK and TNIK (pS764)
vels after 24 h of treatment (Figure 6C). This reduction in TNIK
pression by NCB-0846 was also reported by Masuda et al [24].
hibition of TNIK by NCB-0846 significantly decreased cell
ability and colony formation in 2D (Figure 6, D and E).
rthermore, treatment of cells with NCB-0846 also significantly
duced anchorage-independent growth in soft agar, leading to fewer
d smaller colonies (Figure 6F). Therefore, these data identify TNIK
a potential therapeutic target in ERG-positive CRPC.
In prostate cancer cells, ERG overexpression increases levels of Wnt-
, LRP6, β-catenin and LEF1 and GSK3β phosphorylation, promotes
pression of Wnt signaling target genes including c-Myc and Cyclin D,
d enhances proliferation, invasion and epithelial-mesenchymal
ansition (EMT) through LEF1 [19,25]. While our data do not
pport a role for TNIK in Wnt pathway activation in prostate cancer,
e did identify several kinases that may contribute to the known role of
RG in regulating this pathway [19]. CSNK1D phosphorylates AXIN
d APC, thus contributing to the negative regulation of β-catenin.
terestingly, in our screen, an increase in the phosphorylation of S328
d S331 on CSNK1D was detected (Figures 1 and 2), and these
osphorylation events all act to reduce the activity of CSNK1D [26]. In
dition, we identified ERG-mediated upregulation of PKCα expres-
n, and this kinase phosphorylates and negatively regulates CSNK1D
328) in vitro [26]. Moreover, MARK2 and MARK3 also exhibited
RG-mediated multisite phosphorylation. While these kinases function
cytoskeletal modeling, they also phosphorylate Dvl, resulting in
tivation of theWnt signaling pathway [27]. Taken together, our screen
s identified multiple kinases that may be working in unison to activate
e Wnt signaling pathway in an ERG-dependent manner.
High expression of TNIK is associated with poor prognosis in
ncreatic and colorectal cancer [28,29]. In addition, hepatocellular
rcinoma patients positive for nuclear TNIK (pS764) staining
hibit a greater tendency for metastasis and a decrease in disease free
d overall survival [30]. Thus, it will be interesting to determine
hether TNIK (pS764) nuclear expression represents a novel
omarker to identify prostate cancer patients with poorer outcomes.
ur study is the first to identify a role for TNIK in prostate cancer
d its potential as a therapeutic target for ERG-positive prostate
ncers. While both small molecule and peptidomimetic ERG
tagonists have recently been reported, TNIK kinase inhibitors are
so in pre-clinical development and have demonstrated activity
ainst Wnt signaling and cancer cell EMT in vitro, and tumor
owth and cancer stem cell activity in colon cancer xenograft models
4,31–33]. Therefore, future treatments that selectively inhibit ERG
nction, TNIK activity or both in combination may lead to
proved personalized treatment of patients with ERG-positive
ostate cancer.
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