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Deutschsprachige Zusammenfassung

Die vorliegende Arbeit behandelt das Design und die Analyse von neuartigen hologra-
phischen und holographisch-refraktiven Brillengläsern. Ziel ist es hierbei, das Potential
von Hologrammen, wie die Möglichkeit komplizierte optische Funktionen in einer dün-
nen Schicht zu realisieren oder die Möglichkeit die Dispersion von refraktiven Linsen
zu kompensieren, für verbesserte Designs von Brillengläsern zu nutzen. Eine besondere
Schwierigkeit an dieser Aufgabenstellung besteht darin, die Eigenschaften von Hologram-
men wie hohe Winkel- und Wellenlängenabhängigkeit der Beugungseffizienz und starke
Dispersion so zu kontrollieren, dass sie für das Design von Brillengläsern vorteilhaft oder
zumindest nicht nachteilig sind. Eine weitere Schwierigkeit besteht darin, Konzepte aus
dem Design herkömmlicher Brillengläser, wie die gleichzeitige Optimierung für verschie-
dene Blickrichtungen des Auges, auf Hologramme anzuwenden und diese entsprechend
anzupassen. Zu diesem Zweck wurde eine Designmethode neuentwickelt, die es ermög-
licht entsprechend für den Einsatz in Brillengläsern geeignete Hologramme zu entwer-
fen und zu analysieren. Diese Methode ist geeignet um sowohl holographische als auch
holographisch-refraktive Brillengläser zu entwerfen und zu optimieren. Die Brillengläser
können dabei einfache Einstärkengläser oder Gleitsichtgläser sein.

Das Verständnis dieser Arbeit erfordert Vorkenntnisse aus den Bereichen Holographie
und dem Design von Brillengläsern. Da dies eine in der Literatur so bisher noch nicht
vorgekommene Kombination ist, werden die Historie und der Stand der Technik von so-
wohl Holographie als auch vom Design von Brillengläsern in der Einleitung dieser Arbeit
beschrieben. Kapitel II greift die in der Einleitung als Überblick beschriebenen Konzepte
auf und erläutert die für das Verständnis der neu entwickelten Designmethode benötig-
ten Methodiken und theoretische Hintergründe im Detail. Besonders wichtig ist hierbei,
wie im Design von Brillengläsern mit den verschiedenen Blickrichtungen des Auges um-
gegangen wird und die Beschreibung von Volumenhologrammen und ihrer Beugungsef-
fizienz. Die neu entwickelte Designmethode wird in Kapitel III beschrieben. Nach einer
Abschätzung, wie groß die benötigten Winkel- und Wellenlängen für die Beugungseffizi-
enz der Hologramme sind, wird mittels der Fourier Modal Methode ein Parameterbereich
aus Gitterperiode, Gitterdicke und Modulationsstärke des Brechungsindex identifiziert, in
dem die Anforderungen an die Beugungseffizienz der Hologramme erfüllt sind. Ein fes-
ter Parameterbereich für die Gitterperiode wirkt sich auf die möglichen Ablenkwinkel
zwischen einfallendem und gebeugten Strahl der ersten Beugungsordnung aus und er-
laubt es nicht Ablenkwinkel von 0◦ einzustellen. Daher ist es in diesem Fall nicht möglich,
dass Licht der ersten Beugungsordnung gerade durch die Linsenmitte eines Brillenglases
mit einem Hologramm geht. Diese Limitation wird in der Designmethode dadurch um-
gangen, dass ein Tandem aus zwei Hologrammen genutzt wird, deren Dispersion und



Ablenkwinkel sich teilweise oder vollständig kompensieren können. Dies ermöglicht ei-
ne gerade Durchsicht durch die Linsenmitte sowie eine reduzierte Dispersion des Holo-
grammtandems. Die Dispersion des Hologrammtandems kann weiterhin mit der Disper-
sion einer refraktiven Linse in einem holographisch-refraktiven Brillenglas kompensiert
werden. Um von diesen Erkenntnissen bezüglich Beugungseffizienz und Dispersion zu
einem holographischen Brillenglasdesign zu kommen, ist es notwendig, die lokale Varia-
tion der Hologramm Parameter, wie der Gitterperiode und der Neigung des Gittervektors
im Volumen, zu kontrollieren und für jede Blickrichtung des Auges anzupassen. Im Kapi-
tel III wird daher auch detailliert beschrieben, wie eine geschickte Implementierung der
Hologramm Parameter in einer Optikdesignsoftware und vorher berechnete Initialwerte
der fraglichen Parameter genutzt werden können, um die Leistung von holographischen
und holographisch-refraktiven Brillengläsern gezielt zu optimieren. Dabei wird auch be-
schrieben, wie komplizierte optische Funktionen wie etwa die einer Gleitsichtbrille mit
Hologrammen nachgebildet werden können.

Die mit Hilfe der neu entwickelten Designmethode gewonnenen Designs für hologra-
phische oder holographisch-refraktive Brillengläser werden in Kapitel IV präsentiert und
diskutiert. Für holographisch-refraktive Einstärkengläser wird dabei gezeigt, dass es mög-
lich ist, den bei hohen Brechkräften störenden Farbfehler durch die Kompensation von
Dispersion deutlich zu reduzieren und dabei auch die Randdicke der Gläser zu redu-
zieren. Außerdem ist es teilweise möglich, die durch Asphären mögliche Korrektur der
Brechkraft und des Astigmatismus mittels Hologrammen zu ersetzen. Für Gleitsichtglä-
ser wird gezeigt, dass es für Additionsbrechkräfte von bis zu zwei Dioptrien möglich ist,
die optische Funktion von refraktiven Gleitsichtgläsern mit holographischen Gleitsicht-
gläsern nachzubilden.

Zum Abschluss wird noch über die Ergebnisse dieser Arbeit hinaus diskutiert, wie die
hier vorgestellten Konzepte im Bereich Augmented Reality (AR) oder speziellen Brillen
zur Prävention von Myopie genutzt werden können.
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I. Introduction

In recent years, holography has started to attract a lot of public attention through aug-

mented reality (AR) applications such as the Microsoft HoloLens or automotive head-up

displays (HUDs). Holograms have been used in AR applications for a long time, because

their strong angle and wavelength selectivity allows designing see-through combiners

that are transparent for the environment, but still guide the light from a hidden display

towards the eyes of the user. Due to material and manufacturing limitations, applications

remained in high-end segments such as military aircraft for decades. The new wave of

popularity is mainly driven by advances in holographic materials and surrounding tech-

nologies that enable AR applications in consumer-friendly pricing segments. Similar to

earlier waves of popularity, for example the wide use of image holograms in museums

and representation in science fiction movies like Star Wars, holography again promises to

profoundly alter how people interact with technology. This begs the question if there are

further applications for holography outside of the realm of AR, which is currently being

explored by a large number of research groups. Due to its similarity to near-to-eye AR

applications, spectacle lens design is a promising candidate to evaluate possible benefits

of connecting it with holography.

1.1. History and state of the art

This thesis connects two long-lived fields of research: spectacle lens design and hologra-

phy. Because there is no significant overlap between these two fields in literature, their

histories and current developments are discussed separately. The aim of this discussion

is to provide a broader context for Sect. 1.2, in which the benefits of connecting these

two fields are explained in detail.



I Introduction

1.1.1. Spectacle lenses

Ideally, the optics of the human eye focuses incident light on the retina to enable error-

free vision. In reality, approximately one third of persons above the age of 40 in the

United States and Western Europe suffer from refractive errors [1] such as myopia (light

focuses in front of the retina because the optics of the eye is too strong or the eyeball is

too long), hyperopia (light focuses behind the retina because the optics of the eye is too

weak or the eyeball is too short), astigmatism (light is split into two foci due to irregular

curvature of the eye optics) or presbyopia (age related process, stiffened eye lens can no

longer change its curvature to focus on near objects). The prevalence of myopia is even

higher in Asia, where myopia has become a huge socioeconomic issue with myopia rates

as high as 84% in school children [2, 3, 4, 5]. Modern treatment options for refractive er-

rors include spectacle lenses [6, 7], contact lenses [8] and refractive eye surgery [9] with

spectacle lenses being the most versatile and least invasive one. The main challenge of

spectacle lens design is to limit unwanted aberrations, especially for oblique gaze direc-

tions of the eye, while correcting the refractive errors of the eye by providing the required

prescription. The aberrations discussed in this context are oblique spherical power error

(remaining offset between the light focus and the patient’s retina) and oblique astigma-

tism (different positions for meridional and sagittal foci), while other aberrations such as

transverse color error can not be addressed with existing spectacle lens design principles

[6, 7]. In the following, notable innovations of spectacle lens design history are outlined

with special attention to recent research papers and patents.

At first glance, designing a spherical lens to act as a single vision spectacle lens, which

corrects refractive errors of the eye such as myopia, hyperopia or astigmatism of a given

prescription power, is a straight forward task. In a simplified model ignoring lens thick-

ness, the spherical power (SPH) of the lens can be expressed as the sum of the front

surface power P1 and the back surface power P2 as SPH = P1 + P2. In principle, this

means that a target prescription can be achieved by infinite combinations of front power

P1 and the back surface power P2 even when only considering meniscus lenses (P1 takes

a positive value, P2 takes a negative one) due to their preferable form factor. The possi-

ble combinations of front and back surface powers to achieve a given prescription differ

in how curvy the resulting lens looks like, and, more importantly, in how strongly they

induce aberrations, such as power error or astigmatism for oblique gaze directions of

the eye. Therefore, choosing the best combination of front and back surface power, also

6
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referred to as choosing the base curve, is of central importance in spectacle lens design.

Since it is not possible to correct both oblique power error and astigmatism at the same

time, lens design theories differ by which oblique errors they minimize [6, 7].

The first notable contribution to the problem of choosing the optimal base curve was

made by W. Wollaston in 1804 [10]. He published a formula to calculate a base curve

for a given prescription so that the astigmatism induced by the front surface of the lens

is compensated by the astigmatism induced by the back surface of the lens. However,

his "periscopic" spectacle lenses were unpractical as the high base curve values lead to a

bulky lens form. In 1898, F. Ostwalt published another spectacle lens design theory on

oblique astigmatism compensation with flatter base curves [11]. The work of Wollaston

and Ostwalt was connected by M. Tscherning in 1904, who showed that their designs

are both solutions to a quadratic formula that minimizes oblique astigmatism and be-

came known as the Tscherning Ellipse [12]. The Ostwalt solutions on the Tscherning

Ellipse are still used for picking base curves in current spectacle lens design practice.

The first commercial success of an oblique astigmatism corrected lens design was the

"Punktal" (point-focal) lens, which was patented by M. von Rohr of the Zeiss corporation

in Germany in 1911 and was later mass produced [13, 14]. However, the downside of

these astigmatism compensated approaches is that they have large power error i.e. differ-

ences between the prescription power and achieved SPH for oblique gaze directions. The

first spectacle lens design theory aiming at minimizing oblique power error rather than

oblique astigmatism was published by the English ophthalmologist A. Percival in 1914

[15, 16]. His approach can be understood as minimizing the circle of least confusion be-

tween the meridional and sagittal foci and placing it on the retina rather than minimizing

the distance between the meridional and sagittal foci and accepting that the circle of least

confusion is not on the retina. These concepts are discussed in more depth in Chapt. II.

While A. Percival’s theory was an improvement over the previous astigmatism corrected

lenses [16] in terms of visual acuity, it is not necessary to restrict spectacle lens design to

base curves that either minimize oblique power error or astigmatism. In 1917, E. Tillyer

of the American Optical Company patented a lens design concept that allowed error bud-

gets for power error as well as astigmatism, which significantly improved spectacle lens

performance. E. Tillyer also considered that lens designs should facilitate easy ordering

and stocking procedures. Therefore, he proposed that prescriptions should be grouped in

0.12 dpt steps for lower value prescriptions and 0.25 dpt steps for higher prescriptions.

This procedure significantly reduces the required stock of lens manufacturers and is still

7
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used for semi-finished lenses today [17, 18].

After the possibilities for oblique error correction by spherical lenses were exhausted

by the work of E. Tillyer, the next noteworthy improvement of single vision spectacle

lenses was the use of aspherical surfaces, which were previously only used in high positive

power aphakic spectacle lenses for cataract patients [19]. The first single vision spectacle

lens designs featuring an aspherical surface to further reduce oblique errors were plano-

aspheric lenses introduced by W. Merte in 1950 [20]. This was later improved upon,

when atoric spectacle lenses were patented in 1968 by the Société des Lunetiers in France

[21]. Later, aspherical surfaces were also used to improve the form factor rather than just

to minimize oblique errors. In 1981, M. Jalie patented lenses, for which the spherical

surface of greater curvature is replaced by a hyperbolic surface to make it flatter and

thinner without increasing oblique errors [22]. Shortly after, in 1983, the Tscherning

Ellipse was also updated to predict astigmatism compensated base curves for aspheric

spectacle lenses [23].

In parallel to the continuous development of single vision spectacle lenses to correct

myopia, hyperopia and astigmatism, several different spectacle lens types have been de-

veloped to correct presbyopia, which is the age related stiffening of the eye lens leading to

a difficulty to focus on near distance objects. The initial solutions to this problem were bi-

focal and trifocals lenses, which were introduced in 1784 and 1826, respectively [24, 25].
They are lenses whose surface is separated into two or three discrete viewing zones with

different curvatures for near and far distance use. The downside of bifocals and trifocals

is that there is an edge causing the image to "jump" between the different viewing zones.

This can be circumvented by progressive addition lenses, which have a locally varying

curvature to smoothly transition from near to far distance viewing. The locally varying

curvature comes with the downside of inducing unwanted astigmatism as described by

Minkwitz theorem [26, 27]. The first progressive addition lenses are known since the

beginning of the 20th century [28, 29], but due to manufacturing limitations the first

commercially successful progressive addition lens was designed by B. Cretin-Maitenaz of

the company Essilor in 1958 [30].

Initially, the cost effective production of progressive addition lenses relied on pre-

manufacturing large quantities of semi-finished lenses, where the progressive surface was

already ground and a spherical surface would later be added based on the full prescription

of the patient. With improvements in manufacturing technology it became cost effective

to stock semi-finished lenses with spherical surfaces and manufacture complex surfaces

8
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such as progressive surfaces or other complicated freeforms based on the prescription of

the patient on demand [31, 32]. Since then, it has become feasible to customize spectacle

lenses for individual patients as well as for different use cases such as computer work or

driving.

In recent years, research interest in spectacle lenses has mainly focused on further

improvements of progressive addition lenses as well as specialized lenses for myopia

control, i.e. lenses that slow down myopia progression in children rather than to sim-

ply correct the refractive error of myopia. The research that is still being done in the

field of single vision spectacle lenses is on developing higher order aberration theories,

such as third order and fifth order theories [33, 34, 35, 36, 37, 38], correcting higher

order aberrations via aspheres [39], improvements on lens optimization routines, e.g.

suggesting new design algorithms [40], algorithm improvements for asphere optimiza-

tion [41, 42], lens design by taking the closer object distances into account for myopia

[43] or extending the depth of focus of the lens [44]. In the field of progressive addition

lenses, some work is done explicitly on the individualization of the progressive addition

lens [45, 46], while others focus on novel design and modeling methods for progressive

surfaces [47, 48, 49, 50, 51, 52, 53]. After gradient index progressive addition lenses

have been researched for some time [54, 55, 56, 57, 58, 59, 60], the recent research in-

terest is on tunable lenses such as liquid crystal diffractive lenses [61, 62, 63, 64], liquid

crystal gradient index lenses [65] or tunable liquid lenses [66]. By changing their power

on demand, these lenses could become a viable alternative to progressive addition lenses,

which suffer from unwanted astigmatism induced by the progressive surface according to

Minkwitz theorem. Recently, a spectacle lens including a binary zoom function based on

a liquid crystal gradient index lens has become commercially available in Japan [67, 68].
Due to the increase in myopia, especially in Asia, a lot of research is conducted on how

spectacle lenses can be used to slow down the progression of myopia in children [69, 70].
The proposed solutions based on spectacle lenses can be grouped into either progressive

addition lens-based ones [71, 72, 73, 74, 75, 76, 77] or approaches of altering the field

curvature of single vision lenses for the peripheral vision [78, 79].

In summary, spectacle lens design has become very mature over the last decades and

the possibilities of correcting the main optical errors, oblique spherical power error and

oblique astigmatism, via refractive lenses seem to be well-exhausted. Therefore, inno-

vation in the field of spectacle lenses likely requires the introduction of new technology,

such as holography, into the field.

9
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1.1.2. Volume holography

While the design and manufacturing of spectacle lenses is a research field with a rela-

tively well-defined set of applications, holography comprises a multitude of wavefront

reconstruction techniques that cater to a wide range of applications. The term "volume

holography" describes wavefront reconstruction techniques, which are based on record-

ing interference patterns as refractive index modulations into thick volumes (relative to

the wavelength) of photosensitive materials [80]. For a typical image hologram, a two

step process is followed: In the recording step, a coherent wave is split into two paths

by a beam splitter. The first path, called the object wave, illuminates an object and is

scattered from it. The second path, called the reference wave, remains a plane wave.

The optical setup is constructed in such a way, that the object and reference wave then

interfere and the interference pattern is recorded on a photosensitive material. After

some steps to permanently fix the interference pattern, the photosensitive material is

considered a hologram. In the reconstruction step, the hologram is illuminated by the

reference wave and diffracts it in such a way, that the object wave is reconstructed. An

observer then sees a recreation of the object as a 3D image with perspective and depth.

For appropriate hologram parameter choices and the incident light being the reference

wave, which obeys the Bragg condition, volume holograms are capable of reconstructing

a desired wavefront with unity diffraction efficiency [81]. Violating the Bragg condition

either by angle or wavelength detuning quickly reduces diffraction efficiency [80]. This

combination of high peak diffraction efficiency and small angular and wavelength band-

width make volume holograms interesting optical components for many applications that

require partial transparency such as optical combiners. In the following, the history of

holography is discussed along recent research trends with special attention to current

applications of volume holograms.

The beginning of holography dates back to experiments conducted by D. Gabor in 1948,

which originally aimed at reducing aberrations in electron microscopes. By chance, he

discovered the two step process of recording and reconstruction holograms described in

the previous paragraph. But the reconstructed object waves achieved by Gabor were of

poor visibility and low contrast since his on-axis configuration did not allow to spatially

filter the used diffraction order from the zeroth order light [82, 83]. The work of D. Gabor

did not attract much attention due to the lack of strong coherent light sources until the

the invention of the laser in 1960 [84]. Two years later, E. Leith and J. Upatniek recorded

10
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the first high quality holograms, in which they employed an off-axis geometry to spatially

filter out the zeroth order [85]. Gabor as well as E. Leith and J. Upatniek recorded

transmission holograms i.e. holograms, in which the object wave and reference wave

travel in the same direction. The first reflection hologram was recorded by Y. Denisyuk

in 1962, which was also the first hologram that could be used with white light as he used

lasers with three different wavelengths in the recording process [86, 87]. One of the

main drawbacks of the first holograms was that recording an interference pattern into a

photosensitive material modulates the real and imaginary parts of the refractive index of

the photosensitive material. Since the imaginary part of the refractive index corresponds

to absorption, these holograms absorb a part of the incident light, which then is not

available to achieve the maximum possible image brightness. It was first mentioned by G.

Rogers in 1952 and then later treated in greater detail by W. Cathey in 1965 that bleaching

a hologram can remove the absorption modulation, while keeping the modulation of the

real part of the refractive index intact. The resulting phase hologram is then still capable

of reconstructing the amplitude and phase information of an object wave. The absence of

absorption related losses in image brightness makes phase holograms the standard choice

for holography applications today [88, 89, 90, 91].

With growing interest in holography, it became important to theoretically predict the

diffraction efficiency behavior of a given hologram parameter choice. In 1969, H. Kogel-

nik derived analytical, approximate formulas for hologram diffraction efficiency, which

became known as Kogelnik theory or two wave coupled wave theory because of the as-

sumptions used: neglecting boundary conditions, neglecting second derivatives of the

field amplitudes and retaining only two waves (one diffracted wave and the transmitted

wave). Even though the assumptions of Kogelnik theory are only valid for holograms

with a high peak efficiency, they are used for their simplicity up to today [92]. Another

reason for the popularity of Kogelnik theory was that the rigorous methods of calculating

diffraction efficiency of surface gratings were not applicable to volume holograms be-

cause of computational limitations for many years. This only changed in 1981 when M.

Moharam and T. Gaylord published an easy to compute rigorous coupled wave analysis

that allowed to accurately predict the diffraction efficiency behavior of volume holograms

without approximations or assumptions [93].

The holographic processes described so far, such as using the light scattered from a

real object as the object wave in the hologram recording process or reading-out a holo-

gram with a physically present reference wave, are referred to as analogue holography.

11



I Introduction

However, both the recording and reconstruction can be done by digital means, which is

then referred to as digital holography. In the recording step, an object wave with the

desired properties can be computed instead of being scattered from a real object. In the

reconstruction step, the fringe pattern of a hologram can be the input to a computational

reconstruction of the object wave rather than being illuminated by a physically present

reference wave to recreate the object wave by diffraction. Holograms created with a

computed object wave are known as computer generated holograms (CGHs). Since the

1960s CGHs are used as filters or as optical elements e.g. holographic lenses or mirrors

[94, 95, 96]. CGHs can be volume holograms in the sense that a computer generated

phase mask is written into a 3D volume holographic film [97, 98], or the computer gen-

erated phase mask can be realized as a phase modulations profiles on spatial light modu-

lators (SLMs) [99, 100, 101, 102] or, since recently, as metasurfaces, which allow to mod-

ulate the amplitude and phase of a wavefront within thin dielectric or plasmonic layers

[103, 104, 105, 106, 107, 108, 109, 110, 111]. Both SLMs and metasurfaces realize phase

functions in a way that is better compared to 2D surface gratings like blazed gratings than

to 3D modulations of the refractive index of a volume hologram. Volume hologram CGHs

are often used to generate holographic optical elements (HOEs) that act as lenses, as mir-

rors or have complicated non-standard optical functions e.g. holographic lens arrays with

varying aberration profiles for adaptive optics [112]. HOEs with a lens-type function are

often a cascade or tandem of several holograms to either increase the wavelength band-

width for the use in polychromatic systems [113, 114] or angular bandwidth for wide

angle lenses [115]. Wide angle lenses can also be realized by partitioning the field into

different sub-holograms [116]. In this context, holographic-refractive hybrid optics have

been investigated [117], even though angular and wavelength bandwidth limitations re-

strict their potential use cases [118, 119]. SLM-based CGHs are an interesting alternative

to static volume hologram CGHs as they can perform fast switching between optical func-

tions, which enables their application in optical filters e.g. for telecommunication channel

management, where they bring benefits like transparency, low crosstalk, low losses and

high switching speeds [99] or in see-through displays, where they are crucial for dis-

playing video information [100, 101, 102]. Apart from being used as CGHs, SLMs can

also be used to record volume holograms that are CGHs. Instead of recreating the object

wave required in the recording process of a CGH by conventional optical components,

the object wavefront can be created with an SLM. Due to the pixelation of the SLM, the

SLM image is typically demagnified and the CGH is written as an array of holographic

12



I Introduction

pixels (hogels). This type of recording setups is therefore referred to as a holographic

printer [120, 121, 122, 123, 124]. Aside from the wide spread use of CGHs discussed so

far, the concepts and algorithms of digital holography are also used in many image re-

construction applications. Recording the interference pattern of a known reference wave

and an object wave on an image sensor like a CCD allows calculating the object image

[125]. This concept is used in digital holographic microscopy to image phase objects like

living cells with high sensitivity [126, 127, 128, 129] or adaptive optics for astronomical

imaging with dynamic compensation of atmospheric turbulence [130, 131].

While digital holography found its use in many applications thanks to technological

advances in image sensors, computational resources and SLMs [132, 133, 134, 135, 136,

137], analogue holography suffered from a lack of holographic materials suitable for in-

dustrial mass production in terms of processing difficulty and environmental stability.

Consequently, for a long time applications were limited to expensive high end use cases

with small production quantities such as military aircraft head-up displays (HUDs) [138].
A lot of research on holographic materials was done in the 1990s, when holographic

data storage attracted a lot of interest as volume holograms promised high data capa-

city and fast read-out speeds. To date holographic storage has not been able to develop

into a commercial alternative to magnetic storage [139, 140, 141, 142, 143, 144, 145],
but research on holographic data storage has significantly benefited other applications

of holography due to progress in holographic materials. Most notably, Bayfol, a pho-

tosensitive material for holography, is a successor of materials that have been devel-

oped originally for holographic storage. Bayfol has several advantages over previous

materials such as dichromated gelatin, most notably that it is sold as thin films on a

polymer substrate, which do not require any wet chemical or thermal processes, and

great stability under light and temperature. Bayfol starts to enable a broad commercial

breakthrough in volume holography, especially in augmented reality (AR) applications

[145, 146, 147, 148, 149, 150, 81, 151, 91, 138] HOEs based on volume holograms are

used as optical combiners in AR systems since their high peak diffraction efficiency at nar-

row angular bandwidth allows them to efficiently project a display image into the users

view while being transparent for the other incident light. Furthermore, they can include

arbitrary optical functions such as focusing or aberration correction. Proposed AR systems

include HOEs as optical combiners with a mirror lens function [152], optical combiners

for viewing angle enlargement [153], optical combiners for eyebox duplication [101] or

optical combiners for laser scanning systems [154]. A very common AR system configura-
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tion uses two HOEs: one for in-coupling of light coming from a display into a waveguide,

and one to out-couple the light in the users view [155, 156, 157, 158, 159, 160]. Other

applications for volume holograms that have been investigated include HOEs as optical

switches and interconnects in telecommunication networks or chip-to-chip communica-

tion [161, 162], HOEs for concentrators to increase solar cell energy yield [163, 164],
holographic diffusers e.g. for light-field displays [165] or for color mixing in the back-

light systems of cell phones [166] or security holograms [167, 168, 169, 170].

In summary, holography is a thriving field and recent innovations such as the Bayfol

material or holographic printers have created a larger potential for innovation than what

has been addressed in research so far.

1.2. Motivation and scope of this work

Transferring the recent success of holography in AR applications into other fields is sci-

entifically interesting on its own right as motivated in the beginning of this chapter. But

there are further specific reasons why incorporating holograms into spectacle lens designs

is a promising endeavor.

Considering the advances in spectacle lens design methods in the last decades, it seems

fair to state that classical spectacle lens design as choosing the shape of a refractive lens

made from one of the known spectacle lens polymers does not promise significant perfor-

mance improvements anymore. Therefore, spectacle lens design innovations are likely

to include new technology, be it new materials, new coatings, manufacturing methods,

electric components or diffractive components. For the purposes of this thesis, several

limitations of spectacle lenses are worth evaluating for potential holography-based solu-

tions. For example, the transversal color error of spectacle lenses scales with prescription

power. If a user finds the color error of their high prescription spectacle lenses to be

disturbing, the only practiced way of reducing color error so far is to use a material with

less dispersion i.e. a higher Abbe number. Looking at the Abbe-diagram [171], for spec-

tacle lens materials a higher Abbe number generally comes with a lower refractive index.

Lowering the refractive index of a lens means that the curvatures need to be increased to

achieve the same prescription power. Increased curvatures mean that the lens becomes

thicker and heavier. This compromise between color error and weight is especially un-

fortunate because high prescription spectacle lenses are very heavy already.

Here, holography has the potential to leverage the concept of refractive-diffractive dis-
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persion compensation [117] to reduce color error. An added benefit to this could be that

holograms realize optical functions in thin films, which means a hybrid spectacle lens

including holograms can be thinner and flatter than a refractive one of the same prescrip-

tion. This is important not only for wearing comfort, but also for aesthetics, which are

very important for the marketing of spectacle lenses. A further advantage of holograms

is that their optical functions can be chosen almost arbitrarily, which allows aberration

correction e.g. astigmatism reduction in a similar manner as e.g. aspherical surfaces

or free-form surfaces. Another potential benefit of realizing arbitrary optical functions

in thin holograms is that they could replace the free-form surface in progressive addi-

tion lenses. Due to the spatially varying power, progressive addition lenses require high

precision manufacturing processes, which are usually based on computer-numerically

controlled (CNC) machines with soft polishing instead of the easier hard polishing used

for spherical lenses [172]. Even though cheaper processes such as compression molding

are used for small elements like camera lenses or larger elements with lower accuracy

requirements e.g. condenser lenses for projectors [173], they are not used for high-end

spectacle lenses with individualized prescriptions. Here, holograms could be used to pro-

vide the same functionality as a free-form surface in a thin film.

However, besides the mentioned application advantages, using holograms in spectacle

lens applications has several challenges that need to be overcome, such as diffraction

efficiency or dispersion management. This thesis presents a tool chain that incorporates

solutions to these challenges into a design method for holograms in spectacle lens applica-

tions. The upcoming Chapt. II prepares this by reviewing relevant theories and methods

of spectacle lens design as well as holography. The focus in that chapter is on design meth-

ods for refractive spectacle lenses and methods for the calculation of hologram diffraction

efficiency. Chapt. III builds upon these methods and presents the aforementioned design

tool chain. The design tool chain incorporates solutions for high diffraction efficiency

holograms and dispersion compensation into a method that allows to design holograms

with arbitrary optical function that can be used for single vision spectacle lenses as well

as progressive addition lenses. An important feature of this tool chain is to design holo-

grams for all gaze directions of the eye. Chapt. IV presents several designs of either

holographic or refractive-holographic hybrid single vision spectacle lenses as well as de-

signs of holographic progressive addition lenses. These designs are compared to their

refractive counterparts and it is evaluated whether or not the discussed benefits of in-

cluding holograms in spectacle lens designs, such as dispersion compensation, thickness
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reductions or replacement of progressive addition lens free-forms or aspheres, can be

achieved in simulation. The findings of the design evaluations are then summarized in

Chapt. V.
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II. Background

This chapter is to summarize important theories and methods in the fields of spectacle

lens design and holography that are required to understand the following chapters. Sect.

2.1 is devoted to spectacle lens design, because the spectacle lens design method for HOE-

based spectacle lenses presented in chapter III is best understood as an extension of design

methods for refractive spectacle lenses. Sect. 2.2 is devoted to volume holography and

starts with a brief discussion of the recording and wavefront reconstruction process to give

a conceptual understanding of holography. Afterwards, methods to calculate hologram

diffraction efficiency (DE) that are used in chapter III are presented. In this context, many

of the relevant hologram parameters for the design method of HOE-based spectacle lenses

are introduced.

2.1. Spectacle lenses

This section is to introduce the field of spectacle lens design, especially to readers whose

background is in holography rather than spectacle lens design. First, the refractive errors

of the eye that can be corrected by spectacle lenses such as myopia, hyperopia, astigma-

tism and presbyopia are introduced. The second subsection is devoted to the discussion

of paraxial formulas for the design of single vision spectacle lenses (SVSLs), which aim at

providing the user with a certain spherical power (SPH) and astigmatism (AST) that cor-

rects the users myopia, hyperopia and astigmatism. But paraxial formulas only describe

the optical performance of a SVSL for looking straight ahead, which is not sufficient as

SVSLs are expected to correct the users vision for all gaze directions. Therefore, the next

subsection discusses spectacle lens design methods that aim at reducing the deviations

from the desired SPH and AST, here referred to as SPH error and AST error, for all gaze

directions of the eye. In this context, the ability of aspheres (ASPHs) to reduce the com-

bined error budget of SPH error and AST error is discussed for three sample SVSL designs.

Because color error (CE) is important for the evaluation of the hologram-based spectacle
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lenses designed in this thesis, the CE calculation method is presented along with the CE

results for the sample SVSLs. The last subsection discusses progressive addition lenses

(PALs) that can be used to correct the refractive error of presbyopia and introduces a

sample PAL design to illustrate their general functionality.

2.1.1. Refractive errors of the eye

Spectacle lenses are the most prevalent treatment options for refractive errors of the

eye. Fig. II.1 visualizes the four most relevant ones. For reference, part (a) shows an

emmetropic eye, i.e. an eye without any refractive errors in its optics i.e. the cornea and

the eye lens. In that case, the optics of the eye image a distant object, which could be a

e.g. a point source in a distance of more than 5 m, so that the focus lies directly on the

retina. Deviations of the focus from the retina are referred to as refractive errors. Part (b)

shows the refractive error myopia, which is also known as nearsightedness. In that case,

the focus is placed in front of the retina, because of a combination of the eye ball being too

long and the optics of the eye being too strong. Myopia can be corrected with a negative

SPH SVSL. The opposite of myopia is hyperopia or farsightedness, which is shown in part

(c). Here, the focus is placed behind the retina, which is caused by a combination of

the eye ball being too short or the optics of the eye being too weak. Hyperopia can be

corrected with a positive SPH SVSL. All refractive errors that lead to two foci for different

meridians are referred to as astigmatism. Part (c) shows a sample configuration with a

first focus F1 being placed in front of the retina, while a second focus F2 is placed behind

the retina. This case is referred to as mixed astigmatism, but all other possibilities exist as

well: simple myopic astigmatism (one focus on the retina, one in front of it), compound

myopic astigmatism (both foci in front of the retina), simple hypermetropic astigmatism

(one focus on the retina, one in behind it) and compound hypermetropic astigmatism

(both foci behind the retina). The 2D figure does not specify the relationship between

the two meridians shown as light and dark blue. If the principal meridians (steepest

and flattest meridians) are perpendicular to each other, the astigmatism is referred to as

regular. If the principal meridians are not perpendicular, the astigmatism is referred to

as irregular [174]. Astigmatism can be corrected with an astigmatic SVSL.

The last relevant refractive error called presbyopia is shown in parts (e) and (f). Pres-

byopia is a age related stiffening process of the eye lens that does not affect viewing

distant objects as shown in part (e). The problem is that for near objects, the human eye

usually changes the curvature of the eye lens to "zoom in" by increasing the SPH of the
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Figure II.1. Refractive errors of the eye. Emmetropia (a) is defined as the absence of refractive errors. In
that case, the optics of the eye i.e. eye lens and cornea, image a distant object directly on the retina. In
the case of myopia (b) the optics of the eye image a distant object in front of the retina, while in the case
of hyperopia (c), the optics of the eye image a distant object behind the retina. Myopia and hyperopia can
be caused by an inadequate combination of eye ball length and strength of the eye optics. Astigmatism (d)
is a refractive error in which the irregular curvature of the optics of the eye creates two foci when imaging
a distant object. In the figure, the second beam shown in the darker blue is meant to be on a different
meridian than the light blue one. Presbyopia (e and f) is an age-related stiffening process of the eye lens
that does not affect distant objects (e), but the eye lens is no longer capable to provide the additional SPH
required to image near objects (f).

19



II Background

optical system, which is referred to as accommodation. The SPH difference required is

a function of object distance and known as add power. In a presbyopic eye, the eye lens

became so stiff that it cannot or can only partially change its curvature to accommodate

and provide the required add power to image near objects, which leads to the focus be-

ing behind the retina as shown in part (f). Presbyopia can be corrected by providing the

required add power e.g. by reading glasses which are just SVSLs with positive SPH or

bifocals, which correct the other refractive errors of the eye over the full lens surface and

then provide the required add power in a small section of the lens. But both of these

solutions provide only one fixed add power, which corrects for one fixed distance of a

near object, but not the whole distance range as a natural accommodation process does.

A continuous increase in add power to view near objects at variable distances is provided

by PALs. The four refractive errors discussed here are the ones relevant to the contents

of this thesis. Further technical aspects of special cases in spectacle lens design, e.g. the

implications of distortion due to magnification variances between the two eyes and prism

for binocular vision, are skipped here.

2.1.2. Paraxial formulas

For the on-axis position of the user looking straight through a spectacle lens, simple for-

mulas can be derived from paraxial optics to describe the lens properties. Here, formulas

that can be found in standard text books such as Ref. [175] are put into the context of

this thesis. Even though off-axis performance is crucial in spectacle lens design, these

paraxial formulas offer a good initial orientation when e.g. looking for suitable starting

values for further optimization in an optical design software.

In the following, a spherical lens made from a material with refractive index n with

front and back surface curvatures R1 and R2, respectively, and center thickness D is con-

sidered. Fig. II.2 shows an illustration of such a lens in front of an eye. The optical power

of this spectacle lens depends on the front and back surface powers. The front surface

power P1 is given as

P1 =
n− 1

R1
(II.1)
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and the back surface power P2 as

P2 = −
n− 1

R2
. (II.2)

The optical powers are usually expressed in diopters with dpt = 1/m. The full power of

the lens Pfull is then

Pfull = P1 + P2 −
D
n

P1P2. (II.3)

The term including the lens thickness D can be neglected in many cases especially when

calculating starting values for an optimization rather than a final design. E.g. for a lens

with P1 = 2 dpt and P2 = -6 dpt, n = 1.5 and D = 0.006 m, which are realistic values for

a spectacle lens, the term in question would take a value of 0.048 dpt, while the first two

terms sum up to -4 dpt. According to Eq. II.3, a given prescription value can be realized

by an infinite combination of front and back surface powers. This is true even when

only considering meniscus shaped lenses, where both R1 and R2 take positive values. A

prescription of -4 dpt, for example, can be realized by P1 = 0 dpt and P2 = -4 dpt, P1 =
2 dpt and P2 = -6 dpt or P1 = 4 dpt and P2 = -8 dpt. The implications of choosing a specific

combination of front and back surface powers on off-axis gaze directions are discussed

later in this chapter. Eq. II.3 relates the lens power to the principal plane. For spectacle

lens design, it can be advantageous to relate the optical power to the back vertex plane,

which is shown as a red line in Fig. II.2 since the location of the principal planes is not

necessarily known. In that case, the back vertex power corresponds to the curvature of

an incident plane wave after refraction by the spectacle lens. The back vertex power is

then given as:

SPH=
P1

1− D
n P1

+ P2 =
Pfull

1− D
n P1

. (II.4)

In the following chapters, SPH and AST are always meant to describe back vertex powers.

These paraxial formulas can also be used to calculate the required power to view a

close object. Ref. [175] states the required optical power for viewing a near distance

object Pnear as the sum of the back vertex power for viewing an object at infinity SPH and
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Figure II.2. A spherical spectacle lens can be described by the following parameters: refractive index n,
front and back surface curvatures R1 and R2, and center thickness D.

an additional term that depends on the magnification M

Pnear = SPH+
M2P1

1− D
n M P1

= SPH+ add power. (II.5)

The second term can be labeled the add power and is either contributed by accommo-

dation of the eye or describes the required add power of a presbyopia correction vision

aid such as a bifocal spectacle lens or a PAL. Since the magnification of a lens of a given

prescription SPHprescription depends on the object distance dobj as

M =
1

1− dobjSPHprescription
, (II.6)

the add power depends on the object distance.

2.1.3. Gazing eye problem

The refractive errors of the human eye can be assumed to be independent of gaze direc-

tion. This means that, if a given prescription corrects the refractive errors of the eye, the

goal of spectacle lens design is to provide that prescription for all gaze directions of the

eye. In spectacle lens design, it makes sense to evaluate this situation without taking into

account the optics of the eye. If the optics of the eye are considered, the goal of spectacle

lens design is to place the focus of incident ray bundles on the retina. If the optics of the

eye are not considered, the goal is to place the focus on a sphere whose center coincides
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with the rotational center of the eye, but whose radius differs from the eye radius. For

objects at infinity, which are assumed e.g. for SVSL design, this sphere is called the far

point sphere and its radius is 1/SPHprescription. If the focus of incident ray bundles is on the

far point sphere this means that target prescription is achieved and the combination of

the spectacle lens and the optics of the eye would place the focus on the retina. Using the

paraxial formulas discussed above, it is possible to design spectacle lenses that place the

focus on the far point sphere for the on-axis gaze direction. But for other gaze directions,

different parts of the lens are used that at least in the case of spherical lenses do not

provide the same optical function and therefore induce aberrations i.e. a combination

of the two oblique errors. These oblique errors, here referred to as SPH error and AST

error, are visualized in Fig. II.3 (a) and (b), respectively. SPH error denotes the case that

there is an offset between the focus and the far point sphere. If there is uncompensated

astigmatism in the spectacle lens design, there are two foci F1 and F2 and the circle of

least confusion C between them as denoted in part (b) of the figure. If C is placed right

on the far point sphere, there is no SPH error. The AST error is then given as the dis-

tance between the foci. It should be noted that to keep in line with the descriptions in

the paraxial formulas SPH and AST are defined relative to the back vertex sphere for the

off-axis gaze directions. This follows the same logic as relating them to the back vertex

plane in the paraxial case, but ensures that all gaze directions are evaluated for the same

conditions.

How much oblique aberrations, SPH error and AST error, are induced depends on the

base curve of the lens i.e. which combination of front and back surface power is used

to achieve the desired prescription. The goal of choosing a base curve can be to either

minimize SPH error, AST error or to minimize both within certain error budgets.

While in general this problem is best addressed by optimization in an optical design

software, it should be noted that in some cases analytical formulas allow calculating

favorable solutions that in turn can be used as initial values for an optimization. The

Tscherning ellipse, for example, describes analytical solutions with vanishing AST error

for a large range of prescriptions provided that only a small range of gaze directions

is considered and that the thin-lens approximation is valid. The starting point for these

considerations are Coddington’s equations, which can be used to calculate the meridional

and sagittal foci for any given ray and an infinitesimal close neighboring ray coming from

the same object point [176]. Expressing the refraction on the front and back surface

using Coddington’s equations and then asking for the astigmatism to vanish, i.e. for the
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Figure II.3. SPH error (a) and AST error (b) are oblique errors occurring for off-axis gaze directions of the
eye through a spectacle lens. If the focus is placed on the far point sphere, the combination of the spectacle
lens and the optics of the eye places the focus on the retina for an object at infinity. Deviations of the focus
from the far point sphere are referred to as SPH error. If the focus is split up into a meridional and sagittal
focus, but the circle of least confusion is placed on the far point sphere, there is no SPH error, but AST error
equal to the displacement of the foci.
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meridional and sagittal foci to coincide, yields the equation for the Tscherning ellipse as

(n+ 2)P2
2 +

�

2(n2 − 1)
�

1
a
−

1
s

�

−(n+ 2)Pfull

�

P2

+
��

nPfull −
2(n− 1)

a

��

1− n2

s
+ Pfull

�

+
n(n− 1)2

a2

�

= 0
(II.7)

with a being the distance between the lens and the rotational center of the eye and s

being the distance between the lens and the object. Equations for the Tscherning ellipse

can also be found in more complicated scenarios such as a larger range of valid gaze

directions, finite lens thicknesses or aspherical surfaces, but in these cases no analytical

solutions are available and the equations can only be solved numerically [175].

The alternatives to analytical spectacle lens design methods such as the Tscherning el-

lipse are optimization procedures in optical design software. The general approach there

is to define an optical system with variable parameters in an initial configuration and to

then vary these parameters until a merit function describing the system’s performance is

minimized. The main challenge of spectacle lens design in an optical design software is

that most optical systems have only one optical axis and a fixed aperture. A camera objec-

tive lens, for example, is designed under the assumption that a certain angular spectrum

around the optical axis is transferred through the optical system and limited by the objec-

tive’s aperture. This is different from spectacle lenses, where the aperture is the pupil of

the eye that moves around between different gaze directions. One way of describing this

is to consider each gaze direction of the eye as it’s own optical system configuration with

the pupil of the eye being the system aperture and the current optical axis being given by

connecting the center of the pupil and the rotational center of the eye M . Fig. II.4 shows

two sample gaze directions in parts (a) and (b) and a discrete sampling of the full angular

range of principal rays within the field of view of the spectacle lens in parts (c). This is

typically solved by writing a merit function, which is minimized by varying a given set

of lens parameters such as front and back curvatures R1 and R2, refractive index n of the

lens material, center thickness D or possibly additional coefficients describing an aspheric

or free-form surface. The merit function needs to include contributions of principal rays

sampling the entire field of view of the spectacle lens in order to achieve good off-axis

performance. Because it might not be possible to achieve the desired performance for

the entire field of view, it is important to weight the contributions of different principal

rays to the merit function. E.g. in the case of radially symmetric designs such as SVSLs, it

makes sense to assign radially decreasing weights to ensure that the desired prescription
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Figure II.4. Visualization of the principal rays of different gaze directions. Principal rays are constructed
by connecting the rotational center of the eye M with the center of the pupil. Parts (a) and (b) show the
principal rays of the on-axis (a) and an off-axis (b) gaze direction. Part (c) shows a discrete sampling of
the principal rays within the field of view of the spectacle lens.

values are achieved in the center and slight errors are accepted in the outer parts of the

SVSL. In addition to terms evaluating the optical performance of the lens in terms of SPH

error and AST error, the merit function can include terms concerning other properties like

the lens center or edge thickness. Another challenge of optimizing spectacle lenses in an

optical design software is to find a good initial system so that the optimization converges

to a local minimum of the merit function that corresponds to a final optical system with

the required optical performance. In spectacle lens design, this is often done by calculat-

ing lens parameters that achieve desired prescription for the on-axis gaze direction, for

example using e.g. Eq. II.4 or II.7.

2.1.4. Aspheres

The optimization compromise between SPH error, AST error and lens thickness discussed

above can be further improved by using ASPHs. To showcase the potential of ASPHs, a
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SVSL with a prescription of -4 dpt SPH at 0 dpt AST realized as a spherical lens is com-

pared to two designs with the same prescription and ASPHs to improve the optimization

compromise. The spherical lens is chosen out of the available list of semi-finished lenses

from Zeiss and has the following geometry: R1 = 200 mm, R2 = 85.5 mm, D = 1.2 mm.

The lens material is a standard polymer for spectacle lenses with a refractive index n

of 1.59 and an Abbe number VD of 41.11. Consequently, the front surface power P1 is

2.95 dpt, the back surface power P2 is -6.95 dpt and, neglecting thickness, the expected

prescription value is -4 dpt SPH. This lens is not chosen according to the Tscherning el-

lipse for compensated astigmatism, but rather to satisfy a compromise of SPH error, AST

error and lens form in terms of thickness and flatness. The latter two are important since

the commercial success of spectacle lenses is influenced by the aesthetics as well as the

optical properties.

Fig. II.5 (a), (b) and (c) show the SPH error, AST error and CE, respectively, over the

lens surface of the spherical lens with the prescription of -4 dpt SPH at 0 dpt AST. CE is

discussed in the later in this section and can be ignored for the time being. The values

shown in these plots can be understood as follows: the optical properties of the lens SPH

error, AST error and CE are evaluated for a discrete sampling of gaze directions covering

the entire lens surface. Therefore, each pixel in the plot corresponds to the result of

a bundle around the principal ray that corresponds to the current gaze direction. The

performance of the spherical SVSL shown in Fig. II.5 (a)-(c) was optimized by choosing

the base curve i.e. the lens curvatures. Altering the base curve would decrease either

SPH error or AST error while increasing the other. Using ASPHs, however, can improve

the optimization compromise as a whole. For example, the aspherical SVSL shown in Fig.

II.5 (d)-(f) has a slightly reduced SPH error and strongly reduced AST error, compared

to the spherical SVSL shown in Fig. II.5 (a)-(c). But even with ASPHs, it is not possible

to completely remove SPH error and AST error. The aspherical SVSL in Fig. II.5 (g)-

(i) illustrates what happens when trying to decrease SPH error below the level of the

aspherical SVSL shown in Fig. II.5 (d)-(f). Here, SPH error decreases are achieved only

by strongly increasing AST error. In other words, ASPHs reduce the error budget, but

trade-offs between SPH error and AST error remain.

2.1.5. Color error

When evaluating the optical performance of a spectacle lens in this thesis, three quantities

are reported: SPH error, AST error and CE. The first two have been introduced in Fig. II.3
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already and are standard quantities in spectacle lens design. CE is usually not considered

in spectacle lens design as its impact on the users vision depends on individual factors

and there are no ways to significantly reduce CE by refractive means outside of choosing

materials with low dispersion i.e. a high Abbe number VD. If CE is calculated in refractive

spectacle lens design, it is typically done using an approximate formula based on the Abbe

number:

C Eref =
h SPH

VD
(II.8)

with h denoting the considered height on the lens i.e. the distance from the lens center

that corresponds to the gaze direction of looking straight ahead. The human perception

threshold for CE calculated with Eq. II.8 is reported as 0.12 cm/m in Ref. [177]. This

means that, when looking at a black object on a white screen in 2 m distance, the user

of a spectacle lens inducing a CE of 0.12 cm/m would see 0.24 cm thick color fringes

around the edges of the object. Eq. II.8 is based on the Abbe number and therefore

not applicable for diffractive HOE tandems investigated in this thesis. Therefore, in this

thesis, CE is calculated as the direction difference between a red (λ = 620 nm) and a

blue ray (λ = 430 nm) in the pupil of the eye and scaled with the airy disc of a the

green center wavelength (λ = 546 nm). Since the absolute value of this calculation can

not be interpreted, all CE described in this thesis are normalized so that the CE of the

spherical lens shown in Fig. II.5 (c) at a height of 30 mm is one. This CE is known to be

uncritical from practice, even though it is above the perception threshold. The perception

threshold of 0.12 cm/m corresponds to a normalized CE of 0.4. The CE of the spherical

and two aspherical SVSLs shown in Fig. II.5 (c), (f) and (i), respectively, illustrates that

the introduction of ASPHs has negligible effect on CE.

2.1.6. Progressive addition lenses

PALs are used to correct the refractive error of presbyopia by replacing the "zoom" function

of the accommodating eye by varying their SPH over the lens surface. The upper part of

the PAL typically has a fixed SPH and AST prescription that corrects the refractive errors

other than presbyopia for viewing a distant object as it is the case with SVSLs. In the

following, it is assumed that there are no other refractive errors and consequently, the

upper part of the PAL has a prescription of 0 dpt SPH and 0 dpt AST. In the lower part of

the PAL, the curvature increases to increase SPH. The SPH increase relative to the part
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Figure II.5. SPH error (a), AST error (b) and CE (c) over the lens surface of a SVSL with a prescription of
-4 dpt SPH and 0 dpt AST realized as a spherical lens. The performance can be improved by introducing
an asphere to one surface. The design shown in (d)-(f) is optimized to minimize AST error and achieves
a lower AST error than the spherical lens while also reducing SPH error. The design shown in (g)-(i) is
optimized to minimize SPH error, which is strongly reduced at the cost of increasing AST error. Both ASPHs
have no notable influence on CE.
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used for viewing distant objects is called the add power. Because the SPH increase is

smooth, the user can select the required add power for viewing near objects by choosing

the gaze direction which uses the correct lens area. In practice, this can requires some

head movements.

The SPH distribution of an ideal PAL, i.e. the desired functionality from an application

point of view, designed for an add power of up to 2 dpt is shown in Fig II.6 (a). The

upper half of the lens at Y > 0 mm has 0 dpt SPH, i.e. the curvatures of the front and

back surface are similar. This zone can therefore be used for viewing distant objects

without any required add power. In the lower part of the lens, one surface curvature

then varies so that SPH is smoothly increased up to the desired add power of 2 dpt. The

lower part of the lens at Y < -18 mm can then be used for viewing near objects, while the

both zones are connected by a transition zone that allows intermediate distance objects

to be viewed with the required add power. For users with additional refractive errors

other than presbyopia, the SPH distribution shown in part (a) would be added to the

SVSL that corrects the other refractive errors. For example, if the user requires a SVSL

with a prescription of -4 dpt SPH to correct myopia, the SPH distribution goes from -4 dpt

to -2 dpt, which would be expressed as a -4 dpt SPH PAL with 2 dpt of add power. In

the ideal case, the lens would not have any non-prescription AST as indicated in part (b).

However, Minkwitz theorem

∂ AST
∂ x

= 2
∂ SPH
∂ y

(II.9)

describes that spatial variations of SPH along one direction cause spatial variations of AST

at twice the rate in the perpendicular direction [26, 27]. Because zones with high levels of

unwanted AST severely impair imaging performance, PAL design is a complicated process

that mainly focuses on achieving large zones that are free of unwanted AST. A real PAL,

whose SPH and AST distributions are shown in Fig. II.6 (c) and (d) therefore looks very

different from the ideal one shown in parts (a) and (b). The example PAL shown in parts

(c) and (d) is created using data by courtesy of Carl Zeiss Vision GmbH. The design is

best understood by considering the AST distribution in (d) first. Only regions with close

to 0 dpt AST can be used for unblurred imaging, which leaves the upper part of the lens,

a small zone at the bottom of the lens and a thin corridor connecting the two zones. The

regions of high AST, sometimes referred to as the blending regions, have high AST even

above 2 dpt. The role of the zones with close to 0 AST is best understood by considering
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the SPH plot in (c). The upper zone at Y > 0 mm has 0 dpt SPH and 0 dpt AST, which

is equivalent to the ideal PAL shown in parts (a) and (b). This zone is called the far

zone and for viewing distant objects. The red zone in the SPH plot is the near zone for

viewing near objects with 2 dpt SPH. This zone does not extend as far in X as it does

in the ideal PAL, which is a concession for minimizing AST. The near and far zone are

connected by a slim zone referred to as the progressive corridor. The small size of the

progressive corridor is the main drawback of PALs [178, 172].
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Figure II.6. SPH (a) and AST (b) distribution over the lens surface of an ideal PAL, i.e. the desired
functionality for an application point of view. This ideal PAL would provide a zone for viewing distant
objects with 0 dpt SPH at Y > 0 mm, a zone for viewing near objects with 2 dpt SPH at Y < - 18 mm and a
smooth transition zone in between, all at 0 dpt AST. But as described by Minkwitz theorem, increasing SPH
along one direction also increases AST perpendicular to it, which makes it impossible to fabricate such an
ideal PAL. Parts (c) and (d) show a real PAL design, which aims at achieving large AST-free zones despite
of Minkwitz theorem. While the zone for viewing distant objects in the upper part of the real PAL is very
similar to the one of the ideal PAL, the zone for viewing near objects is significantly smaller in X direction.
This is an optimization compromise to increase the size of the transition zone referred to as the progressive
corridor.
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2.2. Volume holography

This section is to give a brief overview of holography, especially for readers whose back-

ground is in the field of spectacle lenses rather than holography. First, the wavefront

reconstruction principle of holography is introduced in an adaptation from standard text-

books [179] because it provides a good framework to understand potential applications

of holograms. For imaging applications such as spectacle lenses, it is important that

holograms allow high diffraction efficiency (DE) operation in a single diffraction order.

Therefore, the second subsection discusses DE calculation methods based on two well-

known papers [92, 93]. Afterwards, a subsection is devoted to holograms in optics design,

a topic which is treated in a lot more detail later in chapter III. Finally, the fabrication

of arbitrary hologram structures is discussed to motivate that the holograms designed in

this thesis can be fabricated even in mass production.

2.2.1. Wavefront reconstruction

Holography as a wavefront reconstruction technique is best explained by describing the

recording and wavefront reconstruction process of image holograms. The following puts

the wavefront reconstruction formalism found in standard textbooks [179] into the con-

text of this thesis.

Image holograms are recorded as the interference pattern between a reference wave

and an object wave. This process is shown in Fig. II.7 (a). For the purpose of explaining

wavefront reconstruction, the thickness of the photosensitive material is not relevant and

the hologram can be assumed to exist in a thin plane z1. The thickness of the hologram,

here indicated as z1...zn, plays a major role in determining DE, which is discussed after

the wavefront reconstruction. The following formalism is presented for z1, but could be

repeated for any zn with the same results. The reference wave is typically chosen as a

plane wave, because it is required to reproduce the reference wave later in the recon-

struction step. The complex amplitude of the reference wave in the hologram plane z1 is

given as

r(x , y) = reik sinθ x (II.10)

with θ being the angle of the reference wave to the propagation axis z. For in-line holo-

grams, θ is zero, but here θ is assumed to be non-zero to treat the general case of off-axis
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holograms. The object wave is the light scattered from the object that is to be displayed

by the image hologram. The complex amplitude of the object wave in the hologram plane

z1 can therefore be formulated as

o(x , y) =
�

�o(x , y)
�

�e−iφ(x ,y). (II.11)

In the hologram recording process, the object wave o(x , y) and the reference wave r(x , y),
who are mutually coherent, are overlapped on a sheet of photosensitive material. There,

their interference pattern is recorded. The interference pattern of the object wave and

reference wave in the hologram plane z1 is then

I(x , y) =
�

�r(x , y) + o(x , y)
�

�

2

=
�

�r(x , y)
�

�

2
+
�

�o(x , y)
�

�

2
+ r
�

�o(x , y)
�

�e−iφ(x ,y)e−ik sinθ x + r
�

�o(x , y)
�

�eiφ(x ,y)eik sinθ x

= r2 +
�

�o(x , y)
�

�

2
+ 2r

�

�o(x , y)
�

� cos
�

k sinθ x +φ(x , y)
�

.

(II.12)

After chemical fixation steps and curing, the photosensitive material with the recorded

interference pattern is called a hologram. For wavefront reconstruction, the hologram is

illuminated by the reference wave as shown in Fig. II.7 (b). The amplitude transmittance

of the hologram can be assumed as

t(x , y) = t0 + βT I(x , y) (II.13)

with t0 being a constant background transmittance, T being the exposure time of the

hologram and β being a parameter determined by the holographic material. Substituting

Eq. II.12 into Eq. II.13 yields

t(x , y) = t0 + βT
�

r2 +
�

�o(x , y)
�

�

2
+ ro(x , y)e−ik sinθ x + ro(x , y)∗eik sinθ x

�

(II.14)

with o(x , y)∗ denoting the complex conjugate of o(x , y). When illuminating the holo-

gram with the reference beam r(x , y), the complex amplitude of the transmitted wave is

then

u(x , y) = r(x , y)t(x , y) = u1(x , y) + u2(x , y) + u3(x , y) + u4(x , y) (II.15)
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with

u1(x , y) = reik sinθ x
�

t0 + βTr2
�

u2(x , y) = βTr
�

�o(x , y)
�

�

2
eik sinθ x

u3(x , y) = βTr2o(x , y)

u4(x , y) = βTr2o(x , y)∗ei2k sinθ x .

(II.16)

The first term u1(x , y) is the directly transmitted reference wave, which is attenuated

by a constant factor. The second term u2(x , y) forms a halo surrounding the reference

wave. The third term u3(x , y) is the attenuated object wave and corresponds to the

virtual image. The fourth term u4(x , y) is the complex conjugate of the attenuated object

wave and corresponds to the real image. The additional ei2k sinθ x phase of the fourth term

shows that the real image is deflected by 2 sinθ in k space. As shown in Fig. II.7 (b), in

the general case of off-axis holograms the components of the transmitted wave propagate

in different directions. For a sufficiently large θ , either the real or the virtual image can

be filtered out e.g. by a spatial filter. This allows to create the high quality, monochrome

image holograms that are known e.g. from museums.

The wavefront reconstruction process of holographic optical elements (HOEs) works

analogous to the one of image holograms. The only difference is that the object wave

o(x , y) and reference wave r(x , y) are typically a combination of spherical waves or

plane waves. For example, a lens-type HOE can be realized as the interference pattern

between either two spherical waves or a spherical wave and a plane wave (spherical wave

that originates from infinity). For lens-type transmission HOEs, both waves come from

the same side. For mirror-type or reflection HOEs, the waves come from opposing sides.

Since the HOEs for spectacle lens applications discussed in this thesis are lens-type HOEs,

the HOE recording and wavefront reconstruction process is illustrated using a lens-type

HOE in Fig. II.8.

2.2.2. Diffraction efficiency

A key parameter to consider when designing optical systems that include holograms is DE.

DE describes how much energy of an incident wave is transferred to the desired diffracted

wave. Diffraction efficiencies can be calculated by solving Maxwell’s equations for a plane

wave incident on a film of holographic material in which an interference pattern has been

recorded as a modulation of the refractive index in the volume of the holographic mate-
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Figure II.7. Recording (a) and wavefront reconstruction (b) of an image hologram. The image hologram
is created by writing the interference pattern of an object wave o(x , y), which is the light scattered from
an object, and a reference wave r(x , y), which is a plane wave at angle θ , into a photosensitive material.
After development and fixation of the interference pattern, the photosensitive material is a hologram. Illu-
minating the hologram with the reference wave in the wavefront reconstruction step leads to the creation
of a transmitted wave with four components: u1(x , y) is the directly transmitted reference wave, u2(x , y)
is a halo surrounding u1(x , y), u3(x , y) is a virtual image of the recorded object and u4(x , y) is a real image
of the recorded object. The spatial separation between the components of the transmitted wave allows to
filter out e.g. the real or virtual image. The thickness of the hologram, here indicated as z1...zn, is not
relevant for the wavefront reconstruction process, but plays a major role for DE.
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Figure II.8. Recording (a) and wavefront reconstruction (b) of a lens-type HOE. The HOE is recorded as
the interference pattern of a spherical wave o(x , y) and a plane wave r(x , y). Illuminating the HOE with
either of these waves in the wavefront reconstruction process recreates the other one. This is shown here
for the plane wave being used to recreate the wavefront of the spherical wave.

rial. The resulting amplitudes of the diffracted waves then give the diffraction efficiencies

for the diffracted orders which allow to predict experimental results. Many theories have

been developed that differ in choosing the integral or differential form of Maxwell’s equa-

tions as a starting point, assuming depletion or no depletion of the incident wave and

giving either rigorous or approximate solutions [80]. The discussion presented here fo-

cuses on two theories, Kogelnik theory and the Rigorous Coupled Wave Analysis (RCWA).

The former dates back to a classic paper [92] and is up to today the most widely used

approximate theory used to calculate hologram DE. The latter is a rigorous theory, which

is mathematically equivalent to Fourier modal method (FMM) and was first applied to

slanted holograms by Moharam and Gaylord [93].

Coupled wave equations

Both methods to calculate hologram diffraction efficiencies that are presented here rely

on solving the coupled wave equations. The coupled wave equations can be derived

starting from the scalar wave equation, which describes the propagation of waves through

a hologram. The scalar wave equation, which is valid for linear polarization and weak

refractive index modulations [181], is known to be

∇2E + k2E = 0. (II.17)
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For the sake of simplicity, it is usually assumed that locally the hologram is a periodic

structure that is independent of y . Consequently, E can be assumed the complex ampli-

tude of the y-component of the electric field E(x , z), which is independent of y . Calcu-

lating the DE of an image hologram that varies across y then is done by partitioning the

hologram into small regions in which the local approximation is valid. The modulation of

the refractive index inside of the volume of the hologram can be described using propa-

gation constant k(x , z), which depends on the relative dielectric constant ε(x , z) and the

conductivity of the hologram σ(x , z) as

k2 =
ω2

c2
ε− iωµσ (II.18)

The distributions of ε(x , z) and σ(x , z) in the volume of the hologram can be found by

considering the recording process. In the general case that includes holographic opti-

cal elements (HOEs) and not just the previously discussed image holograms, a hologram

is recorded as the interference pattern of two arbitrary waves. Locally, this can be ap-

proximated as the interference between two plane waves with wave vectors ~kR and ~kS as

R(x , z) = Re−i~kR~r and S(x , z) = Se−i~kS~r that are both independent of y . Calculating the

resulting intensity of the interference pattern analogous to Eq. II.12 leads to

I(x , z) = R2 + S2 + 2RS cos
�

(~kR− ~kS)~r
�

(II.19)

The cosine term in Eq. II.19 describes an intensity modulation that causes a modulation

of the refractive index in the recording process. The term can be used to define the local

grating vector in the volume as

~Kvol = ~kR− ~kS. (II.20)

The volume grating period in the volume Λvol found as

Λvol =
2π
�

�~Kvol

�

�

(II.21)

then is the distance between two maximums of the modulation of the refractive index in

the hologram. The relationship between ~Kvol, ~kS and ~kR is also visualized in the Ewald

sphere shown in Fig. II.9 (a). The resulting hologram parameters tare shown in Fig.

II.9 (b). For the local approximation described earlier, each part of a hologram can be
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described by its local grating vector ~Kvol with volume grating period Λvol and slant angle

φ between the local grating vector and the z-axis. In the general case, the modulation

of the refractive index induced by the modulation of the intensity of the interference

pattern can be expressed as a modulation of the dielectric constant ε(x , z) as well as the

conductivity σ(x , z) as

ε(x , z) = ε0 + ε1 cos
�

~Kvol~r
�

σ(x , z) = σ0 +σ1 cos
�

~Kvol~r
�

.
(II.22)

In the case of phase holograms, only ε is modulated and in the case of absorption holo-

grams, only σ is modulated. Eq. II.18 and Eq. II.22 can be combined to express the

propagation constant in the grating as

k2 = β2 − 2iαβ + 2κβ
�

ei ~Kvol~r + e−i ~Kvol~r
�

(II.23)

where β is the average propagation constant and α is the average absorption constant

and κ is the coupling constant:

β =
2π
λ

p

ε0

α=
µcσ0

2
p
ε0

κ=
1
4

�2π
λ

ε1p
ε0
−

iµcσ1p
ε0

�

(II.24)

For low absorption and low modulation of ε and α the following approximations can be

used:

β =
2πn
λ

κ=
πn1

λ
− i
α1

2

(II.25)

with n denoting the average refractive index and n1 and α1 denoting the amplitude of

the spatial modulation of n and α, respectively. The coupling constant describes how

strongly the modulation of the refractive index of the hologram couples an incident wave

to a diffracted wave. Inserting Eq. II.23 into Eq. II.17 yields the wave equation for the
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Figure II.9. Part (a) shows the wave vectors of a reference wave �kR and a signal wave �kS obeying the Bragg
condition with grating vector �Kvol in an Ewald sphere. This is the case in the hologram recording process
when the interference pattern of the reference and signal wave defines the grating vector. Part (b) shows
the resulting hologram parameters: the grating vector lies in the hologram volume with volume grating
period Λvol and slant angle φ between the grating vector and the z-axis.

wave propagation in the hologram as

∇2E +
�

β2 − 2iαβ + 2κβ
�

ei �Kvol�r + e−i �Kvol�r
��

E = 0. (II.26)

Solving Eq. II.26 requires to make an ansatz for the incident and diffracted waves. The

incident wave can be assumed as a plane wave R(x , z) = Re−i�kR�r analogous to the one

used in the recording process (even though its direction and wavelength λ may differ).

In the general case, an infinite number of diffraction orders can be considered so that the

total field in the hologram is given as

E(x , z) = Re−i�kR�r +
∑

m

Sme−i(�kR−m�Kvol)�r
(II.27)

with m denoting the different diffraction orders. In this notation, S0 is zero, because the

zeroth order is separated from the sum as the Re−i�kR�r term. The methods to solve the

coupled wave equations presented in the following differ in how many diffraction orders

they consider for their ansatz.
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Kogelnik theory

Kogelnik theory, first presented in Ref. [92] and reiterated here, solves the coupled wave

equations by making an ansatz that consists of only two waves: the incident reference

wave R and a diffracted wave called the signal wave S. All other diffraction orders are

neglected. This ansatz can be written as

E(x , z) = R(z)e−i~kR~r + S(z)e−i~kS~r . (II.28)

Inserting Eq. II.28 into Eq. II.26, considering that in the wavefront reconstruction process

the wave vector of the diffracted wave is forced by the grating to be ~kS = ~kR − ~Kvol and

comparing the terms with equal exponentials yields Kogelniks coupled wave equations:

R′′ − 2iR′kR,z − 2iαβR+ 2κβS = 0

S′′ − 2iS′kS,z − 2iαβS + (β2 −σ2)S + 2κβR= 0
(II.29)

with R′, S′ and R′′, S′′ denoting the first and second derivatives in z-direction, respectively,

and kR,z and kS,z denoting the z-components of the wave vectors. Assuming that the

energy exchange between the two waves and absorption are slowly occurring as the waves

travel through the hologram, Kogelnik neglects R′′ and S′′. Using the z-components of

the normalized wave vectors

cR =
kR,z

β
= cosθ

cS =
kS,z

β
= cosθ −

Kvol

β
cosφ,

(II.30)

which can be found by considering the angle of incidence of the reference θ and the slant

angleφ between the grating vector and the z-axis shown in Fig. II.9 (b), the coupled wave

equations can then be expressed as

cRR′ +αR= −iκS

cSS′ + (α+ iϑ)S = −iκR.
(II.31)

The coupled wave equations then describe how the amplitude of the waves traveling

along z change by absorption (αR, αS) and coupling to each other (κR, κS). The de-

phasing measure ϑ used here describes how strongly the reference wave couples to the
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signal wave and is given as

ϑ =∆θKvol sin(φ − θ0)−∆λ
Kvol

2

4πn
, (II.32)

which is a Taylor series expansion of the Bragg condition after differentiation by incidence

angle θ and wavelength λ. If the Bragg condition is met, i.e. ϑ is zero, there is no

additional loss due to dephasing. A general solution to these approximated coupled wave

equations can be written down as

R(z) = r1eγ1z + r2eγ2z

S(z) = s1eγ1z + s2eγ2z.
(II.33)

The coefficients can then be determined by introducing boundary conditions such as

R(0) = 1 ad S(0) = 0 for transmission holograms and R(0) = 1 and S(dholo) = 0 for

reflection holograms. The DE is defined as the fraction of incident light power that is

diffracted into the signal wave along z-direction:

η=

�

�cS

�

�

cR
SS∗ (II.34)

with S denoting S(0) for reflection and S(dholo) for transmission holograms. For the case

of the lossless transmission holograms relevant for this thesis, inserting the solution for

S(dholo) into Eq. II.34 leads to

η=
sin2

�p

ν2 + ζ2
�

1+ ζ2

ν2

(II.35)

with the parameter ζ describing the deviations in angle of incidence and wavelength from

the Bragg condition

ζ=∆θ
Kvoldholo sin

�

φ − θ0

�

2cS

= −∆λ
Kvol

2dholo

8πncS

(II.36)
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and the parameter ν collecting the other variables as

ν=
πn1dholo

λ
p

cRcS
. (II.37)

Similar expressions for lossy and reflection holograms are found in Ref. [92] but skipped

here for the sake of brevity.

Rigorous Coupled Wave Analysis

While Kogelnik theory predicts DE well as long as the assumptions of two-wave theory

are valid, it often is necessary to obtain more accurate results via rigorous methods. The

coupled wave equations can be solved by a rigorous method first applied to slanted grat-

ings by Moharam and Gaylord [93]. The general approach is to find solutions to the wave

equation introduced in Eq. II.17 within and outside of the hologram and to determine the

amplitudes of the resulting waves by considering the boundary conditions at the inter-

faces. In the following, the method initially presented in Ref. [93] is reiterated to convey

a basic understanding of RCWA and FMM approaches.

For the sake of simplicity, it can be assumed that the media in front of and behind

the hologram are homogeneous and that absorption is neglected. The dielectric constant

is then ε1 in front of the hologram called region 1, ε = ε2 + ∆ε cos(~Kvol~r) inside the

hologram called region 2 and ε3 behind the hologram called region 3. Since a rigorous

approach considers all possible transmitted and reflected waves, the field in region 1 can

be written as

E1 = e−i(kx ,0 x+kz,0z) +
∑

l

Rl e
−i(kx ,l x+kz,l,sz)

(II.38)

assuming unity amplitude on the incident wave and the s index on the wave vector de-

noting if the reflected wave was reflected at the interface (s = 1) or in the volume (s=3).

The x-component of the wave vector of the reflected waves depends on the grating vector

as kx ,l = k1 sinθ − iKvol sinφ with k1 denoting the length of the wave vector in region 1

and k2
z,l,s = k2

l −k2
x ,l . The field in region 3 is given as a superposition of transmitted waves

E3 =
∑

l

Tl e
−i(kx ,l x+kz,l,3(z−dholo). (II.39)
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The field in region 2 is

E2 =
∑

l

Ŝl(z)e
−i(kx ,l x+kz,l,2z)

(II.40)

with the wave vector depending on the angle of refraction in region 2 as kz,l,2 = k1 cosθ ′−
iKvol cosφ with θ ′ denoting the angle of refraction of the incident wave in region 2.

Similar to the Kogelnik theory, the coupled wave equations can be found by plugging

a relation for the dielectric constant such as Eq. II.22 and the ansatz for the fields in

region 2 in Eq. II.40 into the wave equation Eq. II.17. When considering that the grating

vector Kvol connects any lth wave with the (l-1)th and (l+1)th wave as ~Kvol = kl − kl+1

or ~Kvol = kl−1− kl , the resulting infinite set of coupled wave equations can be written as

∆ε

8ε2

∂ 2Sl(u)
∂ u2

=
�

cosθ ′ − iµ cosφ
�

×
∂ Sl(u)
∂ u

−ρ
�

l − B
�

Sl(u) + Sl+1(u) + Sl−1(u) (II.41)

with Sl(u) corresponding to Ŝl(z), u = iπ∆εz/2λ
p
ε2 = jκz, µ = λ/Λvol

p
ε2, ρ =

2λ2/Λvol
2∆ε= 2µ2ε2/∆ε and B = 2Λvol

p
ε2 cos(φ−θ ′)/λ= 2cos(φ−θ ′)/µ. Moharam

and Gaylord formulated these coupled wave equations in matrix form to allow efficient

computation

�

S′

S′′

�

=
�

brs

�

�

S

S′

�

(II.42)

with S′ and S′′ denoting the first and second derivatives in u, respectively. The solution

to this equation are the eigenvalues and eigenvectors of matrix brs and take the form

Si(u) =
∑

m

Cmwl,meqmu
(II.43)

with qm being the mth eigenvalue and wl,m being the mth element of the row in the matrix

of eigenvectors corresponding to the lth wave. The coefficients Cm are found along with

Rl and Tl by applying the boundary conditions for tangential fields to the equations, what

yields a system of linear equations. The DE of the reflected and transmitted waves are
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then given as

η1,l =ℜ
� kz,1,l

kz,1,0

�

RlR
∗
l

η3,l =ℜ
� kz,3,l

kz,1,0

�

Tl T
∗
l .

(II.44)

In practice, volume holograms are highly efficient and only a small range of waves l

needs to be considered to obtain accurate results. But nowadays the high availability of

computational resources means that there is little downside to increasing the range of

waves l for the sake of increased accuracy.

2.2.3. Fabrication of arbitrary holograms

The upcoming chapter features a design method for arbitrary HOEs in which the distri-

bution of volume grating periods and slant angle of the grating vector are optimized over

the lens surface. The fabrication of such arbitrary HOEs is explained in the following.

As previously discussed, image holograms are recorded as the interference between a

plane reference wave and the object wave, which is the light scattered from the object that

is supposed to be displayed by the hologram. Most HOEs are recorded as the interference

of two waves that can be either plane or spherical, depending on the application. Arbi-

trary HOEs can be written as the interference pattern of a plane wave and a wave that was

arbitrarily structured by a phase mask such as an SLM. In case the pixelation of the SLM

would degrade the hologram quality, a holographic printer [120, 121, 122, 123, 124]
can be used to demagnify the SLM and write an array of holographic pixels (hogels).

Each hogel is then an arbitrary hologram that is not limited by the pixelation of the SLM.

The array of hogels itself introduces pixelation only if there is a small spacing between

the hogels, which depends on the positioning accuracy of the holographic printer. Holo-

graphic printers have very slow writing speeds as they write in series, which adds up the

required exposure times and requires additional time to damp all vibrations of moving

parts that would disturb the interference pattern. For mass production, this can be cir-

cumvented by writing a master hologram that is then replicated by scalable roll-to-roll

processes [138]. Therefore, the arbitrary HOE designs presented in the following chap-

ters can in fact be fabricated and are suitable for mass production.
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III. Holographic optical element design

method for spectacle lenses

This thesis aims at finding novel applications for HOEs in the field of spectacle lens design.

For this purpose, a tool chain is required that addresses the challenges of using HOEs in

spectacle lenses such as DE and grating dispersion as well as the known challenges in

spectacle lens design such as the gazing eye problem. Fig. III.1 shows a flowchart that

illustrates the task of the tool chain. The inputs to the tool chain are a physical model of

the optical system including the parameters and geometry of the eye, the properties of

the refractive spectacle lens and the HOEs as well as the DE requirements and the desired

optical function in terms of SPH and AST prescription as well as CE thresholds. The task

of the tool chain is to use e.g. optimization methods to compute a new configuration of

the optical system, in which the desired optical function is achieved while keeping the

HOE parameters within the constraints that follow from the DE requirements.

This chapter discusses such a tool chain starting with methods to control the DE and dis-

persion. Sect. 3.1 describes the angular and wavelength bandwidth limitations of HOE

DE and calculates a minimum requirements for HOE DE bandwidths in spectacle lens

applications. Based on these requirements, optimal HOE parameters for spectacle lens

applications are calculated based on the Fourier Modal Method. Fixing the HOE configu-

rations to achieve the required bandwidths limits the possible range of deflection angles

that can be achieved by a single HOE. Sect. 3.2 then explains how HOE tandems can be

used to circumvent the deflection angle limitation and to compensate dispersion, which is

required to limit CE. With these challenges solved, Sect. 3.3 discusses a simple approach

to designing HOE-based spectacle lenses as an array of partially overlapping lens-type

HOEs. This approach creates discontinuities in the optical function of the spectacle lens,

which limits its application to multifocal spectacle lenses. Sect. 3.4 solves this disconti-

nuity problem by introducing a novel design approach for arbitrary, but continuous HOE

structures for spectacle lens applications. This approach allows tailoring the optical func-
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Figure III.1. Flowchart describing the task of a tool chain for designing HOE-based spectacle lenses. The
inputs to the tool chain are a physical model of the optical system including the parameters and geometry
of the eye, the properties of the refractive spectacle lens and the HOEs as well as the DE requirements and
the desired optical function in terms of SPH and AST prescription as well as CE thresholds. The task of
the tool chain is to use e.g. optimization methods to compute a new configuration of the optical system,
in which the desired optical function is achieved while keeping the HOE parameters within the constraints
that follow from the DE requirements.

tion of the HOEs to SVSLs as well as PALs.

3.1. Diffraction efficiency optimization

Depending on the application at hand, controlling the DE of a HOE can have different

goals. In some applications such as monochromatic beam splitters, filters or master HOEs

used in mass production type replication processes, it is desirable to fix DE at a specific

value e.g. 50% for a 50/50 beam splitter. Positive and negative deviations from the de-

sired value alike are detrimental to the HOE performance in this case. In some systems

such as beam steering in telecommunications the goal might be to achieve high DE, but

the overall system performance is dominated by other losses e.g. in optical fibers. There-

fore, increasing DE might not always be a priority. In imaging systems however, achieving

high DE means to reduce stray light, which can be a key contributor to low image quality.

In some systems it might be possible to separate stray light like the 0th order light from

the beam path relevant to the imaging process. In those cases, like some AR devices, a

reduced DE is just a trade off with required display brightness. In the case of spectacle

lenses, the goal is to preserve the brightness of the object that is being looked at and

to keep stray light low for the best possible imaging performance. Both of these goals

translate to keeping DE as high as possible.
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3.1.1. Bandwidth requirements

The requirement of achieving high DE can be expressed in terms of a required wavelength

and angular bandwidth. For spectacle lenses, it is important to achieve the required

wavelength and angular bandwidth simultaneously. In the following, a minimal DE of

about 0.7 is assumed since this value has been found reasonable in literature [182]. It

should be noted that a threshold value of 0.7 typically corresponds to a much higher

mean DE.

Wavelength bandwidth

Spectacle lenses are expected to work over the visible spectrum of light (VIS), which is

usually given as the range from 380 nm (violet) to 740 nm (red) [183]. In daylight, the

spectral sensitivity of the eye is maximal at 555 nm (green) and rapidly decreasing to

both sides [175]. Therefore, the aim is to achieve high DE over the VIS and placing the

maximal DE in the green part of it.

Angular bandwidth

The angular bandwidth requirement for HOEs in spectacle lens applications depends on

many geometrical factors that can vary between patients. Therefore, the required angu-

lar bandwidth is estimated for a sample geometry here, while keeping in mind that, if

achievable, a larger angular bandwidth is preferable.

In principle, the required angular bandwidth for a HOE in any optical system can be

calculated at the input or output side alike due to reciprocity in ray optics. In the case

of SVSLs, it seems preferable to calculate the required angular bandwidth on the output

side of the HOE since there it is easier to relate to the system geometry. The considera-

tions to calculate the required angular bandwidth start by considering the principal rays

introduced in Fig. II.4. There, it was established that for every gaze direction of the eye

there is a corresponding principal ray, which connects the center of the eye pupil with

the rotational center of the eye ball. Each principal ray intersects the lens at a different

position. It is now assumed that at each lens position the available angular bandwidth is

centered on the principal ray. This ensures that for each gaze direction, the DE is max-

imal for the rays in the pupil center. The required angular bandwidth at a lens position

is then given as the maximal angular detuning between the corresponding principal ray

and other rays entering the pupil at this gaze direction and can be calculated using geo-
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metrical optics. This is illustrated in Fig. III.2 (a). For the sake of simplicity, a parallel

bundle of rays filling the pupil of the eye with the principal ray being in the center of

the bundle is considered, here shown as blue rays parallel to a principal ray drawn in

red. Ignoring possible lens curvature the one-sided maximal angular detuning between

another principal ray and one of the blue rays intersecting the lens at the same position

can now be calculated as

∆θair
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= arctan
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with ypos being the current position on the lens,
dpupil

2 being half the pupil diameter and

deye lens being the distance between the rotational center of the eye and the lens. The

deye lens is assumed as 33.5 mm here, with 13.5 mm accounting for the distance between

the front vertex of the eye and its center point [175] and 20 mm accounting for the

distance of the eye to the lens. The required angular bandwidth within the lens, where

the HOEs are to be placed, can be calculated by applying Snell’s law to Eq. III.1 yielding
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with nlens being the refractive index of the lens polymer. To get a prediction of the worst

case scenario, a polymer used in spectacle lenses with a relatively low refractive index of

1.59 is chosen for the further analysis. Fig. III.2 (b) shows an evaluation of Eq. III.2 for

different pupil diameters dpupil and lens positions ypos. The required angular bandwidth

in the lens material ∆θn decreases with lens position and increases roughly linearly with

pupil diameter. Depending on the light condition, the human pupil diameter varies be-

tween 2 and 8 mm [175]. This means that for a HOE based SVSL to function in bright

daylight, which would correspond to a pupil size of about 2 mm, an angular bandwidth

of about 2◦ is required. While this calculation is just a rough estimation neglecting e.g.

lens curvature, it can be concluded that HOEs with an angular bandwidth considerably

above 2◦ will function as intended.
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Figure III.2. (a) Sketch of the geometry of the lens and eye required to calculate the required angular
bandwidth in air and in the lens material. The assumption here is that the available bandwidth at each
lens position is centered on the local principal ray and therefore the required bandwidth is given as the
detuning between a principal ray (red rays) and the outermost ray in a bundle (blue rays). (b) Evaluation of
Eq. III.2 describing the required angular bandwidth in the lens material∆θn as a function of pupil diameter
dpupil and lens position ypos.

3.1.2. Optimization with the Fourier Modal Method

The DE requirements for HOE-based spectacle lenses in terms of wavelength and angu-

lar bandwidth have been introduced in the previous subsection. Both wavelength and

angular bandwidth have to be achieved simultaneously by optimizing the relevant HOE

parameters such as volume grating period, HOE thickness or strength of the refractive

index modulation. This goal can be visualized as the DE plotted over wavelength and

angle being a rectangle with side lengths of the VIS for wavelength and at least 2◦ for

angle. From previous work conducted within the Zeiss group [182] it is known that the

DE plotted over wavelength and angle of HOEs often is an ellipsoid, that should be as

horizontal as possible i.e. parallel to the wavelength axis. The goal therefore translates to

finding a HOE parameter regime with high overall DE that has an elliptic shape parallel

to the wavelength axis and consequently ensures high DE for the required wavelength

bandwidth.

Here, this matter is further investigated by using an in-house MATLAB implementation

of the Fourier Modal Method (FMM), which is mathematically equivalent to the Rigor-

ous Coupled Wave Analysis (RCWA) presented in Sect. 2.2, to simulate the DE of HOEs.

In principle, the task at hand is an optimization problem for DE that depends on several

HOE parameters: HOE volume grating period, HOE thickness, HOE refractive index, HOE
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refractive index modulation. However, knowledge from previous work and the desire to

limit HOE parameters to realistic values that can be achieved with state of the art mate-

rials such as Bayfol by Covestro AG [147, 149, 146] significantly reduces the complexity

of this optimization problem. The investigated HOEs have a refractive index of 1.492,

a refractive index modulation of 0.02 and a thickness of 25 µm, which is well within

the available Bayfol configurations. This leaves the volume grating period as the main

parameter to be optimized. It is known from theory that the volume grating period of

a HOE controls the Bragg condition and fixes the HOE deflection angle of maximal DE.

This means that a lens type behavior with high DE requires at least a certain variance of

the volume grating period over the lens surface. As a side note, the slant angle does not

affect the DE bandwidths, but merely shifts it in angle. Therefore, it is necessary to iden-

tify a large range of volume grating periods, for which the requirements for wavelength

and angular bandwidth can be met. For this purpose, the DE is simulated as a function

of wavelength and angle for HOEs of the aforementioned parameters and the results are

plotted for volume grating periods between 1.0 µm and 3.0 µm in Fig. III.3. It is found

that as volume grating periods increase from 1.0 µm to about 2.4 µm, the elliptic shape

of high DE becomes more parallel to the wavelength axis, which is preferable since it in-

creases the wavelength bandwidth. Further increases of the volume grating period from

2.4 µm to 3.0 µm do not further improve the positioning of the ellipse of high DE with

respect the the wavelength axis. Instead, the shape of the DE profile changes and is no

longer elliptical. As can be seen for the 3.0 µm volume grating period HOE in part (f), the

angular bandwidth now decreases for the short wavelengths and increases for the long

wavelengths. Furthermore, the magnitude of DE starts to decrease as well. The com-

bination of the three effects of changes in ellipse orientation, loss of DE magnitude and

loss of elliptical shape of the DE pattern going from lower to higher volume grating pe-

riods means that the optimal range of volume grating periods for achieving the required

angle and wavelength bandwidth simultaneously is found between 2.0 µm and 2.7 µm.

However, even for the preferred configuration of 2.4 µm shown in part (d), the required

angular bandwidth of about 2◦ is only achieved for a limited wavelength bandwidth of

450 nm to 610 nm.

3.1.3. Multiplexing

Since it is not possible to achieve the required wavelength and angular bandwidth simul-

taneously by using optimal HOE parameters, angular multiplexing is investigated as a
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Figure III.3. FMM simulation of HOE diffraction efficiency (DE) as a function of wavelength and angle of
incidence (AOI) for a volume grating period of 1.0 µm (a), 1.5 µm (b), 2.0 µm (c), 2.4 µm (d), 2.7 µm
(e) and 3.0 µm (f). All HOEs have a grating thickness of 25 µm and a refractive index modulation of 0.02.
The black rectangle in part (d), which is the preferred configuration, indicates that the required angular
bandwidth of about 2◦ is achieved only for a limited wavelength range.
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Figure III.4. FMM simulation of a multiplexed HOE diffraction efficiency (DE) as a function of wavelength
and angle of incidence (AOI) for a volume grating period of 2.4 µm. The multiplexed HOEs have a grating
thickness of 25 µm and a combined refractive index modulation of 0.02. The black rectangle indicates that
the an angular bandwidth of about 3.5◦ is achieved for the VIS.

way to increase the angular bandwidth of a HOE.

Multiplexing is the technique of writing two or more holograms into the same holo-

graphic film. The multiplexed holograms then share the available index modulation of

the holographic film, which can be visualized as a crossed grating. According to Ref.

[184], the DE of a multiplexed hologram ηsys can be calculated as

ηsys = 1− (1−η1)(1−η2)...(1−ηn) (III.3)

with η1 to ηn being the DE of the nth hologram if they were written independently.

Here, the angular bandwidth of the HOE configuration discussed in the last section is

increased by multiplexing a second HOE of the same configuration and DE distribution

that is shifted by 3.5◦ into the same film as the first HOE. The resulting DE distribution

of the multiplexed structure is shown in Fig. III.4. The black rectangle indicates that

an angular bandwidth of about 3.5◦ is achieved for the VIS. According to Fig. III.2 (b)

this means that the provided angular bandwidth is sufficient for pupil sizes up to at least

3 mm. Similar results can be obtained for other volume grating periods between 2.0 µm

and 2.7 µm. Therefore, HOEs in this volume grating period range in principle are suitable

for spectacle lens applications.
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3.2. Dispersion and deflection angle management

The considerations made for DE optimization in Sect. 3.1 fixed the HOE volume grating

period, thickness, refractive index and refractive index modulation. While the latter are

only relevant for DE, the volume grating period directly influences the HOE deflection

angle with highest DE. From the Ewald sphere shown in Sect. 2.2, the deflection angle

αdeflection of a single HOE can be calculated as

αdeflection,HOE = 2arctan
�

λ

2Λvol

�

(III.4)

with λ being the wavelength of the incident light andΛvol being the volume grating period

in question. Eq. III.4 shows that fixing the accepted range of volume grating periods for

DE considerations also fixes the allowed range of HOE deflection angles, which is not

centered around zero unless Λvol = ∞ is accepted. In the context of spectacle lens

design, this is a problem, because in a refractive spectacle lens, a ray going through the

optical center of the lens would not be deflected i.e. have a deflection angle αdeflection of

zero. For the volume grating period range of 2.0 µm and 2.7 µm chosen in Sect. 3.1 and

incident light within the VIS, the HOE deflection angles vary between 8.5◦ and 20◦. This

means that a single HOE can not achieve the deflection angles necessary to replicate the

behavior of a refractive spectacle lens at high DE. Another problem that can be anticipated

based on Eq. III.4 is grating dispersion, because the HOE deflection angle depends on the

wavelength of the incident light. Compensating for grating dispersion is a key challenge

for the use of HOEs in spectacle lenses.

The problems of dispersion and HOE deflection angle can not be solved by further opti-

mization of an individual HOE, because there are no free parameters to do so. Therefore,

additional optical components need to be introduced to the optical system. In the fol-

lowing, HOE tandems are presented as a way to address dispersion compensation as well

as HOE deflection angle limitations. Afterwards, the dispersion compensation between

a refractive lens and a HOE tandem is discussed as an additional measure to achieve

dispersion compensation.

3.2.1. HOE tandems

It is known and used in many applications [185, 186] that the angular dispersion of a

HOE or grating can be compensated by a second HOE or gating that has the same volume
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grating period, but operates in the opposite sign diffraction order as the first one. This is

true for HOEs as well as surface gratings and can be seen directly from the formula for

angular grating dispersion D

D =
m

Λsurf cosθdiff
(III.5)

with m denoting the diffraction order, Λsurf denoting the surface grating period and θdiff

denoting the diffraction angle [187]. For HOEs, Eq. III.5 is valid provided that the projec-

tion of the volume grating period Λvol onto the hologram surface as Λsurf is used. The re-

lationship between HOEs as volume elements and surface gratings is discussed in greater

detail in Sect. 3.4. For linear gratings or HOEs with a constant (surface) grating period

over the grating surface, this approach is sometimes used with gratings that are placed

far apart. For gratings or HOEs, for which the (surface) grating period varies over the

lens surface e.g. to realize a lens type function, placing the two gratings or HOEs far apart

causes mapping issues in the sense that the individual rays do not necessarily intersect

positions with identical (surface) grating period. These mapping issues can be minimized

by placing the HOEs directly on top of each other, which is assumed in the following.

This approach of dispersion compensation comes with the added benefit of being able

to adjust the deflection angle of the HOE tandem to zero. This is shown in Fig. III.5,

where an incident ray with wave vector k1 is diffracted to wave vector k2 by HOE B and

then wave vector k2 is diffracted by HOE A to wave vector k3, which is parallel to wave

vector k1. Provided that the distance between the two HOEs is minimal, the spatial offset

between k1 and k3 due to the propagation of k2 is minimal and it can be claimed that the

HOE tandem structure has a HOE tandem deflection angle of zero.

It should be noted that a lens-type HOE designed as such a HOE tandem would still

exhibit dispersion. Assuming that the volume grating periods at all positions are cho-

sen so that the principal rays are perfectly dispersion compensated, ray bundles traveling

through the HOEs would not see spatially varying HOE tandem deflection angles and

therefore no lens-type function. This can be called a lens with zero CE and zero SPH.

Building up SPH can now be achieved by rearranging the volume grating periods, which

starts to introduce CE. In that sense the HOE tandem is analogous to a refractive lens: A

flat sheet of glass would introduce neither SPH or CE. For glasses with increasing curva-

ture, SPH will increase, but so will CE. This trade-off between SPH and CE is investigated

more closely in Sect. 3.4.

56



III Holographic optical element design method for spectacle lenses

Figure III.5. Use of a HOE tandem in a spectacle lens for dispersion compensation and setting the overall
deflection angle to zero. HOE A and HOE B operate in opposite diffraction orders so that their HOE
deflection angles as well as dispersion cancels out. Possible refraction of the rays is not shown for sake of
simplicity.

3.2.2. Holographic-refractive hybrid optics

As discussed in the previous paragraph, a HOE tandem fulfilling a lens-type function has a

certain amount of CE. While in some cases this CE might be considered to be close enough

to the human perception threshold to be acceptable, it is desirable to combine such a HOE

tandem with a refractive lens to achieve holographic-refractive dispersion compensation

as it is known for many diffractive-refractive hybrid systems in technical optics [117,

118, 119]. Holographic-refractive dispersion compensation is enabled by the fact that

for same sign SPH, refractive and holographic components have opposite sign CE. This

means that different from refractive achromats that require two lenses with opposite

SPH and differing Abbe numbers leading to a very large optical system, holographic-

refractive hybrid optics consist of holographic and refractive components with same sign

SPH, whose CEs can compensate each other. Implementing such a holographic-refractive

hybrid optics for spectacle lenses is a challenging task, because on top of the requirements
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for the use of HOEs in spectacle lenses optical design problems specific to spectacle lenses

such as the gazing eye problem need to be solved for the refractive as well as holographic

components. Methods to do so are discussed in detail in Sect. 3.4.

3.3. Micro lens approach

While the DE and dispersion considerations in the previous sections are valid for HOEs in

spectacle lens applications in general, designing the optical function of the HOE requires

to tailor the HOE tandem deflection angle over the HOE surface to the requirements of

the specific spectacle lens application and prescription. This can be done by considering

the volume grating periods as a function of the HOE surface or, more straightforwardly,

by using analytical HOE descriptions e.g. lens-type HOEs of a given focal length.

Previous work done within the Zeiss group proposed stacked and partially overlap-

ping lens-type HOEs with different focal lengths to create spectacle lenses [182]. This

approach is labeled "micro-lens approach" here, because it is very similar to an array of

refractive micro lenses. While it is clear that the approach works for holographic bifo-

cals, trifocals or other multi-focal lenses, it requires further investigation to show that

this approach allows designing holographic PALs. In this thesis, the applicability of this

approach was investigated using ray tracing and rigorous simulations.

3.3.1. Concept

Ref. [182] describes a "micro-lens approach" with spectacle lens designs consisting of

stacked HOE tandems with some or no overlap. Each HOE tandem has a lens-type func-

tion and their focal power may vary between different HOE tandems. If there is no over-

lap between the HOE tandems, the resulting design is a HOE-based bifocal, trifocal or

multi-focal spectacle lens since each HOE tandem forms its separate lens system, much

like a facet eye lens. Fig. III.6 shows the recording (a) and use (b) of a HOE-based bifocal

spectacle lens consisting of two HOE tandems that are placed next to each other with no

overlap. By choosing different object distances indicated as distant objects in Fig. III.6

(a), the HOE tandems differ in SPH. Comparable to the behavior of refractive bifocal

spectacle lenses, looking at a single HOE tandem yields SPH of this tandem. Following

the same analogy, looking through the two HOE tandems at the same time creates two

image points for one object point as shown in Fig. III.6 (b). The question that has been
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unanswered so far is if overlapping a larger number of HOE tandems could be used to

create other optical functions like PALs.

3.3.2. Overlapping HOE tandems

To investigate the influence of overlapping HOE tandems, an optical system consisting

of HOE tandems and an eye lens as shown in Fig. III.6 is implemented into an optical

design software. This allows investigating the relationship between object points and

their image on the retina by ray tracing. Overlapping the HOE tandems gives rise to many

possible ray paths as the possible number of diffraction order permutations increases

when a ray intersects up to 4 HOEs (2 for each of the 2 overlapping tandems). This

effect was accounted for by simulating the ray paths for all relevant diffraction order

permutations and to synthesize their PSFs in MATLAB. The resulting PSF for a single

object viewed through two partially overlapping HOE tandems of equal SPH is shown in

Fig. III.7. The PSF has two distinct peaks, one at x= 0 µm, y= 0 µm and one at x= 0 µm,

y = 80 µm, which correspond to the imaging paths of the two HOE tandems without

considering zeroth order contributions. In other words, overlapping HOE tandems does

not extend the applicability of this approach to PALs by creating a smooth transition zone

between two HOE tandems. It is therefore necessary to develop an approach for the

design of continuous HOE structures that can realize arbitrary optical functions such as

PALs.
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Figure III.6. Recording (a) and read-out scheme (b) for non-overlapping HOE tandems. The recording
configurations of the HOE tandems are chosen so that each HOE tandem images a spherical wave coming
from an object point into a plane wave. Since the spherical waves originating at different object points
have different distances, the resulting SPH of the two HOE tandems differ as well. In combination with the
eye lens, a HOE tandem can image the object point used to record it to a point on the retina. But when the
eye looks at an object point through two HOE tandems at the same time, as depicted in part (b), the two
HOE tandems diffract the incoming spherical wave into plane waves of different angles, which are then
imaged to different points on the retina. The SPH difference of the HOE tandems leads to an offset of the
two image points to the retina.
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Figure III.7. Intensity plot of the PSF of a single object point when viewing it through two partially
overlapping HOE tandems of equal SPH. For increased accuracy, this plot has been created by considering
all relevant diffraction order permutations. The PSF has two distinct peaks, one at x = 0 µm, y = 0 µm
and one at x = 0 µm, y = 80 µm. The two peaks correspond to the imaging paths of the two HOE tandems
without considering zeroth order contributions. The zeroth order contributions to the PSF plot are almost
invisible due to low intensity.

3.4. Continuous holographic optical element approach

The previous section shows that the optical function of HOEs in spectacle lens applications

should be continuous to avoid blurred double images. This means that HOE parameters

that are responsible for the HOE deflection angle and hence the optical function such as

the volume grating periods can be described by continuous functions that vary across the

HOE surface. The most simple example of this would be to use an analytical descrip-

tion of lens-type HOE tandems as the interference patterns of spherical and plane waves

to create a single vision spectacle lens. But such a simple approach comes with several

limitations: Firstly, it does not solve the gazing eye problem discussed in Sect. 2.1 and

does not ensure that the required DE wavelength and angular bandwidth are achieved.

Secondly, the approach is limited to single vision spectacle lenses with zero dpt astigma-

tism prescriptions. SVSLs with astigmatic prescriptions or more complex optical functions

such as PALs cannot be designed in such a way. Thirdly, the dispersion compensation be-

tween two HOEs in a HOE tandem described in Sect. 3.2 requires that the local volume

grating periods for each ray path are equal or similar. This is in general not the case in

lens-type HOE tandems, where a first HOE images a spherical wave to a plane wave and
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a second HOE images the plane wave to another plane wave of a different angle. Design-

ing a lens-type HOE tandem with a similar volume grating period distribution on both

HOEs is possible, but not within the confinements of this simple approach. Fourthly, this

approach does not make use of the possibility of correcting aberrations via custom HOE

functions.

All these limitations can be mitigated by a more complete design approach that in-

cludes all possible volume grating period functions over the HOE surface rather than just

the ones described by the interference pattern of spherical and plane waves. The corre-

sponding design tool chain is visualized as a flowchart in Fig. III.8. In this tool chain,

HOEs are implemented into an optical design tool chain as surface gratings. This is one

of the key features of the tool chain and discussed at length in the upcoming subsection.

Another key feature is that the initial configuration of the HOEs is computed prior to the

optimization in the optical design software. Along with the geometry of the eye and the

refractive spectacle lens (if present, e.g. in a hybrid spectacle lens), the initial HOE con-

figuration is considered the physical model of the optical system. Along with the desired

optical function of the HOE-based spectacle lens in terms of SPH and AST prescription

as well as CE, the physical model is the input for the optimization in the optical design

software. There, the variable parameters of the optical system are iteratively varied and

the merit function is evaluated via ray tracing until the minimal merit value correspond-

ing to the optimal optical system is found. Within the limitations of the optimization

routine, this optimal optical system has the best performance in terms of achieving the

required optical function and the requirements for high DE, which were found via the

Fourier Modal Method in Sect. 3.1. The tool chain then puts out the final systems per-

formance and HOE configuration for further analysis. In the following, the workings of

the tool chain are described in detail. It should be noted here that, as described in the

last paragraph of Sect. 2.2, such arbitrary HOE designs can in fact be manufactured by

holographic printers.

3.4.1. HOE implementation

Ideally, HOEs could be implemented and optimized in optical design software as volume

holograms with their volumetric properties and the resulting DE behavior. But this holistic

treatment of volume holograms is not state of the art yet. The typical solution is to

consider that the volumetric quantities of a volume hologram are only relevant for DE, but

not for the ray deflection induced by the hologram. As already discussed in the context of
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Figure III.8. Flowchart structuring the components of the optical design tool chain for HOE-based spectacle
lenses. The lower branch describes how the optimization with the Fourier modal method discussed in Sect.
3.1 is used to determine the range of volume grating periods that fulfill the DE requirements. The upper
branch describes how an implementation of HOEs as surface gratings and the tandem design play a key role
in determining a physical model of the initial optical system. Together with the desired optical function of
the HOE-based spectacle lens in terms of the SPH and AST prescription and CE, the physical model of the
optical system is the input for an optimization that is implemented into an optical design software. Varying
parameters of the optical system yields an optimal system in terms of achieving the desired optical function
and fulfilling the DE requirements.
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calculating DE, the wave vector of a diffracted wave is forced by the hologram as ~kS = ~kR−
~Kvol. The underlying physical phenomena here is matching of the tangential components,

which means that for ray direction purposes the z-components describing the volume of

the hologram in propagation direction do not need to be considered. This is sometimes

referred to as "transparency theory" because the hologram could be represented by a flat

phase mask [80]. This means that the direction of a diffracted wave can be calculated

using the grating equation known from surface gratings, found e.g. in Ref. [187]:

mλ
Λsurf

= sinθinc + sinθdiff (III.6)

with Λsurf denoting the projection of the volume grating period Λvol onto the grating

surface. Fig. III.9 illustrates this concept using Ewald spheres. Part (a) shows the Bragg

condition for a HOE with incident wave vector ~k1, diffracted wave vector ~k2 and grating

vector ~Kvol,A. For the purpose of ray tracing i.e. determining the direction of the diffracted

ray given the direction of an incident ray, only the x-component of ~Kvol,A is relevant. For

example, a binary surface grating shown in part (b) that has a grating vector ~Ksurf,B that

is equal to the x-component of ~Kvol,A would diffract an incident ray with wave vector ~k1

into the same direction as the HOE in part (a). But the Bragg condition is violated in this

case, which can be expressed by the dephasing measure ϑ. As discussed in Sect. 2.2, a

non-zero dephasing measure ϑ decreases DE. This means that HOEs can be described as

surface gratings provided that additional information is used to evaluate DE.

The proprietary optical design software used for this thesis allows defining HOEs by

specifying the positions of two light sources, whose interference pattern describes the

HOE surface grating period distribution over the HOE surface. This implementation does

not take volumetric properties such as volume grating period or slant angle into account,

but simply calculates the surface grating period distribution over the HOE surface and

calculates the HOE deflection angle based on the grating equation Eq. III.6. The DE

needs to be considered separately in this approach as well as in comparable state of the art

solutions. Since the goal is to implement HOEs with arbitrary grating period distributions

and not just the ones described by the interference of spherical and plane waves, the

provided implementation is not suitable. However, the optical design software allows

implementing surface gratings with arbitrary surface grating period distributions. In that

case, the coefficients of a global polynomial p(x , y) are used to calculate the smooth
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Figure III.9. Ewald spheres illustrating the consequences of implementing HOEs as surface gratings in an
optical design software. Part (a) shows the Bragg condition for incident wave vector �k1, diffracted wave
vector �k2 and grating vector �Kvol,A. Part (b) shows that a surface grating whose grating vector �Ksurf,B is equal
to the x-component of �Kvol,A would diffract an incident ray with wave vector �k1 into the same direction as
the HOE in part (a), but does not obey the Bragg condition as indicated by the dephasing measure ϑ.

surface grating period distribution. The global polynomial is defined on a surface as

p(x , y) =c1 x + c2 y

+ c3 x2 + c4 x y + c5 y2

+ c6 x3 + c7 x2 y + c8 x y2 + c9 y3

+ c10 x4 + c11 x3 y + c12 x2 y2 + c13 x y3 + c14 y4

+ c15 x5 + c16 x4 y + c17 x3 y2 + c18 x2 y3 + c19 x y4 + c20 y5

+ ...

(III.7)

The local grating vector of the surface grating can be calculated as

�Ksurf = �∇p(x , y). (III.8)

The local surface grating period used to calculate the HOE deflection angles via the grat-

ing equation is then given as

Λsurf =
2π
�

��Ksurf

�

�

=
2π
�

� �∇p(x , y)
�

�

. (III.9)

The advantage of this surface grating implementation is that it defines arbitrary surface

grating period distributions with small numbers of coefficients cn. This is relevant because
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it reduces the required amount of variable parameters for optimization procedures and

consequently leads to better convergence behavior in the optimization process.

For this reason, HOEs were implemented as surface gratings in the optical design soft-

ware. This means that only the surface grating period Λsurf is defined within the given

implementation and that volumetric properties such as volume grating periodΛvol or slant

angle φ have to be handled separately. For the case of a HOE surface in x and y coordi-

nates, z being the propagation direction and the HOE parameters being independent of

y , the grating vector in the volume ~Kvol can be expressed as:

~Kvol =
2π
Λvol







sinφ

0

cosφ






. (III.10)

Projecting this vector onto the HOE surface yields the surface grating vector ~Ksurf:

~Ksurf =
2π
Λvol







sinφ

0

0






. (III.11)

Calculating the length of ~Ksurf then leads to a relationship between surface grating period

Λsurf, volume grating period Λvol and slant angle φ:

�

�~Ksurf

�

�=
2π
Λvol

sinφ
!
=

2π
Λsurf

=⇒ Λsurf =
Λvol

sinφ
. (III.12)

Implementing a HOE as a surface grating in an optical design software means that only

the surface grating period Λsurf is explicitly given. According to Eq. III.12, this surface

grating period Λsurf corresponds to HOEs with a fixed ratio of volume grating period Λvol

and slant angle φ, but one of these quantities can be chosen freely when determining the

volume parameters.

In Sect. 3.1, the assumption was made that the available angular bandwidth of HOE DE

should always be centered on the principal rays. Fig. III.10 illustrates how this require-

ment can be met by choosing the local slant angle at each position on the HOE surface

so that the principal ray corresponding to that position satisfies the Bragg condition. Part

(a) shows the Bragg condition for a HOE with volume grating vector ~Kvol,A, slant angle

φA and the corresponding incident wave vector ~k1,A and diffracted wave vector ~k2,A. In

66



III Holographic optical element design method for spectacle lenses

Figure III.10. Comparison between two HOE configurations (a) and (b) with the same surface grating
period, but different slant angles φA and φB. The Ewald spheres illustrate, that changes in the slant angle
lead to different Bragg conditions for a fixed wavelength of the incident wave vector. In other words,
changes in the slant angle shift the DE bandwidth in angle.

part (b) the slant angle φB was decreased relative to slant angle φA and following Eq.

III.12, the volume grating period Λvol,B was decreased to keep the surface grating period

constant. Following
�

�K
�

� = 2π/Λ, the reduced volume grating period leads to a longer

grating vector �Kvol,B in the figure. Constructing the Bragg condition in the Ewald sphere

for the same incident wavelength i.e. the same length for the incident and diffracted

wave vectors as in part (b) yields that the maximal DE is now achieved for incident wave

vector �k1,B, which has a different direction than �k1,A. This means that at each lens posi-

tion, the slant angle can be chosen in a way that the local principal ray obeys the Bragg

condition for maximal DE.

The flowchart shown in Fig. III.8 describing the individual components of the tool

chain indicates that HOEs are implemented as surface gratings as discussed so far. It also

shows that during each iteration of the optimization routine it is necessary to calculate

the volumetric properties of the HOEs such as the volume grating periods Λsurf and slant

angle φ. This is implemented in the tool chain in the following way: At each moment

when the volumetric properties are required, the principal rays are traced through the

optical system. The deflection angles of the HOEs are calculated using the local surface

grating periodsΛsurf,B, which are defined by the coefficients of global polynomials p(x , y).
After this ray tracing step, the intersection points of the principal rays with the HOEs as

well as their direction before and after the HOEs are known. Fig. III.11 shows how this

information can be used to calculate the slant angle that ensures maximal DE for the

principal rays. A bisecting line of the angle between the incident wave vector �k1 and the
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Figure III.11. Scheme for the calculation of the slant angle of a HOE based on its implementation as a
surface grating. The surface grating period is used to calculate the deflection of an incident wave vector
corresponding to a principal ray �k1 into the diffracted wave �k2. The bisecting line between the angle of �k1
and �k2 then has the same direction as the volume grating vector, which satisfies the Bragg condition for the
principal ray. In 2D considering only the x- and z-axis, the bisecting line can be represented by a vector of
length one �Knorm. The sine of the slant angle φ, i.e. the angle between the grating vector and the z-axis, is
then given by the ratio the x-component of �Knorm and the normalized length of �Knorm.

diffracted wave vector �k2 can be constructed. In the general case, this line is represented

by a 3D vector, but for the sake of simplicity it is represented as a 2D vector with x and z

component here. This bisecting line has the same direction as the grating vector, whose

direction suffices the Bragg condition for the principal ray, and is therefore labeled �Knorm.

To simplify the following calculations, the length of �Knorm is normalized to one. The slant

angle φ as the angle between �Knorm and the z-axis is then given as

sinφ =

�

�

��Knorm,x

�

�

2
+
�

��Knorm,y

�

�

2

�

��Knorm

�

�

=
�

�

��Knorm,x

�

�

2
+
�

��Knorm,y

�

�

2
. (III.13)

This expression is then used to calculate the volume grating period Λvol as

Λvol = Λsurf sinφ = Λsurf

�

�

��Knorm,x

�

�

2
+
�

��Knorm,y

�

�

2
. (III.14)

Using these calculation steps, the slant angle φ and the volume grating period Λvol can

be calculated at a given moment of the optimization even though the surface grating

implementation is used to represent the HOE.

68



III Holographic optical element design method for spectacle lenses

3.4.2. Initial value calculation

Implementing HOEs as surface gratings, whose surface grating period is parameterized

by a global polynomial p(x , y), requires to specify the initial values for all coefficients

cn. The trivial approach would be to initialize all coefficients cn as zero and hope that

the optimization in the optical design process converges to a usable result by varying the

coefficients. This works for convex optimization problems, but optical design, in general,

is not a convex problem. Therefore, it is necessary to compute initial values that lead to

the optimization algorithm converging to a usable result. In optics design, this usually

means that the initial values need to be sufficiently close to a usable solution to begin

with. Contrary to this, initializing all coefficients cn as zero makes the global polynomial

p(x , y) a flat surface and in turn, the surface grating period described by the inverse of

the gradient of p(x , y) as stated in Eq. III.9 becomes infinitely large. The resulting HOE

then has a deflection angle of zero and consequently no effect on the ray tracing. The

merit function, which will be discussed later in detail, then returns an infinite value as the

requirements for the optical performance of the system, e.g. to keep the volume grating

period within the regime of high DE, are not met at all. If an optimization algorithm,

such as a standard least-squares solver found in optical design software, then starts to

slightly vary the coefficients cn, the HOE’s optical function changes randomly with each

iteration, but it is unlikely that random variations on the coefficients cn would lead to

a configuration, in which the merit function returns a lower number and the algorithm

converges.

Ideally, one set of initial values can be used to initialize HOE tandems for all types of

spectacle lens applications and prescriptions. This can be achieved using a HOE tandem

that satisfies the general requirements for HOEs in spectacle lenses i.e. the volume grating

period constraints for high DE and the dispersion compensation between the two HOEs

in the tandem. This corresponds to the ray path shown in Fig. III.5 where the dispersion

and deflection induced by HOE B with grating vector ~KB is compensated by the dispersion

and deflection induced by HOE A with grating vector ~KA. The general strategy to compute

such initial values is to compute a vector field corresponding to the principal rays, then

to calculate the local slant angles by considering the Bragg condition in an Ewald sphere

and then to translate the local slant angles into a surface grating period distribution and

finally to translate that surface grating distribution into a global polynomial p(x , y). The

last step is difficult, because the surface grating periods are connected to the global poly-

nomial by a gradient operator, which cannot be reversed in the general case. Because of
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this problem with the gradient operator, two successful implementations of this general

strategy are discussed here. The first implementation solves a 2D problem on the center

line of the lens rather than the full 3D problem with the advantage that in the 2D problem

the inverse of the gradient operator is integration. The second implementation solves the

3D problem over the whole surface using a preexisting approximate integration code. It

turns out that both implementations lead to the same results when optimizing a HOE-

based spectacle lens, so after this section it will not be explicitly mentioned which set of

initial values was used.

2D solution

In the 2D case considering only the center line of the lens rather than the entire lens

surface, several simplifications over the general strategy outlined above can be used. The

principal rays, for example, can be described by their incidence angle rather than by

vectors. In that case, the incidence angles as a function of the y-position of the lens are

given as

θinc(y) = arctan
�

y
d1

�

(III.15)

with d1 being the distance between the rotational center of the eye and the HOE. The

angle between the incident and diffracted ray αdeflection,HOE of a given wavelength λ and

the desired volume grating period Λvol for the Bragg condition can be calculated from

the Ewald sphere as stated in Eq. III.4. Since there is currently no constrain on Λvol aside

from achieving high DE, the best case value of 2.4 µm that was found in Sect. 3.1 on DE

optimization is used here. Both expressions can be combined to calculate the local slant

angle φ for all y-positions on the center line (x = 0 mm) of the lens as

φ(y) =
π

2
+ θinc(y)−

αdeflection,HOE

2
. (III.16)

The surface grating period as a function of y-position can be computed with Eq. III.12. A

polynomial function of degree 5 is then fitted to the inverse of the surface grating periods

as a function of y-position. The resulting polynomial is then integrated, which yields all

coefficients cn of pure y-terms of p(x , y) until degree 6. These coefficients can be used

to initialize the surface grating implementation of a HOE with arbitrary grating period

distribution in the optical design software. For HOE tandem structures, the coefficients
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can be used to initialize both HOEs since, provided that the distance between them is

small, they require the same HOE deflection angles.

3D solution

In the 3D case, the general strategy to compute initial values outlined above needs to

be followed without simplifications. For this implementation, preexisting pieces of a ray

tracing code as well as a preexisting implementation of an iterative integration method

have been used. As a first step, a 3D vector field of principal rays is computed as a set of

vectors at the origin of the coordinate system, which corresponds to the rotational center

of the eye here. The components of the vectors are calculated by normalizing a vector

~cray with

~cray =







xpos

ypos

d1






(III.17)

with xpos and ypos being a discrete sampling of all valid HOE positions and d1 being the

distance between the rotational center of the eye and the HOE. The principal ray going

through the center of the lens consequently is represented by the unit vector in z-direction

~z and intersects the HOE at

~Pintersection,central =







0

0

d1






. (III.18)

The intersection point of the other principal rays with the HOE surface is calculated by a

ray tracing calculation as

~Pintersection = ~Pstart +
−dot(~nsurf, ~d1)

dot(~nsurf,~cray,norm)
~cray,norm (III.19)

with ~Pstart being the starting point of the principal ray, so in this step the origin of the

coordinate system, "dot" denoting the dot product, ~nsurf being the surface normal of the

HOE, ~d1 being the distance between the starting point of the ray and HOE surface in

propagation direction z and ~cray,norm being the normalized ray direction. Since at the first

step all rays start from the origin, ~d1 = ~Pintersection,central and, provided that the HOEs have
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zero curvature, Eq. III.19 simplifies to

~Pintersection = d̃~cray,norm (III.20)

with d̃ being a scaling factor that ensures that the z-component of ~Pintersection is d1. The

direction of the grating vector corresponding to the central principal ray is found by ro-

tating the unit vector in y-direction ~y by
αdeflection,HOE

2 , which is equivalent to the geometry

expressed in Eq. III.16. The direction of the diffracted ray at the center of the lens is found

by rotating the principal ray by αdeflection,HOE around the y-axis. The local directions of

the grating vector at all positions on the lens surfaces are then calculated by rotating the

direction of the grating vector for the center principal ray by the rotation angle between

the center principal ray and the principal ray intersecting the lens position in question.

The same rotation is then applied to the diffracted ray to obtain the diffracted ray direc-

tions at all lens positions. At this point, the vectors are scaled to their actual length, i.e.

the grating vectors to 2π
Λvol

and the incident ray and diffracted ray to 2π
λ .

The resulting relationships between the local principal rays (red), diffracted rays (green)

and grating vectors (blue) in k-space are illustrated in Fig. III.12. For each lens position,

the three vectors form a triangle i.e. they satisfy the Bragg condition for maximal DE as

intended. In that sense, the figure can be understood as plotting the vectors in an Ewald

sphere. The surface grating periods on the first HOE are calculated using Eq. III.12 with

the slant angle being the dot product of the local grating vector and the unit vector in

z-direction ~z since the slant angle is defined as the angle between the grating vector and

the propagation direction ~z. The x- and y-components of the inverse of the surface grat-

ing periods are then the input arguments to an iterative integration method mentioned

above. The method is based on conjugate gradient solving [188]. The integration method

returns a 2D scalar field, whose gradient approximately matches the input parameters.

This 2D scalar field is then fitted to a 2D polynomial over the intersection points of the

principal rays with the first HOE. The coefficients of this fit then correspond to the coef-

ficients of the global polynomial p(x , y) describing the first HOE.

To calculate the coefficients of p(x , y) of the second HOE, it is necessary to fit the 2D

scalar function over the intersection points between the principal rays and the second

HOE. For this purpose, the intersection points are calculated using Eq. III.18 with ~Pstart

now being the intersection point of the principal ray and the first HOE, ~nsurf being the sur-

face normal of the second HOE, ~d1 being replaced by ~d2, which represents the distance

between the two HOEs and ~cray,norm being the normalized direction of the diffracted ray
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Figure III.12. 3D plot of the principal rays (red), diffracted rays (green) and grating vectors (blue) in
k-space. For each lens position, the three vectors form a triangle i.e. they satisfy the Bragg condition as
intended. In that sense, the figure can be understood as plotting the vectors in an Ewald sphere.

after the first HOE. Using the direction of the diffracted rays implicitly fixes the second

HOE to operate in the opposite diffraction order as the first one, because the Bragg con-

dition now is valid for the diffracted ray being diffracted into the original direction of the

principal ray. Fitting the 2D scalar function over these intersection points now ensures

that irrespective of the distance between the two HOEs, a principal ray traveling through

the system will always be diffracted by the same magnitude of surface grating period on

both HOEs in opposite diffraction orders and consequently be dispersion compensated.

3.4.3. Alternative HOE parameterizations

In principle, the parametrization of the HOEs can be done in other ways than the global

polynomial p(x , y) from Eq. III.7. In fact, especially for PALs, a parametrization such as

cubic splines could seem advantageous because it would allow to induce local variations

rather than to affect the whole HOE with each parameter. However, even for relatively

large patch sizes for the cubic splines, the number of coefficients quickly increases beyond

what can be handled with the solvers and computational resources available for the work

conducted for this thesis. Therefore, no viable alternatives to the global polynomial have
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been found within this thesis.

3.4.4. Optical design strategy

The considerations made so far allow implementing high DE, dispersion compensated

HOE tandems with appropriate initial values for the parametrization of their surface grat-

ing periods into an optical design software. These HOE tandems can be used to design

different types of spectacle lenses such as SVSLs or PALs for a wide range of prescriptions.

The HOE tandems can be used as purely holographic optical systems or embedded into

refractive lenses to create holographic-refractive hybrid optical systems. Consequently,

different adaptations of a general optical design strategy are used for different applica-

tions.

In the following, the optical design strategy is described including the possible adap-

tations. Firstly, the possible configurations of the optical system acting as either a holo-

graphic or hybrid spectacle lens are described. This includes the possible variable param-

eters for the optimization process that differ from holographic to hybrid lenses. Secondly,

the structure of the merit function describing the desired optical function and additional

design requirements of the spectacle lens is discussed. This includes how the merit func-

tion differs between holographic and hybrid lenses as well as between SVSLs and PALs.

Thirdly, the optimization process of the optical design software that is shown in Fig. III.8

is described in detail.

Optical system

Fig. III.13 shows an example optical system that illustrates all components that can be

considered relevant to the optical design process. In all cases, a HOE tandem consisting

of HOE A and HOE B is embedded into a refractive lens with front and back curvatures R1

and R2, respectively, and center thickness D. In principle, HOE A and B can be placed on

top of each other or have a gap between them. In the following, the HOEs are chosen to be

placed on top of each other due to the mapping issues mentioned in Sect. 3.2. Both HOEs

can have a curvature within the constraint that they may not "stick out" of the polymer

or glass material. In most cases, the HOEs are placed close to the flatter curvature R1 or

R2 since this is assumed to ease manufacturing requirements. This is illustrated in Fig.

III.13, where the front side is completely flat R1 =∞. If both, the front and backside, are

flat, the refractive lens is not considered to have an optical function in terms of SPH or
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AST and is therefore referred to as a "flat sheet of polymer or glass" instead of "refractive

lens" henceforth. In some cases, one of the surfaces of the refractive lens is aspherical.

In the examples considered later, the asphere (ASPH), if present, is always placed on

the backside of the refractive lens to conform to current spectacle lens manufacturing

practice [31, 32]. The ASPHs used are conic section ASPHs and parameterize the surface

shape z(x , y) as

z(x , y) = z(h) =
1
R2

h2

1+
Ç

1− ( 1
R2

h)2
+ a1h4 + a2h6 + a3h8 + ... (III.21)

with h=
p

x2 + y2 denoting the height on the surface. Different from the coefficients an

of the HOE parametrization, the coefficients of the ASPH can be initialized as zero. This

is because the resulting surface is spherical with the intended curvature and therefore

relatively close to the desired optical function in terms of SPH and AST, which makes

convergence of the optimization more likely. This means that possible variable param-

eters for the optimization are the coefficients of the global polynomials describing the

surface grating period distribution of the two HOEs, the refractive lens curvatures R1 and

R2, the coefficients of the ASPH, the center thickness of the refractive lens D and the

curvature, separation and positioning of the HOEs within the refractive lens.

Merit function

For the purpose of optimization, it is necessary to formulate a merit function, which

describes the desired optical performance of the spectacle lens as well as other constraints

such as lens thickness. The specific formulation of the merit function differs by the type

of spectacle lens application, the desired prescription and by which optical components

are included in the optical system. All optical performance contributions and parameter

restriction contributions to the merit function are valid for all gaze directions of the eye

and therefore need to be expressed for each of them. Possible optical performance criteria

include how well the prescription target values of SPH and AST are met and how large

the CE is. Possible parameter restriction contributions include whether or not the local

volume grating periods are within the interval for high DE. The volume grating period

constraint for HOEs A and B can be expressed as

MΛ,i := ai,1

��

�Λvol,HOE A − 2.35µm
�

�− 0.35µm
�

+ ai,2

��

�Λvol,HOE B − 2.35µm
�

�− 0.35µm
�
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Figure III.13. Illustration of all possible optical components used in the investigated holographic-refractive
hybrid spectacle lens designs. A HOE tandem consisting of HOEs A and B is embedded into a refractive
lens with curvatures R1 and R2, center thickness D and optionally an ASPH on one surface. In the special
case of a purely holographic spectacle lens, the surfaces of the refractive lens are flat and considered not to
have any optical function in terms of SPH or AST and is therefore referred to as a "flat sheet of polymer or
glass" instead of "refractive lens". The object plane here represents an object plane at infinity as typically
used for SVSLs and is therefore drawn as a plane without curvature.

(III.22)

with ai,n denoting weights to scale the merit function terms. This term penalizes volume

grating periods that lie outside of the interval of 2.0 to 2.7 µm (negative values for MΛ,i

are considered zero). The merit function terms describing how well the SPH and AST

prescription is fulfilled and how large CE is, can be expressed as

Mimaging,i := ai,3

�

SPHcurrent − SPHi,target

�

+ ai,4

�

ASTcurrent −ASTi,target

�

+ ai,5CEcurrent.

(III.23)

In some cases, an additional merit function term can be defined to limit the deflection

angle αdeflection,HOE tandem of the HOE tandem, which can have a stabilizing effect on the

convergence of the optimization:

Mdeflection,HOE tandem,i := ai,6

��

�αdeflection,HOE A +αdeflection,HOE B

�

�−αbudget

�

(III.24)

with αbudget being an allowed HOE tandem deflection angle offset, which is chosen de-

pending on the lens diameter and prescription value. This term penalizes deflection an-

76



III Holographic optical element design method for spectacle lenses

gles that do not lie within −αbudget < αdeflection,HOE tandem < αbudget with αdeflection,HOE tandem

being the sum of the deflection angles of both HOEs (negative values of Mdeflection,i are

considered zero). The full merit function for an arbitrary gaze direction i is then

Mi := MΛ,i +Mimaging,i +Mdeflection,HOE tandem,i. (III.25)

It should be noted that the weights ai,n as well as the target values for SPH and AST,

SPHi,target and ASTi,target, can vary between different gaze directions. For the weights ai,n

this can be done to prioritize e.g. the center gaze direction, which is assumed to be used

more than the others, over oblique gaze directions. For the SPHi,target and ASTi,target, this

can be done e.g. to realize a PAL optical function. By comparison, for a SVSL the SPH

and AST target values correspond to the exact prescription values. Merit function terms

that do not depend on the viewing directions like the lens edge thickness sedge can be

formulated as follows:

Medge := a7

�

sedge,current − sedge,target

�

. (III.26)

Geometrical constraints e.g. that the front and back surface should not intersect below

the desired surface height can either be implemented as merit function terms like the

edge thickness with very large weights an, or by limiting the allowed value range for

the variable parameters so that these constraints cannot be violated in the first place.

The full merit function including the contributions of all gaze directions i and the terms

independent of gaze direction is then given as

M :=
∑

i

Mi +Medge. (III.27)

Optimization

The optimization process is conducted within an optical design software. As a first step,

the components of the optical system are chosen, e.g. for a hybrid lens the refractive lens

and the HOE tandem are required. This step includes setting the initial values for these

components as previously discussed and a declaration, which parameters are variable

during the optimization process. In a second step, the merit function is tailored to the

desired optical performance in terms of target prescription and lens type (SVSL / PAL)

following the guidelines presented in the previous paragraphs. E.g. in the case of a
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PAL this includes defining the SPH target values either based on a refractive PAL or by

computing a desired curve of add power over the lens surface.

The optical design software then uses a least-squares solver to minimize the merit func-

tion by iteratively changing the values of the variable parameters. At each step, the merit

function is evaluated in the following way: a discrete set of principal rays that samples

the entire lens surface is defined at the rotational center of the eye. The principal rays are

then traced through the optical system in reverse i.e. from the eye to the object plane.

For SVSLs, the object plane is placed at infinity because the prescription of an SVSL is

meant to correct human vision at unaccommodated distances. For PALs, the object plane

is chosen so that for each gaze direction the distance between the object plane is the in-

verse of the add power because a PAL is meant to correct human vision in accommodated

distances as well. This is shown for a sample gaze direction of a hPAL in Fig. III.14. For

each intersection point between a principal ray and the object plane, denoted as Cint in

the Fig., a parallel bundle of rays is defined and traced through the hPAL to the rotational

center of the eye. The width of the ray bundle is limited by the pupil of the eye. Because

of reciprocity, it is ensured that the principal ray, which is at the center of the bundle,

intersects the rotational center of the eye. This process of tracing the rays back and forth

ensures that the sampling of intersection points Cint on the object plane, from which the

parallel ray bundles are started, corresponds directly to the desired sampling of principal

rays over the lens surface. The SPH, AST and CE of each ray bundle are then evalu-

ated with respect to the vertex sphere as described in Chapt. II for refractive spectacle

lens design. Because the ray tracing data for the principal rays is available already, the

volume grating periods Λvol and deflection angles αdeflection,HOE are directly calculated as

described earlier in this section. With all relevant variables known, the merit function is

then evaluated. The variable parameters are then varied by the least-squares solver and

the merit function is evaluated again using the same process detailed above.

The optimization procedure described above can be referred to as a one shot opti-

mization as there is no user interaction with the optimization procedure after the merit

function and variable parameters have been defined. In some cases, especially the ones

with relatively low prescription values, such one shot optimizations converge to useful

designs. But in other cases, the optimization either does not converge or converges to a

local minimum of unsatisfactory performance. These problems can be addressed by step

wise optimization procedures in which several one shot optimizations are conducted in

sequence with changes made to either the optical system, the variable parameters or the
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Figure III.14. Visualization of the object plane of a hPAL. For parts of the hPAL with add power con-
tributions to SPH, the distance between the hPAL and the object plane is the inverse of the add power.
Consequently, in regions with zero add power like the upper part of the hPAL, the object plane is placed
at infinity as it is for SVSLs. The intersection point Cint of a principal ray with the object plane is used as
the starting point of a parallel ray bundle that is used to calculate the optical performance in terms of SPH,
AST and CE of the hPAL.

merit function in between the one shot optimizations. For the optimization tasks de-

scribed within this thesis, a step wise optimization strategy has been found to solve this

issue and improve optimization results: When optimizing holographic-refractive hybrid

SVSLs that include an ASPH, it is advantageous to first optimize the base curvatures of the

refractive lens and the parameters of the HOE tandem without the ASPH to a prescription

SPH value that is about 90% of the final intended SPH while leaving all AST terms out

of the merit function. In a second optimization step, the prescription is then updated to

the intended SPH and AST values and the coefficients of the ASPH are included in the

variable parameters.
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designs

This chapter discusses a variety of holographic and hybrid spectacle lenses that have been

designed with the tool chain presented in Chapt. III. Sect. 4.1 is devoted to single vision

spectacle lenses (SVSLs) and discusses two sample prescriptions of -4 dpt power (SPH)

and 0 dpt astigmatism (AST) and -8 dpt SPH and 0 dpt AST. For SVSLs, the goal is to inves-

tigate if the use of holographic optical element (HOE) tandems in either holographic or

refractive-holographic hybrid SVSL designs can yield improvements in terms of reduced

color error (CE) or lens thickness. Sect. 4.2 discusses progressive addition lenses (PALs)

and presents two sample prescriptions, 2.0 and 2.5 dpt add power. For PALs, the goal

is to investigate if a refractive PAL that is defined by its varying curvature over the lens

surface can be replaced by a purely holographic PAL (hPAL).

4.1. Holographic and hybrid single vision spectacle lenses

This section is based on Ref. [189] and discusses holographic and hybrid SVSLs with

two sample prescriptions of -4 dpt SPH and 0 dpt AST and -8 dpt SPH and 0 dpt AST.

Refractive spherical and aspherical SVSL designs with a prescription of -4 dpt SPH and

0 dpt AST are presented in Chapt. II. Here, purely holographic as well as hybrid designs

with and without aspheres (ASPHs) are presented. This allows a detailed comparison

between the performance of HOEs and ASPHs. The other prescription of -8 dpt SPH and

0 dpt AST is chosen to evaluate the performance of hybrid SVSLs for high prescription

values for which CE is a significant problem. For all designs the goal is to achieve better

optimization compromises between SPH error, AST error, CE and lens thickness than

what can be achieved with refractive SVSLs. The design tool chain presented in Chapt.

III ensures that all resulting SVSL designs fulfill the requirements for high DE.
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4.1.1. SVSL prescription -4 dpt SPH and 0 dpt AST

Here, the prescription of -4 dpt SPH and 0 dpt AST is chosen because it is a relatively

common prescription while featuring notable levels of CE. The refractive SVSLs of this

prescription are shown in Fig. II.5 in Chapt. II. To establish an understanding on how

the performance of purely holographic SVSLs differs from refractive ones, the tool chain

described in Chapt. III is used to design a purely holographic SVSL. This SVSL consists

of a HOE tandem, which is embedded in a flat sheet of the spectacle lens polymer with

refractive index 1.59 and Abbe number 41.11 that was already used for the refractive

SVSLs of the same prescription. The flat sheet of polymer affects the rays according to

Snell’s law, but does not introduce notable contributions to SPH error, AST error or CE.

The SVSLs performance can therefore be considered to be purely holographic. In this

case, the only variable parameters are the coefficients of the global polynomials p(x , y)
describing the surface grating periods of the HOEs. The weights of the merit function are

chosen to target the same level of SPH error as the spherical SVSL of the same prescription

shown in Fig. II.5(a). CE is not constrained in the merit function, because without the

option of refractive holographic dispersion compensation, the only ways to limit CE are

the dispersion compensation of the HOE tandem that is used without explicitly writing it

into the merit function or to reduce the achieved SPH value since SPH correlates with CE.

The resulting distributions of SPH error, AST error and CE over the lens surface are shown

in Fig. IV.1(a)-(c), respectively, with SPH error and AST error being plotted in the same

color scale as in Fig. II.5. SPH error has a maximum of approximately 0.6 dpt on the lens

edge, which is a bit lower than the maximum SPH error of approximately 0.8 dpt of the

spherical, refractive SVSL. AST error, however, has a maximum of approximately 1 dpt on

the lens edge, which is considerably higher than the maximal AST error of the spherical,

refractive SVSL of approximately 0.3 dpt. This high level of AST error is not expected and

could be linked to the fact that, different from the refractive SVSLs, holographic SVSLs

are not rotationally symmetric. For a refractive SVSL the parametrization of all surfaces

is typically chosen with radial parameters and the origin coinciding with the center of the

lens. For the holographic SVSL investigated here, such a parametrization is not possible

since due to the deflection angle of the first HOE, the center points of the two HOEs do

not overlap. The results achieved with the parametrization used here can also not be

improved by increasing the number of coefficients of the global polynomial in Eq. III.7,

since the higher order coefficients are negligible already. However, as stated in Sect. 3.4,

it is certainly possible that other HOE parametrizations lead to slightly improved results.
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CE is plotted in a different color scale than the spherical, refractive SVSL, because it has

a maximum CE of approximately -10, which is one order of magnitude more and the

opposite direction. Stronger and inverted CE is expected for a holographic SVSL as this

behavior is known from technical optics [117]. While the holographic SVSL shown here

clearly is not an attractive design, it helps to understand the consequences of using HOE

tandems in SVSL design: increased AST error and increased, inverted CE that is used for

dispersion compensation in holographic-refractive hybrid SVSLs in the following.

The insights gained from evaluating the holographic SVSL can be used to design hy-

brid SVSLs. The full optical system of a hybrid lens as a HOE tandem embedded into a

refractive lens that includes an ASPH is shown in Fig. III.13. To isolate the performance

increase of the ASPH from the benefits of using a hybrid design, the first hybrid design to

be evaluated does not include an ASPH i.e. is a spherical lens. The variable parameters

in this case are the front and back curvatures R1 and R2 as well as the coefficients of the

global polynomials p(x , y) describing the HOEs. The CE of the holographic SVSL design

already suggests that a hybrid device with about 10% of the overall SPH coming from

the HOE tandem can achieve dispersion compensation. But the performance of the holo-

graphic SVSL design also suggests that SPH provided by the HOE tandems comes with

more AST error than SPH provided by a refractive lens. Therefore, the merit function for

the hybrid SVSL does not enforce perfect dispersion compensation, but only penalizes CE

above the perception threshold, which is 0.4 due to the normalization used. The result-

ing SPH error, AST error and CE of such a hybrid SVSL are shown in Fig. IV.1(d)-(f). The

maximal SPH error is approximately 0.7 dpt, which is comparable to the SPH error of

the refractive SVSL with an ASPH shown in Fig. II.5(d) and 0.1 dpt lower than the SPH

error of the refractive, spherical SVSL shown in Fig. II.5(a). The maximal AST error is

approximately 0.14 dpt, which is comparable to the AST error of the refractive spherical

SVSL shown in Fig. II.5(b), but higher than the AST error of the refractive SVSL with an

ASPH shown in Fig. II.5(e). The maximal CE is at the perception threshold of 0.4, while

the CE of the refractive SVSLs shown in Fig. II.5(c) and (f) are 1. This hybrid SVSL de-

sign shows two interesting properties of hybrid SVSLs. Looking at the SPH error and AST

error, the optimization compromise achieved between the two is not as good as the one

of a refractive SVSL with an ASPH, but considerably better than the one of a refractive,

spherical SVSL. This indicates that the degrees of freedom provided by the HOE tandem

have a similar influence on the optimization compromise as an ASPH and can partially

replace it. The other interesting property is that dispersion compensation works in hybrid
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Figure IV.1. SPH error, AST error and normalized CE of holographic and hybrid SVSL designs of the
prescription -4 dpt SPH and 0 dpt AST. A purely holographic SVSL that consists of a HOE tandem embedded
into a flat sheet of polymer without notable contributions to SPH error, AST error and CE is shown in parts
(a)-(c). Compared to a spherical, refractive SVSL of the same prescription, SPH error is decreased by
approximately 0.2 dpt, AST error is increased by approximately 0.7 dpt and CE is inverted and increased
by a factor of 10. Adding a HOE tandem to a spherical, refractive SVSL to create a hybrid SVSL as done in
(d)-(f), achieves a reduced SPH error, AST error and CE relative to a spherical, refractive SVSL. Relative to
a refractive SVSL that includes an ASPH, however, only CE is reduced. Hybrid SVSLs with ASPHs allow to
achieve strong thickness reductions e.g. from 4.5 mm (refractive SVSL with ASPH) to 3.8 mm for a hybrid
SVSL design that is shown in parts (g)-(i). SPH error, AST error and CE of the hybrid SVSL shown in (g)-(i)
are similar to the hybrid SVSL shown in (d)-(f) aside from the sign switching of CE.
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SVSL and CE can be reduced to the perception threshold despite the more complicated

optical system with different gaze directions.

Because the previous hybrid SVSL design indicates that HOE tandems can be used to

strongly reduce CE and ASPHs are even better than HOE tandems at improving the opti-

mization compromise between SPH error and AST error, it makes sense to combine the

two approaches and to design hybrid SVSLs that include ASPHs to achieve the best pos-

sible optimization compromise between SPH error, AST error and CE. For such a hybrid

SVSL, the variable parameters include the front and back curvatures R1 and R2, the coef-

ficients of the ASPH from Eq. III.21 as well as the coefficients of the global polynomials

p(x , y) describing the HOEs. In lens design practice, ASPHs are often used to reduce the

lens thickness rather than to increase the optical performance in terms of SPH error and

AST error. HOE tandems also have the potential to reduce the lens thickness since they

are thin films with a typical thickness of only 10 to 100 µm. To investigate this, a merit

function is written that prioritizes thickness decreases over SPH error, AST error or CE

reductions relative to the hybrid SVSL shown in Fig. IV.1(d)-(f). The resulting distribu-

tions of SPH error, AST error and CE over the lens surface of a hybrid SVSL design that

includes an ASPH are shown in Fig. IV.1(g)-(i). Because the question at hand is to evalu-

ate if the HOE tandem improves the performance of a refractive SVSL with an ASPH, the

SVSL presented in Fig. II.5(d)-(f) is an appropriate benchmark. In this comparison, SPH

error is approximately the same for both designs, AST error is increased to 0.14 dpt for

the hybrid design and CE is -0.4 for the hybrid design. The increased AST error is still

relatively close to the smallest tolerance for spectacle lenses AST of 0.09 dpt [190] and

should therefore be of little relevance. CE is again below the perception threshold of 0.4,

but inverted its direction. Assuming that CE impairs vision in a similar fashion irrespec-

tive of CE sign, this would still be below the perception threshold. The edge thickness

of the hybrid SVSL is reduced to 3.8 mm, which is a significant improvement relative to

the edge thickness of 4.5 mm of the refractive SVSL with ASPH. This clearly shows that

HOE tandems can be used to decrease the thickness of SVSL designs. In fact the change

in CE direction indicates that in this example the optimization converged to a result with

maximal SPH contribution from the HOE tandem. The mechanism here is that more SPH

being contributed by the HOE tandem leads to lower CE, increased AST error and de-

creased thickness since less SPH needs to be contributed by the refractive parts of the

lens, which translates to lower curvatures being used.

85



IV Holographic and hybrid spectacle lens designs

4.1.2. SVSL prescription -8 dpt SPH and 0 dpt AST

While the investigations of SVSLs with a prescription of -4 dpt SPH and 0 dpt AST al-

ready provide a lot of insights into the benefits of using HOE tandems in SVSL designs,

it is interesting to evaluate other, stronger prescriptions where CE is of even greater im-

portance. For this purpose, a prescription of -8 dpt SPH and 0 dpt AST is considered.

As a benchmark device, a refractive SVSL that includes an ASPH is designed using the

tool chain. This time another standard spectacle lens polymer with refractive index 1.73,

Abbe number 32.15 is used since typically higher refractive index materials are used for

higher prescription values. The resulting SPH error, AST error and CE over the lens sur-

face are shown in Fig. IV.2(a)-(c). The maximal SPH error is approximately 1.4 dpt, the

maximal AST error is approximately 0.06 dpt and the maximal CE is approximately 2.5

in the same normalization used for the -4 dpt SPH prescription SVSLs, which is far above

the level of the CE of a SVSL with a prescription of -4 dpt SPH and 0 dpt AST. The edge

thickness is 5.7 mm.

To investigate whether or not the addition of a HOE tandem can improve the opti-

mization compromise in terms of SPH error, AST error, CE and edge thickness, a hybrid

SVSL made from the same material and an ASPH is designed using the tool chain. For

SPH error, AST error and edge thickness, the goal is to reduce them below the results

of the refractive SVSL, while for CE the goal is to achieve a CE of 1, which corresponds

to the CE of a -4 dpt SPH SVSL that is known to be uncritical from practice. The result-

ing distributions of SPH error, AST error and CE over the lens surface are shown in Fig.

IV.2(d)-(f). SPH error remained relatively close the the refractive SVSL with a maximal

value of 1.5 dpt. AST error is slightly increased to 0.14 dpt, which is still very close to the

smallest tolerance for spectacle lenses AST of 0.09 dpt [190] and should therefore be of

little relevance. CE is, as intended, reduced to a maximal value of 1. The edge thickness

is decreased by 0.2 mm to a value of 5.5 mm. Overall, this shows that the optimization

compromise can in fact be strongly improved by adding HOE tandems to SVSL designs.

It should be noted though, that strong requirements on CE reduction make it harder to

achieve improvements in SPH error and AST error. But for the users reducing the very

noticeable CE of a -8 dpt SPH SVSL to the uncritical one of a -4 dpt SVSL is certainly a

relevant improvement.

To assess how well the volume grating periods Λvol were kept in the range for high DE,

the volume grating periods of HOE A and HOE B of the HOE tandem are plotted over

the lens surface in Fig. IV.3 (a) and (b), respectively. The color plots indicate that the
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volume grating periods are well within the proposed range of 2.0 to 2.7 µm. To estimate

how this affects the color impression of the user, the median DE at three sample wave-

lengths (430 nm, 546 nm, 620 nm) for the required angular bandwidth are calculated

as a function of the volume grating period using the data from FMM simulations. Multi-

plying the median DE of HOE A and HOE B at each lens position depending on the local

volume grating period then yields the expected color impression when looking at a white

object, which is shown in Fig. IV.3 (c). The minimum median DE achieved here after

the multiplication of the DE of HOE A and HOE B is approximately 0.7. The resulting

color impression is very homogeneous across the lens surface, but features a greenish tint

that may be perceived as disturbing or like sunglasses. The greenish tint is caused by the

maximum DE being in the green part of the wavelength bandwidth.

The optimization compromise presented here can be varied further by changing the

refractive index of the refractive lens material. One possibility would be to decrease the

refractive index but keep the SPH contribution of the refractive lens constant. In that

case, the lens curvature and thickness would increase as the same SPH contribution has

to be realized with the lower refractive index. In turn, SPH error would increase due to

the increased lens curvature. The only benefit would be that CE would be reduced further

due to the reduced dispersion of the lower refractive index lens material. In summary, this

is not attractive as CE already is lowered considerably and the both SPH error and lens

thickness would increase. Another possibility would be to decrease the refractive index

and increase the SPH contribution from the HOE tandem. In this case, CE would decrease,

but due to the increased SPH contribution of the HOE tandem, AST error would increase

as well. This would likely increase AST error to non-negligible values and is therefore not

an attractive approach. In fact, it would be attractive to further increase the refractive

index to lower the lens curvature, thickness and consequently SPH error, but this isn’t

practical considering the availability of approved materials for SVSL manufacturing.
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Figure IV.2. Comparison of SPH error, AST error and CE of a refractive (a-c) and a hybrid SVSL design
(d-f) for a prescription of -8 dpt SPH and 0 dpt AST. Both designs include an ASPH. Both designs perform
approximately the same in terms of SPH error and AST error, while the hybrid design achieves a much
lower CE of 1, which is the same CE as a refractive SVSL with a prescription of -4 dpt SPH due to the
normalization used.

Figure IV.3. Volume grating periods of HOE A (a) and HOE (b) as well as the overall color impression (c)
plotted across the lens surface of the -8 dpt hybrid SVSL. The volume grating periods of both HOE A and
HOE B are well within the range for high DE of 2.0 to 2.7 µm. The color impression is homogeneous across
the lens surface and has a greenish tint.
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4.2. Holographic progressive addition lenses

The research question investigated in this section is whether or not it is possible to design

more complicated optical functions than SVSLs using the tool chain described in Chapt.

III. The example studied here is to replicate the optical function of a refractive PAL with an

hPAL. The results presented here have been published in Refs. [191, 192]. Prescriptions

of 2.0 dpt and 2.5 dpt add power with no further refractive errors outside of presbyopia

are investigated here and compared to refractive PALs of the same prescription. Because

it is not clear a priori if the optical function of a PAL in terms of SPH and AST can be

replicated while enforcing the requirements for high DE and dispersion compensation,

the corresponding data is discussed in detail. A possible application for such an hPAl is to

combine the hPAL that corrects the users presbyopia with an inexpensive spherical lens

that corrects the users other refractive errors. Such a hybrid device would then address

a wide range of prescriptions without requiring the complicated freeform surfaces used

in current PAL designs.

4.2.1. hPALs with 2.0 dpt add power

A 2.0 dpt add power hPAL is designed using the tool chain with the goal of replicating

the optical function of a benchmark refractive PAL. The SPH and AST distributions of

the refractive PAL of the corresponding prescription are shown in Fig. II.6(a) and (b),

respectively. The hPAL is made up of a HOE tandem embedded into flat sheets of polymer.

Since the polymer sheet has no noteworthy impact on SPH or AST, the only variable

parameters relevant for the optimization are the coefficients of the global polynomials

p(x , y) describing the two HOEs. The merit function is set up analogous to the ones of

SVSL with the exception that the target values of Eq. III.23 of the merit function are no

longer constant over the lens surface, but vary. For each gaze direction i, the target values

for SPH and AST are the values of the same gaze direction for the benchmark refractive

PAL. To express that the merit function does not force high AST, but merely allows as

much AST as the benchmark PAL, Eq. III.23 is rewritten that the AST targets are marked

as smaller or equal rather than equal.

To evaluate whether or not such a hPAL design achieves the requirements for high DE,

the volume grating periods are plotted over the lens surface for both HOEs in the tandem,

HOE A and HOE B, in Fig. IV.4(a) and (b), respectively. For both HOE A and HOE B, the

desired range of the volume grating period between 2.0 µm and 2.7 µm is color coded
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Figure IV.4. Volume grating period distribution over the lens surface for HOE A (a) and HOE B (b) of the
HOE tandem of the hPAL. The color code shows that the volume grating periods vary by less than +/- 0.1
µm around the desired value of 2.4 µm.

from blue to red. The colors clearly show that the variation of the volume grating periods

over the hPAL surface is less than +/- 0.1 µm around the desired value of 2.4 µm in both

cases. This means that the requirements for high DE in terms of angular and wavelength

bandwidth are achieved. The angular bandwidth is centered on the principal ray for all

gaze directions thanks to the grating period parametrization method of the tool chain.

The hPAL is a purely holographic device, so CE has to be limited by dispersion compen-

sation of the HOE tandem rather than by refractive-holographic dispersion compensation

as in hybrid SVSLs. This is investigated by calculating CE of the hPAL with the same

normalization as the SVSLs presented earlier in this chapter. The rationale here is that

CE of up to 1 would correspond to the CE of a -4 dpt SPH SVSL, which is known to be

uncritical from practice. Larger CE might be a problem, at least to users with a high in-

dividual sensitivity to CE. The resulting distribution of CE over the lens surface is shown

in Fig. IV.5. While the maximal CE is above 1, this is only the case in the left and right

bottom parts of the lens with -20 mm < x < -10 mm as well as 10 mm < x < 20 mm

and -20 mm < y < -10 mm. Comparison with the AST distribution of the refractive PAL

in Fig. II.6(b) yields that these regions have very high AST values and are therefore not

required to achieve pristine optical performance. Outside of these regions, CE is below 1,

especially in the the progressive corridor at -5 mm < x < 5 mm and -15 mm < y < 0 mm,

where CE even takes negative values. Because the negative values are above -1, it can be

assumed that the CE there has no negative impact on the user. In conclusion, dispersion
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Figure IV.5. CE of the hPAL over the lens surface. CE is normalized so that a value of 1 corresponds to the
maximal CE of a -4 dpt SPH SVSL, which is known to be uncritical from practice. Outside of regions with
high AST, CE is below 1.

compensation of the HOE tandem works as desired to limit CE to acceptable values that

are comparable to a refractive SVSL with a prescription of -4 dpt SPH and 0 dpt AST.

The SPH and AST distribution of the hPAL over the lens surface is shown in Fig. IV.6(a)

and (b), respectively. Comparison with the refractive PAL shown in Fig. II.6 yields that

the hPAL qualitatively replicates the SPH and AST distributions of the refractive PAL. In

particular, the continuous increase in SPH over the lens surface and the zones of low AST

in the near and far zone as well as in the progressive corridor.

In order to quantitatively compare the hPAL with the refractive PAL, Fig. IV.7 shows their

SPH and AST along cuts of the lens surface. Part (a) shows the central cut (x = 0 mm) of

the lens, which evaluates the performance in the progressive corridor as well as the center

of the near and far viewing zones. Part (b) shows the y = -23 mm cut, which evaluates

the near viewing zone. In the progressive corridor shown in part (a), the SPH gradient of

the hPAL is about 0.1 dpt per mm, which is very close to the refractive PAL’s SPH gradient

of 0.13 dpt per mm. The maximal AST of the hPAL of 0.16 dpt in the progressive corridor

is a bit higher than the one of the refractive PAL of 0.04 dpt. Evaluating the near zone

shown in part (b) shows that while the hPAL has a slightly lower SPH distribution with

a maximal SPH of 2.0 dpt for the hPAL and 2.2 dpt for the PAL, AST is also strongly

reduced with a minimal AST of 0.16 dpt for the hPAL and 0.31 dpt for the PAL. It is

especially interesting that the gradient of AST along x is much lower for the hPAL, which

is an indication that the provided near zone is preferable to the one of the PAL.

These results show that an hPAL can be designed to have a qualitatively comparable

optical performance in terms of SPH and AST as a refractive one. At the same time, the
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Figure IV.6. SPH (a) and AST (b) distributions over the lens surface of a 2 dpt add power hPAL design.
Both profile qualitatively match the SPH and AST distribution of a refractive PAL of the same prescription.

Figure IV.7. Comparison of the SPH and AST of the hPAL and PAL along a cut at x = 0 mm (a) and a cut
at y = -23 mm (b). Part (a) shows that the SPH gradient of SPH of the hPAL is 0.1 dpt per mm, which is
relatively close to the SPH gradient of 0.13 dpt per mm with AST being low in both cases. Part (b) shows
that while the hPAL does not reach the maximal SPH value of the PAL, it has considerably lower AST and
a much lower AST gradient along x.
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requirements for high DE as well as low CE due to dispersion compensation in the HOE

tandem can be upheld. The shape of the SPH and AST distributions in the near zone

suggest that due to an increased number of free parameters, HOE tandems might be able

to provide advantageous i.e. lower AST gradients along x. Additionally, the thickness of

the hPAL is only 25 µm plus a thin polymer substrate, which is significantly less than the

thickness of a refractive PAL of several millimeters.

4.2.2. hPALs with 2.5 dpt add power

An hPAl with a prescription of 2.5 dpt add power and no further refractive errors to be

corrected is designed to evaluate the limitations of the hPAL approach. The SPH and

AST distributions over the lens surface of a refractive PAL of the same prescription that

serves as a benchmark device, is shown in Fig. IV.8(a) and (b), respectively. The SPH and

AST distributions of the hPAL are shown in Fig. IV.8(c) and (d), respectively. Comparison

between the hPAL and the PAL yields that the near zone (red area in the SPH plots)

of the hPAL is a bit smaller than the one of the PAL. Looking at the AST distributions,

however, it is found that the hPAL has much lower AST than the PAL. This includes a

much lower maximal AST of approximately 2.8 dpt rather than 3.7 dpt for the PAL as

well as progressive corridor being a bit wider for the hPAL. In principle, these findings

are an excellent ground to argue that the increased degrees of freedom of the HOE tandem

in fact improve the optimization result of the hPAL.

However, the hPAL suffers from large CE. The distribution of CE over the lens surface

of the hPAL is shown in Fig. IV.9. The same normalization as before is used, so CE up

to 1 is assumed as uncritical. For this hPAL, the maximal CE is above 3 and both the

near zone and the progressive corridor feature CE levels considerably above 1 and are

therefore potentially disturbing for users. This means that the correlation between add

power and CE limits the hPAL design approach to add powers of up to approximately

2.0 dpt. Refractive-holographic dispersion compensation only has a limited potential to

circumvent this. Combining a refractive PAL with an hPAL would allow to achieve a lo-

cally fitting dispersion compensation i.e. that refractive and holographic add powers stay

within a dispersion compensated ratio for all parts of the lens. This approach, however,

would jeopardize the goal of replacing the complex free-form surfaces required to fabri-

cate refractive PALs. A possible alternative would be to combine an hPAL design as shown

here with a refractive SVSL that corrects the other refractive errors the user might have

such as myopia, hyperopia or astigmatism. In the case of hyperopia, dispersion compen-
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Figure IV.8. SPH (a) and AST (b) distributions of a 2.5 dpt add power refractive PAL over the lens surface.
The PAL is used as a benchmark device to design an hPAL of the same prescription, whose SPH and AST
distributions over the lens surface are shown in (c) and (d), respectively. Comparison between the PAL and
the hPAL shows that the hPAL has a smaller near zone (red area in part c), but much lower AST.

sation between the refractive SVSL and the hPAL is possible and would allow to increase

the range of accessible add power prescriptions. In the case of myopia, the dispersion

contributions of the refractive SVSL and the hPAL have the same sign and would add up

rather than to compensate each other. This would lead to even higher CE and means that

this hPAL approach is not compatible with correcting notable levels of myopia.
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Figure IV.9. Distribution of CE of a 2.5 dpt add power hPAL over the lens surface. CE is normalized so
that 0.4 corresponds to the perception threshold and 1 corresponds to the CE of a -4 dpt SVSL, which is
known to be uncritical from practice. For this hPAL, the maximal CE is above 3 and both the near zone and
the progressive corridor feature CE levels considerably above 1 and are therefore potentially disturbing for
users.
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5.1. Summary

In this thesis, several benefits of including HOEs into spectacle lens designs such as the

replacement of freeform surfaces for PALs or ASPHs for SVSLs with HOEs as well as CE and

thickness reductions in SVSLs have been evaluated. For this purpose, challenges for the

use of HOEs in spectacle lenses such as DE requirements or dispersion compensation had

to be fulfilled. The requirement of achieving large angular and wavelength DE bandwidth

was solved in this thesis by optimizing HOE parameters using rigorous simulations to find

a parameter range in which the required bandwidths can be achieved for multiplexed

HOEs. Dispersion in purely holographic spectacle lens designs is decreased by using a

tandem of two HOEs operating in opposite diffraction orders. In refractive-holographic

hybrid spectacle lenses, the dispersion induced by refractive and holographic components

can be used to compensate each other. With these challenges solved, a tool chain for the

design of arbitrary HOEs in spectacle lens applications was created. This tool chain solves

design issues such as optimizing the optical function of the HOEs in terms of SPH error

and AST error for all gaze directions of the eye and ensuring that the available DE angular

bandwidth is centered on the principal ray for all gaze directions.

Using this tool chain, holographic and hybrid SVSL designs as well as holographic PAL

designs were created. For SVSLs, the achieved benefits were CE reductions, thickness

reductions and the possibility to replace ASPHs with HOEs. For PALs, the achieved ben-

efits were to replace the free-form required in refractive PALs with the arbitrary optical

function of a HOE. In the case of SVSLs, it was shown that CE reductions using HOEs are

indeed possible. For example it was possible to reduce CE of a -4 dpt SPH SVSL, which is

considered uncritical but above the perception threshold, to below the perception thresh-

old or to reduce the CE of a -8 dpt SPH SVSL to the CE of a -4 dpt SPH SVSL, both without

notable increases in other performance parameters such as SPH error or AST error. In

fact, incorporating HOEs also reduces the thickness of the lens. When aiming at reducing
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the edge thickness of a -4 dpt SPH SVSL, it is possible to reduce the edge thickness of an

already optimized SVSL with an ASPH by an additional 16% by including HOEs without

notable increases in other relevant performance parameters such as SPH error or AST

error. Replacing the ASPH in a refractive SVSL with a spherical and one aspherical sur-

face by a HOE is possible, but the results show that ASPHs are better suited to improve

the optimization compromise between SPH error and AST error. Still, the optimization

compromise between SPH error and AST error in a spherical SVSL with HOEs is strongly

improved compared to a spherical, refractive SVSL. In PAL designs, it is possible to re-

place the complicated free-form surface with HOEs for add powers up to 2.0 dpt. For

larger add powers, CE increases beyond uncritical levels. Because refractive-holographic

dispersion compensation works only for SPH contributions of the same sign, combining

holographic PALs with refractive hyperopia correction increases the available range of

possible add powers, while refractive myopia correction would increase CE and therefore

reduce the available range of possible add powers.

5.2. Outlook

The results of this thesis show that there are several possibilities to benefit from including

HOEs in spectacle lens designs.

While the holographic and hybrid spectacle lens designs presented in this thesis can

certainly be manufactured, this remains a challenging task for example in terms of record-

ing high quality HOEs via a holographic printer or embedding HOEs into refractive lenses

with high positioning accuracy. Solving these challenges for a prototype would allow to

assess the potential of this technology for mass production in a more informed manner

as well as to assess potential technological drawbacks such as environmental stability

of the HOEs in terms of temperature or humidity, haze from scattering and glare effects

from diffraction when unexpected wavelength and angle pairs fulfill the Bragg condition.

Looking at other holography applications such as augmented reality (AR) or head-up dis-

plays (HUDs) it seems reasonable to expect that haze from scattering is not a problem,

but glare effects might play a role.

Looking at potential applications of using HOEs in spectacle lenses, there is a large field

of potential applications that has been opened up by this thesis. Especially applications in

AR or myopia control can play a vital role in motivating further research into this field. In

AR applications, the technology developed here can benefit HOE design for varying SPH
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profiles that create different depth perceptions as well as AST error reductions. Such

functional design approaches are attractive for AR glasses as well as HUDs. In myopia

control, the angular selectivity of HOEs that is a drawback for the applications presented

in this thesis can be an important feature. One type of refractive spectacle lenses for

myopia control utilizes a tailored Petzval field curvature to move the focal plane in front

of the retina for peripheral vision while the focal plane is still on the retina for foveal

vision [78, 193, 194]. Of course, this approach is limited to one gaze direction. Here, the

angular selectivity of a hybrid SVSL designed with the methods described in this thesis

can be used so that for each gaze direction, only a narrow angular spectrum around the

principal ray is diffracted. The diffracted rays then form an image on the retina, while

the other rays that are only refracted form an image in front of the retina. This way, the

functionality of of the Petzval curvature myopia control lenses can be extended to work

for all gaze directions [195].
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