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Abstract 

 

Despite recent improvements in the availability and quality of socioeconomic data from developing countries, 

there are still persistent data gaps that are preventing comprehensive monitoring and evaluation of targets and 

indicators of the Sustainable Development Goals. Approaches are hampered by the inconsistent spatial and 

temporal coverage of census data and Demographic and Health Surveys, which serve as the primary source for 

population-level statistics in most developing countries. Traditional censuses are too expensive to be 

implemented in remote areas where population density is low and road networks are poor. However, the recent 

and rapid diffusion of high-resolution satellite imagery offers a new wealth of relatively untapped information 

that can be used to gain in-depth information on groups that have historically been left out by traditional 

surveys. Moreover, there are new data streams such as call detail records from mobile phone data networks 

can help to derive behavioral indicators and improve tracking of expenditure and wealth. This exploratory 

research conflates various data streams to derive spatially explicit poverty indicators for Senegal with immense 

scaling potential to other regions. 
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1. Introduction 

The primary goal (SDG #1) of eradicating poverty in all its forms is considered the greatest global challenge 

and an indispensable requirement for sustainable development. Despite recent improvements in the availability 

and quality of economic data from developing countries, there are still persistent data gaps that are preventing 

comprehensive monitoring and evaluation of SDG #1’s targets and indicators. Low and low-to-middle income 

countries are particularly susceptible to the effects of climate change (i.e. droughts, floods, extreme weather 

events). In addition, the rural poor, who are largely dependent on agriculture for their livelihoods have limited 

resources to protect themselves against the impacts of weather and climactic shocks. In order to formulate 

policies and implement strategies that help governments, NGOs and international donors protect the poor 

against the detrimental impact of climate change, it is essential to have detailed spatially explicit information 

on where they are located, preferably in the form of high-resolution poverty maps. Approaches are hampered 

by the inconsistent spatial and temporal coverage of census data and Demographic and Health Surveys (DHS), 

which serve as the primary source for population-level statistics in most developing countries. Unfortunately, 

most developing countries do not have the capacity to systematically collect data on household income and 

wealth that are needed to construct poverty indicators. Furthermore, if this data is available, it is often only 

presented at the national or subnational level, thus aggregating urban and rural areas, which are known to 

have very different wealth/income profiles. However, the rapid diffusion of high-resolution satellite imagery and 

resultant products (i.e. land cover) available at a global scale offers a new wealth of relatively untapped 

information that can be correlated with economic measures and models. Moreover, there are new data streams 

such as social media, mobile phone data (e.g. duration of calls, top-up rates and location data), information of 

financial flows and energy which can help to derive behavioral indicators and improve tracking of expenditure 

and wealth. 

The rapid diffusion of satellite imagery and advances in remote sensing methods have led to the dynamic 

mapping of poverty and slums [1-3]. More recently, machine learning algorithms have been used to estimate 

consumption expenditure and asset wealth from high resolution satellite imagery [4]. Other modern and 

promising approaches integrate mobile phone data to estimate poverty [5-8] but pose additional questions 

about scalability across countries. In this study, we use a similar approach as presented by [8], conflating 

data/products from satellite data and mobile phone traffic to predict poverty using a Bayesian geostatistical 

model, with an initial focus of Senegal as a pioneer country. According to the World Bank, Senegal is ranked as 

a low-income developing country, and recent projections indicate that the progress in poverty reduction has 

been rather modest, and that Senegal continues to display high rates of monetary poverty. Statistics from the 

Word Data Lab also reveal that 32.4% of the population live in extreme poverty [9]. As such, creating a spatially 

explicit and scalable poverty mapping approach for Senegal is highly relevant. Such maps provide much needed 

data-driven evidence for policy development in climate mitigation by identifying areas with the most vulnerable 

populations for climate mitigation policy support. 
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2. Methodology 

We use a Bayesian approach to estimate the parameters of the posterior distribution, explicitly controlling for 

spatial random effects [10]. To estimate the geostatistical model, we apply the Integrated Nested Laplace 

Regression (INLA) modelling approach [11]. INLA is especially designed to implement latent Gaussian models, 

which cover a wide set of models, including generalized linear, mixed, spatial and spatio-temporal models [12-

13]. The algorithm is a deterministic and computationally effective alternative to the Markov Chain Monte Carlo 

(MCMC) simulation methods that are commonly used for Bayesian inference. The latent Gausian model that we 

estimate can be summarized as follows. The observations 𝑦𝑖 on locations 𝑠𝑖 , 𝑖 = 1, . . . , 𝑛 are assumed to belong 

to a distribution family that can be linked to a structured additive linear predictor 𝑒𝑡𝑎𝑖 by means of a link function 

𝑔(⋅), such that 𝐸(𝑦𝑖) = 𝑔−1(𝜂𝑖). The linear predictor 𝜂𝑖 is defined as follows: 

𝜂𝑖 = 𝛽0 +∑𝛽𝑗

𝐽

𝑗=1

𝑧𝑖𝑗 +∑𝑓𝑙

𝐿

𝑙=1

(𝑢𝑙𝑖) 

where 𝛽0 is the overall intercept, the coefficients 𝛽 represent the linear effect of the fixed covariates 𝑧 and 𝑓 is 

a collection of functions of the coveriates 𝑢 that represent the random effects. As the DHS values are normally 

distributed by approximation, we use a Gaussian link function, which assumes that 𝐸(𝑦𝑖) = 𝜂𝑖. Currently, we 

use a simple function that only includes spatial random effects and a limited set of covariates, including remote 

sensing data and mobile phone traffic information. 

Assuming conditional independence of observations 𝑦, The likelihood function is written as: 

𝑦 ∣ 𝑥, 𝜃1 ∼∏𝜋

𝑛

𝑖=1

(𝑦𝑖 ∣ 𝑥𝑖 , 𝜃1) 

where the 𝑥 is a Gaussian Markov random field (GMRF) defined as joint distribution 𝑥 = (𝜂, 𝛽0, 𝛽, 𝑓), which is 

controlled by a set of hyperparameters 𝜃1. To model spatial processes, the GMRF is combined with a stochastic 

partial differential equation (SPDE) [14]: 

(𝜅2 − 𝛥)𝛼/2(𝜏𝑥(𝑠)) = 𝒲(𝑠)  𝑠 ∈ 𝛺 

where 𝛥 is the Laplacian, 𝛼 controls the smoothness, 𝜏 > 0 is the spatial scale parameter, 𝜏 controls the 

variance, 𝒲(𝑠) is the Gaussian spatial white noise process and 𝛺 is the spatial domain. The model described 

above is fit using the R-INLA package [15-16]. 

Our approach resembles that of [8], who investigates the explanatory power of mobile phone data and remote 

sensing information on poverty in Bangladesh. An important difference is that they use Voronoi polygons that 

approximate mobile tower coverage as the unit of analysis, while averaging the underlying high-resolution 

remote sensing information [8]. However, the size of the polygons differs widely and can be quite large in rural 

areas, where mobile tower density is low. As a result, explanatory environmental variables such as aridity, 

precipitation and elevation are likely to substantially vary for these areas. Predicting poverty indicators using 

these values might therefore not be representative of the total area. To accommodate this issue, we rasterized 

the Voronoi polygon and implemented the model at the resolution of 1x1 km grid cells. As such, poverty 

projections can be made at the highest resolution, while maintaining tower level data at the level of Voronoi 

polygons. 
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3. Data resources and variables 

3.1 Poverty indicator 

We use the 2012 - 2013 Senegal DHS-based wealth index as our primary indicator of poverty. As part of the 

DHS, information is collected on various household assets, including ownership of land, livestock and 

transportation vehicles, and housing characteristics, such as number of rooms and roof material. Principal 

component analysis is used to determine the weights of the assets in order to calculate a composite wealth 

index. Only the first principal component, which explains the largest percentage of variance, is used to construct 

the index.1 For the analysis we use the average wealth index for the enumeration areas which were sampled 

by the DHS. Wealth index scores range from -12.43 to 24.44, where higher scores imply a higher socioeconomic 

status. The DHS covers 200 geocoded enumeration areas (Figure 1). However, for confidentially reasons the 

GPS coordinates of all areas are presented with an offset, which varies from 2km for urban areas to 10km for 

rural areas. To control for this effect, we buffered the location of the enumeration areas accordingly and 

calculated the average of all covariates for the buffered area. 

 

Figure 1: Distribution of the 200 enumeration areas where DHS were conducted in Senegal. Radius of circle is 

representative of the wealth index scores ranging from -12.34 to 24.44. 

 

 

                                                
 

1 The DHS presents both the wealth index and a five point scale, which is determined by assigning each 

household to a quintile in the distribution. We only use the continuous wealth index for this analysis. 
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3.2 Covariates 

A wide number of factors are expected to be correlated with observed poverty levels. We broadly distinguish 

between two sets of covariates:  a) Remote sensing information, and b) high frequency mobile phone traffic 

data. Some key covariates for describing socioeconomic conditions, acquired from satellite data, include the 

population distribution (Figure 2) and nighttime lights (Figure 3). Additional remote sensing information, 

including environmental variables such as elevation and precipitation are elaborated in Table 1. Furthermore, 

in this study we analyzed the mobile data acquired from the 1666 towers distributed across Senegal, provided 

by Orange (Figure 4). Emphasis was placed on key variables such as number of outgoing calls, duration of calls 

and entropy of calls, where entropy is a measure of the network variability of different towers contacted from 

a given tower (Table 2). 

 

 

Figure 2: Population distribution of Senegal (from Worldpop) 
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Figure 3: Nighttime lights from the VIIRS satellite indicated with yellow-red pixels. Blue pixels outline human 

settlements acquired from Global Urban Footprint (GUF) data from DLR Tandem-X.  

 

Figure 4 Distribution of the 1666 mobile towers in Senegal  
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Table 1: Remote sensing variables 

Category Description Source Resolution year 

Anthropogenic 

(access) 

Accessibility to 

populated places 

with more than 

50k 

European Commission Joint Research Centre 

(http://forobs.jrc.ec.europa.eu/products/gam/) 

0.0833 deg 2000 

Demographic 

(pop) 

Population count WorldPop  

(http://www.worldpop.org.uk/) 

0.0833 deg 2010 

Topographic 

(srtm) 

Elevation CGIAR-CSI  

(http://srtm.csi.cgiar.org/) 

0.0833 deg 2008 

Climate 

(pet) 

Average annual 

Potential 

Evapotranspiration 

[mm] 

CGIAR-CSI  

(http://srtm.csi.cgiar.org/) 

0.0833 deg 1950-

2000 

Climate 

(ai) 

Mean Aridity 

Index 

CGIAR-CSI  

(http://srtm.csi.cgiar.org/) 

0.0833 deg 1950-

2000 

Nighttime 

lights 

(viirs) 

VIIRS night-time 

lights [W cm-2 sr-

1] 

NASA Suomi NPP 

(https://viirsland.gsfc.nasa.gov/index.html) 

1kmx1km 2015 

 

 

Table 2: Mobile phone variables 

Category Description Source Resolution year 

Basic phone usage 

(outgoing_calls) 

Number of outgoing calls Orange tower 2013 

Basic phone usage 

(dur_out_per_call) 

Average duration of outgoing calls Orange tower 2013 

Network 

(outgoing_calls_entropy) 

Outgoing calls entropy Orange tower 2013 

 

  

http://forobs.jrc.ec.europa.eu/products/gam/
http://www.worldpop.org.uk/
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
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4. Results 

Prior to implementing our model, we conducted an exploratory analysis of the relationship between the DHS 

wealth scores and the explanatory variables. Figure 5 compares the wealth index with each of the explanatory 

variables used in this study. The blue line represents the result of a loess regression, which is a non-parametric 

approach where least squares regression is performed in a local neighbourhood. The grey area is the 95% 

confidence region. To account for the skewed distribution, we log transform the viirs, population, duration of 

calls and number of outgoing calls indicators. The figure shows a positive relationship between the wealth 

scores and a number of the indicators, in particular population (0.84), viirs (0.77) and number of outgoing calls 

(0.73). This is confirmed by Figure 6, which presents the correlation across all variables.  

 

Figure 5: Relationship between DHS wealth scores and explanatory variables derived from remote sensing 

and mobile phone data 
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Figure 6: Correlation across the tested explanatory variables 

Posterior estimates for the mean and the 95% credibility interval for our model are presented in Table 3. In 

particular the viirs, pop, number of outgoing calls, and average duration per outgoing call have a positive 

correlation with the wealth index scores, while outgoing calls entropy has a negative association with wealth 

index. The other variables are not significant from zero. Figure 7 depicts the predicted versus observed wealth 

scores. 

Table 3: Model parameters 

  mean 0.025quant 0.975quant 

intercept -24.94 -40.47 -9.39 

access -0.01 -0.01 0.00 

ai 0.00 0.00 0.00 

viirs 1.76 0.34 3.17 

srtm 0.01 -0.02 0.03 

pet 0.00 -0.01 0.00 

pop 1.81 1.11 2.52 

outgoing_calls 2.00 1.25 2.76 

dur_out_per_call 0.06 0.01 0.11 

outgoing_calls_entropy -4.55 -7.55 -1.56 
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Figure 7: Model predicted versus observed wealth scores 

Combining the spatial data layers for the remote sensing data and the rasterized voronoi diagram for the 

mobile phone data, we can create a poverty map for all of Senegal. The results are shown in Figure 8, while 

Figure 9 presents the standard deviations. 

 

Figure 8: Fine-scale (1x1km) poverty map for Senegal, where predicted wealth scores range from -24.9 (red; 

low wealth) to 19.5 (green; high wealth). Superimposed on map are the observed DHS wealth scores (circles) 
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where circle radius is proportional to wealth

 

Figure 9: Standard deviation map of predicted fine-scale (1x1km) poverty map for Senegal, where values 

range from 0.54 (red) to 1.9 (green). Superimposed on map are the observed DHS wealth scores (circles) 

 

 

5. Discussion 

The Bayesian geostatistical model shows that remote sensing-based and mobile phone data-based variables 

have explanatory power. The derived maps are the initial steps to identify the poorest households in Senegal 

that are highly susceptible to climate change and other shocks. It is important to point out the limitations and 

sensitivities of this study. The DHS survey for Senegal only covers 200 enumeration areas, which is a relatively 

low number of data points for estimating a geostatistical spatial model.2 Not surprisingly, we only find that 

spatial random correlation is not significant in our model. Another problem is the spatial offset for the DHS 

enumeration area locations. Although we controlled for this by buffering the sample locations, it potentially 

creates a bias in the analysis. 

  

                                                
 

2 The 2010-11 DHS Survey for Senegal included 400 enumeration areas. These data can unfortunately not be 

combined with the 2012-13 survey, and we currently have no information on why the number of areas has 

been halved. 
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6. Conclusion 

Organizing household surveys to measure poverty is a very costly and tedious undertaking, in particular if large 

parts of a country, are relatively inaccessible. This study shows that it is possible to create a poverty map by 

conflating different data sources that can be acquired at relative low costs. Remote sensing information, 

specifically environment and climate related data, is increasingly provided at high resolution by national and 

international research institutions at no cost. Mobile phone data is not easily available yet but, as illustrated by 

this Data for Climate Action Challenge, mobile phone operators, such as Orange are more and more willing to 

contribute data for scientific purposes. Nonetheless, nationally representative poverty indicators drawn from 

household surveys remain necessary to estimate the structural model that forms the basis for the spatial 

socioeconomic monitoring, visualization and forecasting. Leveraging the capacities of satellite imagery and big 

data resources, such as mobile phone records, this study delivers a preliminary spatially explicit, fine-scale 

(1x1km) poverty map of Senegal.  

As a result of our participation in this challenge, the team has also identified a series of future research activities 

with vast potential to transform the field of fine-scale socioeconomic monitoring. Firstly, we aim to continue this 

work to derive additional explanatory variables from satellite data with spatial resolution of 3-5m with high 

repeat frequency (i.e. Planet). There are ongoing efforts to derive poverty proxies from very high-resolution 

satellite data (i.e. < 1m) to serve as calibration and validation data for the 3-5m imagery. These variables will 

be integrated into our Bayesian geostatistical model to develop more robust maps with scaling potential. 

Furthermore, the team has tested an innovative microtasking tool that can be crowdsourced to volunteers to 

help visually assess satellite imagery and generate validated poverty maps. 
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